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Robust and Accurate Object Tracking under
Various Types of Occlusions
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Abstract — We propose a complete solution to robust and accurate object tracking in face of various types of occlusions.
As incorrect judgment of occlusion situation and improper update of target template are much more likely when
occlusions occur, preserving tracking stability and precision under occlusions is a challenging task. In order to overcome
these difficulties, we first propose a content-adaptive progressive occlusion analysis (CAPOA) algorithm. By combining
the information provided by spatiotemporal context, reference target, and motion constraints together, the algorithm
makes a clear distinction between the target and outliers. A template mask is subsequently formed to prevent infiltration
of outliers. Accurate tracking of an occluded target is achieved by rectifying the target location using the variant-mask
template matching (VMTM). In order to deal with template drift during the process of template update, we propose a
drift-inhibitive masked Kalman appearance filter (DIMKAF) which accurately evaluates the influence of template drift
when updating the masked template. As a result, the appearance filter reaches an optimal balance between reducing
template drift and keeping track of the target appearance variations. A fast algorithm of the DIMKAF is also given.
Finally, we devise a local best match authentication (LBMA) algorithm to handle complete occlusions, so that a much
more trustworthy detection of the end of an arbitrarily long complete occlusion is achieved. Both the real-world and
synthetic video sequences show that our proposed solution tracks targets reliably and accurately no matter when they are
under: short-term, long-term, partial or complete occlusions.

Index Terms — Object tracking, occlusion handling, template drift, Kalman filter, template matching.

I. INTRODUCTION

Ossect tracking is a very important aspect of computer vision and has a very wide range of applications.
Over recent years, much research has been devoted to object tracking under occlusions, because in real-
world tracking, a target being partly or entirely covered by outliers for an uncertain period of time is
normal. This phenomenon however, significantly increases the difficulty of object tracking: the precision
of locating the target normally drops a lot in face of heavy occlusions, and more seriously, occlusions are
likely to damage the template and eventually results in the loss of the target. Specifically, occlusions pose
four challenges to object tracking algorithms. In the remainder of this section, we first describe the four
challenges and review former efforts trying to solve them, and then we outline the approaches that we
propose to overcome the challenges.

The first challenge is how to robustly determine the portion of the target that is occluded. As will be
mentioned later, this is prerequisite to generating a correct template mask and preventing infiltration of

Manuscript received December 15, 2006. This work was supported by the National Basic Research Program 973 under Grant No. 2006CB705700.

The authors are with the Department of Electronic Engineering, Fudan University, Shanghai 200433, China (telephone: 86-021-65643633; 86-
021-65642762; 86-021-55664226, e-mail: jiyanpan@fudan.edu.cn; bohu@fudan.edu.cn; jgzhang01@fudan.edu.cn).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

occluders. Determining occlusion status is very hard for general-purpose trackers, where the only
knowledge available on the target is its initial appearance and the camera itself could have arbitrary
motions. When some parts of an occluder are similar to those of the target, they are easily undetected by
tracking algorithms. Detection of occlusion status is further complicated by the variation of the target
appearance, because tracking algorithms would have a hard time judging whether the changes in pixel
grayscale are caused by occlusions or the target itself.

Various approaches that analyze occlusion situations have been proposed. In [25] and [26], all the
foreground objects are localized by background subtraction and assigned a track index. The occurrences of
occlusions are inferred simply by monitoring whether two tracks merge. Although this method is reliable,
yet it only works with a fixed camera and known background. In addition, appearance models need to be
established for all the foreground objects. A mixture of three distributions is used in [24] to model the
observed value of each pixel, where outliers are characterized by the “lost” component which has a uniform
distribution; some other approaches declare outlier pixels by examining whether the measurement error
exceeds a certain value [7], [8], [23]. These algorithms work well when the statistical properties of occluders
happen to agree with their assumptions. Unfortunately, in most cases the assumptions do not hold, because
in real-world tracking scenarios, an occluder might be similar in color to the target, or fail to satisfy a
uniform distribution, or occlude the target for a long time. In addition, since these algorithms operate on a
single-pixel basis, they do not utilize any information provided by spatial context. Contextual information is
exploited in [11] and [12]. In [11], before locating the target, small blocks of the current image are compared
with the template to decide whether they are occluded. Reference [12] performs motion estimation between
adjacent frames and utilizes motion vectors to handle occlusions. As these methods detect occlusions by
comparing small image blocks, not just individual pixels, they have better performance in terms of analyzing
occlusion situation, but as they either employ the template alone or the previous frame alone, errors are
observed to frequently occur and propagate away. Further improvement can be made by making use of the
joint information provided by both the template and the previous frame. It should be noted that the multiple
hypotheses in particle-filtering based trackers [23] might enable some particles to find the target again when
an occlusion is over. However, recapture of the target is conditioned on effective detection of occluders and
protection of appearance models. Particle filtering alone could not achieve this, because it does not readily

possess the capability of discriminating target from outliers [27], [30]. A specific occlusion-detection scheme
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should be added as is implemented in [23]. The problem here is how to design such a scheme that is robust
enough.

The second challenge is how to accurately locate the target when the occlusion situation of the current
frame is still unknown. This is actually a chicken and egg problem: the occlusion situation must be obtained
before the target can be accurately located by masking out the occluded portion of it, while the occluded
portion of the target can reliably be determined by comparing with the template only after the correct
location of the target is given in the first place. Using histograms to represent the target [28] could be a
solution to this problem, because no structural constraint is imposed when searching for the target. However,
a satisfactory performance is guaranteed only when the non-occluded part of the target has a histogram
similar to that of the entire target. This assumption is often violated in real-world tracking. Therefore, an
approach that explicitly addresses this problem should be developed.

The third challenge is how to properly update the template so as to keep track of the changes in the
target appearance while preventing damages caused by outliers and template drift. The most
straightforward method directly replaces the template every frame (or every n frames) with the image
region believed to be the target [19], [20]. Indiscriminative update of the template in this method,
however, results in infiltration of occluders into the template [8], [11]. In addition, hasty update of the
template is found to suffer from gradual drift of the target out of the template, which is referred to as
template drift [2], [10].

Infiltration of occluders can be solved by applying a masking mechanism when updating the
template as is done in [7], [8], and [23], where pixels believed to be occupied by outliers are left out or
given a lower weight. Generating an effective occlusion mask, however, depends solely on acquiring a
correct analysis of the occlusion situation, and the latter task, which is described in challenge 1, is by
no means as simple.

The cause of template drift has been preliminarily and qualitatively investigated in the literature [2]-[4],
where template drift is ascribed to the accumulation of small appearance errors introduced each time the
template is updated. To reduce template drift, the initial template can be utilized to serve as a benchmark
when locating the target position in subsequent frames [2], [3], [10], but the resort to the first template is
less effective when the target appearance undergoes major changes.

The algorithm in [24] uses an EM-learned “stable component” to stabilize tracking, which helps reduce
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template drift. However, the algorithm does not take into account the small appearance errors that lead to
template drift. The distribution of such errors is not necessarily a uniform one and might therefore be
learned by the “wandering component” (a component proposed in [24] that models rapid temporal
variations), which undermines the performance in suppressing template drift.

Robust against noise due to its smoothing effect, Kalman appearance filter is a powerful tool to deal with
template drift [4], [9]. However, both [4] and [9] require manual selection of a Kalman gain for individual
sequences and the Kalman gain remains fixed once selected. Kalman appearance filter is also applied to
template update in [7] and [8], where the Kalman gain is allowed to fluctuate according to how intensively
the target appearance varies. Nevertheless, Reference [7] and [8] either assume the state transition noise or
the measurement noise to be constant. These are the two extreme cases that seldom occur in real-world
tracking scenarios. Consequently, much template drift is still observed. In order to achieve a better
performance, we need to explicitly model template drift when designing the Kalman appearance filter.

The fourth challenge is how to reliably detect the reemergence of the target and recapture it after it is
completely occluded for some time. Setting a similarity threshold is one method. Yet the optimal
threshold value is difficult to determine, because it varies with different video sequences. This problem is
circumvented in [7] and [8], where the image region that matches the best with the template over a
prefixed duration is assumed to be the reappearing target. Nevertheless, the artificial limit of a maximal
duration of the complete occlusion is a major drawback of this approach. Therefore, we need a new
strategy that could remove such a restriction when detecting the end of complete occlusions.

In this paper, we propose a set of methods to achieve robust and accurate object tracking under
occlusions. Consisting of both a normal mode and a complete-occlusion mode, the overall structure of our
object tracking solution is illustrated in Table | and will be detailed in Section Il. There are four key
components in our solution that address the four aforementioned challenges respectively. They are
highlighted in gray in Table 1. The four key components are listed as follows:

1. Content-Adaptive Progressive Occlusion Analysis (CAPOA) algorithm which analyzes the
occlusion situation within a given region of interest (ROI) and generates corresponding template
mask. The CAPOA algorithm features much higher discriminating capability against outliers than
other approaches.

2. Variant-Mask Template Matching (VMTM) operation which rectifies erroneous target location
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caused by occlusions. In VMTM, the template mask varies with the candidate target regions so
that the non-occluded portion of the target is always utilized to align the target from the initial
erroneous location to its true location.

3. Drift-Inhibitive Masked Kalman Appearance Filter (DIMKAF) which quantifies the measurement
noise caused by template drift and integrates it into the Kalman appearance filter. Explicit
formulization of the influence of template drift allows for much more effective suppression of
template drift.

4. Local Best Match Authentication (LBMA) algorithm which reliably detects the end of a complete
occlusion. The possible remerging target is selected as the best match in a local temporal period.
The authenticity of this guess is further examined by a novel strategy. The LBMA algorithm is not
restricted by the maximum duration of the complete occlusion.

All the aforementioned algorithms enable our proposed solution to achieve robust and accurate object
tracking under various kinds of occlusions, including: short-term partial, long-term partial, short-term
complete, and even long-term complete ones.

The remainder of this paper is organized as follows. Section Il provides a detailed description of the
overall structure of our proposed solution. In Section I, after briefly reviewing the template matching
technique, we discuss the DIMKAF for the sake of consistency and clarity. The CAPOA algorithm is then
detailed in Section IV. Section V focuses on the VMTM operation. We follow in Section VI by describing

the LBMA method. Experimental results are presented in Section VII, and Section VI1II concludes this paper.

Il. OVERALL STRUCTURE

Table | shows the overall structure of our proposed solution. The initial target is specified by selecting
a target region either manually or automatically [29]. Typically covering a rectangular area, the target
region is referred to as the region of interest (ROI) which tightly frames the target. Note that some
background pixels might also get included into the ROI during the initialization, but this does not matter
much, because they will be discriminated by the CAPOA algorithm later. We also initialize an outlier
map (denoted as U,) which represents the locations of outlier pixels in frame n. The outlier map is a
binary matrix which has a value of 1 where a pixel does not belong to the target. The template 7', which

reflects the current estimated target appearance, is initialized by sampling from the initial ROI through
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coordinate transformation. The initial template mask is
just an array of ones, indicating no template pixel is
masked. As an important information source in the
CAPOA algorithm, the reference target (denoted as
T,y is initialized as the initial ROI.

