Check for
Updates

Palantir: Towards Efficient Super Resolution for
Ultra-high-definition Live Streaming

Xingqi Jin® Zhui Zhu' Xikai Sun
School of Software & BNRist, Department of Automation & BNRist, Department of Automation & BNRist,
Tsinghua University Tsinghua University Tsinghua University

jinxq21@mails.tsinghua.edu.cn

Fan Dang
School of Software Engineering,
Beijing Jiaotong University
dangfan@bjtu.edu.cn

Kebin Liu
Global Innovation Exchange,
Tsinghua University
kebinliu2021@tsinghua.edu.cn

Abstract

Neural enhancement through super-resolution (SR) deep neural net-
works (DNNs) opens up new possibilities for ultra-high-definition
(UHD) live streaming. Yet, the heavy SR DNN inference overhead
leads to severe deployment challenges. To reduce the overhead,
existing systems propose to apply DNN-based SR only on carefully
selected anchor frames while upscaling non-anchor frames via
the lightweight reusing-based SR approach. However, frame-level
scheduling is coarse-grained and fails to deliver optimal efficiency.
In this work, we propose Palantir, the first neural-enhanced UHD
live streaming system with fine-grained patch-level scheduling.
At the core of Palantir is its SR video quality estimation strategy
which guides the low-delay selection of the most beneficial an-
chor patches. Although existing systems propose estimation strate-
gies for anchor frame selection, these strategies heavily rely on
empirical insights that cannot be transferred to our context, mak-
ing fine-grained scheduling a challenging problem that requires a
fundamentally new solution. Facing the challenge, we follow the
first-principles approach and derive a directed acyclic graph (DAG)
model to address the problem. The model can also be generalized
to various settings due to its first-principles nature. Compared
to the state-of-the-art real-time frame-level scheduling strategy
for live streaming, Palantir reduces the anchor size by 80.1% at
most and 38.4% on average without compromising the quality gain.
Furthermore, Palantir incurs a scheduling latency accounting for

*Co-primary authors.
Corresponding author.
Project repository: https://palantir-sr.github.io

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

MMSys 25, Stellenbosch, South Africa

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1467-2/2025/03

https://doi.org/10.1145/3712676.3714434

z-zhu22@mails.tsinghua.edu.cn

Jiangchuan Liu
School of Computing Science,
Simon Fraser University
jeliu@sfu.ca

Xinlei Chen
Shenzhen International Graduate
School, Tsinghua University
chen.xinlei@sz.tsinghua.edu.cn

12

sxk23@mails.tsinghua.edu.cn

Jingao Xu
Computer Science Department,
Carnegie Mellon University
jingaox@andrew.cmu.edu

Yunhao Liu"

Global Innovation Exchange &
Department of Automation & BNRist,
Tsinghua University
yunhao@tsinghua.edu.cn

only 0.6-3.9% of the end-to-end latency requirement for UHD live
streaming.

CCS Concepts

« Information systems — Multimedia streaming; - Comput-
ing methodologies — Computer vision.

Keywords

Video streaming, super-resolution, video codec

ACM Reference Format:

Xingi Jin, Zhui Zhu, Xikai Sun, Fan Dang, Jiangchuan Liu, Jingao Xu, Kebin
Liu, Xinlei Chen, and Yunhao Liu. 2025. Palantir: Towards Efficient Super
Resolution for Ultra-high-definition Live Streaming. In ACM Multimedia
Systems Conference 2025 (MMSys °25), March 31-April 4, 2025, Stellenbosch,
South Africa. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3712676.3714434

1 Introduction

UHD videos such as 4K and 8K videos are expected to form a huge
market worth more than $1 trillion in the following few years [17].
More and more UHD live-streaming applications [14, 16, 24, 25]
are deployed to revolutionize many aspects of our society. How-
ever, the bitrates of 4K videos (as large as 45Mbps [20]) can be
significantly larger than the worldwide average uplink bandwidth
of mobile broadband networks (about 11Mbps [36]), which poses
great deployment challenges. Although the latest codecs such as
AV1 and VVC can provide a lower bitrate, they can be rather
computation-intensive and typically require specific hardware en-
coders to achieve real-time UHD encoding [38], which are still un-
available on many commercial devices [23]. Using fixed broadband
networks for the uplink is an alternative solution, but it inevitably
affects mobility and prohibits many mobile applications [10-13, 37].

