I nterleaving Semantic Web Reasoning and Service Discovery to Enforce
Context-Sensitive Security and Privacy Policies

Norman Sadeh and Jinghai Rao

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue,
Pittsburgh, PA, 15213 — USA
{sadeh, jinghai}@cs.cmu.edu

Abstract conditions (e.g. during regular business hours or wihile o
In many domains, users and organizations need to protect COmMpany premises). Coalition forces may need to
their information and services subject to policies taéiect selectively share sensitive intelligence informatiom only
dynamic, context-sensitive considerations. More generally, to the extent it is relevant to a specific joint miasiBach
enforcing rich policies in open environments will of these examples illustrates the need for what we
increasingly require the ability to dynamically identify generically refer to as context-sensitive security and

external sources of information necessary to enforce : - - .
different policy elements (e.g. finding an appropriate source privacy policies, namely policies whose conditions mot

of location information to enforce a location-sensitive t'ec_l to S_tatIC _con3|derat|0ns but rather Cond_'t'o_n?‘)_%h
access control policy). In this paper, we introduce a Satisfaction, given the very same actors (or princjpaisi

semantic web framework for dynamically interleaving likely fluctuate over time. Enforcing such policies in open
policy reasoning and external service discovery and access. environments is particularly challenging for several
Within this framework, external sources of informatioa a reasons:

wrapped as web services with rich semantic profiles

) TS . * Sources of information available to enforce these
allowing for the dynamic discovery and comparison of

relevant sources of information. Each entity (e.g. user, p_oIICIes may vary from one principal to another (e:g.
sensor, application, or organization) relies on one oemor different users may have different sources of location
Policy Enforcing Agents responsible for enforcing relevant tracking information made available through different
privacy and security policies in response to incoming cell phone operators)

requests. These agents implement meta-control seatem + Available sources of information for the same

dynamically interleave semantic web reasoning and service principal may vary over time (e.g. when a user is on
discovery and access. This research has been conducted in mpany bremi her location mav be obtained from
the context of myCampus, a pervasive computing company premises her locatio ay be obtained Iro

environment aimed at enhancing everyday campus life at the wireless LAN location tracking functionality

Carnegie Mellon University. operated by her company as well as through her cell
phone operator, but when she is not on company
premises the cell phone operator is the only option —
subject to relevant privacy policies she may have

1. Introduction specified)
The increasing reliance of individuals and organizatins * Available sources of information may not be known
the Web to help mediate a variety of activities is rgivi ahead of time (e.g. new location tracking
rise to a demand for richer security and privacy qiesi functionality may be installed or the user might roam
and more flexible mechanisms to enforce these palicies into a new area) . L
Enterprises want to selectively expose core business/Accordingly, enforcing context-sensitive policies in e
functionality and sensitive business information tciows open domains requires the ability to opportunistically

partners based on the evolving nature of their relatipash ~ interleave policy reasoning with the dynamic
(e.g. disclosing rough product specifications to prospective |dent|f|cat|0n_, selectl_on and _access_of relevant soun€es
suppliers versus disclosing more detailed requirements tocontextual information. This requirement exceeds the
actual suppliers, or giving selective visibility into the Ccapability of decentralized management infrastructures
company’s inventory positions or demand forecasts to Proposed so far and calls for privacy and security eirfgr
preferred supply chain partners). Employees in a Companymechanl_sms capable (_)f operating according to significantl
may be willing or required to share information aboutrthe ~|€SS_scripted scenarios than is the case today (e.g.
whereabouts or about their activities with some @firth ~ [BSF02,HSSKO04,LGC+05]). It also calls for much richer

team members or their boss but only under some

service profiles than those found in early web service
standards.

In this paper, we introduce a semantic web framework for
dynamically interleaving policy reasoning and external
service identification, selection and access. Withirs thi

framework, external sources of information are wrapped as describes

web services with rich semantic profiles allowing foe

different modules and how their operations are
opportunistically orchestrated in response to incoming
requests. A motivating example based on the pervasive
computing environment introduced earlier is presented in
Section 3. Section 4 details our query status model, which
serves as a basis to our meta-control strategiefoiSéc

our service discovery model. Some
implementation issues are discussed in Section 6.

dynamic discovery and comparison of relevant sources of Concluding remarks are provided in Section 7.

information. Each entity (e.g. user, sensor, applicaion

organization) relies on one or more Policy Enforcing
Agents responsible for enforcing relevant privacy and
security policies in response to incoming requests. &rhes
agents implement meta-control strategies to

opportunistically interleave semantic web reasoning and

service discovery and access. In this paper, we focws on
particular type of Policy Enforcing Agent we refer to as
Information Disclosure Agent. These agents are
responsible for enforcing two types of policies: access
control policies and obfuscation policies. The lattez ar

policies that manipulate the accuracy or inaccurach wit
which information is released (e.g. disclosing whethe
someone is busy or not rather than disclosing whatahey