In the normal mode, we predict the target location using
the adaptive-velocity model proposed in [21] after a new
frame comes in. The approximate target region (ROL) is
then obtained through the first masked template
matching. Template matching is performed by finding
the coordinate transformation parameters that minimize
the matching error. However, the target location
acquired by the first template matching might be
erroneous because it uses the template mask generated
according to the occlusion situation of the previous
frame. In order to rectify the target location, we analyze
the occlusion situation within ROI using the CAPOA
algorithm and then perform the VMTM based on the
result of the occlusion analysis. The VMTM yields a
new ROI (ROL) whose occlusion situation is analyzed
by the CAPOA algorithm again. The resulting occlusion
situation of ROI, generates a new template mask (A/")
which guides the second masked template matching.

This template matching determines the final ROI (ROL),

TABLE |
The Overall Structure of Our Proposed Tracking Solution

Initialize the outlier map U, by selecting the target region (ROI).

Us(x)=0 if x belongs to the target region. Uy(x)=1 elsewhere.

Initialize the template T by sampling the ROI through coordinate

transformation. The reference target T, is initialized as the ROL

Initialize the template mask M to be an array of ones with the same

size as the template.
Clear the complete-occlusion flag Focc and the transition flag Frry.
For frame index n = 2,3, ...

If Focc=10
/* normal mode */
Predict target location using adaptive-velocity model.
Run ROIL = FTM( T, 1,, M,.1) to obtain the approximate target
region ROIL. FTM denotes ‘first template matching”. 1, is frame n.
Run [Upm, dummy]l=CAPOA(ROL, T 11, U,i) to obtain the
preliminary outlier map Uyy. “dummy” means a dummy variable.
Run ROL = VMTM(f s Ly Upi) to rectify the target region from
ROL to ROI. Uy is used to generate the variant mask M.
Run [dummy, M’ 1=CAPOA(ROL, T, I,1, U,1) to get a new
template mask M.
If more than 85% of ROL is occluded
Set the complete-occlusion flag Focc.
Else
Run ROI; = STM(T, 1,, M) to obtain the final target region
ROI. STM denotes “second template matching”.
Run [U,, M,]J=CAPOA(ROL, T, I,1, U,1) to acquire the
final outlier map and template mask.
Run 7 « DIMKAF( 7 ,ROL, M,) to update the template.
Update 7, by incremental interpolation and filtering.
Perform Kalman filtering on target speed.
End
Else
/* complete-occlusion mode */
|f FTRA =0
Predict target location using constant-velocity model.
Perform LBMA fo detect the end of complete occlusion.
If the end of complete occlusion is detected
Set the transition flag Frga.
End
Else
Perform template matching without masking.
If it is the last frame of the transition period
Clear Focc and Frpy.
Reinitialize U, and M,
End
End
End

End

within which the occlusion situation is analyzed by the CAPOA algorithm to yield the final outlier map and

template mask. Having obtained the accurate target location and the final template mask, we update the

template using the DIMKAF. It should be noted that when analyzing the occlusion situations of RO/, and

ROI3, we only need to determine the occlusion statuses of newly covered image regions.

When more than 85% of the target is occluded, our proposed solution enters the complete-occlusion
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mode, in which the target location is predicted using a constant-velocity model. The reappearance of the
target is reliably detected by the LBMA method. Once the end of a complete occlusion is declared, the
tracker undergoes a 5-frame transition period in which we neither use the template mask nor update the
template. At the end of the transition period, the outlier map and the template mask are reinitialized and

our tracker resumes the normal mode.

I11. UPDATING TEMPLATE USING DRIFT-INHIBITIVE MASKED KALMAN APPEARANCE FILTER

A. Locating the Target by Masked Template Matching

Denoted as T(x), the template of a target is a sub-image reflecting the grayscale appearance of the target.
Because of the existence of measurement noise, the true appearance of the template cannot be obtained.
As a result, what is actually utilized by the tracking algorithm is the estimated template 7 .

For each frame in a video sequence, the estimated template is mapped to the frame by coordinate
transformation ¢(x;a) which describes the motion of the target. The type of the transformation is
determined by its parameter vector a. In this paper, target motion is characterized by translation and
scaling; all other types of motion (including in-plane/3D rotation, non-rigid deformation, etc) are regarded
as variations in target appearance. Therefore, a has three components which describe horizontal
translation, vertical translation and scale of the target, respectively.

The location of the target in frame » is determined by performing the parameter search:

1)l m() ®

- . 1
a =argam|nW(M) >

xefy

where a is the estimated transformation parameter vector, /, denotes frame n, @, represents the
ensemble of the template pixels in the template coordinate system, and A denotes the template mask. M
has a value of 0 where the corresponding template pixel is occluded, and a value of 1 elsewhere. sum(M)
calculates the number of non-occluded template pixels. Equ. (1) represents the masked template matching
operation. In implementation, g is obtained by various searching algorithms [1], [15]-[17] or through
particle filtering [23], and the initial searching point can be chosen according to the adaptive-velocity
model proposed in [21]. One thing that should be noted here is that only translational transformation
parameters are involved in the first template matching, because we do not have a reliable template mask

yet. In the second template matching when a new template mask is acquired, a// the transformation
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parameters are under search (see Table I). Hereby we follow the strategy of obtaining optimal coordinate
transformation parameters from lower-complexity ones to higher-complexity ones, so as to increase
stability and robustness [22].

Each time the estimated transformation parameter vector is obtained by (1), the non-occluded part of the
estimated template 7 is updated from the measured target appearance 7 [¢(x;&)] to incorporate possible
variations in the appearance of the target. However, as (1) is always conducted in a discrete vector space, the
quantization error between the acquired value a and the true value a, results in small “drift” of the measured
target appearance 1[¢(x;a)| from the true appearance I[g(x;a,)]. If we update the template without any
discretion, such drift would gradually accumulate in the template each time it is updated and eventually lead
to tracking failure. This is the ultimate cause of template drift. The errors in the measured target appearance
caused by such small drift in each updating step can be viewed as a major component of measurement noise.
In this paper, it is referred to as drift noise. Drift noise, along with camera noise, forms the final
measurement noise. In order to ensure an optimal estimation of the true target appearance in face of the

measurement noise, Kalman filtering is employed to update the template.

B. Applying Masked Kalman Appearance Filter to Template Update

The masked Kalman appearance filter is applied only on non-occluded template pixels in order to
prevent infiltration of outliers. All the coordinate arguments x in Section I11-B and I11-C refer to non-
occluded template pixels, that is, a(x)=1. Processing occluded template pixels will be discussed in
Section 111-D.

For the sake of simplicity, independence is assumed among template pixels, and the Kalman
appearance filter is applied on a single-pixel basis. The state equation here can be expressed as:

T(x,n)=T(x,n-1)+&,(x,n-1), (2)
where T/(x, n) denotes the grayscale of a template pixel x at frame », and ¢ (x,n 1) is the state transition
noise which reflects the variation of the target appearance caused by the target izself from frame n—1 to
frame n. It is reasonable to assume that & (x,n) is a zero-mean white noise with power spectrum o?(x,n).
For simplicity, we use “power” to refer to “power spectrum” in the discussion below.

The measurement equation is:

1,[#(x;a)]=T(x,n)+ ¢, (x,n), (3)
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where ¢, (x,n) is the measurement noise which is also white and zero-mean. The power of &, (x,7) is
o2 (x,n), which is contributed to by the drift noise and the camera noise.
According to the theory of Kalman filtering [13], Equs. (4) to (7) form a complete iteration to update

the estimated value of the template pixel:

oi(x,n)=ci(x,n-1)+ci(x,n-1), (4)

G(x,n)=Y[L+ o} (x,n) ol (x,m)], 5)
o;(x,n)=[1-G(x,n)lo? (x,n), (6)
T(e,n+1)=7(x,n)+ Gx,n W1, [p(;@)]~ e, )} = T, n) + G(x, n)er (e, m). )

Here, o(x,n) is the innovation at frame n; o2 and &2 are the powers of the prediction error and the
estimation error, respectively. They are automatically calculated in the iterations of the Kalman filtering.
What is left to be estimated are the powers of the two noise models, o2 and o, . They are related by the
following equation [7]:

o2(x,n)=ci(x,n-1)+cl(x,n-1)+c? (x,n), (8)
where of(x,n) is the power of the innovation. It can be approximated by averaging the squared

innovations of non-occluded template pixels over space and time, that is,

otlen)s Y S fete b ©

L k=n—L+lzeQ, (x
where L is the length of the temporal moving-average window, @, (x) represents the non-occluded part
of a spatial neighborhood centered at the current pixel x, and N, denotes the number of pixels involved
in the averaging process. In this paper, we set L to be 20 frames and €, (x) to be the non-occluded part
of an 11-by-11 square region around x.

According to (8), if the power of one noise model is obtained, the other one can be trivially calculated.
Both [7] and [8] assume one of the two noise models to be constant in power. This assumption, however,
is appropriate only in very specific tracking cases. In fact, the measurement noise power o can be
quantitatively evaluated, as will be detailed in Section I11-C. Therefore, o2 can be expressed as:

oi(x,n-1)=c2(x,n)-ci(x,n-1)-c? (x,n). (10)

In some cases, equation (10) yields a negative value, indicating little, if any, variation of the target

appearance at this location is caused by the target itself. As a result, &2 should be set as zero and the

value of &7 should be adjusted accordingly:
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ol (x,n)zas (x,n)—ag(x,n—l). (11)

Now we discuss the issue of initialization. The only term that needs to be initialized is the power of the

estimation error. As the only cause of the error between the initial template and the true target is the
camera noise, the power of the initial estimation error is therefore equal to the camera noise power:

O'g (x,O) = O',%/,C , (12)

where o7 . is the camera noise power.

C. Correctly Evaluating the Measurement Noise Power to Add Drift-Inhibitive Feature

As is mentioned in Section Il1-A, the influence of template drift is reflected on the measurement noise
of the Kalman appearance filter. Therefore, the filter can be made drift-inhibitive by obtaining the correct
evaluation of the measurement noise power which has two components: the camera noise power o,.. and
the drift noise power 2, .

1) Estimation of the Camera Noise Power

The camera noise power is assumed to be constant and can be acquired by referring to the

specifications of the camera sensor or calculating the variance over all the pixels of a uniform grey

background before the beginning of tracking:

o= 3 1k S 0

Nc xeQg Nc xeQ;

where /. is the uniform gray background, € represents the region under test, and Ny is the number of
pixels within Q...

