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Drones have witnessed extensive popularity among diverse smart applications, and visual Simultaneous Lo-

calization and Mapping (SLAM) technology is commonly used to estimate the six-degrees-of-freedom pose

for drone flight control systems. However, traditional image-based SLAM cannot ensure the flight safety of

drones, especially in challenging environments such as high-speed flight and high dynamic range scenarios.

The event camera, a new vision sensor, holds the potential to enable drones to overcome these challenging sce-

narios if fused with the image-based SLAM. Unfortunately, the computational demands of event-image fusion

SLAM have grown manifold compared with image-based SLAM. Existing research on visual SLAM accelera-

tion cannot achieve real-time operation of event-image fusion SLAM on on-board computing platforms for

drones. To fill this gap, we present TrinitySLAM, a high-accuracy, real-time, low-energy consumption event-

image fusion SLAM acceleration framework utilizing Xilinx Zynq, an on-board heterogeneous computing

platform. The key innovations of TrinitySLAM include a fine-grained computation allocation strategy, sev-

eral novel hardware–software co-acceleration designs, and an efficient data exchange mechanism. We fully

implement TrinitySLAM on the latest Zynq UltraScale+ platform and evaluate its performance on one custom-

made drone dataset and four official datasets covering various scenarios. Comprehensive experiments show

that TrinitySLAM improves the pose estimation accuracy by 28% with half end-to-end latency and 1.2× en-

ergy consumption reduction compared with the most comparable state-of-the-art heterogeneous computing

platform acceleration baseline.
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1 Introduction

With the rapid development of smart cities, commercial drones have witnessed extensive popu-
larity among diverse smart applications, including smart logistics, industrial inspection, and emer-
gency rescue due to their flexible flight control systems [27, 43]. Six-degrees-of-freedom (6-DoF)

pose estimation is one of the key parts of drone flight control systems for these applications that
allow drones to accomplish complex tasks such as navigation, localization, mapping, and obstacle
avoidance. Vision-based methods — in particular, visual simultaneous localization and map-

ping (visual SLAM) technology —has become one of the most attractive solutions because of
the abundance of environmental information provided by visual sensors [29, 34].

Given that drones usually fly with uneven velocity across complex environments to perform
tasks in practice, traditional image-based SLAM (using a standard camera as the sole visual sen-
sor) easily suffers from low image quality caused by motion blur, poor illumination, or HDR sce-
narios, in which the performance of image feature matching decreases significantly and further
decreases the accuracy of pose estimation. Recently, a kind of bio-inspired sensor called an event

camera has become one of the promising visual sensors in visual SLAM because it samples light
based on the scene brightness changes and can offer several advantages such as very high tem-
poral resolution (around 1 MHz) and very high dynamic range (140 dB compared with 60 dB of
standard cameras). As illustrated in Figure 1, event cameras do well in sensing motion with very
low latency and measure changes of brightness but without absolute brightness value, whereas
standard cameras provide absolute brightness value for each pixel but are susceptible to motion
blur. Therefore, fusing the event camera into image-based SLAM (we call it event-image fusion

SLAM) has great potential for enabling drones to fly in the aforementioned challenging scenarios.
Research on event-image fusion SLAM has subsequently surfaced [7, 42].

Obviously, high-accuracy and real-time SLAM technology to achieve a drone’s 6-DoF pose esti-
mation is always crucial for drone flight safety in practice. Many studies have investigated how to
run image-based SLAM systems in real time on drone on-board computing platforms. The authors
of [2, 36, 45] propose offloading part of the workload to the edge server. That approach relies on
network conditions that are unsuitable for drones flying in harsh outdoor environments. While
some works employ graphics processing units (GPUs) [1, 9] or utilize field-programmable gate

arrays (FPGAs) [3, 8, 10] to speed up the computation-intensive SLAM, they still fall short of
real-time performance (e.g., 30 fps). Furthermore, the computational demands of event-image fu-
sion SLAM have increased manifold compared with the original image-based SLAM, primarily
due to the added pipeline of processing a vast amount of event data. Thus, existing works are
even more incapable of achieving real-time event-image fusion SLAM on on-board platforms. Ob-
viously, achieving high-accuracy and low-latency event-image fusion SLAM on drone on-board
computing platforms is non-trivial.

Recently, two new opportunities have arisen, prompting us to explore the design of a high-
accuracy and real-time event-image fusion SLAM system on the drone on-board computing
platform:

(1) The emerging study of on-chip intelligence [11, 38, 40] is powerful for accomplishing
computation-intensive tasks locally by utilizing heterogeneous on-board computing
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Fig. 1. Illustration of the distinct characteristics of standard cameras and event cameras.Figure referred from

[19]. While standard cameras can capture RGB values, they are susceptible to motion blur. On the other hand,

event cameras can detect motion and changes in brightness, but they cannot capture absolute brightness

values.

platforms (e.g., Xilinx Zynq [18] and NVIDIA Tegra [31]), which not only possess on-chip
FPGAs but also equip general-purpose central processing units (CPUs).

(2) The high-speed parallel processing capabilities of on-chip FPGAs align well with the high
sampling frequency characteristics of event data, offering the potential for rapid event data
processing.

Albeit inspiring, realizing the above intuitions in the design of the high-accuracy and real-time
event-image fusion SLAM upon on-board computing platforms is non-trivial and faces the follow-
ing three key challenges.

— Complex choices in allocating hierarchical tasks: The event-image fusion SLAM algo-
rithm comprises hierarchical task modules (details in Section 2.1), and on-board comput-
ing platforms similarly have tiered computational units (details in Section 3.1). Partitioning
the SLAM algorithm into sub-modules and allocating them to different computational units,
however, are also non-trivial as both SLAM functional units are tightly coupled and the
characteristics of computational units vary. An improper allocation may result in redundant
data exchange and inefficient utilization of computational resources that, in turn, increase
the algorithm latency.

— Mining computational power from heterogeneous units: Although the hierarchical
computational resources of the on-board computing platform empower lightweight devices
to perform some complex tasks, simply running the decoupled sub-module on heteroge-
neous computational units without fully mining their computational power cannot meet
the requirements for real-time performance (Section 2.2).

— Arduous collaboration between heterogeneous units: Intermediate data interaction be-
tween heterogeneous computational units comes at a relatively high cost. Facilitating effi-
cient collaboration among these units to minimize data exchanges is essential for reducing
system latency.

In this article, we present the design and implementation of TrinitySLAM, the first real-time,
high-accuracy and low-energy consumption event-image fusion SLAM system on a commer-
cial heterogeneous on-board platform following a software and hardware co-design paradigm.
TrinitySLAM leverages the state-of-the-art event-image fusion SLAM algorithm, UltimateSLAM
[42], as the foundational algorithm and further improves its accuracy and speeds it up by
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meticulous task allocation strategies, efficient computation task acceleration, and rational data
interaction.

To determine the optimal strategy for allocating hierarchical tasks, we carry out extensive ex-
periments to profile the runtime of each task module across different heterogeneous computing
platforms. We further take our carefully designed allocation principles into consideration and de-
termine the optimal Fine-grained Hierarchical Module Allocation Strategy to decompose the
event-image fusion SLAM algorithm (Section 4.1).

