
Interleaving Semantic Web Reasoning and Service Discovery to Enforce
Context-Sensitive Security and Privacy Policies

Norman Sadeh and Jinghai Rao

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue,
Pittsburgh, PA, 15213 – USA
{sadeh, jinghai}@cs.cmu.edu

Abstract
In many domains, users and organizations need to protect
their information and services subject to policies that reflect
dynamic, context-sensitive considerations. More generally,
enforcing rich policies in open environments will
increasingly require the ability to dynamically identify
external sources of information necessary to enforce
different policy elements (e.g. finding an appropriate source
of location information to enforce a location-sensitive
access control policy). In this paper, we introduce a
semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access.
Within this framework, external sources of information are
wrapped as web services with rich semantic profiles
allowing for the dynamic discovery and comparison of
relevant sources of information. Each entity (e.g. user,
sensor, application, or organization) relies on one or more
Policy Enforcing Agents responsible for enforcing relevant
privacy and security policies in response to incoming
requests. These agents implement meta-control strategies to
dynamically interleave semantic web reasoning and service
discovery and access. This research has been conducted in
the context of myCampus, a pervasive computing
environment aimed at enhancing everyday campus life at
Carnegie Mellon University.

1. Introduction

The increasing reliance of individuals and organizations on
the Web to help mediate a variety of activities is giving
rise to a demand for richer security and privacy policies
and more flexible mechanisms to enforce these policies.
Enterprises want to selectively expose core business
functionality and sensitive business information to various
partners based on the evolving nature of their relationships
(e.g. disclosing rough product specifications to prospective
suppliers versus disclosing more detailed requirements to
actual suppliers, or giving selective visibility into the
company’s inventory positions or demand forecasts to
preferred supply chain partners). Employees in a company
may be willing or required to share information about their
whereabouts or about their activities with some of their
team members or their boss but only under some

conditions (e.g. during regular business hours or while on
company premises). Coalition forces may need to
selectively share sensitive intelligence information but only
to the extent it is relevant to a specific joint mission. Each
of these examples illustrates the need for what we
generically refer to as context-sensitive security and
privacy policies, namely policies whose conditions are not
tied to static considerations but rather conditions whose
satisfaction, given the very same actors (or principals), will
likely fluctuate over time. Enforcing such policies in open
environments is particularly challenging for several
reasons:

• Sources of information available to enforce these
policies may vary from one principal to another (e.g.
different users may have different sources of location
tracking information made available through different
cell phone operators)

• Available sources of information for the same
principal may vary over time (e.g. when a user is on
company premises her location may be obtained from
the wireless LAN location tracking functionality
operated by her company as well as through her cell
phone operator, but when she is not on company
premises the cell phone operator is the only option –
subject to relevant privacy policies she may have
specified)

• Available sources of information may not be known
ahead of time (e.g. new location tracking
functionality may be installed or the user might roam
into a new area)

Accordingly, enforcing context-sensitive policies in these
open domains requires the ability to opportunistically
interleave policy reasoning with the dynamic
identification, selection and access of relevant sources of
contextual information. This requirement exceeds the
capability of decentralized management infrastructures
proposed so far and calls for privacy and security enforcing
mechanisms capable of operating according to significantly
less scripted scenarios than is the case today (e.g.
[BSF02,HSSK04,LGC+05]). It also calls for much richer

service profiles than those found in early web service
standards.

In this paper, we introduce a semantic web framework for
dynamically interleaving policy reasoning and external
service identification, selection and access. Within this
framework, external sources of information are wrapped as
web services with rich semantic profiles allowing for the
dynamic discovery and comparison of relevant sources of
information. Each entity (e.g. user, sensor, application, or
organization) relies on one or more Policy Enforcing
Agents responsible for enforcing relevant privacy and
security policies in response to incoming requests. These
agents implement meta-control strategies to
opportunistically interleave semantic web reasoning and
service discovery and access. In this paper, we focus on a
particular type of Policy Enforcing Agent we refer to as
Information Disclosure Agent. These agents are
responsible for enforcing two types of policies: access
control policies and obfuscation policies. The latter are
policies that manipulate the accuracy or inaccuracy with
which information is released (e.g. disclosing whether
someone is busy or not rather than disclosing what they are
actually doing). The research reported herein has been
conducted in the context of MyCampus, a pervasive
computing environment aimed at enhancing everyday
campus life at Carnegie Mellon University
[SCV+03,GS03,GS04a].