Recently, neural enhancement has been proposed [8, 46, 48]
and deployed [15, 27, 34, 50] to improve video streaming. It can
potentially boost the broad deployment of UHD live streaming by

https://orcid.org/0000-0001-7168-935X
https://orcid.org/0009-0001-9464-0337
https://orcid.org/0009-0008-9184-9750
https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-8347-2657
https://orcid.org/0000-0002-6347-6976
https://orcid.org/0000-0001-8271-5023
https://orcid.org/0000-0001-8052-9200
https://palantir-sr.github.io
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3712676.3714434
https://doi.org/10.1145/3712676.3714434
https://doi.org/10.1145/3712676.3714434
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712676.3714434&domain=pdf&date_stamp=2025-03-31

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

allowing the streaming source to stream only a low-bitrate low-
resolution (LR) video over the bandwidth-limited uplink and using
a super-resolution (SR) deep neural network (DNN) to upscale
the LR stream to its SR counterpart later. However, as detailed in
Sec. 2.1, SR DNN inference incurs heavy computation overhead and
deployment challenges. Therefore, many research efforts have been
aimed at optimizing the overhead. NEMO [46] and NeuroScaler [48]
achieve this by categorizing frames into anchor frames and non-
anchor frames: only anchor frames undergo computation-intensive
DNN-based SR, while non-anchor frames are reconstructed via
reusing the SR results of reference frames. Scheduling has been
a central aspect of designing such systems - the most beneficial
anchor frames must be carefully selected to deliver a large quality
gain with a low inference overhead. Nevertheless, these systems are
inherently sub-optimal due to their coarse scheduling granularity.
A beneficial anchor frame may contain some existing objects that
can be well reconstructed by reusing-based SR, and vice versa.

In this paper, we propose Palantir, the first patch-level neural-
enhanced UHD live streaming system that selects the appropri-
ate type — anchor or non-anchor — for each patch (part of a single
frame). Palantir aims to meet two design goals. The first is to accu-
rately pinpoint the most beneficial anchor patches so that a smaller
overhead can be achieved without sacrificing the quality gains. The
second is to minimize the scheduling latency to better support many
latency-sensitive live streaming applications [1, 16, 28, 41, 44].

Limitations of existing methods (Sec. 3). A natural idea of
fulfilling fine-grained scheduling is to adapt existing frame-level
solutions. However, as shown in Sec. 3, existing frame-level so-
lutions all lack a deep understanding of how DNN-based and
reusing-based SR affect the SR quality. Their success in frame-
level scheduling heavily relies on empirical insights that either
require non-realtime operations or only make sense in the limited
context of frame-level scheduling. Therefore, an entirely different
scheduling method is required to meet our two design goals.

Palantir: a paradigm shift. (Sec. 5). Instead of using trial and
error to seek another insight suitable for the fine-grained context,
which may again face the problem of limited generalizability in
other contexts, we adopt a first-principles approach. A first-
principles approach involves breaking down complex problems
into their most fundamental elements and building solutions from
the ground up, rather than relying on empirical insights. In our
case, we systematically analyze the SR process of every basic coding
block to understand how coding types and anchor configurations
affect the SR error (which is inversely related to the quality gains of
SR). We then naturally conclude from our pioneering analysis that
the process can be simulated accurately and quickly through a DAG
structure at the patch-level granularity. This analytical model allows
us to efficiently and accurately estimate the SR error for any given
anchor patch set and lays a rigorous foundation for the design of
Palantir towards the two aforementioned goals. As a final note, the
first-principles DAG structure essentially reflects the inter-
frame coding strategy, which is at the core of all mainstream
codecs, and thus shows unprecedented generalizability to
various codecs, coding settings, and video types.

In addition to the paradigm shift, Palantir further incorporates
two novel techniques to tackle some specific challenges and ulti-
mately meet the two design goals (Sec. 6). First, strictly following

13

Jin and Zhu, et al.

our analytical framework to construct the DAG requires informa-
tion from the high-resolution (HR) video. We expect the scheduling
algorithm of Palantir to be executed at the media server for easy
deployment, yet the media server often does not have access to the
HR video. We overcome this challenge by approximating missing
HR information with the available LR data. Second, we find that a
naive implementation of DAG-based estimation still fails the sec-
ond goal. Alternatively, we utilize a universal characteristic of all
mainstream codecs to introduce two parallelism mechanisms in
the DAG-based computation process, which reduce the latency by
hundreds of times without changing the anchor selection results.

Results. We conduct extensive evaluations to demonstrate that
Palantir meets the two design goals. When compared to the naive
method of applying DNN-based SR on all the frames, Palantir can
reduce the SR DNN inference overhead by 20 times (or 60
times) while preserving 54.0-82.6% (or 32.8-64.0%) of the qual-
ity gain. When compared to the state-of-the-art real-time frame-
level scheduling strategy, Palantir can reduce the SR DNN infer-
ence overhead by 80.1% at most (and 38.4% on average) with-
out sacrificing the video quality. Palantir incurs a negligible
scheduling latency accounting for only 0.6-3.9% of the end-to-end
latency requirement.

The rest of the paper is structured as follows. Sec. 2 reviews
preliminary knowledge. We detail the core limitations of existing
methods in Sec. 3. A high-level overview of Palantir is outlined in
Sec. 4. We introduce our first-principles approach in Sec. 5. The
two practical techniques used to build Palantir are presented in
Sec. 6. We evaluate Palantir in Sec. 7. The paper is concluded in
Sec. 8. Discussions on future work, related work, and some technical
details can be found in the Appendix.