To fully harness the computational power of each heterogeneous computational unit and reduce
the algorithm operation latency, we design two Hardware–Software Co-acceleration technolo-
gies (Section 4.2) to accelerate the SLAM algorithm. (1) Front-end Hardware Acceleration: We first
design tailored feature point detection and feature point matching algorithm fitting for FPGAs, sig-
nificantly reducing the latency of two time-consuming sub-modules in the front-end. Additionally,
by utilizing the bare-metal R-core, we further minimize the front-end latency. These techniques
together ensure real-time pose estimation for drones. (2) Back-end Scheduling Optimization: We em-
ploy adaptive core isolation and multi-threading parallelization techniques to optimize the sched-
uling of the SLAM algorithm’s complex back-end tasks. This significantly improves the utilization
efficiency of multiple processors equipped by the computing platform, enabling timely mapping
and promptly eliminating accumulated tracking errors for the front-end.

To minimize the considerable transfer latency between different heterogeneous computational
units, we propose Tri-DMA Across-Layer Data Exchange technology, which adopts Direct

Memory Access (DMA) to facilitate data exchange between different hierarchical computational
units, achieving high-speed data exchange and ensuring reliable collaboration among several
SLAM modules (Section 4.3).

We fully implement TrinitySLAM on the latest Zynq UltraScale+ platform. Comprehensive ex-
periments are carried out on one custom-made drone dataset using a drone equipped with a DAVIS
event camera and four official datasets [28] covering various scenarios. We compare TrinityS-

LAM with two state-of-the-art heterogeneous computing platform acceleration systems [1, 10] in
terms of accuracy, latency, and energy consumption. Evaluation results show that TrinitySLAM sig-
nificantly outperforms all baselines. Compared with the closest performing system, the accuracy
of TrinitySLAM is enhanced by 28%, the end-to-end latency consistently decreases by more than
half, remaining within real-time benchmarks, and the energy consumption is reduced by 1.2 times.
We will make the code and details of the implementation public available upon acceptance.

Our contributions are summarized as follows.

— We design the system architecture of TrinitySLAM, as far as we are aware of, the first on-
board event-image fusion SLAM system that can offer real-time, high-accuracy, and low-
energy consumption performance.

— We propose several technologies: the Fine-grained Hierarchical Module Allocation Strategy
ascertains the optimal task allocation scheme; the Hardware-Software Co-acceleration en-
hances the speed of the SLAM algorithm; and the Tri-DMA Across-Layer Data Exchange
ensures minimal data transfer latency.

— We implement a prototype system on the Zynq platform and conduct extensive evaluations
using both our custom-made drone dataset and official datasets, comparing them with the
state-of-the-art baselines. Evaluation results demonstrate that, across various scenarios,
TrinitySLAM achieves superior performance in terms of accuracy, latency, and energy
consumption.

The rest of this article is organized as follows. We present the research background and ana-
lyze preliminary experiments to elucidate our motivations in Section 2. Section 3 contains a brief
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Fig. 2. System architecture of event-image fusion SLAM.

introduction of the heterogeneous platform we employed and an overview of TrinitySLAM . Our
proposed key technologies and strategies are presented in Section 4. Details of the implementa-
tion setup are presented in Section 5, followed by the performance evaluation results in Section 6.
Related works are presented in Section 7. In Section 8, we provide a detailed discussion of the
limitations of our work and directions for future research. We conclude the article in Section 9.

2 Background and Motivation

2.1 Event-Image Fusion SLAM

The system architecture of event-image fusion SLAM is essentially consistent with conventional
image-based SLAM architecture (as shown in Figure 2(a)). Compared with image-based SLAM,
event-image fusion SLAM possesses not only a pipeline for processing standard frames but also
another pipeline dedicated to handling event data that synthesizes motion-compensated event
frames with the standard frames in the pre-process input sub-module (as shown in Figure 2(b)).
Event-image fusion SLAM also consists of three components: tracking, local mapping, and global
optimization, as shown in Figure 2. We briefly introduce each module.

— The tracking module estimates the coarse-grained pose based on the consecutive standard
frames and synthetic event frames. As shown in Figure 2(b), before processing the stan-
dard frames from the traditional camera, the system first synthesizes motion-compensated
event frames. By utilizing the high-frequency IMU data, it synchronizes the continuous event
streams from the event camera on the timestamps of the standard frames (e.g., for a 30-fps
camera, this would be 33.3 ms). Once the event frame and standard frame are generated, fea-
ture extraction algorithms are applied to extract 2D feature points. These feature points are
then matched with the 2D feature points extracted from the previous frame. Then, 3D map
points are selected from nearby keyframes to match the current frame’s 2D feature points.
Finally, it employs triangulation algorithms to obtain a more accurate pose estimation. The
tracking module is also commonly referred to as the front end.

— The local mapping module then creates new 3D points in the map storage. The local pose
can then be optimized by solving a Bundle Adjustment problem. This module runs repeatedly
with the continuous arrival of event frames and standard frames, resulting in a trajectory of
the camera pose, a map of the 3D landmarks and the corresponding keyframes.

— The global optimization module consists of two crucial steps: loop closure detection and
global pose optimization. In loop closure detection, features extracted from image frames
are compared with keyframes. If a substantial similarity with a certain keyframe is detected,
a global pose optimization for all keyframes is conducted by solving a larger Bundle
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Fig. 3. The latency and accuracy analysis.

Adjustment problem. The map is then updated based on the optimization results. The local
optimization sub-module and global optimization module are collectively referred to as the
back end.

2.2 Latency and Accuracy Analysis

Latency Analysis. Simply running event-image fusion SLAM on a heterogeneous computing
platform without reasonable task allocation and without full computational power utilization, is
hard to run in real-time due to its extensive computation overhead. We have evaluated the end-
to-end latency of the event-image fusion SLAM algorithm, UltimateSLAM, on two representative
heterogeneous computational platforms: the NVIDIA Jetson TX2 [30] (utilizing both its CPU and
GPU) and the Zynq [18] (leveraging both the Cortex-A53 and Cortex-R5). We measure the latency
of each functional module and data exchange. The result is shown in Figure 3(a). From the results,
it is evident that regardless of the heterogeneous computational platform employed, the end-to-
end latency exceeded 150 ms. This implies that the SLAM system processes at a speed of less than
7 fps, which falls significantly short of real-time requirements (≥30 fps). It is worth noting that
the latency of data exchange is not negligible (i.e., on the Zynq platform, it exceeds 10 ms). This
highlights the importance of accurately pinpointing the “hourglass position” and accelerating the
data transfer speed to reduce data exchange latency.

Accuracy Analysis. We conduct further experiments to delve into the impact of different la-
tency intervals on the system’s localization accuracy. We recorded the 3D position trajectory out-
put by UltimateSLAM. By setting varying latency intervals, we calculated the corresponding trans-
lation error and rotation error between the 3D trajectory and the ground truth to evaluate mapping
and localization precision. Figure 3(b) depicts the translation and rotation errors under different
end-to-end latency intervals. It is evident that when the system latency is low (i.e., four-frame
delay), both errors remain at a relatively low level. However, as the latency reaches 333 ms (a gap
of 10 frames), the mapping error exceeds 1 m. This result clearly demonstrates that end-to-end
latency has a significant impact on the system’s performance.