The work presented in this paper builds on concepts of
decentralized trust management developed over the past
decade [BFL96]. Most recently, a number of researchers
have started to explore opportunities for leveraging the
openness and expressive power associated with Semantic
Web and agent frameworks in support of decentralized
trust management (e.g. [UPC+03, KFJ03, KPS04,
HKL+04, APM04, UBJ04, DKF+05] to name just a few).
Our own work in this area has involved the development of
Semantic e-Wallets that enforce context-sensitive privacy
and security policies in response to requests from context-
aware applications implemented as intelligent agents
[GS03, GS04a]. In this paper, we introduce a significantly
more decentralized framework, where policies can be
distributed among any number of agents and web services.
Within this framework, we present a meta-control
architecture for interleaving semantic web reasoning and
web service discovery in enforcing context-sensitive
privacy and security policies.

The remainder of this paper is organized as follows.
Section 2 introduces an overall architecture for distributing
and enforcing privacy and security policies, using a
pervasive computing context to illustrate how these
policies can be deployed in practice. It follows with an
overview of our Information Disclosure Agent, detailing its

different modules and how their operations are
opportunistically orchestrated in response to incoming
requests. A motivating example based on the pervasive
computing environment introduced earlier is presented in
Section 3. Section 4 details our query status model, which
serves as a basis to our meta-control strategies. Section 5
describes our service discovery model. Some
implementation issues are discussed in Section 6.
Concluding remarks are provided in Section 7.

2. Overall Approach and Architecture

Pervasive Computing as an Application Context

To help put things in perspective, we consider a pervasive
computing environment, where each user interacts with the
infrastructure either directly (e.g. walking into a room,
entering the subway system) or indirectly via agents to
which they delegate tasks (e.g. a general-purpose user-
agent such as a micro-browser on a PDA or cell phone,
policy evaluation and notification agents, or task-specific
agents such as a context-aware message filtering agent or a
meeting scheduler agent). The infrastructure provides a set
of resources generally tied to different geographical areas,
such as printers, surveillance cameras, campus-based
location tracking functionality, and so on (see Figure 1).
These resources are all modeled as services that can be
automatically discovered based on rich ontology-based
service profiles advertised in service directories and
accessed via open APIs. In general, services can offer
functionality and/or serve as sources of contextual
information. A camera service, a calendar system, or a
location tracking service are examples that can offer both.
Services can also build on one another, with simple
services providing building blocks for the definition of
more complex ones. An example is the “printer service” in
Figure 1, which itself relies on the “find nearest printer
service,” which in turn relies on a “people locator service”
to find the location of the user. The “people locator
service” in turn might be able to dynamically select from a
number of possible services available to locate people such
as a badge system or a combination of a system of cameras
along with a video analysis service. Each service and agent
has an owner, whether an individual or an organization,
who is responsible for setting policies for the service or
agent.

Services that collect information about users may
broadcast disclosure messages that inform target users (or
more specifically their agents) about the operation of the
service (e.g. users who enter a smart room or the subway
system). Some disclosures are one-way announcements:
they simply inform the user that information is collected
about them and possibly how that information is used.

Figure 1. Pervasive Computing as an Application Domain

Other disclosure messages may give the user some options.
For example, a location-tracking service may give the user
the choice of opting out. Alternatively, the user may be
able to allow tracking, while limiting the use of his or her
location information (e.g. only for emergency use) or she
may require that all requests for her location be cleared
with her own Information Disclosure Agent (enforcing her
regular privacy and security policies). A Policy Disclosure
Evaluation Agent may respond to disclosures
automatically, based on the user’s policies (e.g. opting
out). The same agent may also be able to occasionally
notify its user of policies that might lead her to modify her
behavior, as well as prompt its user to manually select
among possible options when needed.

Each entity (or principal) in the system (whether an
individual, a service, an agent or an organization) has a set
of credentials and a set of policies. These policies can
include:

• Access control policies that limit access only to
entities that can be proved to satisfy certain
conditions.

• Obfuscation policies that associate different levels of
accuracy or inaccuracy to different sets of credentials.

• Information collection policies (a la P3P [CLM+02],
that specify what type of information is collected by a
service, for what purpose, how that information will
be stored, etc.

• Notification Preference Policies specifying under
which conditions a user may want to be alerted about
the presence of sensors or other information
collection applications.

Collectively, these policies enable users and organizations
to manage their privacy practices, specifying what
information they are willing to disclose (access control)

and at what level of granularity (obfuscation) and notifying
users or their agents about the information they collect and
what happen to that information. Policy enforcement is
delegated to different sets of agents (these agents may
occasionally request input or feedback from their users, as
already illustrated earlier). For the sake of clarity, in the
remainder of this paper, we focus more specifically on one
such type of agent, namely an Information Disclosure
Agent responsible for enforcing both access control and
obfuscation policies. The architecture presented for this
agent can however be adapted to implement a number of
other context-sensitive Policy Enforcing Agents such as
the ones illustrated in Figure 1.