2 Background

2.1 Primer on SR Streaming

Currently, there are two common deployment models for SR en-
hancement. One is to execute the SR DNN inference on the mobile
streaming clients [15, 27, 34, 50], and the other is to execute the
SR DNN on a cloud server to benefit many audiences for the same
video [48]. Yet, SR DNNss are of high computation complexity and
lead to severe deployment challenges in both deployment models.
In the first model, the battery life of mobile clients can be easily
drained. Consequently, Microsoft Edge VSR disables its SR feature
when the device is not being charged [34]. As for the second model,
the heavy inference overhead appears in the form of the high mon-
etary cost of using cloud servers (estimated to be at least $1.690 per
hour per 4K stream [48]). Lowering the overhead is essential to a
broader application of SR enhancement.

2.2 Reusing-based SR

To enable low-cost SR enhancement, researchers have built the
NEMO [46] system, where an SR-enhanced decoder is adopted to
reduce the cost by using video temporal redundancy. In the SR
decoder, video frames are categorically divided: anchor frames are
upscaled via DNN-based SR, while non-anchor frames are quickly
upscaled via reusing-based SR. To appreciate the intricacies of
reusing, a basic understanding of video codecs is essential. Video
coding predominantly encodes a block through inter-coding; it

Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming

@ Reference
Framer_\

e Motion
Vector

9 bmter

Current Frame
i
e binter'res

O b} ref

Decoded Frame Buffer

Figure 1: Video decoding pipeline.

—> General

LR (Decoded)

Figure 2: SR-integrated decoder overview.

identifies a similar reference block from a prior frame and only
stores the subtle residual between the two blocks. A reference index
is retained in the coded video to identify the frame containing the
reference block or the reference frame, while a motion vector is
stored to represent the potential spatial offset between the current
and reference blocks. To decode an inter-coded block b’ inter (i€, ©
in Fig. 1), the decoder first parses the reference index to determine
its reference frame (@) and then parses the motion vector (9) to
determine its reference block b . _.ref (®). The residual b’

inter’ lnter
(®) is added to bimer ref to obtain blmer, ie.,
i _
bmter - lnter ref + blnter (1)

An alternative to inter-coding is mtra—codlng, which, while similar,
encodes an intra-coded block bm trq DY storing the intra-frame
residual. We refer the readers to the technical specifications [21]
for further details. Note that patches are not the same as encoding
blocks in this paper: patches are scheduling units while blocks are
encoding units.

The SR decoder in NEMO [46] is developed based on the open-
source Google libvpx VP9 decoder [4]. As shown in Fig. 2, the SR
decoder first decodes a frame into its LR version by referring to
decoded frames in the LR buffer (@) and can insert it into the LR
buffer for future frames (@), just as a standard decoder. Along with
the LR video, a cache profile is also downloaded, each bit of which
indicates whether a frame is an anchor or non-anchor. If the current
frame is an anchor, the LR version will be fed into the SR DNN
to obtain the SR version (®), which may be inserted into the SR
buffer for future reuse (@). Otherwise, the SR version is obtained via
reusing-based SR (®). The reusing-based SR uses a process similar
to that in Fig. 1 to decode every inter-coded block b;:n rer L0 its SR
version, except that the motion vector is scaled (e.g., by 4 times,
when the LR and SR frames are 240p and 960p, respectively), the

14

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

residual is upscaled by bilinear interpolation to match the resolution
of the SR block (bmt or-5R), and the same reference index is used to
fetch cached frames from the SR buffer rather than the LR buffer.
We can formulate the process as

bl

inter:

SR=1b ref. SR+ mterp(b (2)

where scale is the SR ratio and interp is the bilinear interpolation
operation. We also rewrite Eq. (1) as

bl

mter

.res, scale),

inter* inter:

ref. LR+ b (3)

to distinguish between the LR and SR versions of the same block
in the SR decoder. As for any intra-coded block b’ tntrq 0 the non-
anchor frame, it is upscaled by applying bilinear interpolation on
its decoded LR version, i.e.,

mter lnter

bl

mtra

.LR, scale). (4)

After upscaling every block to their SR versions, the SR version
of the non-anchor frame may be inserted into the SR buffer for
future reuse (@). More details are available in [46]. Based on the
open-source SR decoder in NEMO, we develop a fine-grained SR
decoder, where a larger cache profile indicates the type (i.e., anchor
or non-anchor) of every patch, and, based on their types, patches
are upscaled via either DNN-based or reusing-based SR.

= interp(b’

intra*

3 Limitations of existing solutions

As shown in the equation (2) and (4), reusing-based SR involves
only lightweight operations such as bilinear interpolation of resid-
uals rather than heavy inference of DNNs. Despite its advantage in
computation costs, bilinear interpolation may not reconstruct miss-
ing details in the LR video well, so reusing-based SR may lead to
suboptimal SR qualities when compared to DNN-based SR. To trade
off the SR quality and the computation overhead, existing systems
like NEMO and NeuroScaler carefully select the most beneficial
anchor frames. To limit the scheduling complexity, both NEMO and
NeuroScaler perform independent scheduling for every LR video
segment whose time duration equals the pre-defined scheduling in-
terval. Furthermore, NEMO and NeuroScaler approximate the video
qualities with estimation values to avoid the heavy measurement
of video qualities and accelerate scheduling.