3 System Design

We leverage the latest commercial Zynq UntralScale+MPSoC [18] (abbreviated as MPSoC), a het-
erogeneous computing platform launched by Xilinx [18], to implement TrinitySLAM through
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Fig. 4. Hierarchical computing architecture of MPSoC and hierarchical task architecture of SLAM.

elaborate software and hardware co-design. We will briefly introduce the MPSoC platform and
then present our system design.

3.1 MPSoC Platform Primer

The left half of Figure 5 shows the versatile hierarchical heterogeneous computational units
provided by MPSoC, including a processing system (PS) for software development) and pro-

grammable logic (PL) for hardware design, two modules. The PS features a 64-bit Cortex-A53
quad-core processor (4*A-Core) and a Cortex-R5 dual-core real-time processor (2*R-Core). The four
A-Cores are typically centralized and scheduled by a general-purpose operating system (OS), for
example, PetaLinux [15] and Debian [6]. The two R-Cores, designed for real-time applications,
are typically scheduled by a real-time OS (e.g., upgraded CentOS with Xenomai [44]), enabling
a shorter response time compared with a general-purpose OS. The PL possesses FPGA compu-
tational units, providing both PL units and digital signal processing (DSP) units, which need
hardware design based on specific task requirements. Benefiting from the above versatile compu-
tational resources, MPSoC is considered a critical driving force for many essential applications,
such as intelligent robotics [21], autonomous driving [20], and the industrial Internet of Things

(IoT) [39].
Obviously, MPSoC has three tiers of computational units: the FPGAs, two R-Cores, and four

A-Cores. As shown in Figure 4, when we move through these units, their hardware architecture
becomes increasingly generic; the processing power strengthens, but the deterministic latency
gradually diminishes. Similarly, the three modules of event-image fusion SLAM — tracking, local
mapping, and global optimization — exhibit increasing computational complexity with decreasing
real-time requirements.

However, we find that simply migrating these three SLAM modules onto tiered MPSoC without
an elaborate software and hardware co-design could not achieve desired performance (Section 6.3).
There are still three challenges that ought to be addressed: (i) how to design an optimal allocation
strategy for maximizing the strengths of each computation unit; (ii) how to further accelerate the
tasks on different computational units for minimizing operation latency, and (iii) how to achieve
efficient data transfer between different computational units for minimizing the transmission
delay.

3.2 TrinitySLAM’s Architecture Design

The right half of Figure 5 sketches the architecture of TrinitySLAM. To tackle the above challenges,
TrinitySLAM first comprehensively considers the operation time of various sub-modules on the
heterogeneous computational units of MPSoC as well as the inherent characteristics of each com-
putational unit. Consequently, we devise a Fine-Grained Hierarchical Module Allocation strategy,
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Fig. 5. TrinitySLAM’s architecture.

ingeniously mapping the sub-modules of the event-image fusion SLAM onto different computa-
tional units of the MPSoC. On this basis, we introduce a suite of software and hardware co-design
techniques to guarantee real-time performance.

As for the specific workflow, TrinitySLAM first leverages the Front-End Hardware Acceleration

method to further accelerate the feature extraction and feature matching sub-modules of the track-
ing module on the FPGAs. Then, it runs the Pose Estimation and Track Local Map sub-module on
two R-cores. Based on the results of the tracking module, TrinitySLAM introduces the Back-End

Scheduling Optimization scheme to enable timely optimization of the coarse-grained pose for the
front end. It utilizes the Tri-DMA Cross-Layer Data Exchange technology to minimize the transmis-
sion latency of intermediate data among different computational units, including the origin sensor
input to the PL, the matched feature points from the PL to the R-cores, and map points between
the R-cores and the A-cores.

In the following section, we will present the details of the above proposed technologies.

4 Real-Time On-Board Event-Image Fusion SLAM

4.1 Fine-Grained Hierarchical Module Allocation Strategy

The strategy that allocates hierarchical event-image fusion SLAM sub-modules to the heteroge-
neous computing units of the MPSoC should fulfill two principles: (1) The system’s localization
(tracking camera pose) and mapping (creating map points) functionalities need to be executed in
real time. Specifically, the latency of the modules associated with these functionalities — including
the entire tracking module and relevant parts of the local mapping module, collectively referred
to as the front end — should be less than 33.3 ms based on a benchmark frame rate of 30 fps.
(2) Regarding the storage capacities of both the PS and the PL, only the PS possesses the requi-
site ability to store the map. Given the intensive interactions of the pose optimization functions
(i.e., the back end) with the map database, they should also be assigned to the PS. Otherwise, there
would be frequent data transfers leading to significant transmission delays.

To inform our task allocation strategy, as illustrated in Figure 6, we measure and analyze the
runtime of each sub-module on both A-core and R-core. It is evident that relying solely on the A-
core results in a cumulative front-end latency exceeding 60 ms, which fails to meet the real-time
requirements. Moreover, the pose optimization and map updates in the back end are particularly
time-intensive, markedly hampering the rate of cumulative error corrections. Although the R-core
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Fig. 6. Operation latency of each function module of TrinitySLAM running on the MPSoC.

has a longer overall runtime compared with the A-core, it is essential to leverage its computational
resources to alleviate the computational burden on the A-core.

Our proposed fine-grained hierarchical module allocation strategy effectively aligns with the
aforementioned principles. As shown in Figure 5, the input pre-processing sub-module, the most
time-intensive within the tracking module, is promptly processed on the PL. we migrate the input
pre-processing sub-module onto the FPGAs for two reasons: (i) the high-frequency logic units on
the FPGAs are adept at processing equally high-frequency event streams; and (ii) FPGAs excel at
parallel acceleration for matrix operations fundamentally, such as feature extraction and feature
matching.

The pose estimation and local map tracking sub-modules are assigned to the R-cores to fully ex-
ploit its computational strength (for detailed latency discussion, see Section 6.1). The subsequent
modules, including keyframe decision and map point update, are designated to a specific A-core
(e.g., #A1). This architecture ensures that the system’s localization functionality is executed in
real time. Concurrently, the time-intensive and resource-intensive pose optimization tasks, includ-
ing local and global pose optimizations, are executed on the other three A-cores (e.g., #A2–#A4).
When the system identifies a keyframe, it undertakes local pose optimization. If loop closure is as-
certained, it also activates the global pose optimization module, updating the optimized pose and
map point data in the existing map. This assists the tracking module in correcting accumulated
errors in pose tracking and map points.