2. Overall Approach and Architecture
Pervasive Computing as an Application Context

To help put things in perspective, we consider a pervasive
computing environment, where each user interacts with the
infrastructure either directly (e.g. walking into a room,
entering the subway system) or indirectly via agents to
which they delegate tasks (e.g. a general-purpose user-
agent such as a micro-browser on a PDA or cell phone,
policy evaluation and notification agents, or task-specif
agents such as a context-aware message filtering agent or

actually doing). The research reported herein has beenmeeting scheduler agent). The infrastructure provides a se
conducted in the context of MyCampus, a pervasive of resources generally tied to different geographical areas
computing environment aimed at enhancing everyday such as printers, surveillance cameras, campus-based
campus life at Carnegie Mellon University |ocation tracking functionality, and so on (see Figure 1).
[SCV+03,GS03,GS04a]. These resources are all modeled as services thatecan b
automatically discovered based on rich ontology-based
The work presented in this paper builds on concepts of service profiles advertised in service directories and
decentralized trust management developed over the pastaccessed via open APIs. In general, services can offer
decade [BFL96]. Most recently, a number of researchers functionality and/or serve as sources of contextual

have started to explore opportunities for leveraging the

information. A camera service, a calendar systema or

openness and expressive power associated with Semanti¢ocation tracking service are examples that can offen. bot

Web and agent frameworks in support of decentralized
trust management (e.g. [UPC+03, KFJO3, KPS04,
HKL+04, APM04, UBJ04, DKF+05] to name just a few).
Our own work in this area has involved the development of
Semantic e-Wallets that enforce context-sensitiveagsiv
and security policies in response to requests from xbnte

Services can also build on one another, with simple
services providing building blocks for the definition of
more complex ones. An example is the “printer servioe” i
Figure 1, which itself relies on the “find nearestnper
service,” which in turn relies on a “people locatervice”

to find the location of the user. The “people locator

aware applications implemented as intelligent agents service” in turn might be able to dynamically selieom a

[GS03, GS04a]. In this paper, we introduce a significantly
more decentralized framework, where policies can be

number of possible services available to locate peogle s
as a badge system or a combination of a system of aamer

distributed among any number of agents and web services.along with a video analysis service. Each serviceaayetht

Within this framework, we present a meta-control
architecture for interleaving semantic web reasoningj an
web service discovery in enforcing context-sensitive
privacy and security policies.

The remainder of this paper is organized as follows.
Section 2 introduces an overall architecture for distirigut
and enforcing privacy and security policies, using a
pervasive computing context to illustrate how these
policies can be deployed in practice. It follows with an
overview of our Information Disclosure Agent, detailing it

has an owner, whether an individual or an organization,
who is responsible for setting policies for the service
agent.

Services that collect information about users may
broadcast disclosure messages that inform target users (o
more specifically their agents) about the operationhef t
service (e.g. users who enter a smart room or theagubw
system). Some disclosures are one-way announcements:
they simply inform the user that information is cotkd
about them and possibly how that information is used.

Smart Home ‘
Subway System ‘
Campus Building

Mary
‘ Mary's User Agent

Policy Enforcing
gents

Information
Disclosure Agent

Disclosure
Evaluation Agent

Printer 1

Personal Service

Directory

Personal User
Agent Directory

Motification
Agent

il

Task-Specific Agents

Context-Aware
Eeminder Agent

Public Public Service

Directory

Agent
Directory

Figurel. Pervasive Computing as an Application Domain

Other disclosure messages may give the user some optiol
For example, a location-tracking service may give the use
the choice of opting out. Alternatively, the user may be
able to allow tracking, while limiting the use of histcer
location information (e.g. only for emergency usesbe
may require that all requests for her location be cleare
with her own Information Disclosure Agent (enforcingy h
regular privacy and security policies). A Policy Discias
Evaluation Agent may respond to disclosures
automatically, based on the user’'s policies (e.g. optin
out). The same agent may also be able to occasional
notify its user of policies that might lead her todiip her
behavior, as well as prompt its user to manuallycsele
among possible options when needed.

Each entity (or principal) in the system (whether an
individual, a service, an agent or an organization) reet a
of credentials and a set of policies. These policies ca
include:

» Access control policies that limit access only to
entities that can be proved to satisfy certain
conditions.

» Obfuscation policies that associate different levels of
accuracy or inaccuracy to different sets of credentials.

* Information collection policies (a la P3P [CLM+02],
that specify what type of information is collected by a
service, for what purpose, how that information will
be stored, etc.

* Notification Preference Policies specifying under
which conditions a user may want to be alerted about
the presence of sensors or other information
collection applications.

Collectively, these policies enable users and orgéioizs
to manage their privacy practices, specifying what
information they are willing to disclose (access cdihtro

what happen to that information.

and at what level of granularity (obfuscation) and notgyin
users or their agents about the information they ctolad
Poliepforcement is
delegated to different sets of agents (these agents may
occasionally request input or feedback from their users, a
already illustrated earlier). For the sake of claritythe
remainder of this paper, we focus more specifically am on
such type of agent, namely dnformation Disclosure
Agent responsible for enforcing both access control and
obfuscation policies. The architecture presented for this
agent can however be adapted to implement a number of
other context-sensitive Policy Enforcing Agents such as
the ones illustrated in Figure 1.