Palantir also bases its scheduling on quality estimations and
performs independent scheduling for every LR video segment. And
the design goals of Palantir are two-fold: (1) selecting the most
beneficial anchor patches to further improve the quality gain with-
out increasing the total size of all anchors; and (2) low-latency
selection to support UHD live streaming. A natural way to de-
sign Palantir is to adapt existing quality estimation techniques in
NEMO and NeuroScaler to the patch-level granularity. However,
as revealed later in this section, existing SR quality estimation
strategies lack a thorough understanding of how DNN-based
and reusing-based SR affect the quality of the resulting SR
video. Alternatively, they both heavily rely on empirical in-
sights that either incur time-consuming operations or are
only valid at the frame-level granularity. Consequently, we
can’t simply extend existing solutions to meet the two design goals.

Observation #1: The insight in NEMO inevitably requires a

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

heavy initial measurement phase and thus violates the sec-
ond design goal.

The core insight in NEMO is that the quality gain of a frame
is mostly determined by the most relevant anchor frame, making
it reasonable to estimate the quality under a given anchor frame
set by combining the actual quality measurements under relevant

anchor frame sets. Specifically, NEMO first measures F Q(i| If |), the

quality of every frame i under every single anchor frame set |f].
Then, NEMO estimates the quality under any anchor frame set AF
as FQ(i‘AF) ~ maxfeAFFQ(i)|f|). Capitalized on the heuristics,
NEMO requires a heavy measurement phase in nature and incurs
a dramatically high latency not suitable for live streaming. The
scheme can be easily extended to the patch-level granularity by
firstly conducting measurements for all single anchor patch sets,
but the latency of initial measurements can be further increased.

Observation #2: The linked list model in NeuroScaler is highly
inaccurate and the type-based prioritization contributes the
most to the success of NeuroScaler. Yet, the type-based pri-
oritization in NeuroScaler is only valid at the frame-level
granularity, while its patch-level counterpart is invalid and
cannot lead us toward the first design goal.

The method in NeuroScaler [48] can support real-time sched-
uling with its simplified modeling of the problem. It models the
super-resolution error propagation process as a linked list, where
each node corresponds to a frame and each pair of temporally
consecutive frames is linked. The SR error of an anchor frame is
assumed to be 0, while the error of a non-anchor frame equals
that of its preceding frame node plus the residual between the two
frames. The quality is estimated as the inverse of the sum of the
errors over all frame nodes. In addition to the linked list model,
NeuroScaler further incorporates the insight that some types of
frames (i.e.,, keyframes and alternative reference frames in the VP9
codec [21]) may have a high degree of reference (i.e., be directly
referred to by many subsequent frames) and thus lead to a large
quality gain when determined as anchors. Therefore, NeuroScaler
proposes to prioritize these types of frames as anchor frames.

To summarize, two core parts of NeuroScaler are linked list-
based modeling and frame type-based prioritization. We quantify
the importance of the two parts by comparing NeuroScaler with two
variants. The first variant only uses frame type-based prioritization,
while the second variant only uses linked list-based modeling. A
detailed description of the two variants is available in Appendix
§ A.1. For a comprehensive comparison, we also use the solution in
Palantir for frame-level scheduling by setting the patch size equal
to the frame size, although we will not go into details about the
solution in Palantir for now. The preliminary experiment is based
on the first benchmark video used in the evaluation part (Sec. 7). As
shown in Fig. 3, the second variant achieves the worst SR quality
(computed as the PSNR between the SR video and the original HR
video). Therefore, the linked list model is highly inaccurate, and
frame type-based prioritization is indispensable to NeuroScaler.

Considering the above result, it seems that adapting NeuroScaler
to fine-grained scheduling requires using the fine-grained counter-
part of type-based prioritization, ie., the types of small encoding

15

Jin and Zhu, et al.

B NeuroScaler
B Variant #1 (frame type alone)
O Variant #2 (linked list alone) Intra-coded ‘
Blocks
Inter-coded I
Blocks
Keyframes / \
& AltRefs
Normal A
Frames ___ _ _
0 25 5.0
Degree of Reference

@ Palantir (frame-level)

w
©

w W
(IR

PSNR (dB)

w
w

0 1 2 3
Number of Anchor Frames

Figure 3: The SR qualities
of NeuroScaler, two vari-
ants of NeuroScaler, and
frame-level Palantir.