4.2 Hardware–Software Co-acceleration

4.2.1 Front-End Hardware Acceleration.

FPGA Acceleration. Simply migrating the input pre-processing sub-module to FPGAs results in
a relatively high operation latency (as illustrated in Figure 6, it exceeds 10 ms). This is because
the primary strength of FPGAs lies in their parallel processing capabilities. A straightforward mi-
gration may not fully exploit the FPGA’s parallelism, thus, we should further design customized
algorithms for FPGAs to accelerate computation. As detailed in Figure 7, we utilize FPGAs to par-
allelize and accelerate the computations for three tasks within the input pre-processing module:
(i) synthesizing event frames from the event stream, (ii) feature extraction, and (iii) feature match-
ing. The process of synthesizing event frames from the event stream adheres to Equation (1), where
Xi represents the ith event data. Both π (the projection matrix of the event camera) andTtk ,ti

(the
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Fig. 7. The parallelism processing of the pre-process input sub-module on the FPGAs.

pose transformation obtained from the Inertial Measurement Units [IMUs]) are known parame-
ters. Notably, each event frame generation involves independent computations for individual event
data. Therefore, by leveraging the millions of logic units within the FPGAs, we have substantially
expedited this process.

X ′
i = π

(
Ttk ,ti

(
Z (Xi )π

−1(Xi )
) )

(1)

After generating the event frames, we initially divide both the event frame and the standard
frame into four equal sub-blocks, thereby enabling the subsequent computations to be parallelized
into four threads in our hardware structure and the kernels processed in each thread are all
pipelined, which significantly enhances the parallelism of the subsequent feature detection and
feature matching. Then, to ensure the high quality of the detected feature points, we employ the
Harris feature detection method, which is more robust and can handle scenarios with viewpoint
rotations [4]. For further hardware acceleration, we adopt the local maximum neighbor check
mechanism. We assess the center value by comparing it with the surrounding values rather than
sorting based on the global Harris value. This approach prevents pipeline waiting, which can im-
pact the execution speed. Finally, we design an improved KLT algorithm for feature matching.
Unlike the original KLT [25], which constructs image pyramids to search over a relatively large
range to obtain an accurate matching pair, we propose our improved KLT algorithm considering
the proximity of adjacent frames. Specifically, we restrict our search within the 7x7 surrounding
block, which is not only more efficient but also sufficient to achieve high matching accuracy. Dur-
ing the block matching process, we employ the sum of absolute difference (SAD), which offers
reduced computational complexity, as opposed to the sum of squared difference (SSD). Thus,
we have designed hardware-friendly, expedited algorithms for feature detection and matching that
deliver ultra-low latency.

Bare-metal R-core. We also leverage the R-core to accelerate pose estimation and map point
matching tasks, subsequently outputting a preliminary pose estimation. First, we offload the Pose
Estimation and the Track Local Map sub-module onto the two R-cores for several reasons: (i) The
R-core is specifically tailored for real-time applications, offering high levels of reliability and
determinism. (ii) Both of these modules have straightforward input and output, which reduces
the data exchange volume with the FPGAs and A-Core. However, the R-core’s computational
capacity is objectively inferior to that of the A-core. To further accelerate the sub-modules on the
R-cores, although it is common to run a real-time operating system on the R-core for improved
resource management and sophisticated task scheduling, we finally employ bare-metal R-cores
(i.e., R-cores with no operating system) to bypass the uncertain OS scheduling delay.

ACM Trans. Sensor Netw., Vol. 20, No. 6, Article 121. Publication date: November 2024.
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Fig. 8. Illustration of adaptive A-core isolation and Tri-DMA data exchange.

4.2.2 Back-End Scheduling Optimization. The back end of SLAM is responsible for local and
global pose optimization based on historical keyframes and map points, thereby rectifying the
cumulative tracking errors from the front end. Clearly, the operational speed of the back end has
a significant impact on the SLAM system’s accuracy. However, given that the back-end tasks are
highly computation intensive and we only have four A-cores at our disposal, we have devised a
series of resource scheduling and optimization strategies to accelerate the back end’s performance
on these four A-cores.

Adaptive A-core Isolation. The computational resources on the A-core are scheduled by a
time-sharing operating system (e.g., Debian [6]), leading to potential competition among different
tasks. To mitigate unnecessary resource contention and enhance program efficiency, we initially
employ adaptive core isolation techniques, assigning distinct processes to each core. One core
(e.g., #A1) is allocated to run keyframe decisions and some local mapping tasks with modest com-
putational demands. The remaining three A-cores cater to tasks requiring higher computational
power, including local pose optimization and global pose optimization. During the allocation pro-
cess for the three A-cores, considering the relationship between the operational frequency of local
pose estimation and global pose estimation and their required computational load, we opted for an
adaptive allocation strategy. Specifically, the frequency of local pose optimization (corresponding
to the keyframe frequency) is much higher than that of global pose optimization (aligned with
loop closure detection frequency). However, the computational resources required for a single op-
timization are relatively less. Thus, when loop closure detection is unsuccessful, all three A-cores
are used for local pose optimization. However, upon successful loop closure detection, one A-core
is allocated for local pose optimization, whereas the other two are dedicated to global pose opti-
mization (as shown in Figure 8).

OpenMP Parallelization. Given our use of multiple cores to run the computationally demand-
ing pose optimization module, we employ OpenMP technology in our implementation to trans-
form the original serial back-end tasks into parallel code. This generated multiple threads to con-
currently execute the converted code segments, ultimately enhancing the program’s execution
efficiency and improving the utilization of multiple processors.

4.3 Tri-DMA Cross-Layer Data Exchange

When sub-modules are allocated across different computational layers, data exchange becomes a
consideration. Despite efforts to minimize it, the volume of data that needs to be exchanged is also
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significant. Therefore, we also strive to maximize the speed of the data exchange. We utilize DMA
technology to facilitate the data exchange process between different hierarchical computational
units.

DMA allows data to be transferred directly between the memory and peripheral devices (such
as the FPGA) without the intervention of the CPU. In traditional data transfer schemes, the CPU
is heavily involved in managing and moving data between memory and devices, which consumes
CPU cycles and limits the data transfer bandwidth. By employing DMA, the CPU can initiate a
data transfer transaction and then proceed with other tasks while the DMA controller takes over
the actual data movement. Moreover, modern DMA controllers, such as the one in the Zynq Ul-
traScale+ platform, support advanced features such as scatter-gather and multi-channel modes.
Scatter-gather allows non-contiguous memory blocks to be transferred in a single DMA transac-
tion, reducing the setup overhead. The multi-channel mode enables parallel data transfers between
different source-destination pairs, further enhancing the data exchange bandwidth.

Conventionally, DMA enables distinct computational units to access the main system memory,
allowing for data transfer between the CPU (A-core and R-core). To illustrate, consider the data
interaction between an A-core and an R-core. Without DMA, when the R-core carries out pro-
grammed input/output, the entire program would be fully occupied by read/write operations and,
thus, receive the data from the A-core with frequent blocking. In contrast, with DMA, data trans-
fer channels between the R-core and A-core are initialized first, allowing the program to operate
concurrently during data transmission. Inspired by the observations mentioned above, we have
established three different types of DMA channels bridging the three-tiered heterogeneous com-
putational units (PL, A-core, R-core) as shown in Figure 8: (1) the A-core transmits original event
streams, video frames, and IMU sensor inputs to the PL via DMA; (2) the PL sends feature extraction
and matching results to the R-core; and (3) the R-core and A-core exchange intermediate results,
with the R-core forwarding the matching results between 2D feature points with 3D map points to
the A-core, and the A-core returning optimized map points to the R-core. Unlike existing network-
based solutions such as the PL-PS Ethernet interface [16] and OpenAMP [32], our DMA approach
provides each critical dataflow with its exclusive transfer channel, ensuring real-time data ex-
change throughout the task life cycle. Equally vital, compared with network-based solutions, using
DMA channels for data transfer between computational units significantly reduces CPU overhead.