Information Disclosure Agent: An Example of a
Policy Enforcing Agent

Figure 2. Information Disclosure Agent: Logical Architecture

An Information Disclosure Agent (IDA) processes
incoming requests (e.g. a query about the location of the
agent’s owner or a request to access a service under the
owner’s control) subject to a set of access control and
obfuscation polices captured in the form of rules. As it
processes incoming queries, the agent records status
information that helps it monitor its own progress in
enforcing its policies and in obtaining the necessary
information. Based on this updated query status
information, a meta-control module (“meta-controller”)
dynamically orchestrates the operations of modules it has
at its disposal to process queries (Figure 2). As these
modules report on the status of activities they have been
tasked to perform, this information is processed by a
Housekeeping module responsible for updating query
status information (e.g. changing the status of a query from
being processed to having been processed). Simply put, the

agent continuously cycles through the following three
basic steps:
1. The meta-controller analyzes the latest query status

information and invokes one or more modules to
perform particular tasks. As it invokes these modules
the meta-controller also updates relevant query status
information (e.g. update the status of a query from
“not yet processed” to “being processed”). All query
status information includes timestamps.

2. Modules complete their tasks (whether successfully or
not) and report back to the Housekeeping module –
occasionally modules may also report on their ongoing
progress in handling a task

3. The Housekeeping module updates detailed status
information based on information received from
modules and performs additional housekeeping
activities (e.g. caching the results of recent requests to
mitigate the effects of possible denial of service
attacks, cleaning up status information that has
become irrelevant, etc.)

For obvious efficiency reasons, while an IDA consists of a
number of logical modules, each operating according to a
particular set of rules, it is actually implemented as a single
reasoning engine. In our current work we use JESS
[Fri03], a high-performance Java-based rule engine that
supports both forward and backward chaining – the latter
by reifying "needs for facts" as facts themselves, which in
turn trigger forward-chaining rules. The following provides
a brief description of each of the modules orchestrated by
the IDA’s meta-controller – note that other types of Policy
Enforcing Agents typically entail different sets of modules:

• Query Decomposition Module: This module takes as
input a particular query an breaks it down into
elementary needs for information, which can each be
thought of as subgoals or sub-queries. We refer to
these as Query Elements.

• Access Control Module is responsible for determining
whether a particular query or sub-query is consistent
with relevant access control policies – modeled as
access control rules. While some policies can be
checked just based on facts contained in the agent’s
local knowledge base, many policies require
obtaining information from a combination of both
local and external services. When this is the case,
rather than immediately deciding whether or not to
grant access to a query, the Access Control Module
requests additional facts – also Query Elements.
These requests are added to the agent’s Query Status
Information Knowledge Base along with information
about their parent Query or Query Element – namely
the Query or Query Element for which they are
needed.

• Obfuscation Module sanitizes information requested in
a query according to relevant obfuscation policies –
also modeled as rules. As it evaluates relevant
obfuscation policies, this module too can post request

for additional information (Query Elements) to the
Query Status Information Knowledge Base (via the
Housekeeping Module).

• Local Information Reasoner: This reasoner
corresponds to “static” domain knowledge (facts and
rules) known locally to the IDA or at least knowledge
that does not change too frequently (e.g. the name
and email address of the agent’s owner, possibly a list
of friends and family members, etc.)

• Service Discovery Module: This module helps the IDA
identify promising sources of information to
complement its local knowledge. This includes both
local services and external services. Local services
can be identified through a local service directory
(e.g. a directory of services under the direct control of
the agent’s owner such as a calendar service running
on his desktop or on his smart phone). External
services can be identified through external service
directories (whether public or not). Communication
with external service directories takes place via the
agent’s External Communication Gateway. Rather
than relying solely on searching service directories,
the service discovery module also allows for the
specification of what we refer to as service
identification rules. These rules directly map
information needs on prespecified services (whether
local or external). An example of such rule might be:
“when looking for current activity, try first my
calendar service”. When available, such rules can
yield significant performance improvements, while
allowing the module to revert to more general service
directory searches when they fail. We assume that all
service directories rely on OWL-S to advertise
service profiles (See Section 5).

• Service Invocation Module: This module allows the
agent to invoke relevant services, whether local or
external. It is important to note that, in our
architecture, each service can have its own
Information Disclosure Agent (IDA). As requests are
sent to services, their IDAs may in turn respond with
requests for additional information to enforce their
own policies.

• User Interface Agent: The meta-controller treats its
user as just another module who is modeled both as a
potential source of domain knowledge (e.g. to acquire
relevant contextual information) as well as a potential
source of meta-control knowledge (e.g. if a particular
query takes too long to process, the user may be
requested whether it is worth expending additional
computational resources processing that query or
not).