Figure 4: The distribution
of degrees of reference for
different coding units.

units such as blocks could implicitly imply their degrees of refer-
ences and consequently their benefits as anchors. We validate such a
counterpart using the 480p version of the first benchmark video. We
separately measure the distribution of degrees of reference among
different types of frames and blocks (including prioritized frame
types, unprioritized normal frames, intra-coded blocks, and inter-

coded blocks). The degree of reference for a given frame (or block) is

. . num_rejerences
quantitatively defined as —————— fer , where num_references
resolution

denotes the number of pixels that refer to the given frame (or block)
for inter coding and resolution denotes the number of pixels in the
given frame (or block). As shown in Fig. 4, the degrees of references
of keyframes and AltRefs are significantly greater than those of
normal frames, while the distribution range of degrees of references
for intra-coded blocks overlaps heavily with that for inter-coded
blocks. We further use the common language effect size (CLES) [33]
to quantify the results. The CLES is defined as the probability that a
value randomly sampled from one distribution will be greater than
that from another distribution. The CLES reaches 97.4% (close to
the best case of 100%) between prioritized frame types and normal
frames but is as low as 58.9% (close to the worst case of 50%) be-
tween different block types. Therefore, type-based prioritization is
only helpful in the limited context of frame-level scheduling but
hardly applies to patch-level scheduling.

4 Palantir Overview

Core methodology. As existing methods heavily rely on empir-
ical insights that either require heavy operations or make sense
in a limited context, we take an entirely new and first-principles
approach. Our approach involves decomposing the SR video quality
into the SR quality of every basic coding block and analyzing how
the SR error propagates and accumulates at every basic coding block.
Our first-principles reasoning suggests a DAG structure to repre-
sent the SR error propagation process. We discuss the approach
later in Sec. 5.

Practical techniques. We also introduce two practical techniques
so that we can construct the DAG by only using the LR video and
improve the scheduling latency. We discuss them in Sec. 6.

Workflow. The workflow of Palantir is shown in Fig. 5. The
streamer only uploads the LR video to the media server when it
detects a limited uplink bandwidth. The server generates an SR error

Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming

Uplink
eco er|
ISR Decod
|
SR Error Cache SR
DAG-
DAG | DAG | .ceq | Profile : Video

Construc Do
| -tion "Q 7
%9

|
|

&
Anchor "=ﬁ=’ (@.@: I
Selection . I 2 I
|

|

Figure 5: Palantir overview.

1
1
P binor |
1,10% %3 i 1.2 1,1 3
Pl binter-ref P,y (iR P111,2
i
b;ntra
2,1 2 21 22
Py | Py Py
Fpq Fr

Figure 6: An example of SR error propagation.

DAG for every LR video segment whose time duration equals the
pre-defined scheduling interval. The SR quality under any possible
anchor patch set can be quickly estimated using the DAG, and
beneficial anchor patches are greedily searched via DAG-based
quality estimation. A cache profile is created, every bit of which
indicates whether a patch in the LR segment is an anchor or not. In
the existence of a powerful cloud server [48], both the LR segment
and its corresponding cache profile are streamed to the server and
then processed by the SR decoder on the server. Or, alternatively,
the SR decoder can be executed in the streaming client.

5 First Principles Modeling

We take a first-principles approach to build Palantir. A first-principles
approach involves breaking down complex problems into their fun-
damental parts and building up the solution from there. In neural-
enhanced streaming, the anchor selection problem can be solved by

estimating the video qualities under different anchor sets. The over-
all SR video quality is the average of the patch qualities, and each

patch quality is fundamentally determined by the average quality

of its most basic components - the blocks. In Sec. 5.1, we will follow

this way of thinking to deduce our SR quality estimation strategy.
In Sec. 5.2, we introduce our DAG model, which derives naturally

from our analysis in Sec. 5.1 and allows us to fulfill lightweight yet

reliable SR quality estimation.

5.1 Analysis of SR Error

We now separately discuss the SR errors (which are inversely related
to the qualities) of non-anchor patches and anchor patches.
e Case #1: non-anchor patches.
Analysis #1.1: every non-anchor patch P may consist of multiple
inter-coded blocks (bmter, mter) and intra-coded blocks
(b} ., b,). For analysis purposes, we split those blocks

intra’ **” “intra
spanning multiple patches into multiple sub-blocks, each within

16

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

a single patch. The SR error of P is:
P.error

=||P.SR - P.HR]|3 (5)

2
- Z ||bmter SR - b;nter HR“Z + Z ”bmtra SR - bintra HRHZ

n2
_ i i
= E b rer-error + E b pirq-€rrOr.
i=1 i=1

Example #1.1: as shown in Fig. 6, P,ll’l,error equals the sum of

il
binter error, bi2

within P}!

intra-€770r, and the errors of many other blocks

(not marked due to the limited space).

Conclusion #1.1: the SR error of a non-anchor patch is the
sum of the SR errors of all inter-coded and intra-coded
blocks within the patch.