5 Implementation

5.1 Experiment Setup

We implemented the TrinitySLAM system using Xilinx’s recently released commercial heteroge-
neous computing platform, Zynq UltraScale + MPSoC [18]. Our improved Harris feature extraction
and KLT feature matching algorithms running on the FPGAs in the PL were implemented in the
C programming language with the Vivado High-Level Synthesis (HLS) tool [17]. The remaining
functional modules in the PS of the MPSoC were modified and implemented based on the code
library from UltimateSLAM [41]. The core isolation feature was realized by setting the parameter
cpu affinity=<cpu number> in the code, whereas OpenMP thread parallelization was achieved by
adding compilation options. Simultaneously, to validate the performance of our system in real-
world deployment, we have made a dataset using a drone equipped with the DAVIS 346 event
camera [14]. Details of this dataset can be found in Section 5.2.

5.2 Datasets

To analyze the performance of TrinitySLAM across different scenarios, we selected four official
datasets that merge event cameras with traditional cameras [28], encompassing diverse lighting
conditions, environmental texture complexities, and other characteristics. Notably, as the official
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Fig. 9. The experiment devices. (a) Zynq UltraScale + MPSoC. (b) Drone with event camera and standard

camera. (c) OptiTrack motion capture system.

datasets lack scenes with moving objects, we craft a custom Drone dataset using a drone equipped
with the DAVIS 346 event camera (as shown in Figure 9). For accurate pose tracking, infrared
reflective markers were placed on the drone’s rotors, and an advanced motion capture system,
OptiTrack [33], was employed to obtain the ground truth. Detailed characteristics of the four
public datasets and our custom Drone dataset can be found in Table 1. Comprehensive evaluations
will be conducted on these datasets to evaluate the system’s accuracy, end-to-end latency, and
energy efficiency.

5.3 Baselines

To extensively evaluate the performance of our hardware and software co-design of TrinitySLAM ,
we compare TrinitySLAM with two relevant state-of-the-art heterogeneous computing platform
acceleration systems, Baseline(MPSoC) [10] and Baseline(GPU+CPU) [1]. The former is a sys-
tem that also employs Zynq UltraScale + MPSoC to expedite image-based SLAM (KinectFusion).
The latter proposed a series of methods to accelerate image-based SLAM (ORB-SLAM) using the
heterogeneous CPU and GPU in the NVIDIA Jetson Tx2 platform. For a fair comparison, we re-
place both the SLAM systems of the above two baselines with our consistent event-image fusion
SLAM algorithm.

5.4 Metrics

We employ three metrics to comprehensively evaluate the performance of TrinitySLAM and the
two baselines: accuracy, end-to-end latency, and energy consumption.

— Accuracy: We adopt two standard metrics, Translation Error (TE) and Rotation Error

(RE), to evaluate the localization accuracy of the systems.
— End-to-End Latency: In the context of the SLAM system, end-to-end latency represents the

average time taken to output a pose and finalize the mapping. Both front-end latency and
back-end latency will influence the end-to-end latency: the front-end latency determines the
delay of outputting the pose and the back-end latency affects the front-end latency. Specif-
ically, when the keyframe occurs, the front end will wait for the back end to return the
optimized pose and updated map. We obtain the end-to-end latency by logging the latency
statistics of each sub-module in the front end and back end.

— Energy Consumption: This refers to the average energy consumed by the system while
processing a single frame during its continuous operation, measured in millijoule/frame.
We measure the energy consumption by obtaining the average power during the program’s
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Table 1. Dataset Summary

Name Features Number of Events Video Length

Post Normal Flat walls, normal lighting condition 133,464,530 1,357 frames
Post HDR Flat walls, high dynamic range 102,910,720 1,491 frames
Boxes Normal Complex textures, normal lighting condition 133,085,511 1,297 frames
Boxes HDR Complex textures, high dynamic range 118,499,744 1,387 frames
Drone Dynamic environment, moving people 157,174,637 3,430 frames

execution. On the Zynq MPSoC, the power is obtained using the voltage monitoring data
provided by the Xilinx Analog-to-Digital Converter module; on the Jetson TX2, it is obtained
using the JTOP tool. It is worth noting that this only considers the energy consumed during
program execution and excludes the camera’s inherent energy usage.

6 Evaluation

6.1 Overall Performance

Figure 10 illustrates the overall performance of TrinitySLAM and two baselines. In a nutshell, Trin-

itySLAM achieves much higher localization accuracy, lower end-to-end latency, and lower energy
consumption under five distinct datasets.

Overall Accuracy Comparison: Figure 10(a) and 10(b), respectively, depict the translation er-
ror and rotation error of TrinitySLAM and two comparative baselines across five distinct datasets.
A comprehensive analysis of the results from multiple datasets reveals that TrinitySLAM’s aver-
age translation error is only 0.36 m, respectively achieving an improvement of 28% and 43.1% com-
pared with Baseline(MPSoC) and Baseline(GPU+CPU). In addition, TrinitySLAM’s rotation error is
merely 0.32 deg/m, which is an enhancement of 36.1% and 57.7% compared with Baseline(MPSoC)
and Baseline(GPU+CPU), respectively. Baseline(GPU+CPU) exhibits a significant gap when com-
pared with both Baseline(MPSoC) and TrinitySLAM. We hypothesize that one reason is the superior
CPU performance of the MPSoC compared to that of the Jetson Tx2. Additionally, the CPU or GPU
may not be adept at processing event data. It is noteworthy that, compared with Baseline(Mpsoc),
we utilize the same hardware. However, TrinitySLAM clearly achieves superior localization ac-
curacy. This underscores the efficacy of our proposed FPGA acceleration technology and several
hardware–software co-design technologies and how they more efficiently harness the potential of
the hierarchical computational units in MPSoC.

End-to-End Latency Comparison: We measure the end-to-end latency introduced by both
the front-end latency and back-end latency across various datasets. As illustrated in Figure 10(c),
the red dashed line represents the real-time benchmark of 33.3 ms. It is evident that TrinityS-

LAM’s average end-to-end latency across the five datasets is only 17.7 ms, consistently staying
below the real-time benchmark, confirming TrinitySLAM’s real-time localization capability. Base-
line(GPU+CPU) exhibits an end-to-end latency of up to 96 ms in the Boxes HDR dataset, under-
scoring the limitations of conventional approaches in ensuring real-time operation for event-image
fusion SLAM systems in complex environments. Compared with Baseline(MPSoC), TrinitySLAM

reduces the end-to-end latency by 20 to 30 ms, ensuring stable real-time performance, which di-
rectly demonstrates the superiority of our proposed hardware–software co-acceleration technol-
ogy. Notably, the two baselines only achieve real-time performance in the Post Normal dataset (de-
tailed reasons will be analyzed in Section 6.2), whereas the latency in the remaining four datasets
significantly exceeds the real-time benchmark.