2) Estimation of the Drift Noise Power

The evaluation of &7 is not so straightforward, as it is not necessarily constant. As has been discussed
in Section I11-A, the discrepancy between a and a, leads to the inaccuracy of the transformed coordinate
¢(x;a) and hence the drift error in 7, [¢(x;a)]. Fig. 1 indicates the situation in which the rue position of
a template pixel x might lie in a region @  which is centered at ¢(x;&) in the current frame /,, and the
true value of the pixel x is therefore equal to the value of a certain point within @, which is probably not
#(x;a). Increasing precision of (1) results in a smaller size of €, and thus less drift noise.

For the simplicity of notation, we use a instead of a, to denote the #ue value of the transformation

parameter vector. The drift noise power of a template pixel located at x can be formulated as
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oiwlx,n) = [{1,[8(x;a)]-1,[(x;a)]}* p,(a] @)da. (14)

where o2, (x,n) is the drift noise power of pixel

x at frame n, and p, is the joint posterior

distribution of the components of a after a is
given. The posterior distributions of individual #xd)
transformation parameters are independent of one
another when a is in the close vicinity of a, #lxe,)e 0

because in this case the selection of the value of a

certain parameter is little affected by the values G
that the other parameters have taken. This  Fig. 1. Template drift occurs when the true mapped position d(x;a,)
condition is always satisfied when the target is lies in a region around the searching fesult ¢(x; ).
under track, and (14) can therefore be written as
ol (x,n)= ”j[[¢xa] 1| }le .| a)da, , (15)
aapas
where p; is the posterior distribution of a;, the i-th component of a.

Now we focus on the calculation of p;. According to Fig. 2, since g, can only take discrete values, the

likelihood of a; is

a,—a)| <

(16)

P, |a,-)={1’

0, else

where P(a, | a,) is the likelihood of a; under the observation ,, and A, is the final step size with which

(1) searches for a,. From Bayes’ rule, the posterior distribution of a; can be expressed as

- P(a, | a,)pla,)

; ; ; — i i i i . (17)
p(a |a) IR(dllai p(ai dai
Substituting (16) into (17) yields
f:(az) |ai—&i|SAi/2
~ a;+A

pi(ai |ai): L A/2p a; )da . (18)

0, else

Although it is difficult to acquire the exact value of p(a, ), we can reasonably assume that p(a,) is
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approximately constant within the integral interval, because p( ) is relatively flat near its maximum and
A, is relatively small. Under this assumption, Equ. (18) is reduced to

pi(ai | &[): {VA”

0, else

(19)

As ¢(x;a) does not necessarily generate integer A

coordinates, sub-pixel interpolation is needed to promote

the precision of template matching and noise evaluation. g, - M ,,,,,,

Considering both the interpolating performance and the

Fig. 2. An illustration of the quantization error when searching
for the transformation parameters. Note no matter what value

to achieve this purpose. a, takes within the interval [a, - A,/2,4, + A, /2], Equ. (1)
will yield the same result: a, .

computational burden, we choose bilinear interpolation

While it is a challenging task to arrive at an
analytical expression of o7, (x,n) from (15) and (19), we can still obtain a numerical result by replacing
the integral with summation:

ol (x,n)~ ZZZ[[gzﬁxak] Al zﬁplkAaM)Aa

i=!

{114 ijzzzz[qﬁxak el

=1 bk Ky

(20)

where Aa,Aa,Aa, forms an elementary cube in the space of a as a unit for summation, and
a, =[kAa, k,Aa,, k,Aa,] . The range of integer ; in the summation satisfies
|k,.Aal. —5,-|SA,-/2v i=123. (21)
After we have now acquired the drift noise power, the final estimate of the measurement noise power
can be calculated as:

ol (x,n)z Cle+n-0Ly (x,n). (22)
where 7 is a constant larger than 1 which accounts for possible errors involved in the bilinear interpolation.
In this paper, we set 7 to be 2, a value suitable for all the tracking scenarios we have encountered.

From the discussion above, it can be seen that the measurement noise power is heavily dependent on
the target appearance (higher density of textures or edges contained in the target appearance results in
larger measurement noise power). This is not surprising, because the same amount of deviation of the

target location will cause greater appearance errors (and hence severer template damage) to the template
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pixels surrounded by more complex target appearance. As a result, template drift is more prone to occur
when the target appearance contains more details. In our algorithm, more appearance details lead to
higher measurement noise power which precludes the Kalman gain of the appearance filter from getting
too large, and consequently template drift is significantly reduced.

It is worth mentioning that the discussion above can be trivially generalized to coordinate
transformations containing any number of parameters, not just translation and scaling.

3) Fast Algorithm

The computational complexity of (20) can be reduced if we can acquire the joint posterior distribution, p,, of the

transformed coordinate u = ¢(x; a) =[v,w]" fromp, and ¢, so that (14) becomes

ol (x,n) .“In @) p,(u|@t)du, (23)

ue®,

and (20) becomes
olp (x, n) ~ AvAwZ z [I” (llAv, lew) -1, (\7, v?z)]z D, (llAv, L,AW| v, v?)) . (24)

A
Here, & =¢(x;a)=[v,W]", 2, is the region where ¢(x;a) might be located (as is shown in Fig. 1), and
AvAw is an elementary rectangle as a summation unit. Integers /; and /, take such values that
[LAv,LAw] € @, . (25)
By doing so, we can merge multiple terms of different sets of transformation parameters yielding the
same mapped coordinate into a single term when calculating the summation in (20), and the three-
dimensional summation is therefore reduced to a two-dimensional one. The problem here is how to
calculate p,.
The distribution function of u is given by
F,(u|u) =PV <v,W <w|v,w}, (26)

where we use capitalized letters to denote random variables. Since the coordinate transformation can be

s L]

expressed as

we rewrite (26) as follows:
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F,(u|t)=P{4, <v—Ax, 4, <w—Ay|a,,d,,d,}

—_[ U 1 P, a2 |a2,al)da2 J-_m_ i ps(as |&3’a1)da3]}71(a1 |&l)dal - (28)
V—a;x w—apy ~ ~
—.[ U‘” b, az |a, )da2 J:OC pz(a3 | a; )da3:|p1(al | al)dal
The latter equality holds because of the independence among the transformation parameters.
The joint posterior distribution of u can be yielded by calculating the partial derivatives of (28):

2
()= ZEe)
vow

Substituting (19) for the distributions in (29), we have

= Ijopz (V —a,x|a, )p3(w_a1y | )pl(al | &1)da1 : (29)

- 1 1 B, —B, J/(A\A,A,), B, =B
Pu(”|”): J‘B da, = ( H L)/( 182 3) H L (30)
A1A2A3 B 01 BH <BL
where B; and By can be shown to take the following values:
~ A —-a A -a A
B, =max{a, ——=, A B R NN x#0,y#0, (31)
2 X 2|x| y 2|y|
A A —-a A —-a A
B, =minda, +-1, Y% 4 22 W2 2a L 5 20,y20. (32)
2 X 2|x| y 2|y|

When x is zero, the second terms in the braces of (31) and (32) disappear if \V—&z\ <A, /2, otherwise
p,(u]@)=0. When y is zero, the third terms in the braces of (31) and (32) disappear if w—a,|<A,/2,
otherwise p (u|a)=0. The derivations of B, and B, are omitted here for conciseness. Using (24), (30),

(31) and (32), we can evaluate the drift noise power in a computationally efficient manner.

D. Operations for Occluded Template Pixels

The occluded template pixels do not undergo Kalman filtering and their estimated grayscales remain
unchanged during the occlusion period. However, for an occluded template pixel, the power of the
estimation error &2 might increase with time due to the change of the target appearance. As will be seen
in Section 1V, &2 play an important role in analyzing occlusion situation. In addition, a proper value of
o2 is also needed when the pixel becomes uncovered again. Consequently, careful evaluation of &2 for
occluded pixels is indispensable.

We approximate o2 according to the following equation when a pixel is occluded:

ol(x,n)=02(x,n-1)+ { Zas X, k} )| - exp[- Aln—7)]. (33)

er+l
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where r is the frame index immediately before the pixel gets occluded, and the increment of the
estimation error power each frame is assumed to be the average of the state transition noise powers over
the last L non-occluded frames enveloped by an exponential term with the time constant 1/4. The
purpose of this exponential term is to prevent the estimation error power from becoming too large when
the pixel is occluded for a long time. The time constant can be set according to the rigidness of the target:

higher rigidness is associated with a smaller time constant (or larger 1), and vice versa.

IV. CONTENT-ADAPTIVE PROGRESSIVE OCCLUSION ANALYSIS ALGORITHM

The overall scheme of the CAPOA algorithm is shown in Fig. 3. The function block in gray is further
expanded in Fig. 4. The two figures will be detailed in the subsequent sub-sections. The prototype of the
CAPOA algorithm is

[U

M, ]=CAPOA(ROLLT,, 1,,.,U,.), (34)
where ROI is the region of interest of the current frame under analysis, 7., is the reference target which
will be introduced in Section IV-C, I,., is the previous frame, U, is the previous outlier map, U, is the
updated outlier map incorporating the result of the occlusion analysis, and M,,, is the updated template

mask corresponding to the occlusion situation within the ROI of the updated outlier map.

A. Progressive Scanning of the Region of Interest

The boundaries of the region of interest (ROI) are the coordinate-transformed boundaries of the
template, so the target is tightly framed by the ROI in most cases. Therefore, we only need to analyze the

occlusion situation within the ROI to reduce computation.
CAPOA starts

i

In the CAPOA algorithm, occlusion detection is based on image blocks,

Set the block size under analysis
to be half the size of the ROI

not individual pixels as is done in [7], [8], [23] and [24], because spatial
The entire ROI
is determined? Y

!

context plays an important role in deciding whether a target is occluded.

Analyze the occlusion

This is also how we humans make such decisions. For example, when two Sl iogdcontainiig

undetermined pixels

faces partly overlap, only by exploiting the differences of spatial Al such blocks N

are scanned?

|

structures can we know that an occlusion occurs.

‘ Halve the block size under analysis ‘

(R

CAPOA ends

. . Fig. 3. The flowchart of the overall
scans. In each new scan, the sizes of the blocks under analysis are halved, CE\POA algorithm.

In order to obtain a good trade-off between reliability and resolution,

we use a progressive scanning procedure. The ROI undergoes multiple
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and we only analyze the blocks within which the occlusion situation has not been determined by the
previous scans. The progressive scanning terminates when the occlusion situation of the entire ROI is
determined (see Fig. 3). Let D; and D, be the length of the two sides of the ROI, the total number of scans
Nsis

N, =min{log,(min(D,, D,)/5)], 3}, (35)
so that the minimum size of any block under analysis is 5 and the maximum number of scans is 3. That is,
the highest spatial resolution is an 8-by-8 division of the target, which is enough in practice. The

determination of the occlusion status of a block is described in the sub-sections below.

