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Abstract

Today’s deep learning systems are dominated by a dataflow execution model. Given
a static dataflow graph and the shape of the input (e.g., mini-batch sizes and image
dimensions), the system can fully determine its computation before execution.
When the same static graph applies to every data sample, the system may search
for an optimal computation schedule offline by trying out many schedules on
a sample input, knowing the input values won’t affect computation throughput.
However, for many neural networks, data samples have variable shapes and the
computation graph topology depends on input or parameter values. In this case, a
static graph fails to fully describe the computation and a better schedule needs to
be dynamically derived to take runtime information into account. Thus we argue
for the importance of dynamic scheduling, especially regarding distributed device
placement.

1 Dynamic Computation in Neural Networks

In a dataflow system, application programs first construct a dataflow graph that describes the computa-
tion, and then request the system to execute a subgraph or the whole graph. Although for many neural
networks (e.g., AlexNet [7], Inception-v3 [13], and ResNet [3]), the computation can be described by
a static acyclic directed graph (DAG) that applies to all data samples, there are many cases where the
graph topology varies based on input or parameter values.

Recurrent Neural Networks [2] model sequences of data (e.g., sentences). A recurrent neural
network (RNN) repeatedly applies a cell function, such as long-short-term-memory (LSTM) [4], to
each element of the sequence. Since sequences may have variable length, the cell function is executed
for different number of times for different sequences. A typical approach for expressing RNNs as a
static DAG is to statically unroll the sequence for a finite number of steps, padding shorter sequences
with empty values and likely chopping longer ones. An alternative approach is to construct a distinct
graph for each input sequence, paying the graph construction overhead for each data sample.

Recursive Neural Networks [12] generalize recurrent neural network to model arbitrary topologies.
For example, Tree-LSTM [14] models the syntactic tree of a sentence. Since the topology differs
from sentence to sentence, Tree-LSTM constructs a distinct static DAG for each sentence. As shown
by Xu et al. [16], per-sample graph construction constitutes a significant overhead (over 60% of
runtime in some cases). Xu et al. [16] propose to resolve the graph construction overhead by reusing
the graph structure that already exists in the dataset instead of programmatic construction, restricting
its applicability.

Mixture of Experts (MoE) [11] is an example of conditional computation in neural networks. A
MoE layer consists of a gating network and a large number (up to hundreds of thousands) of expert
networks. Each data sample sparsely activates a small number of experts as determined by the gating
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network based on runtime values. Therefore, for an input mini-batch, the input size of each expert is
unknown until the gating network has been executed on the mini-batch.

Expressing dynamic computation via dynamic control flow. Yu et al. [17] present two dynamic
control flow operations cond and while_loop in TensorFlow that represents conditional and iter-
ateive computation respectively. Recursive (including recurrent) neural networks can be expressed as
a while loop iterating over the nodes in a topologically sorted order. As the loop body is represented
as a subgraph in a static DAG, all dynamic instances of the loop body (i.e., iterations) share the
same dependency pattern. Therefore, for recursive neural networks, each iteration is conservatively
specified to depend on its previous iteration to ensure correct ordering, resulting in a sequential
execution, even though some iterations can potentially be executed in parallel. Jeong et al. [5] take
advantage of the additional parallelism by introducing a recursion operation into TensorFlow. With
recursion, a node recursively invokes the computation function on other nodes and waits until the
recursive calls return to continue its execution. This allows a caller to dynamically specify its distinct
dependency on the callees, permitting parallel execution of the functions on independent nodes.

2 The Need for Dynamic Scheduling of Dynamic Control Flow

Despite the programming support for expressing dynamic computation, existing dataflow-based
deep learning systems employ a static computation schedule derived prior to graph execution. A
computation schedule determines how operations are placed on (possibly distributed) computing
devices and compiles each device’s graph partition to an executable program. Here we focus on
distributed device placement.

When the same static computation graph applies to all data samples, it is possible to find an efficient
computation schedule prior to execution. TensorFlow [1] relies on application programmers to
manually place operations on devices; Mirhoseini et al. [10, 9] learn the device placement from
repeated trial executions of various schedules. Jia et al. [6] simulates schedule execution to reduce
the planning cost down to sub-seconds to tens of minutes depending on the scale (4 to 64 GPUs) and
complexity of the network. Moreover, Jia et al. [6] exploit additional dimensions of parallelization,
such as intra-operation parallelism. Nevertheless, existing approaches fail to consider that the
computation may change based on input or parameter values. We discuss the inefficiency due to
overlooking runtime information to motivate dynamic scheduling.