I nfor mation Disclosure Agent: An Example of a
Policy Enforcing Agent

| User Interface Agent |

Query
R ——
Meta-Control Status Updating, _
Rules Quely Chudiing & External -
Status CleanUothules Commumnication
X Celozey Response
Meta-Controller Information RS EEEE
Maodule
External
Service
Directory
Query Areess Local Service Service
Decomposition| Control Obfuscation Information Discovery Invocatien
Module Iodule Module Eeasoner Module Module

Service
Invocation
Rules

Service
Discovery
Rules

Obfuscation
Rules

Aocess

e — |
Local Service
Directory

Figure 2. Information Disclosure Agent: Logical Architecture

An Information Disclosure Agent (IDA) processes
incoming requests (e.g. a query about the location of the
agent's owner or a request to access a service under the
owner’s control) subject to a set of access contral an
obfuscation polices captured in the form of rules. As it
processes incoming queries, the agent records status
information that helps it monitor its own progress in
enforcing its policies and in obtaining the necessary
information. Based on this updated query status
information, a meta-control module (“meta-controller”)
dynamically orchestrates the operations of modulésst

at its disposal to process queries (Figure 2). As these
modules report on the status of activities they haen be
tasked to perform, this information is processed by a
Housekeeping module responsible for updating query
status information (e.g. changing the status of a queny

being processed to having been processed). Simply put, the

agent continuously cycles through the following three
basic steps:

1. The meta-controller analyzes the latest query status
information and invokes one or more modules to
perform particular tasks. As it invokes these modules
the meta-controller also updates relevant query status
information (e.g. update the status of a query from
“not yet processed” to “being processed”). All query
status information includes timestamps.

2. Modules complete their tasks (whether successfully or
not) and report back to the Housekeeping module —
occasionally modules may also report on their ongoing
progress in handling a task

3. The Housekeeping module updates detailed status
information based on information received from
modules and performs additional housekeeping
activities (e.g. caching the results of recent requests to
mitigate the effects of possible denial of service
attacks, cleaning up status information that has
become irrelevant, etc.)

For obvious efficiency reasons, while an IDA considta
number of logical modules, each operating according to a
particular set of rules, it is actually implemented aggle
reasoning engine. In our current work we use JESS
[Fri03], a high-performance Java-based rule engine that
supports both forward and backward chaining — the latter
by reifying "needs for facts" as facts themselves civtin

turn trigger forward-chaining rules. The following provides
a brief description of each of the modules orchestrayed b
the IDA’s meta-controller — note that other types ofi¢y
Enforcing Agents typically entail different sets of tes:

* Query Decomposition ModuleThis module takes as
input a particular query an breaks it down into
elementary needs for information, which can each be
thought of as subgoals or sub-queries. We refer to
these aQuery Elements

* Access Control Modules responsible for determining
whether a particular query or sub-query is consistent
with relevant access control policies — modeled as
access control rules. While some policies can be
checked just based on facts contained in the agent’s
local knowledge base, many policies require
obtaining information from a combination of both
local and external services. When this is the case,
rather than immediately deciding whether or not to
grant access to a query, the Access Control Module
requests additional facts also Query Elements
These requests are added to the agent’s Query Status
Information Knowledge Base along with information
about their parent Query or Query Element — namely
the Query or Query Element for which they are
needed.

* Obfuscation Modulsanitizes information requested in

 Local

for additional information (Query Elements) to the
Query Status Information Knowledge Base (via the
Housekeeping Module).

Information Reasoner This reasoner
corresponds to “static” domain knowledge (facts and
rules) known locally to the IDA or at least knowledg
that does not change too frequently (e.g. the name
and email address of the agent’s owner, possibly a list
of friends and family members, etc.)

* Service Discovery Modul&@his module helps the IDA

identify promising sources of information to
complement its local knowledge. This includes both
local servicesand external servicesLocal services
can be identified through a local service directory
(e.g. a directory of services under the direct control o
the agent's owner such as a calendar service running
on his desktop or on his smart phone). External
services can be identified through external service
directories (whether public or not). Communication
with external service directories takes place via the
agent’s External Communication GatewayRather
than relying solely on searching service directories,
the service discovery module also allows for the
specification of what we refer to aservice
identification rules These rules directly map
information needs on prespecified services (whether
local or external). An example of such rule might be:
“when looking for current activity, try first my
calendar service”. When available, such rules can
yield significant performance improvements, while
allowing the module to revert to more general service
directory searches when they fail. We assume that all
service directories rely on OWL-S to advertise
service profiles (See Section 5).

» Service Invocation ModuleThis module allows the

agent to invoke relevant services, whether local or
external. It is important to note that, in our

architecture, each service can have its own
Information Disclosure Agent (IDA). As requests are
sent to services, their IDAs may in turn respondhwit

requests for additional information to enforce their
own policies.

» User Interface AgentThe meta-controller treats its

user as just another module who is modeled both as a
potential source of domain knowledge (e.g. to acquire
relevant contextual information) as well as a potential
source of meta-control knowledge (e.qg. if a particular
query takes too long to process, the user may be
requested whether it is worth expending additional
computational resources processing that query or
not).

Modules support one or more services that can each be
invoked by the meta-controller along with

relevant

a query according to relevant obfuscation policies — parameter values. For instance, the meta-controley m
also modeled as rules. As it evaluates relevant invoke the query decomposition module and request it to
obfuscation policies, this module too can post request decompose a particular query; it may invoke the access

control module and task it to proceed in evaluating access purpose of this scenario, we also assume that Mary's IDA

control policies relevant to a particular query; etc. In
addition, meta-control strategies do not have to be
sequential.
implementmeta-control strategieshat enable the IDA to
concurrently request the same or different facts from
several services..