B. Primary Information Source: Previous Outlier Map

As is mentioned in Section I, the observed target appearance alone cannot give a reliable decision on
occlusion situation, because the information of outliers is not encoded there. The prior information
regarding outliers is only embodied in the non-target region during the initialization. The evolvement of
the non-target region offers clues whether it has “encroached” on the target region. Therefore, in order to
determine whether a block in the ROI is occluded, we perform backward motion estimation of the block
and see whether its corresponding block in the previous frame is within the non-target region. By doing

so, the occluding status of the

t block
block can be traced down all curTem >

Backward motion estimation
in the previous frame

the way from the first frame, in

which the occlusion situation is Refer to the previous outlier map

to get the occlusion percentage
of the backward ME block ( 7)

a priori  known.  The

0<r<1

spatiotemporal context around

Final scan pass?

the target region is thus

exploited in this process. In

order to trace the occlusion

< 30'at1‘-7

< Vo ~Vou

statuses of image blocks within

Final scan pass?

the ROI, we generate a binary N

H .
image called an outlier map, T

. . . . . Determined as Left for subsequent Determined as Determined as
which is described in Section II. non-occluded can passes to analyze partly-occluded ompletely-occluded

For each block in the ROI Fig. 4: The flowchart of analyzing the occlusion status of a current block..
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(referred to as a current block), we perform backward motion estimation in the previous frame, and the
motion-estimated block in the previous frame is called a backward ME block (ME stands for motion
estimation). Theoretically, the occlusion situation within the current block can just be copied from the
previous outlier map associated with the corresponding backward ME block. However, if the current
block is relatively small or is newly uncovered, the motion estimation would be less reliable and the
judgment solely based on the previous outlier map is not trustworthy. Therefore, what is derived at this
stage is only a temporary outlier map which is subject to further scrutiny. The temporary outlier map
associated with the current block located at w, can be expressed as follows:

U’ (wb ) =U,,, (&}b) (36)
where U’ denotes the temporary outlier map, and U,,...(®,) is part of the previous outlier map associated
with the corresponding backward ME block located at w, .

For a current block located at w,, let y (w;) be the percentage of the occluded pixels in U’(wb). Then
the current block can be classified into three categories as is illustrated in Fig. 4. Each category has a
specific procedure of further check. The idea behind it is that 1) if y(w;) is non-zero, the corresponding
region should be analyzed by the (smallest) blocks in the firal scan pass and get double-checked in that pass
to discover details and to ensure the detection of small target regions reappearing from behind the other side
of an occluder; 2) if y(w;) is zero, the block is double-checked in the current scan pass only when it is not
large enough to yield reliable motion estimation. A block is believed to be large enough when both its
dimensions exceed 15 pixels. All the blocks that need to be double-checked in the current scan pass is

referred to as uncertain blocks, and we resort to further information to determine their occlusion statuses.

C. Second Information Source: Reference Target

The reference target is essentially a scaled version of the template and is updated through incremental
interpolation and filtering at the end of processing each frame (see the normal mode of Table I): if the
scale of the target is found to have changed in the current frame, the reference target is firstly interpolated
to fit the size of the target, and then renewed to incorporate the variations of the target appearance. The
renewed value of a certain pixel x in the interpolated reference target is calculated as
(x,n+1) =T, (x,n)+ Gy, m)- {1, ()~ T2 ()} L= U, (6, )], (37)

where T, (x,n+1) represents the pixel value of the reference target that will be used by the CAPOA at

Trej ’
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frame n+1, T’

- (xn) denotes the pixel value of the interpolated reference target of frame n, G(x,,n) is

the Kalman gain of the template pixel located at the same relative position and is obtained during the
DIMKAF of the template, 7, (x,) represents the corresponding image pixel in frame n, and U, (x,) is the
corresponding pixel value of the final outlier map of frame #. (In this sub-section, “corresponding pixels”
refer to the two pixels that have the same relative position within the target but reside in different images).
Since the change in the scale of the target is very small over one frame interval, the incremental
adjustment of the scale of the reference target enables much more accurate interpolation than directly
interpolating from the template. Unlike the template, the reference target is the same size as the true target
and hence contains more details than the template does. We therefore choose the reference target to help
further determine the occlusion status of an uncertain block.

When an uncertain block belongs to the target, it must resemble the corresponding part of the reference
target. In light of this, we search for the best match of the block around its corresponding position in the
reference target and calculate the matching error measured by mean squared error (MSE). Then we
compare this MSE with the matching error of the block in the previous frame (obtained through backward
motion estimation). For the simplicity of notation, we denote the former error as E,-Zef and the latter one as
e/, - For an uncertain block located at e, whose backward ME block is non-occluded, it can be
determined as truly non-occluded [i.e.U,,(w,)=U'(e,)] if €., is smaller or only slightly larger than
e, . Similarly, if the backward ME block of an uncertain block is partly or completely occluded,
U, (,)=U'(w,) holds if g2, is significantly over e, ,. They are the decision criteria when using the
second information source. The problem here is how to adaptively set the threshold of 2, — .,
involved in the decision criteria for individual blocks. This threshold is denoted as ¢ in Fig. 4.

In fact, we can calculate the expected values of the two matching errors and therefore the expected
value of éfef — e;,, when the current block is non-occluded both in the current and the previous frame,
and then use this value as the benchmark for the threshold. We denote the value of a single target pixel in
frame n as Yr(n), and the relation between the values of the corresponding target pixels in frame n—1 and

frame n is
Yo(n)=Y.(n-1)+e,(n-1)+¢&l,, (38)

where g (n—1) denotes the variation of the pixel value from frame n—1 to frame n caused by the target

itself, and ¢, represents the measurement noise associated with the backward motion estimation. Let
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E{ejwd} denote the expected matching error of the pixel in the backward motion estimation. From (38), it

can be expressed as
Elef =, (1) -V, (01 =02 (n-1)+ 72, (39)
where o2 and o7 are the powers of &, and &, , respectively.
Now we calculate the expected matching error of the pixel in the reference target. The relation between
the values of the corresponding target pixels in the reference target and frame » is
Y, (n)=Y,(n-D)+ep(n-1)+e5(n-1)+e,, (40)
where ¥, (n —1) denotes the value of the reference target pixel after the reference target has been updated at
the end of processing frame n—1, and its estimation error is g7 (n—1). &/, is the measurement noise
associated with the process of performing block matching in the reference target. As a result, the expected
matching error of the pixel in the reference target E{efej} is
Ele, |=E{Y, (1)- ¥, (1 -1 }= 072 (n-1)+ 02 (n 1)+ o7, (41)
where &* and o]? are the powers of ¢/ and ¢!, , respectively.
From (39) and (41), the expected difference between the two matching errors is
ol = E{ei, —el., }= ot (n-1)+o —o)2. (42)
where o7 is the expected error difference associated with the target pixel. As the context around the
target pixel in frame n—1 is very close to that in the reference target, it is reasonable to simplify (42) by

assuming o> = o}/, and (42) becomes
op =ay(n-1). (43)

Since agz(n —1) is the power of the estimation error of the pixel value in the reference target (which is a
scaled version of the template), it can be effectively approximated by the power of the estimation error of
the corresponding pixel in the template, that is,

o’ (x)=or?(x,n-1)=o2(x,,n-1), (44)
where x and x; represent the coordinates of the corresponding pixels located in the reference target and the
template, respectively. o2 is the power of the estimation error of the template pixel and has been evaluated
during the DIMKAF of the template when processing the previous frame.

After we acquire the expected difference of the two matching errors for a single target pixel, the
expected difference of the two matching errors for an uncertain block in the ROI can be estimated by

averaging over all the pixels located in the block:
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E{érzef ebwd}__ ZGE X n— 1 (45)

BT x,€Qp;
where @, represents the corresponding block region in the template and N, is the number of pixels it
contains. Equ. (44) has been considered when we derive (45).
Combining with the result given by the primary information source, we set the value of ¢ for an

uncertain block located at w, as follows:

t(wb):E{ Cref ebwd} [3 27(‘01;)] m ZO'E x,n—l). (46)

NBT x,€Qpr
Smaller y (wp) implies higher probability of the current block belonging to the target, and therefore a larger
threshold should be set. From (46), it can be seen that the value of ¢ in Fig. 4 is adaptive to the contents of

individual blocks: higher estimation error or lower occlusion percentage increases the value of ¢.

D. Third Information Source: Motion Constraint

For the uncertain blocks that fail to meet the decision criteria in last sub-section, we exploit motion
constraint to further check their occlusion statuses. Blocks that belong to the target (occluder) should bear
similar motion to the target (occluder). By virtue of this fact, we compare the motion vector of an
uncertain block with the motion vector of the target (occluder) to look for additional cues that help decide
on the occlusion status of the block.

The decision criteria for the third information source are illustrated in Fig. 4 and summarized as follows:

1) If 7 (ws) =0,

U’ (wb) , ||vblk tgt” <30,
U, (w,)={undetermined ""m ,g,” >30,, and F,=0. (47)
1 S e ,g,||>30' and F,=1

2) If0< y(wp) <1,

U,,(0,)= {U (O% I P B .
0 ' Hvblk =V > Hvblk YV
3) If y(ws) =1,
U.. (w,,) = {U' (w”) ' "vblk v.,l<30,, -
0 ' ”vblk vl >30,,

Here, v, denotes the motion vector of the uncertain block and is obtained through the backward motion

estimation in Section 1V-B. v, (v,s)is the motion vector of the target (occluder) which is estimated by
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averaging the motion vectors of all the pixels that have already been decided as belonging to the target
(occluder). g, (o4) is the root mean square (RMS) of the Euclidean distances from the motion vector of
every target (occluded) pixel to the mean motion vector of the target (occluder). If no pixel has been
determined as a part of the target yet, the Kalman filtered target speed [21] (see the bottom line of the
pseudo codes in the normal mode of Table I) is used as v,,, and o, is set to be 1. If no pixel has been
determined to be a part of the occluder yet, the speed of the occluder in the last frame serves as v, and o, is
set to be 1. Fp = 1 if the current scan pass is the final one, otherwise Fp» = 0. ‘undetermined’ means the
occlusion situation of the ROI region associated with the current block is left for subsequent scan passes
to analyze. *I’ (“0’) denotes a matrix of ones (zeros) which indicates that the current block is determined
as completely occluded (non-occluded).

After the occlusion situation of the entire ROI is determined (or equivalently, the outlier map within the
ROI is updated), the CAPOA is completed. The pixel values of the outlier map outside the ROI are all
ones. Each time the outlier map is updated, the template mask is also renewed by sampling from the

outlier map as follows:
M, (x)=1-U,,, fround[¢(x;a)]; (50)

Here, round[-] is the operation that rounds the elements of a vector to their nearest integers. As an
additional protection for the integrity of the template, we further perform image erosion operation [14] on
M, where the erosion width is 2 pixels.