Modules support one or more services that can each be
invoked by the meta-controller along with relevant
parameter values. For instance, the meta-controller may
invoke the query decomposition module and request it to
decompose a particular query; it may invoke the access

control module and task it to proceed in evaluating access
control policies relevant to a particular query; etc. In
addition, meta-control strategies do not have to be
sequential. For instance, it may be advantageous to
implement meta-control strategies that enable the IDA to
concurrently request the same or different facts from
several services..

3. Sample Scenario

Figure 3. Illustration of first few steps involved in processing a
request from Bob to find out about the room Mary is in.

The following scenario will help illustrate how IDAs
operate. Consider Mary and Bob, two colleagues who work
for Company XYZ. Mary and Bob are both field
technicians who constantly visit other companies. Mary’s
team changes from one day to the next depending on the
nature of her assignment. Mary relies on an Information
Disclosure Agent to enforce her access control policies. In
particular, she has specified that she is only willing to
disclose the room that she is in to members of her team and
only when they are in the same building. Suppose that
today Bob and Mary are on the same team and that Bob is
querying Mary’s IDA to find out about her location. For
the purpose of this scenario, we assume that Mary and Bob
are visiting Company ABC and are both in the same
building at the time the query is issued. Both Bob and
Mary have cell operators who can provide their location at
the level of the building they are in – but not at a finer
level. Upon entering Company ABC, Mary also registered
with the company’s location tracking service, which
operates over the wireless LAN and is compatible with her
WiFi-enabled smart phone. As she registered with the
service, one of her Policy Enforcing Agents (her Policy
Disclosure Evaluation Agent) negotiated that all requests
about her location be redirected to her IDA. For the

purpose of this scenario, we also assume that Mary’s IDA
does not yet know whether Bob is on her team. It therefore
needs to identify a service that can help it determine
whether this is the case. A service discovery step helps
identify a service operated by Company XYZ (Bob and
Mary’s employer) that contains up-to-date information
about teams of field technicians. This step requires a
directory with rich semantic service profiles, describing
what each service does (e.g. type of information it can
provide, level of accuracy or recency, etc.). To be
interpretable by agents such as Mary’s IDAs, these profiles
also need to refer to concepts specified in shared
ontologies (e.g. concepts such as projects, teams, days of
the week, etc.). Once Mary’s IDA has determined that Bob
is on her team today, it proceeds to determine whether they
are in the same building by asking Bob’s IDA about the
building he is in. Here Bob’s IDA goes through a service
discovery step of its own and determines that a location
tracking service offered by his cell phone operator is
adequate. Completion of the scenario involves a few
additional steps of the same type. Note that in this scenario
we have assumed that Mary’s IDA trusts the location
information returned by Bob’s IDA. It is easy to imagine
scenarios where her IDA would be better off looking for a
completely independent source of information. It is also
easy to see that these types of scenarios can also lead to
deadlocks. In later sections, we briefly discuss elements of
our architecture that partially helps mitigate these problems
(e.g. query status update information that keeps track of the
origin of requests for information – see the section below).

4. Query Status Model

The IDA’s Meta Controller relies on meta-control rules to
analyze query status information and determine which
module(s) to activate next. Meta-control rules are currently
modeled in CLIPS. In other words, each meta-control rule
is an if-then clause, with a LHS (left hand side) specifying
its premises and a RHS (right hand side) its conclusions.
More specifically, LHS elements of meta-control rules
refer to query status information, while RHS ones contain
facts that result in module activations. While both LHS
and RHS are expressed in CLIPS they refer to queries
received by the IDA and to query elements generated while
processing these queries. A query element is a need for
elementary information required to fully process a query
(e.g. finding someone’s location or calendar activity to
help answer a more complex query). Queries themselves
are expressed in an extension of OWL (see [GS04a]).
Query status information in the LHS relies on a taxonomy
of predicates that helps the agent keep track of queries and
query elements - e.g., whether a query has been or is being
processed, what individual query elements it has given rise
to, whether these elements have been cleared by relevant
access control policies and sanitized

according to relevant obfuscation control policies. Query
status information helps keep track of how far along the
IDA is in obtaining the information required by each query
element, whether the agent’s local knowledge base has
been consulted, whether local or external services have
been identified and consulted, etc. It also enables the agent
to keep track of dependencies between queries and query
elements. This information can help identify potential
deadlocks. All query status information is time stamped,
enabling the meta-controller to also implement rules that
take into account how much time has already been spent
trying to process a query, clearing access control policies
or waiting for an external service to respond. A sample of
query status information predicates is provided in Table 1.
This list is just illustrative and will be used to revisit the
scenario introduced earlier. Clearly, different taxonomies
of predicates can lead to more or less sophisticated meta-
control strategies. For the sake of clarity, status predicates
in Table 1 are organized in six categories: 1)
communication; 2) query; 3) query elements; 4) access
control; 5) obfuscation and 6) information collection.
Status information is represented in CLIPS with status
predicates and a number of slots detailing particular pieces
of status information. Typical slots include:
− A query ID or query element ID to which the

predicate refers
− A parent query ID or parent query element ID to

help keep track of dependencies (e.g. a query element
may be needed to help check whether another query
element is consistent with a context-sensitive access
control policy). These dependencies, if passed between
IDA agents, can also help detect deadlocks (e.g. two
IDA agents each waiting for information from the other
to enforce their policies)