Energy Consumption Comparison: Power consumption is crucial for many SLAM applica-
tions as it directly impacts device battery life. We measured the average power of TrinitySLAM and
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Fig. 10. The overall performance comparison of TrinitySLAM and all baselines on various datasets.

baselines across various datasets. The product of this average power and the latency to process one
frame gave us the average energy consumption required to process a single image. As depicted in
Figure 10(d), the average energy consumption of TrinitySLAM is merely 17.7 millijoules. In com-
parison, Baseline(MPSoC) consumes 38.4 millijoules, and Baseline(GPU+CPU) consumes 67.2 mil-
lijoules, which means that TrinitySLAM is more efficient, consuming 1.2 times less energy than
Baseline(MPSoC) and nearly 2.8 times less than Baseline(GPU+CPU). We identified two primary
reasons for TrinitySLAM’s markedly low average energy consumption: (1) A substantial amount
of computation is offloaded to the FPGA, alleviating the computational burden on the PS, with
the PL operating at significantly lower power compared with the PS. (2) TrinitySLAM’s average
latency for processing one frame is considerably less than that of the two comparative systems,
resulting in lower energy consumption.

6.2 Robustness Study

We further conduct experiments to analyze the end-to-end latency of TrinitySLAM in different
application scenarios to gauge the system’s robustness in real-time localization under different
environments.

Impact of Texture Complexity: Figure 11(a) illustrates the distribution of end-to-end latency
for TrinitySLAM on both the Post Normal and Boxes Normal datasets, with the dashed line
representing the average latency. It is evident from the figure that the end-to-end latency on
the Post Normal dataset is significantly lower than that on the Boxes Normal dataset. Upon
comparing the two datasets, we noticed that both feature consistent ambient lighting and include
stationary objects within their viewing fields. The major difference lies in the environmental
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Fig. 11. Robustness study of TrinitySLAM.

texture; the Boxes Normal dataset has a significantly more complex texture than the Post Normal
dataset. An in-depth analysis of TrinitySLAM’s performance on the two datasets reveals that, in
the Post Normal dataset, the simpler environmental texture leads to a scarcity of feature points.
Consequently, there is a sparse distribution of keyframes, which, in turn, causes the back-end
pose optimization processes to occur infrequently. The front-end then proceeds without waiting
for the back end’s pose optimization outcomes and needs only minimal map point updates. These
combined factors lead to a significant reduction in end-to-end latency. Yet, the extended lack
of pose optimization contributes to an accumulation of pose estimation errors at the front end,
leading to heightened system localization errors. This trend is substantiated by the pose tracking
accuracy presented in Figure 10(b): the rotation error of all systems under the Post Normal
dataset is notably higher than that in other datasets.

Impact of Lighting Conditions: To showcase the efficacy of our system in handling high dy-
namic range environments, we compared the end-to-end latency distributions of the Post HDR
dataset, which features higher dynamic range lighting, with those of the Post Normal dataset as
depicted in Figure 11(b). While both datasets depict weak-textured scenes, the Post HDR dataset
demonstrates a substantially higher average end-to-end latency and a more diverse latency dis-
tribution compared with the Post Normal dataset. This disparity arises primarily due to the sus-
ceptibility of standard cameras to malfunction in weak-textured environments with high dynamic
range lighting. In contrast, the event camera captures more environmental details in high dynamic
range settings, yielding event frames enriched with feature points. This results in the creation of a
greater number of keyframes and map points for back-end pose optimization. As a consequence,
the maximum end-to-end latency for the Post HDR dataset (80ms) is significantly greater than
that of the Post Normal dataset (40 ms). Furthermore, given the limitations of standard frames,
event frames hold increased significance during the optimization process, which improves pose
optimization accuracy. Alongside more frequent pose optimizations, this guarantees that TrinityS-

LAM attains superior accuracy on the Post HDR dataset compared with the Post Normal dataset.
By leveraging the enhanced perception capabilities of event cameras, TrinitySLAM ensures real-
time system operation while adeptly handling high dynamic range scenarios.

Impact of Moving Objects: We also compared the end-to-end latency distributions between
the Boxes Normal dataset and the Drone dataset to investigate the influence of moving objects
on system performance. As depicted in Figure 11(c), even though both the Boxes Normal and
Drone datasets exhibit complex environmental textures, the average end-to-end latency for the
Drone dataset surpasses that of Boxes Normal by almost 50%. By analyzing the runtime of each
module in the system, we find that the Drone dataset predominantly experiences elevated latency
during the map point matching phase compared with the Boxes Normal dataset. By capitalizing
on the high sensitivity of event cameras to moving objects, we observed an influx of event data
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Fig. 12. Ablation study of TrinitySLAM.

particularly from the edges of these moving entities. This phenomenon significantly amplifies the
feature point count in event frames, leading to an extended runtime when matching 2D feature
points to their corresponding 3D map points. Notably, despite the increased end-to-end latency
induced by moving objects, TrinitySLAM consistently maintains real-time operation, even within
the context of the Drone dataset. Coupled with the exemplary performance of TrinitySLAM on
the Boxes Normal dataset, it is evident that TrinitySLAM is accomplished in handling scenarios
involving rapid movements.

6.3 Ablation Study

We conducted a series of experiments to investigate the contributions of the various techniques
proposed by TrinitySLAM in enhancing performance.

Front-End Hardware Acceleration: We removed the design of the Front-End Hardware

Acceleration (FHA) technology, which includes FPGA acceleration designs and the bare-metal
R-core. The input pre-processing and local map tracking sub-module were transferred to the A-
core (#A1) to study its impact on TrinitySLAM. Figure 12(a) illustrates the end-to-end latency with
and without the front-end hardware acceleration technology. The results indicate that the FHA
technology contributes to a reduction of nearly 19 ms in the overall end-to-end latency. This im-
provement predominantly stems from the reduced latency of the input pre-processing and local
map tracking sub-modules, accounting for a significant proportion of the latency enhancement
achieved by TrinitySLAM over Baseline(MPSoC). It is evident that our front-end hardware accel-
eration technology plays a pivotal role in boosting the performance of TrinitySLAM.

Back-end Scheduling Optimization: Similarly, we removed various designs within the Back-

end Schedule Optimization (BSO) technology and measured the latency of the front end waiting
for back-end optimization results to investigate its impact on the system performance. Figure 12(b)
depicts the distribution of waiting latency (the front end waits for the back end to return the opti-
mized pose and updated map) with and without the back-end scheduling optimization module. As
we can see from Figure 12(b), about 60% of the waiting latency is zero, signifying that the current
frame is neither identified as a keyframe nor associated with loop closure detection. Figure 12(b)
illustrates that when the back-end scheduling optimization technique is omitted, the average wait-
ing latency for TrinitySLAM increases substantially from 8 ms to 19.4 ms, a dramatic rise of 142%,
which will adversely impact the overall end-to-end latency, thereby reducing the system’s accuracy.
Clearly, the back-end scheduling optimization technology significantly enhances the efficiency of
back-end optimization, leading to a marked reduction in front-end waiting latency.