To sum up, the CAPOA algorithm exploits the spatiotemporal context (i.e. associates image blocks
between the current and the previous frame) to acquire a primary belief of the occlusion situation. This
belief is further double-checked by the reference template and motion constraints. This strategy
significantly promotes the discriminating power against outliers. More importantly, even if errors occur to
the outlier map, they can be corrected by the CAPOA algorithm in time before they ever have a chance to
undermine tracking performance. As a result, those errors seldom propagate away. We will verify this

claim in the experimental section.
V. TARGET LOCATION RECTIFICATION USING VARIANT-MASK TEMPLATE MATCHING

A. Purpose of the Target Location Rectification

After a new frame comes in, the template mask used by the first masked template matching is in
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accordance with the occlusion situation of the previous frame rather than the current frame. As a result,
the target location yielded by the first masked template matching is often inaccurate, especially when the
occlusion percentage of the current frame is higher than in the previous frame. Accumulation of these
errors will ultimately result in tracking failure. This is one of the main reasons why [7], [8] and [23] turn
off tracking when more than 30% of the target is occluded. In order to remedy this problem, we propose
the Variant-Mask Template Matching (VMTM) operation to rectify the target location.

Corresponding M,

B. Variant-Mask Template Matching Candidate RO y [—

\:ﬂDI:>High error
As the target location yielded by the first

template matching is inaccurate, part of the

B

| Current template

target might stay outside the ROI (as is
JI——>>Low error

Previous frame /

depicted by the shadowed area upon “A” in Corresponding M, «

the lower left image of Fig. 5). Therefore,
the outlier map generated after the first WD

analysis of the occlusion situation might be

Current frame

H H v
lncorrect, and IS referred to as a ROI Before rectification / ROI After rectification ‘/ Preliminary outlier map

prehmmmy outlier map (See Table I)' Fig. 5. An illustration of the VMTM operation. Letters “A”, “B”, “C” and “D”

. are marked on the target to indicate different portions of it. In the current frame,

Nevertheless, the portion of the target that  the ROI found by (1) is enclosed by a dashed red box, and the ROI found by
(52) is enclosed by a solid red box. Note how M, changes with the location of

lies within the ROl is still correctly the candidate ROI and yields different errors between the masked candidate
ROl and the masked template. The error reaches its minimum when the

. . - . candidate ROl is just th ion that the target occupies.
identified. We can therefore utilize this neidate ROLIS Just the reg! 6 larget occuiptes

information to align the target to its precise location using the VMTM operation.
The VMTM operation is based on (1), but instead of being constant throughout the search, the template
mask is a function of the transformation parameters under test by relating with the preliminary outlier

map through
M ,(x;a)=1-U,,, {round[g(x;a)]}. (51)

Here, a is the transformation parameter vector under test, M, is the dynamic template mask which varies

with a, and U,,;,, is the preliminary outlier map. Equ. (1) is therefore modified as

R . 1 _ - .
a,= argamme;T ‘In [¢(x,a)]—T(x1 M ,(x;a), (52)

where ¢ , is the rectified transformation parameter vector which defines the rectified ROl (RO, in Table I).
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The underlying mechanism of the VMTM is that in the parameter search performed by (52), the
unmasked part of the template and the unmasked part of the candidate ROI are always dissimilar unless
the candidate ROI is located exactly where the target is. This fact is illustrated in Fig. 5. For the sake of

stability, only translational transformation parameters are involved in the VMTM.

VI. HANDLING COMPLETE OCCLUSION

The tracking algorithm discussed above can track the target accurately even when up to 85% of the
target is occluded. When the occlusion percentage is even higher, however, the tracking becomes unstable,
because only extremely little information of the target can be utilized to perform tracking. We therefore
define 85% as the threshold separating partial and complete occlusions. In the case of the complete
occlusions, our proposed solution switches from the normal mode to the complete-occlusion mode. The
flow of the complete-occlusion mode is shown in Table I.

The most challenging task of handling a complete occlusion is how to effectively detect the end of it
without any restriction on its maximal duration. We propose an algorithm that successfully solves this
problem by verifying whether the best match in every K-frame period (referred to as an inspection period)
is truly the target. The end of the complete occlusion is declared only when the best match of a certain
inspection period passes the authentication. As a result, this algorithm is named the local best match
authentication (LBMA) algorithm. Attributed to the mechanism of authentication, K can be set rather
small (in our algorithm it is set to be 3) even when the duration of the complete occlusion well exceeds K
frames. A smaller K has the desirable benefits of capturing the reemergence of the target in time to
prevent possible interferences and reducing unnecessary computation.

In the LBMA algorithm, the coordinate transformation parameters and the frame index of the local best

match is acquired by

.1 A
(a,,m,)=argmin-= 3 |1, [g(x;a)]-7(x), (53)
an xeQ;
where a,, and n,, are the transformation parameters and the frame index of the local best match, and N is
the number of pixels in the template. The searching range of a is enlarged compared with (1) because the
target location might be farther away from the initial searching location in the complete-occlusion mode.
The initial searching location is estimated by assuming that the target moves at a constant velocity during

the complete occlusion. The velocity is estimated as the Kalman filtered target speed in the normal mode.
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By doing so, we raise the chance of recapturing the target as soon as it reemerges from behind the
occluder. Of course, if the motion of the target deviates too much from the constant-velocity model, it is
impossible to recapture it unless we search the entire frame. In (53), the frame index » is searched within
the current inspection period, that is,

nefn, +(k-1)K +if, . (54)
Here, n. denotes the frame index when our proposed solution enters the complete occlusion mode, and &
indicates that the current inspection period is the £-th period.

The local best match T} can be expressed as

Ty (x): [nm [¢(x;am )] (55)
Let e, be the matching error between 7,5 and the template, that is,
1 A
(=72 7,5 (x)-T(x). (56)
xeQy

In order to verify the authenticity of 7,5 indeed being the target, we match 7,5 (not 7) backwards to

the previous P frames and calculate the mean matching error e, as follows:

:, % 3 {mﬂin% S| [H(xa)]- T, (x)|}. (57)

n=n,,—P xeQ,

The value of P is determined according to
P=min{n, —n,, 3K}. (58)

Whether the local best match is truly the target can be judged by comparing e, with e, . On one hand, if
the target is still under occlusion, the local best match actually falls on the occluder or other clusters
which are most probably in the foreground in the previous P frames. Therefore, T, can always find good
matches in the previous P frames. Meanwhile, as 77 is not the target, its match with the template is much
worse. As a result, when the complete occlusion is not over, e, is always greater than e, .

On the other hand, if the local best match is indeed the target, we can infer that the target must be under
occlusion in most of the previous P frames, as the inspection period is only K frames. Consequently, ;5
cannot find a good match in most of the previous P frames, resulting in a significant increase in e, .
Meanwhile, ¢, is rather low as long as the appearance of the target does not change too much during the
complete occlusion. Therefore, e, would exceed e, when the local best match in the current inspection

period is truly the target.
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By virtue of the discussion above, T;p is authenticated to be truly the target when the following

inequality holds:
¢,(k)-2,(k)<&-logln, (k)-n.]. (59)

where ¢, (k) and e, (k) denote the two matching errors in the k-th inspection period, n, (k) is the frame
index of the local best match in the 4-th inspection period, and ¢ is a small positive number which
accounts for possible appearance change of the target during the complete occlusion. It is adjusted
according to the expected intensity of the appearance change: more intensive variation of the target
appearance requires larger 6.

The end of the complete occlusion is declared after 7,5 passes the authentication. At this time, a small
part of the target might still be under occlusion. Therefore, it is necessary to insert a transition period
before switching to the normal mode. The purpose of this period is to wait until the target gets fully
disoccluded. Setting the length of the transition period as 5 frames is suitable for most tracking scenarios.
In the transition period, we perform non-masked template matching to acquire the location of the target,
because 1) we do not know the current occlusion situation yet and 2) template mask is not crucial here
because the occlusion percentage is generally very small when the LBMA algorithm declares the end of a
complete occlusion. At the last frame of the transition period, we reinitialize the template mask as an
array of ones and the outlier map as a binary array in which only the pixel values within the current ROI

are zeros. Then we return to the normal mode when the next frame arrives.

VII. EXPERIMENTAL RESULTS

In this section, we test the robustness and accuracy of our proposed object tracking solution. The
experimental results concerning computational complexity are also presented. We perform experiments
on real-world video sequences containing a wide range of tracking scenarios. A total number of 66
sequences are under test, half of which are downloaded from two standard datasets and the other half are
taken by us using a SONY EVI-D100P video camera. The standard datasets are available at CAVIAR
(http://homepages.inf.ed.ac.uk/rbf/CAVIAR) and Birchfield’s head tracking sequences with occlusions
(http://www.ces.clemson.edu/~stb/research/headtracker/seq). As a complement to the experiments on the
real-world sequences, we also use synthetic test sequences where target motion is precisely controlled and

ground-truth data is accurately known, so that tracking performances can be analyzed quantitatively. In
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TABLE Il
The Numbers of Successfully-Tracked Sequences for Different Algorithms under Various Tracking Scenarios
Scenarios RAF[8] WSL[24] MS[28] ABM[12] P-VMTM P-AdpThd P

SP [15(10+5)] 12(9+3) 9(7+2) 7(5+2) 10(7+3) 13(10+3) 9(7+2) 14(10+4)

LP [14(8+6)] 0(0+0) 3(2+1) 4(3+1) 5(3+2) 8(4+4) 7(5+2) 13(7+6)

SC [12(8+4)] 5(4+1) 0(0+0) 8(4+4) 0(0+0) 5(3+2) 6(4+2) 10(7+3)

LC [9(6+3)] 0(0+0) 0(0+0) 0(0+0) 0(0+0) 3(3+0) 2(2+0) 7(5+2)
NO[16(1+15)] 11(1+10) 11(1+10) 7(0+7) 10(1+9) 11(1+10) 10(1+9) 12(1+11)
Total [66(33+33)] 28(14+14) 23(10+13) 26(12+14) 25(11+14) 40(21+19) 34(19+15) 56(30+26)

SP: short-term partial occlusion; LP: long-term partial occlusion; SC: short-term complete occlusion; LC: long-term complete occlusion;
NO: no occlusion. P: our proposed solution; P-VMTM: our proposed solution without VMTM; P-AdpThd: our proposed solution without
adaptive threshold. The convention of the numbers are [all(us+std)], where “us” means the number of sequences shot by us, “std” means
the number of sequences from standard datasets, and “all” means the total number.

order to allow for a fair comparison with other algorithms which do not necessarily have the prior

knowledge of the camera noise, we set the camera noise power to be zero in our DIMKAF.

A. Robustness of Object Tracking

In our proposed tracking solution, the only parameters that need to be manually adjusted are the 4 in (33)
and the &'in (59). Here we set 2 = 0.3 and ¢=2.7 throughout our experiments.

