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1 Properties of Matrices

Below are a few basic properties of matrices:

• Matrix Multiplication is associative: (AB)C = A(BC)

• Matrix Multiplication is distributive: A(B +C) = AB +AC

• Matrix Multiplication is NOT commutative in general, that is AB 6= BA. For
example, if A ∈ Rm×n and B ∈ Rn×q, the matrix product BA does not exist.

2 Transpose

The transpose of a matrix A ∈ Rm×n, is written as A> ∈ Rn×m where the entries of the
matrix are given by:

(A>)ij = Aji (2.1)

Properties:

• Transpose of a scalar is a scalar a> = a

• (A>)> = A

• (AB)> = B>A>

• (A+B)> = A> +B>
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3 Trace

The trace of a square matrix A ∈ Rn×n is written as Tr(A) and is just the sum of the
diagonal elements:

Tr(A) =

n∑
i=1

Aii (3.1)

The trace of a product can be written as the sum of entry-wise products of elements.

Tr(A>B) = Tr(AB>) = Tr(B>A) = Tr(BA>) (3.2)

=
n∑
i,j

Ai,jBi,j (3.3)

(3.4)

Properties:

• Trace of a scalar is a scalar Tr(a) = a

• A ∈ Rn×n,Tr(A) = Tr(A>)

• A,B ∈ Rn×n,Tr(A+B) = Tr(A) + Tr(B)

• A ∈ Rn×n, c ∈ R,Tr(cA) = cTr(A)

• A,B such that AB is square, Tr(AB) = Tr(BA)

• A,B,C such that ABC is square, Tr(ABC) = Tr(BCA) = Tr(CAB), this is
called trace rotation.

4 Vector Norms

A norm of a vector ‖x‖ is a measure of it’s "length" or "magnitude". The most common
is the Euclidean or `2 norm.

1. `2 norm : ‖x‖2 =

√√√√ n∑
i=1

x2i

For example, this is used in ridge regression: ‖y −Xβ‖2 + λ‖β‖22

2. `1 norm : ‖x‖1 =
n∑
i=1

|xi|

For example, this is used in `1 penalized regression: ‖y −Xβ‖2 + λ‖β‖1
3. `∞ norm : ‖x‖∞ = maxi |xi|

4. The above are all examples of the family of `p norms : ‖x‖p =

(
n∑
i=1

|xi|p
) 1

p
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5 Rank

A set of vectors x1,x2, . . .xn ⊂ Rm is said to be linearly independent if no vector can
be represented as a linear combination of the remaining vectors. The rank of a matrix
is size of the largest subset of columns of A that constitute a linearly independent set.
This is often referred to as the number of linearly independent columns of A. Note the
amazing fact that rank(A) = rank(A>). This means that column rank = row rank.
For A ∈ Rm×n rank(A) ≤ min(m,n). If rank(A) = min(m,n), then A is full rank.

6 Inverse

The inverse of a symmetric matrix A ∈ Rn×n is written as A−1 and is defined such that:

AA−1 = A−1A = I

IfA−1 exists, the matrix is said to be nonsingular, otherwise it is singular. For a square
matrix to be invertible, it must be full rank. Non-square matrices are not invertible.
Properties:

• (A−1)−1 = A

• (AB)−1 = B−1A−1

• (A−1)> = (A>)−1

Sherman-Morrison-Woodbury Matrix Inversion Lemma

(A+XBX>)−1 = A−1 −A−1X(B−1 +X>A−1X)−1X>A−1

This comes up and can often make a hard inverse into an easy inverse. A and B are
square and invertible but they don’t need to be the same dimension.

7 Orthogonal Matrices

• Two vectors are orthogonal if u>v = 0. A vector is normalized if ‖x‖ = 1.

• A square matrix is orthogonal if all its columns are orthogonal to each other and
are normalized (columns are orthonormal).

• If U is an orthogonal matrix U> = U−1, then U>U = I = UU>.

• Note if U is not square, but the columns are orthonormal, then U>U = I but
UU> 6= I. Orthogonal usually refers to the first case.
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8 Matrix Calculus

Gradient

Given f : Rm×n → R is a function that takes as input a matrix and returns a real values.
Then the gradient of f with respect to A is the matrix of partial derivatives, that is the
m× n matrix defined below.

(5Af(A))ij =
∂f(A)

∂Aij

Note that the size of 5Af(A))ij is the same as the size of A.
The gradient of a vector x ∈ Rn is the following:

(5xf(x))i =
∂f(x)

∂xi

The gradient of a function is only defined if that function is real-valued, that is it returns
a real scalar value.