Analysis #1.2: According to the equation (2), we can further

write the SR error of an inter-coded block bm rer @S
b:,ser-€TTOr (6)
_Hblnter SR~ binter HR“%
_||b1nter ref.SR + mterp(bmter res,scale) = b}, ... HR||§
zbimer ref.error + bmter res.complexity.
where
b;nter ref.error = ||bmter ref.SR — bmter ref.HR||§ (7)
and
bfnter.res.complexity 3)
—||1nterp(mterp(bmter HR - b;nter ref.HR, scale™1), scale)
(bmter HR - b;nter ref'HR)”Z'

A more detailed derivation of the equation (6)-(8) is in Appendix
§ A.2. Here, bmter res.complexity relates to the texture com-
plexity of the HR residual (i.e., bmter HR- bmter ref.HR), since
an HR residual with more complex texture details will experience
a more significant deviation after the process of downscaling

and re-upsampling, i.e., interp(interp(-, scale™!), scale).
Similarly, according to the equation (4), we have

b;:ntm error = b .complexity, 9)

intra:

where
bi

intra

(10)
HR||3

.complexity

—||mterp(znterp(b .HR, scale™1), scale) — b’

intra* intra*

.HR.

relates to the texture complexity of the HR content bl ntra

Example #1.2: for bi!
equals bi

inter in the frame Fy, (see Fig. 6), its SR error

res. complexity+bil ref.error, where bmter ref

inter’

is its reference block in F,,_1, a reference frame of Fy; for bfmm,
its SR error equals bmtra complexity.

Conclusion #1.2: the SR error of an inter-coded block de-
pends on both the texture complexity of its HR residual

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

and the SR error of its reference block; while the SR error
of an intra-coded block depends on the texture complexity
of its HR content.

Analysis #1.3: combining the equation (5), (6), and (9), we have

P.error ~ P.TC + P.AE, (11)
where
nl .
P.TC= Z bl er-res.complexity (12)
i=1
n2)
+ Z b, ;ra-complexity
i=1

indicates the texture complexity of the HR content or the HR
residual, and

nl

P.AE = Z bfnter.ref.error
i=1

(13)

is the accumulated error from depending blocks.

To reformulate (13) and simplify the modeling of patch-level SR
error propagation, we make the following assumption (further
discussed in Appendix § A.9):

Assumption #1.3: the per-pixel SR error within a patch is
uniform - every pixel in the same patch shares exactly the
same amount of error. Or, formally speaking, we assume
that

error = ||p.SR — p.HR||? = _Peerror (14)
P = lip- P 27 patch_size
holds for every pixel p in some patch P.
Denoting the set of reference patches of P as P!, .., P™ and

according to the Assumption #1.3, we can reformulate the
equation (13) as

nl

P.AE = Z bfnter.ref,error
i=1

= i Z p.error

i=1 peb! ref

inter-

(15)

n3))
= Z w'. Plerror,
i=1
where the weight coefficient W' indicates the ratio of the number
of referenced pixels in P! to the patch size.

Example #1.3: for convenience, we assume that bl is the

inter
only inter-coded block in P,ll’1 (see Fig. 6). The weight between
pL!and Prll’il equals 0.105, as the size of the intersecting region
i1 1,1
between b}, .,..ref and P ",

the weight between P,ll’1 and Prlfl equals 0.323. According to

is 0.105 of the patch size; similarly,

the equation (11) and (15), P,ll’l.error can be approximated as
P,ll’l.TC +0.105 - P}l’ll.error +0.323 - P}l’fl.error.

From the equation (11), (12), and (15) we can make the final con-
clusion:

17

Jin and Zhu, et al.

Conclusion #1.3: under the Assumption #1.3, the SR error
of a non-anchor patch equals the weighted sum of the SR
errors of its depending patches plus the texture complexi-
ties of its inter-coded HR residuals and its intra-coded HR
contents.

o Case #2: anchor patches. In many neural-enhanced live stream-
ing systems [30, 48], it is common to train or fine-tune the
SR DNNs based on the current video content. Furthermore, it
has been demonstrated to be feasible to share the same model
across similar videos to reduce the overhead of training or fine-
tuning [32]. Therefore, we make the following assumption (fur-
ther discussed in Appendix § A.9):

Assumption #2: the SR errors of anchor patches are 0.

5.2 DAG Modeling

A patch P may depend on another patch P’ for inter-coding only if
the frame containing P’ is a reference frame of that containing P.
Since the frame-level reference relationship is directed and acyclic,
the patch-level dependency is also directed and acyclic. Therefore,
we propose to use a directed acyclic graph (DAG) to represent the
dependency, where every node corresponds to a patch and every
edge indicates an inter-coding dependency.

A static weight attribute is associated with every edge to reflect
the inter-node coding dependency level (i.e., the ratio of pixels in the
destination patch node that refer to the source patch node for cod-
ing), corresponding to W in the equation (15). Three attributes are
associated with each node P: the static P.TC attribute, representing
the texture complexity defined in the equation (12); the P.is_anchor
attribute, indicating whether the patch node is an anchor or non-
anchor under a given anchor patch set; and the P.error attribute,
representing the SR error. When P.is_anchor equals 1, P.error equals
0 (according to the Assumption #2); otherwise, P.error equals the
weighted sum of the error attributes of the predecessor nodes plus
P.TC (according to the Conclusion #1.3).