3. Sample Scenario

o -Is Mary

Bob allowasd to
| | askihis?

-Is there a
What raawm o %E
is Mary in? g]
ich building is
| Bok in right now?

Mary

‘ Mary's User Agent

service tn
Jind Bob's
current
lacation?

Policy Enforcing
Agents

Personal Service
Directory
Information
Disclosure Agent

9[5 Bob on Mm;g
iaam today?

Personal Agent
Directory

What is the sireet o
address for Bob s
current locaiion?

Cell Phone
O

Only paaple on my team crator

can see the room I am
in and only when we
are i1 the same building

Task-Specific
Agents

-

Public Service White Pages

-
e ——
| Directory

Directory

Public Agent
Directory

Figure 3. lllustration of first few steps involved in processing a
request from Bob to find out about the room Mary is in.

The following scenario will help illustrate how IDAs

operate. Consider Mary and Bob, two colleagues who work

for Company XYZ. Mary and Bob are both field
technicians who constantly visit other companies. Mary

does not yet knowhether Bob is on her team. It therefore
needs to identify a service that can help it determine

For instance, it may be advantageous towhether thisis the case. A service discovery step helps

identify a service operated by Company XYZ (Bob and
Mary's employer) that contains up-to-date information
about teams of field technicians. This step requires a
directory with rich semantic service profiles, descripi
what each service does (e.g. type of information it can
provide, level of accuracy or recency, etc.). To be
interpretable by agents such as Mary's IDAs, theselgsof
also need to refer to concepts specified in shared
ontologies (e.g. concepts such as projects, teams,aflays
the week, etc.). Once Mary’'s IDA has determined that Bob
is on her team today, it proceeds to determine whétlegr

are in the same building by asking Bob’s IDA about the
building he is in. Here Bob’s IDA goes through a service
discovery step of its own and determines that a location
tracking service offered by his cell phone operator is
adequate. Completion of the scenario involves a few
additional steps of the same type. Note that in this scena
we have assumed that Mary's IDA trusts the location
information returned by Bob’s IDA. It is easy to imagin
scenarios where her IDA would be better off looking for a
completely independent source of information. It is also
easy to see that these types of scenarios can atsddea
deadlocks. In later sections, we briefly discuss elesneht
our architecture that partially helps mitigate thesdblems
(e.g. query status update information that keeps tradieof t
origin of requests for information — see the sectionvagl

4. Query Status M odel

The IDA’s Meta Controllerrelies on meta-control rules to
analyze query status information and determine which

team changes from one day to the next depending on themodule(s) to activate next. Meta-control rules are atiye

nature of her assignment. Mary relies on an Informatio
Disclosure Agent to enforce her access control pglidie
particular, she has specified that she is only willing t
disclose the room that she is in to members of hen sad

modeled in CLIPS. In other words, each meta-contdel r

is an if-then clause, with a LHS (left hand side) dyew

its premises and a RHS (right hand side) its conclusions
More specifically, LHS elements of meta-control rules

only when they are in the same building. Suppose that refer to query status information, while RHS ones danta
today Bob and Mary are on the same team and that Bob isfacts that result in module activations. While bothS_H

querying Mary’s IDA to find out about her location. For

and RHS are expressed in CLIPS they refer to queries

the purpose of this scenario, we assume that Mary and Bobreceived by the IDA and tguery elementgenerated while

are visiting Company ABC and are both in the same
building at the time the query is issued. Both Bob and
Mary have cell operators who can provide their liocaat

the level of the building they are in — but not at a finer
level. Upon entering Company ABC, Mary also registered
with the company's location tracking service, which
operates over the wireless LAN and is compatible wath h

processing these queries. A query element is a need for
elementary information required to fully process a query
(e.g. finding someone’s location or calendar activity t
help answer a more complex query). Queries themselves
are expressed in an extension of OWL (see [GS04a)).
Query status information in the LHS relies on a taxoyno

of predicates that helps the agent keep track of queries and

WiFi-enabled smart phone. As she registered with the query elements - e.g., whether a query has been emig b

service, one of her Policy Enforcing Agents (her Bolic

processed, what individual query elements it has given ris

Disclosure Evaluation Agent) negotiated that all requests to, whether these elements have been cleared by méleva

about her location be redirected to her IDA. For the

access control policies and sanitized

according to relevant obfuscation control policies. @uer

status information helps keep track of how far along the
IDA is in obtaining the information required by each query
element, whether the agent’'s local knowledge base ha
been consulted, whether local or external services hav

[7)

(1))

Cleared

relevant access control policies

Clearance-Failed

Failed to clear one or more accesgol
policies

All-Elements-
Sanitized

All query elements have been sanitiz
according to relevant obfuscation policies

Sanitization-Failed

Failed to pass one or more siHtion
policies

been identified and consulted, etc. It also enablesgéeta

to keep track of dependencies between queries and quefy

elements. This information can help identify potential
deadlocks. All query status information is time stamped,
enabling the meta-controller to also implement rules tha

take into account how much time has already been spent3)

trying to process a query, clearing access controtipsli

or waiting for an external service to respond. A sample of
query status information predicates is provided in Table
This list is just illustrative and will be used to r&vithe
scenario introduced earlier. Clearly, different taxoresmi

of predicates can lead to more or less sophisticated meta

control strategies. For the sake of clarity, stateslipates

in Table 1 are organized in six categories: 1)

Element-Needed

A query element is needed. Queryesits
may result from the decomposition of
query or may be needed to enforce polici
The query element's origin help
distinguish between these different cases

Processing-
Element

A need for a query element is bei
processed

Element-Available

Query element is available

Element-Cleared

Query element has been clearedléyant
access control policies

Clearance-Failed

Failed to pass one or more acu@ssol
policies

Element-Sanitized

Query element has been sanitizedrding
to relevant obfuscation policies

Sanitization-Failed

Failed to pass one or more siHtion
policies

communication; 2) query; 3) query elements; 4) acces$

control; 5) obfuscation and 6) information collection.