Conditional Computation. TensorFlow’s cond is implemented using Switch which forwards an
input tensor to one of two subgraphs. MoE generalizes Switch in two ways: (1) the forwarding
decision is made separately for each row in the input tensor and (2) each row is forwarded to K out
of N subgraphs. Due to MoE’s large size (up to ∼131 billion parameters), existing implementations
(e.g., Tensor2Tensor [15] and Shazeer et al. [11]) statically partition the expert networks to different
GPUs. Such static placement faces two problems: (1) the memory for a subgraph (e.g., variables) is
statically allocated regardless of whether a subgraph is actually executed; (2) the input sizes among
different experts can be highly skewed. These issues lead to heavy over-provisioning of GPU memory
while wasting GPUs’ precious computing cycles. As reported by Shazeer et al. [11], a MoE layer
consisting of 131072 experts requires 128 Tesla K40 GPUs to fit while achieving a computation
throughput of 0.3TFLOPS per GPU (Nvidia’s claimed peak throughput is 4.29TFLOPS/GPU). With
dynamic scheduling, the system allocates memory for only subgraphs that are executed and may
partition an overwhelmingly large input to an expert along with replicating the expert to multiple
GPUs to balance load among GPUs.

Iterative and Recursive Computation. TensorFlow creates a frame for each dynamic instance of
the while_loop loop body. Operations of different frames may run in parallel as long as their
dependencies are satisfied. However, since each operation is statically placed onto one device, all
frames of this operation is bound to this device. This can lead to saturating the computing power
of a single device, thus missing the additional parallelism, such as observed by Jeong et al. [5].
Previous work on static device placement observes throughput improvement when placing different
iterations of a statically unrolled RNN to different devices [10, 9, 6]. While static scheduling would
be prohibitively expensive when different data samples require different graph topology, dynamic
scheduling may dynamically schedule different frames to different devices to take advantage of the
additional parallelism. Moreover, as recursion is restricted to trees, deep learning systems need a
more general approach for precisely capturing the dependency among loop iterations in order to
explore parallelism in arbitrary dependency topologies, such as Graph-LSTM [8].
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(a) The original computation
graph: operations Op2, Op3, Op4
and Op5 are statically assigned to
computing device 1 and 2.
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(b) Assign operations (either auto-
matically by the system or by the
application) to a virtual device to
enable dynamic scheduling.
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(c) The computation graph after
graph transformation. We present
only the left Switch operation as
the other Switch is similar.

Figure 1: Graph transformation for dynamic scheduling.

3 Implementing Dynamic Scheduling in TensorFlow

In this section, we present one approach for performing dynamic device placement in TensorFlow.
Please note that this is active onging research.

TensorFlow Graph Execution. When a computation graph is executed, TensorFlow partitions the
graph among multiple computing devices and adds a Send and a Recv operation for each edge cut.
TensorFlow partitions the graph according to its operations’ device placement decisions specified
by the application program. After partitioning, each graph partition is executed by an executor. The
executor initializes a ready queue with operations that do not have any input. The executor executes
operations from the ready queue and after an operation is executed, its downstream operations are
visited and pushed onto the queue if an operation’s dependencies are all satisfied. Most operations
generate tensors as output and propagate their outputs to downstream operations, except that Switch
generates a dead single to its unexecuted branch. TensorFlow skips executing operations that receive
a dead signal as input and propogates the dead signal downstream, but Merge is executed as long as
one of its input is a live tensor and forwards this tensor to its output.

We dynamically schedule operations whose input shape can not be determined statically and those
that may be executed for a variable number of times. We statically schedule the other operations in
the graph in order to bound the runtime overhead of dynamic scheduling. Our approach to dynamic
scheduling performs static graph transformations and runtime graph refinements. A main advantage
of our approach is that it avoids repartitioning the computation graph during execution, and only
requires local changes to the graph partitions at runtime.

Static Graph Transformation for Dynamic Scheduling. In order to dynamically assign operations
to compute devices without repartitioning the graph, we replicate each dynamially scheduled operation
on all devices and dynamically decide which ones get executed by choosing where to send live tensors
and dead signals. For each such operation C, we add a corresponding Schedule node S in the
computation graph. The Schedule node have the same dependency as the computation node C and
its output is fed to a Demultiplexer which determines which replicas are activated (an input tensor
maybe split and forwarded to more than one replica). In this way, a Schedule operation is executed
after all inputs to the computation operation become available and multiple Schedule operations
can be executed in a batch for bulk scheduling. Fig 1 illustrates this graph transformation with an
example.

Dynamic Graph Refinement for Precise Capture of Data Dependency. As previously discussed,
some dependencies depend on data or parameter values which can not be statically determined.
Statically expressing such dependencies results in an imprecise and conservative dependency repre-
sentation (e.g., an enforced control dependency between each pair of consecutive loop iterations),
leading to underutilized parallelism. Our idea is to refine such dependency at runtime when necessary
values become available. For this purpose, we introduce a new node in the computation graph called
TensorStore. TensorStore stores a set of tensors and has a similar programming interface to
TensorFlow’s TensorArray. TensorStore’s tensors are accessed by key, where each key is written
once and read many times. An operation may read a tensor from a TensorStore s whose index k
is computed at runtime. The operation has dependencies on both s and k and thus is executed only
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after k is available. The first time such an operation become available for execution, it changes its
dependency on s to a precise dependency on s[k]. The operation will be executed right away if
s[k] is already available, otherwise its execution will be triggered when s[k] is written. Combined
with the graph transformation described earlier, such an operation may be dynamically scheduled
onto any computing device.
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