Dynamic Scheduling For Dynamic Control Flow in Deep Learning Systems

Jinliang Wei1 jinlianw@cs.cmu.edu
Garth Gibson2,1,5 garth@cs.cmu.edu
Vijay Vasudevan3 vrv@google.com
Eric Xing1,4 epxing@cs.cmu.edu

1Carnegie Mellon University, 2Vector Institute, 3Google Brain, 4Petuum Inc., 5University of Toronto

Abstract

Today’s deep learning systems are dominated by a dataflow execution model. Given a static dataflow graph and the shape of the input (e.g., mini-batch sizes and image dimensions), the system can fully determine its computation before execution. When the same static graph applies to every data sample, the system may search for an optimal computation schedule offline by trying out many schedules on a sample input, knowing the input values won’t affect computation throughput. However, for many neural networks, data samples have variable sizes and the computation graph topology depends on input or parameter values. In this case, a static graph fails to fully describe the computation and an optimal schedule needs to be dynamically derived to take runtime information into account. Thus we argue for the importance of dynamic scheduling, especially regarding distributed device placement.

1 Dynamic Computation in Neural Networks

In a dataflow system, application programs first construct a dataflow graph that describes the computation, and then request the system to execute a subgraph or the whole graph. Although for many neural networks (e.g., AlexNet [7], Inception-v3 [13], and ResNet [3]), the computation can be described by a static acyclic directed graph (DAG) that applies to all data samples, there are many cases where the graph topology varies based on input or parameter values.

Recurrent Neural Networks [2] model sequences of data (e.g., sentences). A recurrent neural network (RNN) repeatedly applies a cell function, such as long-short-term-memory (LSTM) [4], to each element of the sequence. Since sequences may have variable length, the cell function is executed for different number of times for different sequences. A typical approach for expressing RNNs as a static DAG is to statically unroll the sequence for a finite number of steps, padding shorter sequences with empty values and likely chopping longer ones. An alternative approach is to construct a distinct graph for each input sequence, paying the graph construction overhead for each data sample.

Recursive Neural Networks [12] generalize recurrent neural network to model arbitrary topologies. For example, Tree-LSTM [14] models the syntactic tree of a sentence. Since the topology differs from sentence to sentence, Tree-LSTM constructs a distinct static DAG for each sentence. As shown by Xu et al. [16], per-sample graph construction constitutes a significant overhead (over 60% of runtime in some cases). Xu et al. [16] propose to resolve the graph construction overhead by reusing the graph structure that already exists in the dataset instead of programmatic construction, restricting its applicability.

Mixture of Experts (MoE) [11] is an example of conditional computation in neural networks. A MoE layer consists of a gating network and a large number (up to hundreds of thousands) of expert networks. Each data sample sparsely activates a small number of experts as determined by the gating
network based on runtime values. Therefore, for an input mini-batch, the input size of each expert is unknown until the gating network has been executed on the mini-batch.

Expressing dynamic computation via dynamic control flow. Yu et al. [17] presents two dynamic control flow operations `cond` and `while_loop` in TensorFlow that represents conditional and iterative computation respectively. Recursive (including recurrent) neural networks can be expressived as a while loop iterating over the nodes in a topologically sorted order. As the loop body is represented as a subgraph in a static DAG, all dynamic instances of the loop body (i.e., iterations) share the same dependence pattern. Therefore, for recursive neural networks, each iteration is conservatively specified to depend on its previous iteration to ensure correct ordering, resulting in a sequential execution, even though some iterations can potentially be executed in parallel. Jeong et al. [5] take advantage of the additional parallelism by introducing a recursion operation into TensorFlow. With recursion, a node recursively invokes the computation function on other nodes and waits until the recursive calls return to continue its execution. This allows a caller to dynamically specify its distinct dependence on the callees, permitting parallel execution of the functions on independent nodes.

2 The Need for Dynamic Scheduling of Dynamic Control Flow

Despite the programming support for expressing dynamic computation, existing dataflow-based deep learning systems employ a static computation schedule derived prior to graph execution. A computation schedule determines how operations are placed on (possibly distributed) computing devices and compiles each device’s graph partition to an executable program. Here we focus on distributed device placement.

When the same static computation graph applies to all data samples, it is possible to find an efficient computation schedule prior to execution. TensorFlow [1] relies on application programmers to manually place operations on devices; Mirhoseini et al. [10, 9] learn the device placement from repeated trial executions of various schedules. Jia et al. [6] simulates schedule execution to reduce the planning cost down to sub-seconds to tens of minutes depending on the scale (4 to 64 GPUs) and complexity of the network. Moreover, Jia et al. [6] exploit additional dimensions of parallelization. Nevertheless, existing approaches fail to consider that the computation may change based on input or parameter values. We discuss the inefficiency due to overlooking runtime information to motivate dynamic scheduling.

Conditional Computation. TensorFlow’s `cond` is implemented using `Switch` which forwards an input tensor to one of two subgraphs. MoE generalizes `Switch` in two ways: (1) the forwarding decision is made separately for each row in the input tensor and (2) each row is forwarded to K out of N subgraphs. Due to MoE’s large size (up to 130 billion parameters), existing implementations (e.g., Tensor2Tensor [15] and Shazeer et al. [11]) statically partition the expert networks to different GPUs. Such static placement faces two problems: (1) the memory for a subgraph (e.g., variables, receive buffers) is statically allocated regardless of whether a subgraph is actually executed; (2) the input sizes among different experts can be highly skewed. These issues lead to heavy over-provisioning of GPU memory while wasting GPUs’ precious computing cycles. As reported by Shazeer et al. [11], a MoE layer consisting of 131072 experts requires 128 Tesla K40 GPUs to fit while achieving a computation throughput of 0.3TFLOPS per GPU (Nvidia’s claimed peak throughput is 4.29TFLOPS/GPU). With dynamic scheduling, the system allocates memory for only subgraphs that are executed and may partition an overwhelmingly large input to an expert along with replicating the expert to multiple GPUs to balance load among GPUs.

Iterative and Recursive Computation. TensorFlow creates `frames` for each dynamic instance of the `while_loop` loop body. Operations of different frames may run in parallel as long as their dependences are satisfied. However, since each operation is statically placed onto one device, all frames of this operation is bound to this device. This can lead to saturating the computing power of a single device, thus missing the additional parallelism, such as observed by Jeong et al. [5]. Previous work on static device placement observes throughput improvement when placing different iterations of a statically unrolled RNN to different devices [10, 9, 6]. While static scheduling would be prohibitively expensive when different data samples require different graph topology, dynamic scheduling may dynamically schedule different frames to different devices to take advantage of the additional parallelism. Moreover, as recursion is restricted to trees, deep learning systems need a more general approach for precisely capturing the dependence among loop iterations in order to explore parallelism in arbitrary dependence topologies, such as Graph-LSTM [8].
References