4)

Clearance-Needed

A query or query element ndedbe
cleared by relevant access control rules

es.

[

Status information is represented in CLIPS with status

predicates and a number of slots detailing particular piece

of status information. Typical slots include:

- A query ID or query element ID to which the
predicate refers

— A parent query ID or parent query element ID to
help keep track of dependencies (e.g. a query elemer
may be needed to help check whether another quer
element is consistent with a context-sensitive acces
control policy). These dependencies, if passed betweel
IDA agents, can also help detect deadlocks (e.g. twg
IDA agents each waiting for information from the other
to enforce their policies)

- A time stamp that describes when the status
information was generated or updated. This information
is critical when it comes to determining how much time
has elapsed since a particular module or external servig
was invoked. It can help the agent look for alternative
external services or decide when to prompt the user (e.g
to decide whether to wait any longer).

5) | Sanitization- Query or query element has to be sanitized
Needed subject to relevant obfuscation policies
5 Check-Condition Check whether a condition is sitikf
Special type of query element.
Element-not- The value of a query element can not |be
locally-available obtained from the local knowledge base
Element-need- A query element requires the identification
service of a relevant service
t No-service-for- No service could be identified to help
Element answer a query element. This predicate ¢an
y be refined to differentiate between different
types of services (e.g. local versus external)
N6) | Service-identified One or more relevant servicesehbeen
identified to help answer a query element
Waiting-for- A query element is waiting for a response|to
service-response | aquery sentto a service (e.g. query sent [o a
location tracking service to help answer| a
query element corresponding to a user's
location)
Failed-service- A service failed to provide a responge.
response Again this predicate could be refined to
e distinguish between different types of
failure (e.g. service down, access denied,
etc.)
service-response- | A response has been returned by the

available

service. This will typically result in the
creation of an “Element-Available” statu

S

update.

Table 1. Sample list of status information predicates.

Sample Status | Description
Predicates
Query-Received Query received. A related queriestgtips
determine the query’s context and ident{fy
1) potential deadlocks.
Sending-Response Response to a query is being sent
Response-Sent Response has been successfully sent
Response-Failed Response failed (e.g. message dibync
back)
Processing Query Query is being processed
Query Query has been decomposed (into primitive
Decomposed query elements)
All-Elements- All query elements are available (i.e. the
Available information they require is available)
2) | All-Elements- All query elements have been cleargd|b

Query status information updates are asserted as new fac
(with old information being cleaned up by the IDA’s
housekeeping module — Figure 2). As query updates come
in, they trigger one or more meta-control rules, Whic

turn result in additional query status information updates
and the eventual activation of one or more of the DA’
modules. An example of a simple meta-control rule to
activate the service discovery module if informationugbo
the room that Mary could not be obtained locally (fritva

local information reasoner) can be expressed as follows:

Q? Aquery received. Bob asks Mary's room no

Query Element Status
{guen~received (sender bob) {ask (room-no Mary 7300

4 /L The gquery is decomposed and two new statuses are generated

Query Element Status
(clearance-needed (User bab) (elernent (room-no Mary 200
(element-needed {room-no Mary 250

00 00

The first status is sent to the Access Cantrol Reasoner, After applying the
access control policies, two conditions are required from local KB

{check-condition {sarme-tearn Bok Mar)

L {check-condition {sarme-building Bob Mard) J

After semantic reasoning, the information of Bob's team is not known
Information Collection Status
(element-nat-locally-available {team Bob ?4)

{ /L The meta controller starts a service discoverytask

Information Collection Status

Access Control Status

(element-need-service team Bab 7))

{ /L Agervice is found to output the required information.

Information Collection Status
(semnvice-identified (service-id seniice1) {rank 100) {endpoint
httpiixyz.com:B080ipersonnel) (query feam Bob 7))

4 /L Bob's team information is known after invaking the service

Information Collection Status
(service-response-available genvice-id service1) team Bob team1))
4 /L_ After knowing
(Access Control Status

L (element-cleared {user Bok) (elerment {room-no Mary 00

J L

all the reguired information, the access is granted

J

After all guery elements are finished, the guery is finished, and the answer
is sent hack to the requester.

0[O0 0y [y [y [

Query Element Status [
(response-sent {receiver Boh) (room-no ary room 1)) ﬁ

Figure4. An example of status changes

(el ement - needed (parent-id ?x) (elemid ?y) (room
Mary ?z))

(el ement-not-1ocally-available (elemid ?y) (room
Mary ?z1))

=>

(assert (nodul e service-discovery) (el enent-need-
service (elemid ?y) (output (room Mary ?z))))

In practice, meta-control rules are typically more egah
than this (i.e. they don’t just refer to the room Mirin).