− A time stamp that describes when the status
information was generated or updated. This information
is critical when it comes to determining how much time
has elapsed since a particular module or external service
was invoked. It can help the agent look for alternative
external services or decide when to prompt the user (e.g.
to decide whether to wait any longer).

 Sample Status

Predicates
Description

Query-Received Query received. A related queries slot helps
determine the query’s context and identify
potential deadlocks.

Sending-Response Response to a query is being sent
Response-Sent Response has been successfully sent

1)

Response-Failed Response failed (e.g. message bounced
back)

Processing Query Query is being processed
Query
Decomposed

Query has been decomposed (into primitive
query elements)

All-Elements-
Available

All query elements are available (i.e. the
information they require is available)

2) All-Elements- All query elements have been cleared by

Cleared relevant access control policies
Clearance-Failed Failed to clear one or more access control

policies
All-Elements-
Sanitized

All query elements have been sanitized
according to relevant obfuscation policies

Sanitization-Failed Failed to pass one or more obfuscation
policies

Element-Needed A query element is needed. Query elements
may result from the decomposition of a
query or may be needed to enforce policies.
The query element’s origin helps
distinguish between these different cases

Processing-
Element

A need for a query element is being
processed

Element-Available Query element is available
Element-Cleared Query element has been cleared by relevant

access control policies
Clearance-Failed Failed to pass one or more access control

policies
Element-Sanitized Query element has been sanitized according

to relevant obfuscation policies

3)

Sanitization-Failed Failed to pass one or more obfuscation
policies

4) Clearance-Needed A query or query element needs to be
cleared by relevant access control rules

5) Sanitization-
Needed

 Query or query element has to be sanitized
subject to relevant obfuscation policies

Check-Condition Check whether a condition is satisfied.
Special type of query element.

Element-not-
locally-available

The value of a query element can not be
obtained from the local knowledge base

Element-need-
service

A query element requires the identification
of a relevant service

No-service-for-
Element

No service could be identified to help
answer a query element. This predicate can
be refined to differentiate between different
types of services (e.g. local versus external)

Service-identified One or more relevant services have been
identified to help answer a query element

Waiting-for-
service-response

A query element is waiting for a response to
a query sent to a service (e.g. query sent to a
location tracking service to help answer a
query element corresponding to a user’s
location)

Failed-service-
response

A service failed to provide a response.
Again this predicate could be refined to
distinguish between different types of
failure (e.g. service down, access denied,
etc.)

6)

service-response-
available

A response has been returned by the
service. This will typically result in the
creation of an “Element-Available” status
update.

Table 1. Sample list of status information predicates.

Query status information updates are asserted as new facts
(with old information being cleaned up by the IDA’s
housekeeping module – Figure 2). As query updates come
in, they trigger one or more meta-control rules, which in
turn result in additional query status information updates
and the eventual activation of one or more of the IDA’s
modules. An example of a simple meta-control rule to
activate the service discovery module if information about
the room that Mary could not be obtained locally (from the
local information reasoner) can be expressed as follows:

Figure 4. An example of status changes

(element-needed (parent-id ?x) (elem-id ?y) (room
Mary ?z))
(element-not-locally-available (elem-id ?y) (room
Mary ?z1))
=>
(assert (module service-discovery) (element-need-
service (elem-id ?y) (output (room Mary ?z))))

In practice, meta-control rules are typically more general
than this (i.e. they don’t just refer to the room Mary is in).

Example
The following illustrates the processing of a query by an
IDA, using the scenario introduced in Figure 3. Figure 4
depicts some of the main steps involved in processing a
request from Bob about the room Mary is in, highlighting
some of the main query status information updates.
Specifically, Bob’s query about the room Mary is in is
processed by the IDA’s Communication Gateway,
resulting in a query information status update indicating
that a new query has been received:

(query-received (queryid 1) (sender Bob) (ask
(room-no Mary ?X)))

The meta-controller proceeds by invoking the Query
Decomposition Module, resulting in the creation of two
query elements – for the sake of simplicity we omit Mary’s
obfuscation policy: one to establish whether this request is
compatible with Mary’s access control polcies and the
other to obtain the room she is in:

(clearance-needed (parent-id 1) (elem-id 1.1)
(User Bob) (element (room-no Mary ?x)))
(element-needed (parent-id 1) (elem-id 1.2)
(room-no Mary ?X))

The meta-controller decides to first focus on the
“clearance-needed” query element and invokes the Access
Control Module. This module determines that two
conditions need to be checked and accordingly creates two
new query elements (“check-conditions”):

(check-condition (parent-id 1.1) (elem-id
1.1.1) (same-team Bob Mary))
(check-condition (parent-id 1.1) (elem-id
1.1.1) (same-building Mary Bob))

The first condition requires checking whether Bob and
Mary are on the same team, while the second one is to
determine whether Bob is in the same building as Mary.
Each condition requires a series of information collection
steps that are orchestrated by the meta-control rules in
Mary’s IDA. In this example, we assume that the IDA’s
local KB contains a semantic reasoning rule:

(team ?p1 ?t)
(team ?p2 ?t)
=>
(same-team ?p1 ?p2)

We also assume that the IDA knows Mary’s team but not
Bob’s. According the following query status information
update is generated:

(element-not-locally-available (parent-id
1.1.1) (elem-id 1.1.1.1) (team Bob ?t))

Mary’s IDA has a meta-control rule to initiate service
discovery when a query element can not be found locally.
The rule is of the form:

(element-needed (elem-id ?x) ?y)
(element-not-locally-available (elem-id ?x)
?y)
=>
(assert (module discover) (element-need-
service (parent-id ?x) (elem-id ?z) ?y))

Thanks to this rule, the Service Discovery Module is now
activated. A service to find Bob’s team is identified (e.g. a

service operated by company XYZ). This results in a
Query Status Information update of the type “service-
identified”. If there are multiple matching services, they
may be ranked and the top service is invoked (multiple
services could also be invoked concurrently).

(service-identified (elem-id ?e) (service-id
?s1) (rank ?r1) (endpoint ?e1) ?x)
(not (service-identified (elem-id ?e)
(service-id ?s2) (rank ?r2) (endpoint ?e2)
?x))
(leq ?r1 ?r2)
=>
(assert (module invocation) (invoke-service
(parent-id ?e) (elem-id ?ee) (service-id ?s1)
(endpoint ?r1) ?x))

We assume that the service returns the team that Bob is in.
The Housekeeping module updates the necessary Query
Status Information, indicating among other things that
information about Bob’s team has been found (“element-
available”) and cleaning old status information. This is
done using a rule of the type:

?n <-(element-needed (elem-id ?e) ?y)
(service-response-available (parent-id ?e)
(elem-id ?ee) (service-id ?s) ?a)
=>
(retract ?n)
(assert (module meta) (element-available
(parent-id ?ee) (elem-id ?eee) ?a))

The scenario continues through a number of similar steps.

5. The Service Discovery Model

A central element of our architecture is the ability of IDA
agents to dynamically discover sources of information
(whether local or external) to help obtain the information
needed by Query Elements. Sources of information are
modeled as Semantic Web Services and may operate
subject to their own access control and obfuscation policies
enforced by their own IDA agents. Accordingly service
invocation is itself implemented in the form of queries sent
to a service’s IDA agent.

Service Model
Each service (or source of information) is described by a
ServiceProfile in OWL-S [W3C04]. ServiceProfiles consist
of three parts: (1) information about the provider of the
service, (2) information about the service’s functionality
and (3) information about non-functional attributes
[SEH02]. Functional attributes include the service's inputs,
outputs, preconditions and effects. Non-functional
attributes are other properties such as accuracy, quality of
service, price, location, etc. An example of a location
tracking service operated on the premises of Company
ABC is described in Figure 5.

<profileHierarchy:InformationService
 rdf:ID="PositioningService ">
 <!-- reference to the service specification -->
<service:presentedBy
 rdf:resource="&Service;#PositioningService"/>

 <profile:has_process
 rdf:resource="&Process;#PositionProc"/>

<profile:serviceName>Positioning_Service_in_ABC
</profile:serviceName>

 <!-- specification of quality rating for

 profile -->
 <profile:qualityRating>
 <profile:QualityRating rdf:ID="SERVQUAL">
 <profile:ratingName>
 SERVQUAL
 </profile:ratingName>
 <profile:rating
 rdf:resource="&servqual;#Good"/>
 </profile:QualityRating>

 <profile:hasPrecondition
 rdf:resource="&Process;#LocInABC"/>
<profile:hasOutput
 rdf:resource="&Process;#RoomNoOutput"/>

</profileHierarchy:InformationService>

Fig. 5. An example service profile in OWL-S

Because in our architecture service invocation is done by
submitting queries to a service’s IDA, our service profiles
currently do not include inputs. Instead, services send
obtain their input parameters by submitting queries back to
the requester. In practice, this process can become
somewhat inefficient and we plan to also investigate more
sophisticated discovery models that examine required
service input requirements in light of the IDA’s access
control and obfuscation policies.