Formulation of the first design goal. Asintroducedin Sec. 4, the
first design goal is to pinpoint the anchor patches that can result in
a high-quality SR video. With our DAG-based modeling, the quality
can be estimated as a proxy variable — }}p P.error. Furthermore,
the inference overhead is affected by the number of anchor patches
(i.e., 2.p P.is_anchor). The first goal can then be reformulated as
determining the optimal value of P.is_anchor for each node P in
order to maximize — },p P.error, while ensuring that the value of
2.p P.is_anchor does not surpass some limit.

Comparison with the linked list model in NeuroScaler. We
demonstrate before in Sec. 3 that our DAG model outperforms the
linked list model even in the case of frame-level scheduling (by
setting the DAG node size equal to the frame size). Here we give
a brief discussion on the architectural improvements of the DAG
model over the linked list model from two perspectives, and a more
detailed discussion can be found in Appendix §A.3. First, the DAG
model enables more accurate dependency representation. Although
both the two models use edges to represent paths along which
SR error propagates, our DAG model creates edges only where

Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming

- — ,—,—,—,—————

' - - bire O[O |,
T) T o B = Rl
I/! ® P.TC||

i ! : 7 bi . .res!

bt i i inter > 1
(Coded) : | Binter eH binger-Tes |_’ complexity :

: Decoder!

_________________________________ a

Figure 7: Determining the value of the static TC attribute.

actual coding dependencies exist, unlike the linked list model’s
fixed sequential connections. This is crucial for capturing the actual
dependency in modern video codecs, including scenarios such as
hierarchical B-picture coding structure [39, 40] and multi-reference
video encoding [22]. Second, the DAG model adopts a dynamic
weight attribute based on actual pixel reference ratios, whereas
the linked list model assumes a fixed weight of 1. The adaptive
attribute allows the DAG model to accurately model cases such
as scene changes dominated by intra-frame coding, and multiple
reference scenarios where dependency is distributed across frames.

Discussion of generalizability. We also discuss the generaliz-
ability of the DAG model in Appendix §A.4.

6 Practical Techniques

6.1 DAG Construction

At first glance of the equation (8) and (10), we need data from
the HR video to compute the block-level texture complexities and
then aggregate the block-level results to obtain the static P.TC at-
tribute according to (12). However, we find that using data from
the HR video faces several challenges: (1) Commodity cameras can
capture the HR data in the place, but they are typically not pro-
grammable [49] and thus not suitable for processing the task of DAG
construction. Furthermore, video encoding and transmission alone
are already computation-intensive and can cause severe problems
such as device overheating [29]. Further running the scheduling
task at the sender device can even make such problems more severe.
(2) We choose to deploy the scheduling algorithm on the media
server considering the above challenges of sender-side deployment.
However, the media server only has access to the LR video due to
the limited uplink bandwidth.

To enable scheduling on the media server, we propose to approx-
imate the complexity of an inter-coded residual via

i
binter'

=|linterp(b

(16)
ref HR)|[

res.complexity
i i
inter HR ~ binter

.res, scale) — (b::nter

zC||interp(interp(bl: res,0.5),2) — b’ res||%

inter- inter-

and approximate the complexity of an intra-coded block via

b .complexity
=||interp(b’:

intra-LR, scale) — b .HR||§
~Cl|interp(interp(b: . LR 0.5),2) — b’

intra intra

17)

i
intra

i

intra
LRI
. 2

with C being a constant coefficient. We base our approximation
on the following observation: if some content (i.e., b , .HR) or

N i intra
some residual (i.e, b , .HR—b; .ref.HR) is of high texture

complexity, its downsampled version (i.e, b’ . LR or b

intra mter'res)

18

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

’ :" Patch in F, — Edge

N TSN TR TR TR TR TR T

O Patch in Fy

STV TR TG TR TR T [

Figure 8: The part of a DAG, with 15 patches in each frame
and Fj being a reference frame of F;.

also tends to have high texture complexity. In other words, the tex-
ture complexity of a content or a residual is linearly related to that
of its downsampled version. We validate the observation through
a preliminary experiment and find that the Pearson correlation
coeflicient between the approximated texture complexity and the
actual texture complexity is as high as 0.96.

With the above approximations, we can determine the P.TC at-
tribute by only resorting to data in the LR video. We slightly modify
the decoder to fulfill the computation process. The workflow is
shown in Fig. 7. While decoding a coded block b* (@), it computes ei-
ther the complexity of its content or its residual, based on its coding
type, and then adds the value to P.TC (@), where P is the patch con-
taining the block. In the case of intra}-coding (@), bi:ntr o-complexity
(®) is computed from the decoded b}, . .LR, following the equation
(17). In the case of inter-coding (@), b;nter
.res, following the equation (16).

.res.complexity (®) is
computed from the parsed b;n ter

6.2 Parallel Selection

We employ a greedy searching algorithm to iteratively select the
new anchor patch based on the estimated quality. We refer to the
sequential implementation of this method as the vanilla Palantir.
Specifically, the estimation processes for different anchor patch
sets are executed sequentially, and the error attributes for different
patch nodes under a given anchor patch set are also computed
sequentially. As demonstrated later in our ablation experiment
(see Sec. 7.4), the vanilla Palantir fails our second design goal of
low-latency anchor selection. To address the issue, we propose a
novel strategy to enable parallel and low-latency anchor selection
in Palantir. The parallelization does not alter the selection results, so
its benefits in latency do not come at the cost of compromising the
energy efficiency of on-device neural enhancement or the monetary
cost of cloud-based neural enhancement.