Hessian

Given f : Rn → R is a function that takes a vector and returns a real number. Then the
Hessian of f with respect to x is a n× n matrix of partial derivatives as defined below.

(52
xf(x))ij =

∂2f(x)

∂xi∂xj

Just like the gradient, the Hessian is only defined when the function is real-valued. For
the purposes of this class, we will only be taking the Hessian of a vector.

Common forms of Derivatives

∂(a>x)

∂x
=
∂(x>a)

∂x
= a

∂(x>Ax)

∂x
= (A+A>)x

∂(a>Xb)

∂X
= ab>

∂(a>X>b)

∂X
= ba>

∂(a>Xa)

∂X
=
∂(a>X>a)

∂X
= aa>
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∂(x>A)

∂x
= A

∂(x>)

∂x
= I

∂(Ax)

∂z
= A

∂x

∂z
∂(XY )

∂z
= X

∂Y

∂z
+
∂X

∂z
Y

∂(X−1)

∂z
= −X−1∂X

∂z
X−1

∂ ln |X|
∂X

= (X−1)
>

= (X
>

)−1

9 Linear Regression

To begin, the likelihood can be derived from a multivariate normal distribution. The
likelihood for linear regression is given by:

P (D|β, σ2) = P (y|X,β, σ2) =
n∏
i=1

N (yi|xi,β, σ2)

= (2πσ2)−
n
2 exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)

By taking the log and throwing away constants, we get the negative log-likelihood below.

− logP (D|β, σ2) =
n

2
log(σ2) +

1

2σ2
(y −Xβ)>(y −Xβ)

We can now define the residual sum of squares or least squares.

‖y −Xβ‖ = (y −Xβ)>(y −Xβ)

Maximizing the likelihood is equivalent to minimizing the negative log likelihood and
also equivalent to minimizing the residual sum of squares. You will also hear this being
called finding the least squares solution. We can rewrite the expression as follows.

‖y −Xβ‖ = (y −Xβ)>(y −Xβ)

= y>y − 2(X>y)>β + β>X>Xβ

5



To find the minimum, we first have to take the derivative. Note, we need two matrix
derivative identities ∂x>Ax

∂x = (A + A>)x and ∂a>x
∂x = a. Also, note that X>X is

symmetric.

∂(y>y − 2(X>y)>β + β>X>Xβ)

∂β

= −2(X>y) + (X>X + (X>X)>)β

= −2(X>y) + 2X>Xβ

After setting the derivation equal to zero and solving for β, we get the following.

0 = −2(X>y) + 2X>Xβ

X>Xβ = X>y

β = (X>X)−1X>y

These are called the normal equations. To solve this in Octave/Matlab, you can im-
plement the equations explicitly using the inverse. However, doing beta = X \ y; is a
more stable way of solving the normal equations. It does a QR decomposition.

You can check that this solution is the global minimum and not just a stationary point.
To do this, you need to evaluate the Hessian, or the second derivative. You should find
that the result is a positive definite matrix. And since the Hessian is positive definite,
the function is convex and thus the only stationary point is also the global minimum.

10 Ridge Regression

Now, we’re going to derive ridge regression in a similar way. Recall that for linear
regression, we found the MLE from forming the likelihood P (y|β). Here, we can derive
the MAP estimate from the posterior which is constructed from the likelihood and the
prior. Let β ∼ N (0, 1λIp) be a prior on the parameter vector β where Ip is an identity
matrix of size p. The form of the posterior is given below.

P (β|y) ∝ P (y|β)P (β)

∝ N (y|X,β, σ2)N (0,
1

λ
Ip)
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Given that σ2 = 1, we first want to derive the posterior for β.

P (β|y) ∝ P (y|β)P (β)

∝ N (y|X,β, σ2)N (0,
1

λ
Ip)

∝ (2πσ2)−
n
2 exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
· (2π)−

p
2

∣∣∣∣ 1λIp
∣∣∣∣− 1

2

exp

(
−1

2
β>(

1

λ
Ip)
−1β

)
∝ (2πσ2)−

n
2 exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
· (2π)−

p
2 (

1

λ
)−

p
2 exp

(
−λ

2
β>Ipβ

)
∝ (2πσ2)−

n
2 exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
· (2πλ−1)−

p
2 exp

(
−λ

2
β>β

)
∝ (2πσ2)−

n
2 (2πλ−1)−

p
2 exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)− λ

2
β>β

)

Taking the negative log and dropping constants, we get:

∝ 1

2σ2
(y −Xβ)>(y −Xβ) +

λ

2
β>β

∝ (y −Xβ)>(y −Xβ) + λβ>β Setting σ2 to 1 and dropping more constants.