In the 66 real-world video sequences, 50 contain various types of occlusions: short-term partial, long-term
partial, short-term complete and long-term complete ones. The other 16, which do not involve occlusions,
are also included for completeness. The 50 sequences containing occlusions are further classified into four
categories associated with the four types of occlusions. Our proposed solution is compared with some state-
of-the-art tracking algorithms including Robust Appearance Filter (or RAF) [8], Adaptive Block Matching
(or ABM) [12], WSL Appearance Model (or WSL) [24], and Mean Shift (or MS) [28]. Our (modified)
solutions with some key features off are also tested to examine the role those features take. They will be
discussed later. In order to facilitate comparison, pixel grayscale is used as the target feature for tracking, and
the search for target location is conducted within a searching radius of 30 pixels in an exhaustive manner so
that the interference from local extrema can be eliminated. The tracking results are summarized in Table II,
where the numbers of successfully-tracked sequences for different algorithms under each type of tracking
scenarios are listed. The overall statistic is also given in the bottom row of Table II.

In the experiments, it is observed that RAF performs well when there is no occlusion or only short-term
partial occlusions occur. However, RAF is not effective in handling long-term occlusions, because the
outliers penetrate its appearance filter when an occlusion lasts relatively long. The S component of WSL is
rather robust against outliers and it makes much contribution to stabilizing the tracking. Nevertheless, we

observe that the WSL-based tracker is still frequently distracted by occluders. Most outliers are found to be
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modeled by the W component rather than the L component. As the W component also participates in seeking
the target location, it drags the WSL-based tracker away. MS tracks the histogram of a target and is therefore
robust when the histogram of the non-occluded part of the target is closer to the model histogram than that of
the occluder. When this condition is not satisfied, MS performs poorly. In addition, MS tracking is less
stable than the other approaches, because histogram alone is not discriminating enough. ABM is more
powerful in detecting occluders than the aforementioned algorithms, but it fails in many sequences as a result
of error propagation in the outlier map and being ineffective in identifying target regions reemerging from
behind the other side of occluders. Our proposed solution significantly outperforms the other algorithms in
each type of tracking scenarios. We observe that targets and outliers are always effectively distinguished
apart by our algorithm, and the integrity of template is rarely undermined.

In order to provide an intuitive impression of the performance of our proposed solution, we display the
tracking process of typical sequences for each type of occlusions. For partial occlusions, we also show the
tracking process of the WSL-based tracker [24] as a comparison because it employs a sophisticated
appearance model. For short-term complete occlusions, the performance of the RAF-based tracker [8] is
displayed for comparison because it also has a mechanism to handle this type of occlusions. For long-term

complete occlusions, we do not show the tracking process of any other tracker, because none of them could

deal with such occlusions.
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Fig. 6. lllustration of the tracking process of our proposed tracker and the WSL-based tracker under a short-term partial occlusion at frames 409,
457, 466, and 500. The sequence under test is seq_mb. The tracked target (ROI) is indicated by a white rectangle with a cross at the center. (a;)-
(as) The tracking process of our proposed tracker, where the lower right corner of each image is overlapped from left to right by the current
Kalman gain, the current template mask and the current template. The Kalman gain is displayed on a scale of 0 to 1, where brighter pixels indicate
higher Kalman gains. In the template mask, the masked portion is indicated in black. (b;)-(bs) The tracking process of the WSL-based tracker,
where the lower right corner of each image is overlapped from left to right by the mixing probabilities of the W, S, and L components, and the
means of the /# and S components.
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The tracking process under a short-term partial occlusion is displayed in Fig. 6. The sequence under test,
named seq _mb, is taken from Birchfield’s head tracking sequences (the second standard dataset mentioned
above). The boundaries of the original frames are padded so as to overlap the sub-images in the lower right
corner. In this sequence, the girl’s face (selected as the target) is partially occluded by a similar occluder (a
man’s face). Our proposed tracker stays firm on the target throughout the sequence. Note the sub-images of
Kalman gain overlapped in the lower right corner (the leftmost sub-image). The Kalman gains are low in

regions packed with features, because regions with stronger fluctuations of grayscale contribute more to
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Fig. 7. Illustration of the tracking process of our proposed tracker and the WSL-based tracker under a long-term partial occlusion at frames 202, 210,
232, 273, 300, 320, 344, and 383. The sequence under test is OneStopMoveEnterIcor. The tracked target (ROI) is indicated by a white rectangle
with a cross at the center. (a,)-(as) The tracking process of our proposed tracker, where the lower right corner of each image is overlapped from left
to right by the current Kalman gain, the current template mask and the current template. The Kalman gain is displayed on a scale of 0 to 1, where
brighter pixels indicate higher Kalman gains. In the template mask, the masked portion is indicated in black. (b;)-(bs) The tracking process of the
WSL-based tracker, where the lower right corner of each image is overlapped from left to right by the mixing probabilities of the W, S, and L
components, and the means of the /7 and S components.
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template drift than plain regions do. Also note the overlapped template mask (the middle sub-image). The
analysis result of the occlusion situation is never completely right (see Fig. 6-as). However, errors are
corrected very soon and seldom accumulate or propagate away (see Fig. 6-a5). We would discuss this feature
in more detail later. The WSL-based tracker also performs well. However, instead of being modeled by the L
component (which does not participate in tracking), the occluder is regarded by the tracker as the W
component. As a consequence, the tracker is biased away by the occluder (see Fig. 6-b3), but it manages to

recover in this sequence.

(b9 ’ (b) o () - (b)

Fig. 8. lllustration of the tracking process of our proposed tracker and the RAF-based tracker under a short-term complete occlusion at frames 53,
64, 68, 71, 74, 77, 82, and 90. The sequence under test is shot by us. The tracked target (ROI) is indicated by a white rectangle with a cross at the
center. (a;)-(as) The tracking process of our proposed tracker, where the lower right corner of each image is overlapped from left to right by the
current Kalman gain, the current template mask and the current template. The Kalman gain is displayed on a scale of 0 to 1, where brighter pixels
indicate higher Kalman gains. In the template mask, the masked portion is indicated in black. (b;)-(bs) The tracking process of the RAF-based
tracker, where the lower right corner of each image is overlapped from left to right by the current outlier situations of the template and the current
template. Outlier pixels are indicated in black.
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Fig. 7 shows the tracking process under a long-term partial occlusion, where the sequence under test is
called OneStopMoveEntericor from CAVIAR (the first standard database mentioned above). The target in
this experiment is a woman in white (see Fig. 7-a;). She is firstly occluded by a man, which immediately
followed by the occlusion from another woman (also in white). The entire occlusion lasts for nearly 50
frames. Our proposed tracker effectively protects the template from the occluders and successfully tracks the
target all along. The WSL-based tracker loses the target during the first occlusion (see Fig. 7-bs) and fails to
lock back on the target again this time.

Tracking under a short-term complete occlusion is illustrated in Fig. 8. The sequence shot by us includes a
girl whose head is completely occluded by another girl for about 10 frames. The occlusion percentage
exceeds 85% at frame 65, where our tracker enters the complete-occlusion mode. Then it performs the
LBMA algorithm on inspection periods whose sizes are 3 frames. At the end of each inspection period (i.e.
at frames 68, 71, 74, and 77), it checks the authenticity of the local best match within the inspection period.
Although some of the first three local best matches are quite similar to the target, they fail the authentication
and the tracker remains in the complete-occlusion mode. The fourth local best match passes the
authentication, and the tracker returns to the normal mode at frame 82 after the transition period. The values
of ¢, e, and &, +5-log(n, —n,) [see (59)] over the entire process are plotted in Fig. 9-a. By contrast, the
occluder successfully fools the RAF-based tracker which mistakenly takes the other girl’s head as the

newly-disoccluded target.
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Fig.9. Plots of the values of some key variables involved in the LBMA algorithm during two complete occlusions. The variables are calculated
every 3 frames at the end of each inspection period. Please refer to (59) for the meanings of the variables. (a) Plot for the short-term complete
occlusion displayed in Fig. 8. (b) Plot for the second long-term complete occlusion displayed in Fig. 10.
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Fig. 10. Hlustration of the tracking process of our proposed tracker under two long-term complete occlusions. The tracked target (ROI) is indicated
by a white rectangle with a cross at the center. The lower right corner of each image is overlapped from left to right by the current Kalman gain, the
current template mask and the current template. The Kalman gain is displayed on a scale of 0 to 1, where brighter pixels indicate higher Kalman
gains. In the template mask, the masked portion is indicated in black. (a;)-(ag) The tracking process of the first sequence captured by us at frames 1,
100, 104, 167, 215, 294, 299, and 362. (b:)-(bs) The tracking process of the sequence OneShopOneWait2cor at frames 320, 355, 359, 590, 911,
1057, 1062. and 1082.

In Fig. 10, we demonstrate the tracking performance of our proposed tracker on two sequences containing
long-term complete occlusions. The first sequence is captured by us and illustrated in the first two rows,
where a plug moves downwards behind a video camera. The plug is complete occluded for about 150 frames.
Our tracker enters the complete-occlusion mode at frame 101 and declares the reemergence of the target at
frame 294. It returns to the normal mode 5 frames later. During the complete occlusion, although many
background clutters exist, our tracker is never fooled. It should be noted that we use a constant-velocity

model in this sequence to set the initial searching position for every new frame, in a hope to be in the vicinity
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of the target when it is reemerging. However, if the motion of the target deviates too much from the constant
velocity model, our tracker will fail to recapture the target. This case could have happened in the second
sequence named OneShopOneWait2cor from CAVIAR. But fortunately, we have the prior knowledge in this
sequence that if any target gets completely occluded behind a shop window (whose location is known and
fixed), the best way to recapture it is to keep searching around the position where it first disappears. Using
this prior information, our tracker fixes the initial searching point after entering the complete-occlusion mode
(at frame 356), until it finds the target again (at frame 1057). The fluctuations of the key variables in the
LBMA algorithm over this 700-frame complete occlusion are plotted in Fig. 9-b. In this plot, we could see
the importance of the term &5 - Iog(nm —”c)- This term accounts for the potential appearance change of the
target during complete occlusions. Our tracker would not have detected the reemergence of the target in
time if this term had not been included.