Service outputs are represented as OWL classes, which
play the role of a typing mechanism for concepts and
resources. Using OWL also allows for some measure of
semantic inference as part of the service discovery process.
If an agent requires a service that produces a contextual
attribute as output of a specific type, then all services that
output the value of that attribute as a subtype are potential
matches.

Service preconditions and effects are also used for service
matching. For instance., the positioning service in Figure 5
has a precondition specifying that it is only available on
company ABC’s premises.

6. Implementation

Our policy enforcing agents are based on JESS, a high-
performance rule-based engine implemented in Java (see
[RS05] for additional details and performance results).
Domain knowledge, including service profiles, queries,
access control policies and obfuscation policies are
expressed in either in OWL or in extensions of OWL

[GS04a]. XSLT transformations are used to translate OWL
facts and extensions of OWL (to model rules and queries)
into CLIPS . Query status information and meta-control
rules are directly expressed in CLIPS. Agent modules are
organized as JESS modules. Rules in a JESS module only
fire when that module has the focus and only one module
can be in focus at a time. Currently all information
exchange between agents is done in the clear and without
digital signatures. In the future, we plan to use SSL or
some equivalent protocol for all information exchange.

7. Conclusion Remarks

In many domains, users and organizations need to protect
their information and services subject to policies that
reflect dynamic, context-sensitive considerations. More
generally, enforcing rich policies in open environments
will increasingly require the ability to dynamically identify
external sources of information necessary to enforce
different policy elements. In this paper, we presented a
semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access.
Within this framework, external sources of information are
wrapped as web services with rich semantic profiles
allowing for the dynamic discovery and comparison of
relevant sources of information. Each entity (e.g. user,
sensor, application, or organization) relies on one or more
Policy Enforcing Agents responsible for enforcing relevant
privacy and security policies in response to incoming
requests. These agents implement meta-control strategies
to dynamically interleave semantic web reasoning and
service discovery and access.

The Information Disclosure Agent presented in this paper
is just one instantiation of our more general concept of
Policy Enforcing Agents. Other policies (e.g. information
collection policies, notification preference policies) will
typically rely on slightly different sets of modules and
different meta-control strategies, yet they could all be
implemented using the same type of architecture and many
of the same principles presented in this paper. Our Policy
Enforcing Agents rely on a taxonomy on query information
status predicates to monitor their own progress in
processing incoming queries and enforcing relevant
security and privacy policies. They use meta-control rules
to decide which action to take next (e.g. decomposing
queries, seeking local or external information, etc.). This
work is conducted in the context of myCampus, a context-
aware environment aimed at enhancing everyday campus
life at Carnegie Mellon University [SCV+03,GS04a].
Experiments with an early implementation of our
framework seem promising. At the same time, it is easy to
see that the generality of our framework also gives rise to a
number of challenging issues. Future work will focus on

testing the scalability of our framework, evaluating
tradeoffs between the expressiveness of privacy and
security policies we allow and associated computational
and communication requirements. Other issues of
particular interest include studying opportunities for
concurrency (e.g. simultaneously accessing multiple web
services), dealing with real-time meta-control issues (e.g.
deciding when to give up or when to look for additional
sources of information/web services), and breaking
deadlocks [LNOS04].

Acknowledgements

The work reported herein has been supported in part under
DARPA contract F30602-02-2-0035 and in part under ARO
research grant DAAD19-02-1- to Carnegie Mellon University’s
CyLab. Additional support has been provided by IBM, HP,
Symbol, Boeing, Amazon, Fujitsu, the EU IST Program (SWAP
project), and the ROC’s Institute for Information Industry. The
US Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon

References
[APM04] R. Ashri, T. Payne, D. Marvin, M. Surridge and S.

Taylor, Towards a Semantic Web Security
Infrastructure. In Proceedings of Semantic Web
Services Symposium, AAAI 2004 Spring Symposium
Series, Stanford University, Stanford California.

[BSF02] Lujo Bauer, Michael A. Schneider and Edward W.
Felten. "A General and Flexible Access Control
System for the Web", In Proceedings of the 11th
USENIX Security Symposium, August 2002.

[BFL96] Matt Blaze, Joan Feigenbaum, an Jack Lacy.
“Decentralized Trust Management”. Proc. IEEE
Conference on Security and Privacy. Oakland, CA.
May 1996

 [CLM+02] L. Cranor, M. Langheinrich, M. Marchiori, M.
Presler Marshall, and J. Reagle. The platform for
privacy preferences 1.0 (P3P1.0) Specification.
W3C Recommendation, April 16, 2002.