Example

The following illustrates the processing of a query by an
IDA, using the scenario introduced in Figure 3. Figure 4
depicts some of the main steps involved in processing a
request from Bob about the room Mary is in, highlighting
some of the main query status information updates.
Specifically, Bob’s query about the room Mary is in is
processed by the IDA’'sCommunication Gateway
resulting in a query information status update indicating
that a new query has been received:

(query-received (queryid 1) (sender
(roomno Mary ?X)))

Bob) (ask

The meta-controller proceeds by invoking tiiguery
Decomposition Moduletesulting in the creation of two
guery elements — for the sake of simplicity we omit Mary
obfuscation policy: one to establish whether this regsest
compatible with Mary's access control polcies and the
other to obtain the room she is in:

(cl earance-needed (parent-id 1) (elemid 1.1)
(User Bob) (element (roomno Mary ?x)))

(el ement - needed (parent-id 1) (elemid 1.2)
(roomno Mary ?X))

The meta-controller decides to first focus on the
“clearance-needed” query element and invokesAtteess
Control Module. This module determines that two
conditions need to be checked and accordingly creates two
new query elements (“check-conditions”):

(check-condition (parent-id 1.1) (elemid
1.1.1) (same-team Bob Mary))
(check-condition (parent-id 1.1) (elemid
1.1.1) (sane-building Mary Bob))

The first condition requires checking whether Bob and
Mary are on the same team, while the second one is t
determine whether Bob is in the same building as Mary.
Each condition requires a series of information cabbect
steps that are orchestrated by the meta-control rules in
Mary's IDA. In this example, we assume that the IDA’s
local KB contains a semantic reasoning rule:

(team ?pl ?t)
(team ?p2 ?t)

=>

(same-team ?pl ?p2)

We also assume that the IDA knows Mary’s team but not
Bob’s. According the following query status information
update is generated:

(el ement-not-1ocal ly-available (parent-id
1.1.1) (elemid 1.1.1.1) (team Bob ?t))

Mary's IDA has a meta-control rule to initiate seevic
discovery when a query element can not be found locally.
The rule is of the form:

(el ement - needed (elemid ?x) ?y)
(el ement-not-1locally-available (elemid ?x)

?y)
=>
(assert (nodul e discover) (el enent-need-
service (parent-id ?x) (elemid ?z) ?y))

Thanks to this rule, th8ervice Discovery Moduls now
activated A service to find Bob’s team is identified (e.g. a

service operated by company XYZ). This results in a
Query Status Information update of the type “service-
identified”. If there are multiple matching services, ythe
may be ranked and the top service is invoked (multiple
services could also be invoked concurrently).

<profileH erarchy: | nformationService

rdf: 1 D="Positioni ngService ">
<!-- reference to the service specification -->
<servi ce: present edBy
rdf : resource="&Servi ce; #Posi ti oni ngServi ce"/>

<profil e: has_process
rdf : resour ce="&Process; #Posi ti onProc"/ >
<profil e:servi ceNane>Posi ti oni ng_Service_i n_ABC

Co it | id o Co
(service-identified (elemid ?e) (service-id </ profile:serviceNane>

?sl1l) (rank ?rl) (endpoint ?el) ?x)
(not (service-identified (elemid ?e)
(service-id ?s2) (rank ?r2) (endpoint ?e2)
?X)) <profile:qualityRating>
(leq ?r1 ?r2) <profile:QualityRating rdf:|D="SERVQUAL" >
- <profile:rati ngName>

. . . . SERVQUAL
(assert (modul e invocation) (invoke-service </profile:ratingName>
(parent-id ?e) (elemid ?ee) (service-id ?sl) <profile:rating
(endpoint ?rl1) ?x)) rdf : resource="&servqual ; #Good"/ >
</profile:QualityRating>

<l-- specification of quality rating for
profile -->

We assume that the service returns the team thatsBab i <profile: hasPrecondition ‘
The Housekeeping module updates the necessary Query _ ¢, efﬂ;géﬁfgb’{ ce="&Pr ocess; #Locl nABC'/ >
Status Information, indicating among other things that rdf : resour ce="&Pr ocess; #RoomNoQut put "/ >
information about Bob’s team has been found (“element-

available”) and cleaning old status information. Trgs
done using a rule of the type:

</ profileH erarchy:|nformationService>

Fig. 5. An example service profile in OWL-S

Because in our architecture service invocation is done
submitting queries to a service’s IDA, our service prsfile
currently do not include inputs. Instead, services send
obtain their input parameters by submitting queries back t
the requester. In practice, this process can become
somewhat inefficient and we plan to also investigabeem
sophisticated discovery models that examine required
service input requirements in light of the IDA’s access
control and obfuscation policies.

?n <-(element-needed (elemid ?e) ?y)
(service-response-avail able (parent-id ?e)
(elemid ?ee) (service-id ?s) ?a)

=>

(retract ?n)

(assert (nmodul e nmeta) (el ement-avail able
(parent-id ?ee) (elemid ?eee) ?a))

The scenario continues through a number of similar steps.

5. The Service Discovery M odel

A central element of our architecture is the abiiftyDA
agents to dynamically discover sources of information
(whether local or external) to help obtain the infation
needed by Query Elements. Sources of information are
modeled as Semantic Web Services and may operate
subject to their own access control and obfuscatioicips!
enforced by their own IDA agents. Accordingly service
invocation is itself implemented in the form of queriests

to a service’s IDA agent.