Now, since we wanted to maximize the posterior, we now need to minimize the negative
log of the posterior. Note that minimizing the above expression is exactly the same as
finding the ridge solution by minimizing the sum of squares plus the l2 penalty (Eq. 10.1).
These two expressions are equivalent, and thus minimizing them will yield identical
solutions.

‖y −Xβ‖+ λ‖β‖22 = (y −Xβ)>(y −Xβ) + λβ>β (10.1)

Let’s expand out and write the loss function in matrix form.

(y −Xβ)>(y −Xβ) + λβ>β

= y>y − 2(X>y)>β + β>X>Xβ + λβ>β

To find the value of β that minimizes the loss function, we first have to take the derivative.
Note, we need two matrix derivative identities ∂x>Ax

∂x = (A+A>)x and ∂a>x
∂x = a. Also,

note that X>X is symmetric.
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∂

∂β
(y>y − 2(X>y)>β + β>X>Xβ + λβ>β)

= −2(X>y) + (X>X + (X>X)>)β + 2λβ

= −2X>y + 2X>Xβ + 2λβ

After setting the derivation equal to zero and solving for β, we get the following.

0 = −2X>y + 2X>Xβ + 2λβ

X>y = X>Xβ + λβ

X>y = (X>X + λI)β

β = (X>X + λI)−1X>y

Just like linear regression, you can implement the equations explicitly in Matlab/Octave.
In practice, you might have trouble calculating the inverse directly if the matrix is huge
and λ is small. We can also derive a numerically stable way of computing β using the
backslash operator. Define X̃ and ỹ such that β can be written as:

β = (X̃>X̃)−1X̃ỹ (10.2)

Then, you can use the backslash operator as shown below.

Xtil = [X; sqrt(lambda)*eye(p)];
ytil=[y; zeros(p,1)];
beta = Xtil\ytil;

11 Quadratic Forms

For a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value x>Ax is referred
to as quadratic form. We can write it explicitly as follows:

x>Ax =

n∑
i=1

xi(Ax)i =

n∑
i=1

xi

 n∑
j=1

Aijxj

 =

n∑
i=1

n∑
j=1

Aijxixj
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11.1 Definitions

Positive Definite (PD)
notation: A > 0 or A � 0 and the set of all positive definite matrices Sn++.
A symmetric matrix A ∈ Sn is positive definite if for all non-zero vectors x ∈ R,x>Ax >
0.

Positive Semidefinite (PSD) notation: A ≥ 0 or A � 0 and the set of all positive
semidefinite matrices Sn+.
A symmetric matrix A ∈ Sn is positive semidefinite if for all non-zero vectors x ∈
R,x>Ax ≥ 0.

Negative Definite (ND) notation: A < 0 or A ≺ 0.
Similarly, a symmetric matrix A ∈ Sn is negative definite if for all non-zero vectors
x ∈ R,x>Ax < 0.

Negative Semidefinite (NSD) notation: A ≤ 0 or A � 0.
Similarly, a symmetric matrix A ∈ Sn is negative semidefinite if for all non-zero vectors
x ∈ R,x>Ax ≤ 0.

Indefinite Lastly, a symmetric matrix A ∈ Sn is indefinite if it is neither positive
semidefinite nor negative semidefinite, that is if there exists x1,x2 ∈ R such that x>1 Ax1 >
0 and x>2 Ax2 < 0 .

If A is positive definite, then −A is negative definite and vice versa. The same can be
same about positive semidefinite and negative semidefinite. Also, positive definite and
negative definite matrices are always full rank and invertible.

12 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, λ ∈ C is an eigenvalue and x ∈ C (complex set of
numbers) the corresponding eigenvector if

Ax = λx, x 6= 0

This condition can be rewritten as:

(A− λI)x = 0

where I is the identity matrix. Now for a non-zero vector to satisfy this equation, then
(A− λI) must not be invertible, which means that it is singular and the determinant is
zero.
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You can use the definition of the determinant to expand this expression into a poly-
nomial in λ and then find the roots (real or complex) of the polynomial to find the n
eigenvalues λ1, . . . , λn. Once you have the eigenvalues λi, you can find the corresponding
eigenvector by solving the system of equations (λiI −A)x = 0.