As is discussed in Section 1V-C, the adaptive threshold ¢ is crucial for the CAPOA algorithm. In order to
verify the importance of making ¢ adaptive, we fix ¢ to be a typical value (100) and run our modified tracking
solution on the 66 sequences again. The results are shown in the column entitled “P-AdpThd” of
Table Il. As we can see, the tracking performance considerably degrades when ¢ is forced to be a non-
adaptive yet still reasonable value. Fig. 11 illustrates the tracking results using different strategies of setting ¢
on a sequence containing a long-term partial occlusion. From the discussion in Section 1V-C, we could infer
that a low threshold would cause more false outlier alarms. This inference is confirmed by Fig. 11-a, where ¢
is fixed as 2, a rather low threshold. When ¢ is fixed at an average value (250), both false and missed outlier
alarms can be observed, as is shown in Fig. 11-b. Note that a small part of the template has been damaged,
and the tracking precision is lowered. In Fig. 11-c, setting ¢ to be 400 leads to a disastrous consequence: the

template is severely corrupted by pervading missed outlier alarms and the tracking fails. This is not

@ (b) © O

Fig. 11. Comparison of the tracking performances using various strategies for setting the threshold ¢. (a) # = 2; (b) ¢ = 250; (c) ¢ = 400; (d) ¢ is
adaptive. All the images display the last frame of the sequence. The tracked target (ROI) is indicated by a white rectangle with a cross at the
center. In the lower right corner of each image, the current Kalman gain, the current template mask and the current template are displayed from
left to right. The Kalman gain is displayed on a scale of 0 to 1, where brighter pixels indicate higher Kalman gains. In the template mask, the
masked portion is indicated in black.
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Fig. 12. Illustration of the fluctuation of the threshold 7 over time under various situations. “Det. Occ. Stat” means “detected occlusion status.”
(a) target location 1 for sequence segment 1; (b) target location 2 for sequence segment 1; (c) target location 1 for sequence segment 2; (d)
target location 2 for sequence segment 2. Please refer to the text for details.

surprising because a high threshold tends to induce missed outlier alarms. The tracking result using the
proposed adaptive threshold is demonstrated in Fig. 11-d, where few false or missed outlier alarms occur and
the template is very well preserved.

We also record how the threshold ¢ fluctuates over time at different locations of different targets. The
values of ¢ are plotted against frame indices in Fig. 12. The blue real line represents the values of ¢ calculated
by the CAPOA algorithm for a selected block. The red dashed step-shaped line is overlapped to indicate the
algorithm-detected occlusion statuses of the block: the highest step indicates complete occlusion, the middle
step indicates partial occlusion, and the lowest step indicates no occlusion. The ground-truth occlusion

situations are shown by manually shading the plot areas. Lighter shade represents partial occlusion and
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darker shade represents complete occlusion. Fig. 12-a and 12-b illustrate the variations of ¢ for two 5-by-5
image blocks located at different positions of the same target in a sequence segment. The target appearances
associated with the two blocks have little change over the sequence. The fluctuations of ¢ in the two plots
could easily be explained by (46) and (33). We could see that the CAPOA algorithm has different strategies
of setting thresholds for different locations of the same target. In Fig. 12-c and 12-d, the two image blocks lie
on a target in another sequence segment. The appearance of the target changes irregularly and intensively. In
this case, what dominates the threshold is the intensity of the variations in the target appearance. When
occlusions occur, the fluctuation pattern of the threshold is similar to the patterns in Fig. 12-a and 12-b. In
this experiment it could be seen that the threshold in the CAPOA algorithm is fully adaptive to time, location,
occlusion situation, and target appearance.

As is mentioned in Section IV, the CAPOA algorithm has a strong capability of correcting errors in the
outlier map. We conduct the following experiment to verify this claim. In the experiment, the initial outlier

map within the ROI is intentionally set to be a random binary matrix instead of being initialized as an array
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Fig. 13. Demonstration of the error-correction capability possessed by the CAPOA algorithm. The corruption degree of the initial outlier map
increases from the top row to the bottom row. The four columns from left to right show frames 1, 2, 8, 16 of the sequence seq mb, respectively.
The tracked target (ROI) is indicated by a white rectangle with a cross at the center. In the lower right corner of each image, the current Kalman
gain, the current template mask and the current template are displayed from left to right. The Kalman gain is displayed on a scale of 0 to 1, where
brighter pixels indicate higher Kalman gains. In the template mask, the masked portion is indicated in black.
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of zeros. By adjusting the probability of the pixels taking the value of one, we control how “wrong” the
initial outlier map is. The sequence under test is seq mb from Birchfield’s head tracking sequences. The
tracking results of four typical frames out of the first 16 frames are illustrated in Fig. 13. In the first row, we
initialize the outlier map as normal. During the initialization, some background pixels are also included into
the template. After frame 8, however, an approximate contour of the target is formed in the template mask
when the background pixels are identified as outliers (see Fig. 13-az and 13-a,). In the second row, about
50% of the pixels in the ROI of the initial outlier map are corrupted (see Fig. 13-b,), but roughly half of the
errors are corrected in the frame immediately following the initialization (see Fig. 13-b). Six frames later,
the template mask is nearly the same as in the first row (see Fig. 13-b; and 13-b,). The corruption percentage
in the third row is as high as around 95%. Still, as in the second row, the errors disappear very soon. At
frame 16, the template mask is fully recovered. Note that background pixels are always recognized as
outliers. This experiment confirms the fact that errors in the outlier map do not accumulate and propagate
away in our proposed algorithm.

Now we examine the sensitivity of our tracking solution to the perturbation on the location of the initial
ROI. We run our tracking solution again on the sequences that are successfully tracked before, but this time
we randomly perturb the coordinates of the four vertices of the initial rectangular ROI by 2%, 4%, and 6% of
the ROI size, respectively. The ratios of the numbers of successful sequences after the perturbation to the
original numbers are listed in Table 111, where the left column is the strength of perturbation and the right
column contains the ratios. It is observed that our tracking solution is insensitive to the perturbation on the
initial ROI location.

Our tracking solution enters the complete-occlusion mode only when the occlusion percentage reaches as
high as 85%. This means our solution can still successfully track a target in the normal mode even when
more than two-thirds of it is occluded. We give more examples related to this feature of our solution in Fig.
14. The first example is demonstrated in the first row, where the sequence under test is seq ms from
Birchfield’s head tracking sequences. In the sequence, the man’s head

. . . . . TABLE Il
is severely occluded by his hands for multiple times, but our tracking  Tne sensitivity of the proposed tracking solution

to the perturbation on the initial ROI location

solution is never distracted away by the occluder. In order to observe Perturb Strength Ratio
2% 0.99
the performance of our solution when a severely-occluded target is 4% 0.94
6% 0.90

also moving, we capture another sequence in which a hand moves up
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Fig. 14. Demonstration of the performance of our tracking solution under extremely severe occlusion. The first row displays the sequence seq_ms at
frames 2, 8, 23, and 49. The second row illustrates a sequence shot by us at frames 2, 47, 91, and 178. The tracked target (ROI) is indicated by a
white rectangle with a cross at the center. In the lower right corner of each image, the current Kalman gain, the current template mask and the
current template are displayed from left to right. The Kalman gain is displayed on a scale of 0 to 1, where brighter pixels indicate higher Kalman
gains. In the template mask, the masked portion is indicated in black.

and down while a majority of it is behind a board most of the time, as is displayed in the second row. We
could see that our solution also performs very well by generating a suitable template mask to track only the
non-occluded part.

As our tracking solution can adaptively update the template, we only use translational and scaling

parameters to model target motion for the sake of computational simplicity and stability. Other types of
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Fig. 15 Demonstration of the performance of our tracking solution when targets undergo non-rigid deformation and out-of-plane rotation. The first
row displays the sequence seq sb at frames 174, 179, 182, and 184. The second row illustrates the sequence seq_dhb at frames 3, 16, 37, and 51.
The tracked target (ROI) is indicated by a white rectangle with a cross at the center. In the lower right corner of each image, the current Kalman
gain, the current template mask and the current template are displayed from left to right. The Kalman gain is displayed on a scale of 0 to 1, where
brighter pixels indicate higher Kalman gains. In the template mask, the masked portion is indicated in black.
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Fig. 16. Comparison of the performances of different algorithms in terms of reducing template drift. The three groups of rows illustrate different
sequences taken by us. For each group, the six images from left to right and top to bottom are: common initialization, the results of DIMKAF, TUDC
[2], RAF [8], WSL [24], and MS [28], respectively. The tracked target is indicated by an ellipse for MS. The current template (or appearance model) is
overlapped in the lower-right corner of each image where applicable. The three sequences from top to down end at frames 200, 162, and 554,
respectively. In the third sequence, TUDC loses the target and the tracking is therefore terminated at frame 346.

target motion, such as non-rigid deformation and out-of-plane rotation, are regarded as the variations of
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target appearance and learned by the template. Therefore, they seldom pose a threat to our tracker. Two
typical examples are illustrated in Fig. 15. The first row contains frames of the sequence seq sb from
Birchfield’s head tracking sequences. We could see that the man’s head undergoes very rapid motion that is
hard to be modeled by any affine transformation. Nevertheless, by updating the template in time, our
proposed solution has no difficulty in tracking it. In the second row, our-of-plane rotation occurs in the

sequence seq_dhb from the same standard dataset. Again, our tracking solution succeeds.

B. Accuracy of Object Tracking

To begin, we verify the contribution that the DIMKAF makes to reducing template drift and enhancing
tracking accuracy. We conduct lots of experiments on real-world sequences and compare the tracking
accuracies of different tracking algorithms. Three typical cases are illustrated in the three groups of rows
of Fig. 16. For each group, the six images from left to right and top to bottom are: common initialization,
the tracking results of DIMKAF, TUDC [2], RAF [8], WSL [24], and MS [28], respectively. Here, TUDC
is the short for “template update with drift correction”, a drift-correction technique proposed in [2]. From
the top sequence to the bottom one, the variations of the target appearance become increasingly intensive.
It is observed in our experiments that when the target appearance varies little, RAF is prone to suffer from
template drift as a result of unnecessarily high Kalman gains (see the second image of the second row).
On the other hand, when the target appearance undergoes much variation, the tracking accuracy of RAF is
also unsatisfactory (see the second image of the sixth row) because it does not update the template in time.
The performance of TUDC is very good with a stationary target appearance (see the first image of the
second row). However, it degrades a lot when facing a changing target appearance (see the first image of
the fourth row) due to the invalidity of the first template. It even loses the target in some cases (see the
first image of the sixth row). WSL suffers from some template drift almost in all cases because it does not
have an explicit model for the drift noise. The tracking accuracy of MS is found to be rather low.
Nevertheless, this is not caused by template drift, as MS does not update its histogram model. What leads
to the low tracking precision is that histogram itself is not very suitable for accurately locating a target.
Our proposed solution tracks the target accurately under all circumstances with the aid of the DIMKAF.

In order to evaluate the degree of template drift quantitatively, we perform further experiments on
synthetic test sequences so that the ground-truth values of the transformation parameters are known in

advance and the experiments can be conducted in a controlled manner. We generate test sequences using
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Fig. 17. Sample frames from synthetic sequences. The target is highlighted by a red ellipse. (a) A sample frame from the sequence for
comparing template drift. (b) A sample frame from the sequence for evaluating the contribution of VMTM.

the 512-by-512 standard test image “lake”, in which the image block containing the sailboat (lines 367 to
447, columns 296 to 350) is extracted as the target and overlapped on the original image after being
scaled and altered in appearance. The trajectory of the target is a spiral with the form

x(n)= (10+r-n)Cf)S(7z-r-n/20)+ 256! p=0L ... (60)
y(n)= @0+ 7-n)sin(z-r-nl20)+ 256
where r continuously changes to ensure that the target is moving at a constant speed of 2 pixels per frame.
The scale of the target varies between 0.5 and 1.5 at a constant rate of 0.03 per frame. The appearance of the

target is altered by modifying pixel values according to

],(x'n):{[](x,n)—128]-k+128, xeQ, |

=01,---, (61)
I(x,n), else
where I(x,n) and 1'(x,n) represent the original and the modified pixel value, respectively. k£ is a time-

variant parameter which takes values between -1 and 1 at a constant changing rate. €, is the region

4
where the target appearance is under modification. The left, upper, right, and lower half of the target is
selected as @, alternately, where £ finishes one cycle for each half. By varying the changing rate of &, we
control how fast the target appearance changes. A sample frame is illustrated in Fig. 17-a.