Service outputs are represented as OWL classes, which
play the role of a typing mechanism for concepts and
resources. Using OWL also allows for some measure of
semantic inference as part of the service discovergegso

If an agent requires a service that produces a contextual
attribute as output of a specific type, then all sesviteat
output the value of that attribute as a subtype are pdtentia
maitches.

Service preconditions and effects are also used forceervi
matching. For instance., the positioning service in fedu

. has a precondition specifying that it is only availate
Service Model company ABC’s premises.
Each service (or source of information) is described by
ServiceProfilen OWL-S [W3C04].ServiceProfilexonsist

of three parts: (1) information about the provider of the
service, (2) information about the service’s functiggal
and (3) information about non-functional attributes
[SEHO02]. Functional attributes include the service's inputs
outputs, preconditions and effects. Non-functional
attributes are other properties such as accuracy, qodlity
service, price, location, etc. An example of a location
tracking service operated on the premises of Company
ABC is described in Figure 5.

6. Implementation

Our policy enforcing agents are based on JESS, a high-
performance rule-based engine implemented in Java (see
[RSO5] for additional details and performance results).
Domain knowledge, including service profiles, queries,
access control policies and obfuscation policies are
expressed in either in OWL or in extensions of OWL

[GS04a]. XSLT transformations are used to translate OWL testing the scalability of our framework, evaluating
facts and extensions of OWL (to model rules and queries) tradeoffs between the expressiveness of privacy and
into CLIPS . Query status information and meta-control security policies we allow and associated computational
rules are directly expressed in CLIPS. Agent modules are and communication requirements. Other issues of
organized as JESS modules. Rules in a JESS module onlyparticular interest include studying opportunities for
fire when that module has the focus and only one module concurrency (e.g. simultaneously accessing multiple web
can be in focus at a time. Currently all information services), dealing with real-time meta-control iss(eg.
exchange between agents is done in the clear and withoutdeciding when to give up or when to look for additional
digital signatures. In the future, we plan to use SSL or sources of information/web services), and breaking
some equivalent protocol for all information exchange. deadlockgLNOS04].

7. Conclusion Remarks Acknowledgements

In many domains, users and organizations need to protectThe work reported herein has been supported in part under
their information and services subject to policiesttha DARPA contract F30602-02-2-0035 and in part under ARO
reflect dynamic, context-sensitive considerations.révio reseat;Ch %rdant DAAI D19'02'%]' tobCarnegle I\éleélor;) University's
; ; inag i i CyLab. Additional support has been provided by IBM, HP,
n environmen
gen_erally, _enforcmg -nCh pOII(?I_eS N _open enwronme ts Symbol, Boeing, Amazon, Fujitsu, the EU IST Program f&&W
will increasingly require the ability to dynamicalyentify

| f inf . t f project), and the ROC's Institute for Information Industie
external sources of Information necessary to enforce US Government is authorized to reproduce and distributentspri

different policy elements. In this paper, we presented a for Governmental purposes notwithstanding any copyright
semantic web framework for dynamically interleaving notation thereon

policy reasoning and external service discovery and access
Within this framework, external sources of informatae
wrapped as web services with rich semantic profiles References

aIIIOWIng for the dyf”f?‘”;'c dls.covelrzy ahnd comparison of [APMO04] R. Ashri, T. Payne, D. Marvin, M. Surridged S.
relevant sources of information. Each entity (e.g. user, Taylor, Towards a Semantic Web Security

sensor, application, or organization) relies on onore Infrastructure. IrProceedings of Semantic Web
Policy Enforcing Agentsesponsible for enforcing relevant Services Symposium, AAAI 2004 Spring Symposium
privacy and security policies in response to incoming Series Stanford University, Stanford California.

requests. _These_ agents implemen_t meta-control .StrategieiBSFOZ] Lujo Bauer, Michael A. Schneider and Edward W.

to dynamically interleave semantic web reasoning and Felten. "A Géneral and Flexible Access Control

service discovery and access. System for the Web", IRroceedings of the 11th
USENIX Security Symposiudugust 2002.

The Information Disclosure Agent presented in this paper [BFLO6] Matt Blaze, Joan Feigenbaum, an Jack Lacy.

is just one instantiation of our more general concept of “Decentralized Trust Management”. Proc. IEEE
Policy Enforcing Agents. Other policies (e.g. informatio Conference on Security and Privacy. Oakland, CA.
collection policies, notification preference policies)ll May 1996

typically rely on slightly different sets of modules and
different meta-control strategies, yet they could &l b Presler Marshall, and J. Reagle. The platform for
implemented using the same type of architecture and many privacy preferen’ces 1.0 (P3P1.0) Specification.
of the same principles presented in this paper. Our Policy W3C Recommendation, April 16, 2002.
Enforcing Agents rely on a taxonomy on query infornratio
status predicates to monitor their own progress in

processing incoming queries and enforcing relevant Security and the Semantic Web: A Provenance and
security and privacy policies. They use meta-contit#sr Trust Aware Inference Framework”, Rroceedings
to decide which action to take next (e.g. decomposing of the AAAI Spring Symposium on Al Technologies
queries, seeking local or external information, etc.hisT for Homeland SecurityMarch 2005.

work is conducted in the context wiyCampus, a context- . _ .] . .

aware environment aimed at enhancing everyday campus[Fr'Og] g”edman'H'"’ E.: Jess in Action: Java Rule-based
- . . . ystems, Manning Publications Com-pany, June
life at Carnegie Mellon University [SCV+03,GS04a]. 2003, ISBN 1930110898,

Experiments with an early implementation of our http://herzberg.ca.sandia.gov/jess/

framework seem promising. At the same time, it is easy
see that the generality of our framework also givestoise
number of challenging issues. Future work will focus on

[CLM+02] L. Cranor, M. Langheinrich, M. Marchiori, M.