Tri-DMA Cross-Layer Data Exchange: We substituted the DMA data transmission between
PS and PL with the PS-PL Ethernet interface to investigate its impact on the performance of Trini-

tySLAM. Figure 12(c) shows the end-to-end latency distribution of TrinitySLAM with and without
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the PS-PL DMA data exchange. The results reveal that the average end-to-end latency surged by
approximately 15 ms. Additionally, latency variability increased, with the peak latency escalating
by nearly 35 ms. Such changes can be linked to the continuous transmission of event stream data
and image frames from PS to PL via the Ethernet port, which inherently introduces noticeable
transmission latency. This emphasizes the DMA data exchange’s superiority in ensuring not just
low-latency communication between PS and PL but also the stability of system latency.

7 Related Work

Real-Time Visual SLAM Systems: Visual SLAM systems, which enable pose estimation for
drones, have garnered significant attention from both the academic and industrial sectors, lead-
ing to continuous advancements in related technologies. A pressing challenge for researchers is
how to execute Visual SLAM systems in real time on drones with extremely limited computational
capacity, thereby achieving reliable high-precision pose estimation. In recent years, several stud-
ies have proposed enhancing the real-time capabilities of Visual SLAM systems by leveraging the
computational power of edge devices [2, 26, 45]. This involves offloading specific tasks to edge
servers, allowing these more powerful servers to return results faster, ultimately augmenting the
system’s overall real-time performance. Methods reliant on edge assistance can be vulnerable to
network conditions. In situations with network instability or insufficient bandwidth, the latency
introduced by network communication becomes a dominant factor, potentially resulting in delays
exceeding those of systems not using edge servers. The TrinitySLAM system presented in this ar-
ticle operates entirely on local devices. Even when facing a more intricate visual SLAM system
(integrated with input from event cameras), the system’s real-time capability is maintained. Trini-

tySLAM does not rely on external device assistance, making it independent of network conditions
and more versatile for intricate application scenarios.

FPGA-Based Acceleration for Visual SLAM: The highly parallel computational nature of FP-
GAs has drawn the attention of numerous researchers. A plethora of related works have explored
using FPGAs to accelerate vision tasks [5, 13, 22, 24, 37]. For instance, the authors of [13] imple-
mented the FAST and BRIRF algorithms on an FPGA to accomplish feature extraction and feature
matching tasks. The authors of [24] executed the ORB feature extraction algorithm on an FPGA.
The authors of [22] introduced a block-matching optical flow algorithm, which, when implemented
on an FPGA, significantly sped up optical flow computations. The authors of [5] targeted the en-
hanced KLT algorithm and utilized an FPGA for parallel acceleration. The authors of [37] harnessed
FPGA to accelerate and optimize the GMapping algorithm, a filter-based SLAM algorithm. Distinct
from these works, which simply leverage FPGAs to accelerate a specific task, the TrinitySLAM sys-
tem proposed in this article utilizes a heterogeneous computing platform to fully realize a low-
latency, high-precision complex SLAM framework. For the first time, the FPGAs were employed
to handle intricate operations related to event stream processing. We design improved feature de-
tection and feature matching algorithms tailored for the FPGAs. This research designed schemes
for processing unit parallelization and pipeline parallelization, enhancing FPGA computation.

Event-Based SLAM Algorithms: Event cameras, with their ability to handle high-speed
and high-dynamic range scenarios, have garnered significant attention, leading to numerous
studies on their integration into existing SLAM frameworks [12, 23, 35, 42, 46]. Zhou et al. [46]
introduced a visual odometry algorithm solely based on stereo event cameras. Following this,
Hidalgo-Carrió et al. [12] proposed a monocular visual odometry algorithm using only event
stream input. Rebecq et al. [35] presented a visual-inertial odometry algorithm that leverages both
event cameras and Inertial Measurement Units (IMUs). Building on this, UltimateSLAM [42]
introduced the first visual SLAM algorithm that integrates event cameras, traditional cameras, and
IMUs, representing the most recent and popular SLAM approach incorporating these three sensor
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inputs. This article introduces TrinitySLAM, aiming to implement and optimize event-image
fusion SLAM on on-board computing platforms, achieving superior performance in terms of
low latency, high precision, and energy efficiency. The techniques proposed in this article are
orthogonal to the UltimateSLAM algorithm, ensuring that improvements to the SLAM algorithm
can be swiftly integrated into our system.

8 Discussion

8.1 Applicability to Other Platforms

While TrinitySLAM is implemented and evaluated on the Xilinx Zynq UltraScale+ platform in our
work, the proposed techniques have the potential to be applied or adapted to other heterogeneous
computing platforms, such as NVIDIA Jetson TX2 and Jetson TX2 NX. The fine-grained hierar-
chical task allocation strategy can be generalized to partition the SLAM pipeline and map the
modules to the CPU and GPU on Jetson platforms, considering their computation characteristics
and data dependencies. The scheduling optimizations on multi-core CPUs are also applicable. How-
ever, the front-end hardware acceleration leveraging FPGAs needs to be redesigned to utilize the
GPU’s computing power on Jetson. Potential solutions include GPU-based feature extraction and
matching algorithms. The efficient DMA-based data transfer should also be replaced by techniques
suitable for CPU–GPU communication, such as zero-copy memory and unified memory. In sum-
mary, when migrating to other platforms, the general ideas behind the proposed techniques can be
followed, but platform-specific characteristics need to be considered to tailor the implementations.

8.2 Limitations and Future Work

Our work pushes the boundary of real-time event-image fusion SLAM on embedded platforms.
However, some limitations still exist, which point to future research directions. We believe these
limitations and future work will inspire more research on high-performance SLAM systems to
enable intelligent drones.

8.2.1 Enhancing Adaptability to Complex Environments. One limitation of the current TrinityS-

LAM system is that its adaptability to more complex environments, such as outdoor scenes with
dynamic objects, needs further investigation and improvement. In real-world applications, drones
often need to operate in challenging outdoor environments with moving objects such as vehicles
and pedestrians. These dynamic objects can introduce outliers in the visual odometry and mapping
process, degrading the SLAM performance.

To address this issue, we plan to explore robust outlier rejection techniques to filter out the fea-
tures on moving objects. For example, we can leverage the high temporal resolution of the event
camera to detect and track dynamic objects and then exclude the features on these objects dur-
ing pose estimation and map updating. Incorporating semantic understanding of the environment
can also help to identify and handle dynamic objects. By leveraging deep learning–based object
detection and segmentation models, we can recognize and label different objects in the scene. This
allows for adoption of adaptive strategies for feature extraction and matching based on the seman-
tic information. However, the integration of these techniques may introduce extra computational
overhead, requiring further optimization of the algorithm and computing system.