Fig. 18 shows the results of the first experiment in which the test sequence has 300 frames and the target
appearance remain fixed throughout the sequence. Various algorithms with adaptive template update are

tested to compare their mean tracking errors which are measured by the average Euclidean distances between

the estimated and the true values of the transformation parameter vectors at all frames. In Fig. 18, “ATT”
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Fig. 18. Comparison of template drift with a fixed target appearance. (a;)-(a;) Precision of translational parameters is 1. (b;)-(b,) Precision of
translational parameters is 2. Please refer to the text for details.

denotes the “occlusion robust adaptive template tracking” algorithm proposed in [7]; “Fixed” represents

keeping the template unchanged; “Std. Kalman” means using standard Kalman filter to update the template

where noise parameters are given and fixed; “Naive” means replacing the template every frame with the

previous ROI. Our algorithm DIMKAF is displayed in all the plots to facilitate comparison. In each plot, the

x-axis is the searching precision of the scaling parameter, and the y-axis is the logarithm of the mean

tracking error mentioned above. The top row and the bottom row show the results when the searching

precisions of the translational parameters are 1 and 2, respectively. From Fig. 18, we could see that tracking

with a fixed template has the minimal tracking error. This is not surprising, because when the target

appearance does not change, the best strategy to update the template is not updating it at all. The

performance of TUDC is similar to the best one, as the first template used to rectify the target location is
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always valid in the case of a fixed target appearance. It is observed in the experiment that although the target
appearance remains the same, the innovation is much larger when the target is smaller in scale and thus
compact with features. Evidently, such large innovation results from matching inaccuracy, not the variation
of the target appearance. The DIMKAF takes this into account by raising the measurement noise power and
keeping the Kalman gain low. As a result, the performance of the DIMKAF is still very close to the best one
and the tracking errors are virtually indiscernible by the naked eye. RAF, ATT and standard Kalman filter
incur much greater tracking errors as a result of suboptimal calculation of the Kalman gain. WSL also has
greater template drift than our algorithm because of its 7 component. When the “naive” approach is taken,
severe template drift is observed.

The results of tracking a target with a changing appearance are displayed in Fig. 19. In this test
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Fig. 19. Comparison of template drift with a changing target appearance. (a;)-(a,) Precision of translational parameters is 1. (b;)-(b,) Precision
of translational parameters is 2. Please refer to the text for details.
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sequence, we set the changing rate of the & in (61) to be 0.01 per frame. The displaying conventions of
Fig. 19 are exactly the same as Fig. 18. In Fig. 19 we could find that the tracking error of keeping the
template unaltered rises significantly. So does the performance of TUDC. The “naive” approach still
suffers from severe template drift. Among the remaining algorithms, the DIMKAF achieves much better
tracking accuracy than any other approach. From the experimental results, we can see that whether the
target appearance changes or not, the DIMKAF always effectively reduces tracking error by updating the
template just in time and just in place to keep up with the variation of the target appearance while
refraining from over-updating the template.

It is also interesting to note that when the searching precision for the translational parameters is 1 and
for the scaling parameter is 0.07, almost all the algorithms achieve the best tracking accuracy. This is
because such a combination of searching precisions happens to allow a certain searching point to coincide
with the ground truth data. As a result, little template drift would exist no matter how the template is
updated. This phenomenon also validates our discussion about the ultimate cause of template drift.

Secondly, we examine how the VMTM operation guarantees accurate object tracking when facing severe
occlusions. The experimental results on the real-world sequences are shown in the column entitled “P-
VMTM” in Table II. Without performing the VMTM, our tracking solution fails for some sequences it could
have successfully tracked otherwise. In the other sequences for which the tracking still succeeds, it is
observed that the tracking accuracy drops as a result of leaving out the VMTM. Two typical cases are
illustrated in Fig. 20. The first two rows show a case in which the target is lost if the VMTM is omitted, and
the last two rows display a case where the tracking accuracy is undermined if the VMTM is not performed.

In order to quantify the contribution of the VMTM and acquire a deeper insight into the underlying factors,
we perform experiments on synthetic sequences as well. Those sequences are also based on the standard test
image ‘lake’, and are generated by moving the image block of the sailboat (mentioned above) diagonally
from (178,178) to (370,370) at a constant velocity. Along the way, the target is partially occluded by a 61-
by-61 original image block centered at (276,276). The highest occlusion percentage exceeds 75%. The scale
of the target varies between 0.5 and 1.0 at a rate of 0.01 per frame. A sample frame is illustrated in Fig. 17-b.
We measure the tracking accuracy of the proposed tracking solution with and without the VMTM under
various target speeds.

The experimental result is illustrated in Fig. 21. It can be observed that when the relative target speed with



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 43

(b) " (b2) (bs) (b)

(c) (c2) (c3) (ca)

(d)) (d2) (ds) (d)

Fig. 20. Comparison of the tracking performances when using our proposed solution with and without performing the VMTM. (a;)-(a4) The
target is lost when the VMTM is not performed. (b;)-(bs) The target is tracked well when the VMTM is performed. (c;)-(cs) The tracking
precision is low when the VMTM s not performed. (d;)-(ds) The tracking precision is high when the VMTM is performed. The sequence
under test is OneStopMoveEntericor. In the top two rows, we choose a girl as the target, and the four images from left in each row display
frames 765, 877, 983, and 1004, respectively. In the bottom two rows, we choose a man as the target, and the four images from left in each
row display frames 1202, 1295, 1344, and 1399, respectively.

respect to the occluder is low, the proposed tracking solution achieves high tracking accuracy no matter
whether the VMTM is employed. When the target moves faster, however, the tracking error with the VMTM
almost remains the same, while the tracking error without the VMTM drastically increases. This is because
with the rise of the relative target speed, the non-occluded part of the target in the current frame becomes
increasingly dissimilar to the non-occluded part in the previous frame. As a result, the template mask
generated according to the previous occlusion situation becomes increasingly imprecise in guiding the search

for the target location in the current frame, thus leading to the soaring tracking error. By performing the
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VMTM, the target location is always
effectively rectified and the tracking error is

therefore always kept low.

C. Computational Complexity

In order to ensure the robustness and
accuracy of object tracking, our proposed
solution involves many schemes other than
the basic template matching operation. As a
result, the computational complexity of our

proposed solution is naturally higher than the
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Fig. 21. The plot of tracking error against target speed when applying the
proposed tracking solution with and without the VMTM. The curves are LS-
fitted lines using piecewise quadratic functions.

algorithms that only contain single-pass template
matching, such as RAF. However, as our proposed
solution uses progressive scanning and restricts the
scanning scope within the ROl when analyzing the
occlusion situations, the computational burden is much
lower than ABM where the entire frame undergoes

analysis and no template matching is

TABLE IV
Average Implementation Time for Various Algorithms
Algorithm Time (sec)
RAF 0.1076
WSL 0.3260
MS 1.9719
ABM 7.9063
Proposed 0.7442

The data is collected by running the algorithms on the
MATLAB platform.

. x10
performed. After we conduct experiments on A ‘ ‘ ‘
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Now we examine the effectiveness of our

Mean error of the measurement noise powers

proposed fast algorithm for the DIMKAF

mentioned in Section IlI-C. Fig. 22 shows

Fig. 22. A comparison of the computational complexity when performing the
DIMKAF with and without employing the proposed fast algorithm. The
curves are LS-fitted lines using piecewise quadratic functions.
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the numbers of MAC (multiply-accumulate) operations needed for a single implementation of the
DIMKAF using the normal algorithm and the fast algorithm, respectively. The x-axis is the mean error
between the true and the estimated measurement noise powers of the pixels over the entire template. In
the experiment, we vary the size of the summation units in (20) and (24) to yield a series of mean errors
and their corresponding computational complexities. As is indicated in Fig. 22, the computational burden
rises very little when the mean error approaches zero if the fast algorithm is employed. By contrast, the
normal algorithm suffers from a dramatic increase in the computational complexity when the mean error

reduces.

D. Failure Modes

There are two cases that could lead to the failure of our tracking solution: 1) When a human head
rotates from a frontal view to a rear view, the dark hair that gradually becomes visible from one side of
the face sometimes fails to be recognized as part of the target; 2) during the period of complete occlusion,
the motion of the target is so irregular that the target is out of the searching range when it reemerges.

The first difficulty is encountered by most tracking algorithms, including those with adaptive template
update (like ours). Without prior knowledge, there is really no reason for the machine to believe that the
newly-appeared hair belongs to the head which is initially a white face. However, when the contrast is not so
significant, our tracking solution can still succeed (see Fig. 15-b). In order to overcome this problem,
multiple-appearance models could be used, yet at the expense of adding the need of training before tracking.

The second difficulty could be solved by enlarging the searching range. However, this would incur
strong interference from background clutters and much higher computational complexity. Efficient

detection of a reappearing target over the entire image is one of the focuses of our future work.

VIII. CONCLUSION

In this paper we propose an object tracking solution that contains a set of algorithms aiming at
enhancing the robustness and accuracy of object tracking when various types of occlusions occur. In the
proposed solution, the content-adaptive progressive occlusion analysis (CAPOA) algorithm effectively
acquires the current occlusion situation by: scanning the ROI progressively, using the joint information
provided by three sources and making decisions according to content-adaptive thresholds. The variant-

mask template matching (VMTM) is performed to rectify the target location that initially might be
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inaccurate due to the influence of occlusions. The drift-inhibitive masked Kalman appearance filter
(DIMKAF) significantly reduces template drift by correctly evaluating the noise models and obtaining the
optimal Kalman gains for all the template pixels at every frame. The local best match authentication
(LBMA) method reliably detects the end of complete occlusions by authenticating the genuineness of
local best matches. We verify the effectiveness of our proposed solution by conducting experiments on a
wide range of real-world video sequences. Synthetic test sequences are also employed to evaluate the
tracking performance quantitatively. The experimental results have confirmed the robustness and
accuracy of our proposed object tracking solution under almost all types of tracking scenarios.

Our tracking solution could be further improved by “softening” the outlier map so that a smooth
transition from non-occlusion to occlusion could be realized. This requires assigning a reasonable “belief

of occlusion” for each pixel, which is another focus of our future research.
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