12.1 Properties

• The trace of a matrix A is equal to the sum of its eigenvalues:

Tr(A) =
n∑
i=1

λi

• The determinant of A is equal to the product of its eigenvalues

|A| =
n∏
i=1

λi

• The rank of A is equal to the number of non-zero eigenvalues of A

• The eigenvalues of a diagonal matrix D = diag(d1, . . . , dn) are just the diagonal
entries d1, . . . , dn

12.2 Diagonalization

A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix. A
diagonal matrix A has the property that there exists an invertible matrix X and a di-
agonal matrix Λ such that A = XΛX−1.

We can write all the eigenvector equations simultaneously as AX = XΛ where the
columns of X ∈ Rn×n are the eigenvectors of A and Λ is a diagonal matrix whose en-
tries are the eigenvalues of A. If the eigenvectors of A are linearly independent, then
the matrix X will be invertible, so A = XΛX−1. This is known as the eigenvalue
decomposition of the matrix.

Why is this useful? Because powers of diagonal matrices are easy to compute. Try
computing A3. Also, remember this form A = XΛX−1 = XΛX> =

∑n
i=1 λixix

>
i . We

will see this later when we cover SVMs with kernels:
∑n

i=1 λiφ(xi)φ(xi)
>.

12.3 Properties of Eigenvalues/Eigenvectors for Symmetric
Matrices

• For a symmetric matrix A ∈ Sn, all the eigenvalues are real.

• The eigenvectors of A are orthonormal so that means the matrixX is an orthogonal
matrix (so we can denote the matrix of eigenvectors as U).
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We can then write

A = XΛX−1

A = UΛU−1 The inverse of an orthogonal matrix is just the inverse.

A = UΛU>

This means that
x>Ax = x>UΛU>x

= y>Λy

=

n∑
i=1

λiy
2
i

Since y2i is always positive, the sign of this expression depends entirely on the λ′is. If all
λi > 0, then the matrix is positive definite; if all λi ≥ 0, then A is positive semidefinite.
If λi < 0 and λi ≤ 0, then the matrix is negative definite or negative semidefinite
respectively. If A has both positive and negative eigenvalues, then it is indefinite.

13 Singular Value Decomposition

Any n×m matrix A can be written as

A = UΣV >

where

U = eigenvectors of AA> (n× n)

Σ =
√

diag(eig(AA>)) (n×m)

V = eigenvectors of A>A (m×m)

13.1 Properties

U>U = I

UU> = I

V >V = I

V V > = I

However, if you do the economy SVD, all the above properties are true except UU> 6= 0.
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Figure 13.1: Taken from Matrix Cookbook.

13.2 Relation to Eigenvalue Decomposition

A>A = V Σ>U>UΣV > = V Σ2V >

AA> = UΣV >V Σ>U> = UΣ2U>

The columns of V are the eigenvectors of A>A.
The columns of U are the eigenvectors of AA>.
The values of Σ, σi are the square roots of the eigenvalues of A>A or AA>, so σi =

√
λi

14 Principal Components Analysis

Often times when we have data in high-dimensional space, we can actually reduce the
dimensions considerably while still capturing most of the variance of the data. This is
called dimensionality reduction and one of the approaches is to use principal component
analysis or PCA. PCA basically approximates some real m × n matrix A with he sum
of some simple matrices that are rank one outer products.

The SVD of matrix A can be written:

A = UΣV >
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where

A = E1 +E2 + · · ·+Ep,

where p = min(m,n). The component matrices Ei are rank one outer products:

Ei = σiuiv
>
i

The component matrices are orthogonal to each other so, the product is 0.

EjE
>
k = 0, where j 6= k

The norm of each component matrix is the corresponding singular value.

‖E‖i = σi

So, the contribution that each component makes to reproducing A is determined by the
size of the singular value. So, if you wanted to figure out how many components to
include, you can plot the singular values and then cut it off where there is a significant
drop in the value.

15 References

The following are my sources for this tutorial and you should check them out for further
reading.

Zico Kolter’s Linear Algebra Review and Reference
http://cs229.stanford.edu/section/cs229-linalg.pdf

The Matrix Cookbook
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Matlab’s Eigenvalues and Singular Values
http://www.mathworks.com/moler/eigs.pdf

Course Notes from Harvard on Eigenvalues and Eigenvectors
http://www.math.harvard.edu/archive/20_spring_05/handouts/ch05_notes.pdf

Machine Learning: A Probabilistic Perspective by Kevin Murphy
http://www.cs.ubc.ca/~murphyk/MLbook/index.html
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