8.2.2 Integration with Downstream Navigation Tasks. Another important future direction is to
integrate TrinitySLAM with downstream tasks such as obstacle avoidance and path planning to
form a complete autonomous navigation system for drones. While TrinitySLAM provides reliable
localization and mapping capabilities, it needs to work in close collaboration with planning and
control modules to enable intelligent and safe navigation in complex environments.
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This integration requires the co-design of SLAM and planning algorithms to ensure effective
information sharing and coordinated decision-making. For example, the obstacle information from
the mapping module should be efficiently transferred to the path planning module to compute safe
and optimal trajectories. The planned trajectory should be fed back to guide the keyframe selection
and local mapping process in SLAM. The co-design also needs to consider the computing system
to balance the workload and meet the real-time requirements of each module.

One potential approach is to develop a hierarchical planning framework that leverages the multi-
scale maps from TrinitySLAM . The global planning module can use the coarse global map to com-
pute high-level navigation paths, whereas the local planning module can utilize the fine-grained
local map to generate safe motion commands. The planning modules can be implemented on the
CPU cores and closely interact with the SLAM modules through efficient inter-process commu-
nication mechanisms. We will investigate the co-design methodology and system architecture to
enable tight integration and real-time performance of the entire navigation system.

9 Conclusion

Traditional visual SLAM techniques offer drones the capability for positioning and mapping,
providing significant value in scenarios such as logistics delivery, emergency rescue, environmen-
tal exploration, and formation flight. However, these techniques face challenges in high-speed
flight and dynamic environments, leading to decreased self-localization performance. In recent
years, the emergence of event cameras has attracted extensive research to integrate them into
the conventional visual SLAM framework to address issues of dynamic blurring and high
dynamism. Yet, the incorporation of event cameras increases the computational complexity of the
system, posing greater challenges for mobile computing platforms with limited computational
power. This article presents a high-accuracy, low-latency, and low-energy consumption SLAM
acceleration framework, TrinitySLAM, implemented on the lightweight embedded platform Zynq.
We introduce a fine-grained hierarchical module allocation technique to deploy the intricate
SLAM system on a tiered computing platform. Through a collaborative software–hardware design,
we propose a series of computational acceleration techniques, enhancing the overall system
performance. Extensive experimental tests on official datasets and custom drone datasets indicate
that the performance of TrinitySLAM surpasses the closest comparative system by improving
localization accuracy by 28%, consistently reducing end-to-end latency by more than half, always
maintaining real-time benchmarks, and reducing energy consumption by 1.2 times.

References

[1] Stefano Aldegheri, Nicola Bombieri, Domenico D. Bloisi, and Alessandro Farinelli. 2019. Data flow ORB-SLAM for

real-time performance on embedded GPU boards. In 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’19). IEEE, 5370–5375.

[2] Ali J. Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar, Steven Y. Ko, and Karthik Dantu. 2022.

Edge-SLAM: Edge-assisted visual simultaneous localization and mapping. ACM Transactions on Embedded Computing

Systems 22, 1 (2022), 1–31.

[3] Konstantinos Boikos and Christos-Savvas Bouganis. 2016. Semi-dense SLAM on an FPGA SoC. In 2016 26th Interna-

tional Conference on Field Programmable Logic and Applications (FPL’16). IEEE, 1–4.

[4] Jie Chen, Li-hui Zou, Juan Zhang, and Li-hua Dou. 2009. The comparison and application of corner detection algo-

rithms. Journal of Multimedia 4, 6 (2009).

[5] Wenjie Chen, Yangyang Ma, Zhilei Chai, Mingsong Chen, and Daojing He. 2017. An FPGA-based real-time moving

object tracking approach. In Algorithms and Architectures for Parallel Processing: 17th International Conference (ICA3PP

2017), Helsinki, Finland, August 21–23, 2017, Proceedings. Springer, 65–80.

[6] Debian. 2023. Debian. Retrieved from https://www.debian.org/

[7] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. 2018. A unifying contrast maximization framework for

event cameras, with applications to motion, depth, and optical flow estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 3867–3876.

ACM Trans. Sensor Netw., Vol. 20, No. 6, Article 121. Publication date: November 2024.

https://www.debian.org/


TrinitySLAM: On-board Real-time Event-image Fusion SLAM System for Drones 121:21

[8] Quentin Gautier, Alric Althoff, and Ryan Kastner. 2019. FPGA architectures for real-time dense SLAM. In 2019 IEEE

30th International Conference on Application-specific Systems, Architectures and Processors (ASAP’19), Vol. 2160. IEEE,

83–90.

[9] Riccardo Giubilato, Sebastiano Chiodini, Marco Pertile, and Stefano Debei. 2019. An evaluation of ROS-compatible

stereo visual SLAM methods on a nVidia Jetson TX2. Measurement 140 (2019), 161–170.

[10] Maria Rafaela Gkeka, Alexandros Patras, Christos D. Antonopoulos, Spyros Lalis, and Nikolaos Bellas. 2021. FPGA

architectures for approximate dense SLAM computing. In 2021 Design, Automation & Test in Europe Conference &

Exhibition (DATE’21). IEEE, 828–833.

[11] Maria Rafaela Gkeka, Alexandros Patras, Nikolaos Tavoularis, Stylianos Piperakis, Emmanouil Hourdakis, Panos Tra-

hanias, Christos D. Antonopoulos, Spyros Lalis, and Nikolaos Bellas. 2023. Reconfigurable system-on-chip architec-

tures for robust visual SLAM on humanoid robots. ACM Transactions on Embedded Computing Systems 22, 2 (2023),

1–29.

[12] Javier Hidalgo-Carrió, Guillermo Gallego, and Davide Scaramuzza. 2022. Event-aided direct sparse odometry. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5781–5790.

[13] Jingjin Huang, Guoqing Zhou, Xiang Zhou, and Rongting Zhang. 2018. A new FPGA architecture of FAST and BRIEF

algorithm for on-board corner detection and matching. Sensors 18, 4 (2018), 1014.

[14] Inivation Inc. 2022. DAVIS 346. Retrieved from https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf

[15] Xilinx Inc. 2020. Petalinux. Retrieved from https://www.xilinx.com/products/design-tools/embedded-software/

petalinux-sdk.html

[16] Xilinx Inc. 2022. MPSoC PS and PL Ethernet Example Projects. Retrieved from https://xilinx-wiki.atlassian.net/wiki/

spaces/A/pages/478937213/MPSoC+PS+and+PL+Ethernet+Example+Projects

[17] Xilinx Inc. 2022. Vivado HLS. Retrieved from https://docs.xilinx.com/v/u/en-US/dh0012-vivado-high-level-synthesis-

hub

[18] Xilinx Inc. 2022. Zynq UltraScale+ MPSoC. Retrieved from https://www.xilinx.com/products/silicon-devices/soc/

zynq-ultrascale-mpsoc.html

[19] Hanme Kim, Stefan Leutenegger, and Andrew . Davison. 2016. Real-time 3D reconstruction and 6-DoF tracking with

an event camera. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October

11–14, 2016, Proceedings, Part VI 14. Springer, 349–364.

[20] Akira Kojima. 2021. Autonomous driving system implemented on robot car using SoC FPGA. In 2021 International

Conference on Field-Programmable Technology (ICFPT’21). IEEE, 1–4.
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