[DKF+05] Li Ding, Pranam Kolari , Tim Finin , Anupam
Joshi, Yun Peng and Yelena Yesha. "On Homeland
Security and the Semantic Web: A Provenance and
Trust Aware Inference Framework", In Proceedings
of the AAAI Spring Symposium on AI Technologies
for Homeland Security, March 2005.

[Fri03] Friedman-Hill, E.: Jess in Action: Java Rule-based
Systems, Manning Publications Com-pany, June
2003, ISBN 1930110898,
http://herzberg.ca.sandia.gov/jess/

[GPH03] Golbeck, J.; Parsia, B.; and Hendler, J. 2003. Trust
networks on the Semantic Web. In Proceedings of

7th International Workshop on Cooperative
Intelligent Agents, CIA 2003.

[GS03] F. Gandon, and N. Sadeh. A semantic e-wallet to
reconcile privacy and context awareness. In
Proceedings of the Second International Semantic
Web Conference (ISWC03), Florida, October 2003.

[GS04a] F. Gandon, and N. Sadeh. Semantic web
technologies to reconcile privacy and context
awareness. Web Semantics Journal, 1(3), 2004.

[HKL+04] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider,
A. Sahuguet, S. Varadarajan, and A. Vyas. Enabling
context-aware and privacy-conscious user data
sharing. In Proceedings of 2004 IEEE International
Conference on Mobile Data Management,
Berkeley, California, January 2004.

 [HS04] U. Hengartner, and P, Steenkiste. Implementing
access control to people location information. In 9th
ACM Symposium on Access Control Models and
Technologies (SACMAT'04), Yorktown Heights,
June 2004

[HSSK04] T. van der Horst, T. Sundelin, K. E. Seamons, and
C. D. Knutson. Mobile Trust Negotiation:
Authentication and Authorization in Dynamic
Mobile Networks. Eighth IFIP Conference on
Communications and Multimedia Security, Lake
Windermere, England, September 2004

[KFJ03] L. Kagal, T. Finin, and A. Joshi. A policy language
for a pervasive computing environment. In
Collection of IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, June
2003

[KPS04] L. Kagal1, M. Paolucci, N. Srinivasan, G. Denker,
T. Finin and K. Sycara, Authorization and Privacy
for Semantic Web Services, In Proceedings of
Semantic Web Services Symposium, AAAI 2004
Spring Symposium Series, Stanford University,
California, March 2004.

[LGC+05] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J.
Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to
USENIX Security 2005. Also available as Technical
Report CMU-CS-05-111, Computer Science
Department, Carnegie Mellon University, February
2005.

[LNOS04] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons,
M. Winslett, T. Yu, and C. Zhang, How to Exploit
Ontologies in Trust Negotiation. Workshop on
Trust, Security, and Reputation on the Semantic
Web, part of the Third International Semantic Web
Conference, Hiroshima, Japan, November 2004.

[RS05] J. Rao. and N. Sadeh "Interleaving Semantic Web
Reasoning and Service Discovery to Enforce
Context-Sensitive Security and Privacy Policies",
Carnegie Mellon Univ., Sch. of Computer Science
Tech. Report CMU-ISRI-TR-05-133, July 2005.

[Rao04] J. Rao. "Semantic Web Service Composition via
Logic-based Program Synthesis". PhD Thesis.
Department of Computer and Information Science,
Norwegian University of Science and Technology,
December 10, 2004.

[RKM04a] J. Rao, P. Küngas and M. Matskin, "Composition
of Semantic Web Services using Linear Logic
Theorem Proving". To appear in Information
Systems Journal - Special Issue on the Semantic
Web and Web Services".

[SCV+03] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K.
Takizawa. Creating an open agent environment for
context-aware m-commerce. In Agentcities:
Challenges in Open Agent Environments, ed. by
Burg, Dale, Finin, Nakashima, Padgham, Sierra,
and Willmott, LNAI, Springer Verlag, pp.152-158,
2003.

[SEH02] J. O'Sullivan, D. Edmond, and A. T. Hofstede.
What's in a service? Towards accurate description
of non-functional service properties. Distributedand
Parallel Databases, 12:117.133, 2002.

[UPC+03] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and
A. Joshi. A secure infrastructure for service
discovery and access in pervasive computing. ACM
Monet: Special Issue on Security in Mobile
Computing Environments, October 2003

[UBJ04] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson,
A. Tate, J. Dalton and S. Aitken, Policy and
Contract Management for Semantic Web Services.
In Proceedings of Semantic Web Services
Symposium, AAAI 2004 Spring Symposium Series,
Stanford University, Stanford California.

 [W3C04] OWL-S: Semantic Markup for Web Services, W3C
Submission Member Submission, November 2004.
http://www.w3.org/Submission/OWL-S