[DKF+05] Li Ding, Pranam Kolari , Tim Finin , Anupam
Joshi, Yun Peng and Yelena Yesha. "On Homeland

[GPHO3] Golbeck, J.; Parsia, B.; and Hendler, J. 2003. Trust
networks on the Semantic Web.Rnoceedings of

[GS03]

[GS04a]

[HKL+04]

[HS04]

[HSSKO04]

[KFJO3]

[KPS04]

[LGC+05]

[LNOS04]

[RS05]

7" International Workshop on Cooperative
Intelligent Agents, CIA 2003

[Rao04]

F. Gandon, and N. Sadeh. A semantic e-wallet to
reconcile privacy and context awareness. In
Proceedings of the Second International Semantic

Web Conference (ISWCOQ¥)orida, October 2003. [RKMO4a]

F. Gandon, and N. Sadeh. Semantic web
technologies to reconcile privacy and context
awarenes3Veb Semantics Journdl(3), 2004.

R. Hull, B. Kumar, D. Lieuwen, P. Patel-Sciaes,

A. Sahuguet, S. Varadarajan, and A. Vyas. Enabling
context-aware and privacy-conscious user data
sharing. InProceedings of 2004 IEEE International
Conference on Mobile Data Management

Berkeley, California, January 2004.

[SCV+03]

U. Hengartner, and P, Steenkiste. Implementing
access control to people location informatior9tin
ACM Symposium on Access Control Models and
Technologies (SACMAT'Q4¥orktown Heights,
June 2004

[SEHO02]

T. van der Horst, T. Sundelin, K. E. Seamand
C. D. Knutson. Mobile Trust Negotiation:
Authentication and Authorization in Dynamic
Mobile Networks Eighth IFIP Conference on
Communications and Multimedia Securitake
Windermere, England, September 2004

[UPC+03]

L. Kagal, T. Finin, and A. Joshi. A policy langeag (UBJ04]

for a pervasive computing environment. In
Collection of IEEE 4th International Workshop on
Policies for Distributed Systems and Netwodme
2003

L. Kagall, M. Paolucci, N. Srinivasan, GnRker,

T. Finin and K. Sycara, Authorization and Privacy
for Semantic Web Services, Rroceedings of
Semantic Web Services Symposium, AAAI 2004
Spring Symposium Serjedtanford University,
California, March 2004.

L.Bauer, S. Garriss, J. McCune, M.K. Reifer
Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to
USENIX Security 200%Iso available as Technical
Report CMU-CS-05-111, Computer Science
Department, Carnegie Mellon University, February
2005.

T. Leithead, W. Nejdl, D. Olmedilla, Ke&mons,

M. Winslett, T. Yu, and C. Zhang, How to Exploit
Ontologies in Trust Negotiatiol/orkshop on

Trust, Security, and Reputation on the Semantic
Web, part of the Third International Semantic Web
ConferenceHiroshima, Japan, November 2004.

J. Rao. and N. Sadéftérleaving Semantic Web
Reasoning and Service Discovery to Enforce
Context-Sensitive Security and Privacy Polities
Carnegie Mellon Univ., Sch. of Computer Science
Tech. Report CMU-ISRI-TR-05-133, July 2005.

[W3C04]

J. RaoSemantic Web Service Composition via
Logic-based Program Synthesi®hD Thesis
Department of Computer and Information Science,
Norwegian University of Science and Technology,
December 10, 2004.

J. Rao, P. Kiingas and M. Matskin, "Compositi
of Semantic Web Services using Linear Logic
Theorem Proving'To appear in Information
Systems Journal - Special Issue on the Semantic
Web and Web Services"

N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K
Takizawa. Creating an open agent environment for
context-aware m-commerde. Agentcities:
Challenges in Open Agent Environmeis. by
Burg, Dale, Finin, Nakashima, Padgham, Sierra,
and Willmott, LNAI, Springer Verlag, pp.152-158,
2003.

J. O'Sullivan, D. Edmond, and A. T. Hofsted
What's in a service? Towards accurate description
of non-functional service propertié3istributedand
Parallel Databases12:117.133, 2002.

J. Undercoffer, F. Perich, A .Cedilnik,Hagal, and
A. Joshi. A secure infrastructure for service
discovery and access in pervasive computi@iv
Monet: Special Issue on Security in Mobile
Computing Environment©ctober 2003

A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson,
A. Tate, J. Dalton and S. Aitken, Policy and
Contract Management for Semantic Web Services.
In Proceedings of Semantic Web Services
Symposium, AAAI 2004 Spring Symposium Series
Stanford University, Stanford California.

OWL-S: Semantic Markup for Web Services, W3C
Submission Member Submission, November 2004.
http://www.w3.0org/Submission/OWL-S