For clarity, we use an example to introduce our parallelism mech-
anism. As shown in Fig. 8, edges always start from some patch in
Fy and point to some patch in F;. There exist neither edges along
the opposite direction nor edges connecting patches within the
same frame. We will utilize this phenomenon to optimize Palantir
via both intra-set and inter-set parallelism. Note that the observed
phenomenon is not accidental: edges indicate inter-frame coding
references, and the coding reference relationship among frames
is directed and acyclic in all mainstream codecs. Therefore, our
optimization should be widely applicable.

Intra-set parallelism. Based on the above phenomenon, we can
follow the frame decoding order to enumerate the DAG for quality
estimation, i.e., firstly compute the error attributes for the nodes in

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

Fy and then deal with the nodes in F;. The TC attributes of nodes
in Fy (or F;) can be denoted as a vector TCy (or TCy). Similarly,
we use the notation Error; for the error attributes and Is_anchor;
for the is_anchor attributes (i = 0, 1). The weight attributes of the
edges can be denoted by a sparse Weight matrix. Note that the
Weight matrix is sparse since each patch in F; only refers to a
limited set of patches in Fy due to the limited range of motion
vectors. For simplicity of discussion we assume that Fj is the only
reference frame of Fy, and the computation process of Error; can be
formalized as Errory = (TC1+Weight - Errorg) oIs_anchory, where
o indicates the element-wise multiplication and Weight - Errorg is a
parallelizable sparse matrix-vector multiplication (SpMV) operation.
Since Is_anchor; is a binary vector, we implement the element-
wise multiplication by using Is_anchor; as a mask to parallelly
set the corresponding entries in TCy + Weight - Errory to zero. As
SpMV is a common operation in many applications and has already
attracted many optimization efforts [18, 31, 45], parallelized SpMV
can be achieved by using a mainstream matrix-related computation
package such as PyTorch.

Inter-set parallelism. Batching is widely used to improve DNN
inference throughput [6] due to the effect of the data dimension on
parallelism opportunities [5, 35]. Therefore, we execute the quality
estimation under several searched anchor sets in parallel by adding
a batch dimension to both Error; and Is_anchor;. The same Weight
matrix and TC; vectors are shared among different samples in the
batch. With the inter-set parallelism, the SpMV operations are
converted into the sparse matrix-matrix (SpMM) operations, which
are also well studied and supported for parallel implementation.

7 Evaluation
We evaluate Palantir by answering three questions:

o Does Palantir achieve the first design goal of selecting a beneficial
anchor patch set?

e Does Palantir achieve the second design goal of incurring a
negligible latency overhead for UHD live streaming?

e How does each component of Palantir contribute to its overall
performance?

7.1 Experimental Setup

Implementation. We develop our decoder based on the open-
source SR codec in NEMO [46]. We incorporate two novel modes
into the decoder. The first is to obtain the data required for graph
construction (as introduced in Sec. 6.1). The second is to take both
an LR video and a corresponding cache profile as input, and then
upscale patches by DNN-based or reusing-based SR. About 1500
lines of code are added to the open-source codec to support the two
modes, accounting for less than 0.5% of the total lines of code in the
entire codec. The source code is available at https://palantir-
sr.github.io.

Video. We download six popular 4k@30fps videos from YouTube.
To demonstrate the universality of Palantir, the videos contain six
distinct categories, including makeup review, computer gaming,
skit, shopping, car review,and unboxing. We use FFmpeg (v3.4) [3]
to transcode the HR video into the 480p (854 x 480) LR version in
real time. We follow encoding guidelines to set the bitrate to 1800

19

Jin and Zhu, et al.

kbps, the encoding speed to 5 [2], and the group of pictures (GoP)
to 60 frames (i.e., 2 seconds) [43]. We use the -auto-alt-ref op-
tion in FFmpeg to enable the alternative reference frame feature
required by the anchor selection algorithm in NeuroScaler. Unless
noted otherwise, we use the first five minutes of each video.

SR DNN. We adopt the DNN model of NAS [47]. We empirically
set the number of residual blocks to 8 and the number of filters to
48. The DNN upscales the resolution of the LR video by 4 times.
As the feasibility of online training for live streaming has been
demonstrated [30], we train the DNN model for each benchmark
video. When comparing the performance of different methods on
the same video, the same DNN model is used for fairness.

Anchor patch size. We use a patch size of 170 x 160 to trade off
anchor effectiveness and scheduling latency. Consequently, each
LR frame consists of 15 patches.

Baselines. We use four baselines in this part. The first is the
Per-frame baseline, which applies DNN-based SR on all the frames.
The second is the NeuroScaler baseline, which uses the algorithm
in NeuroScaler [48] to select the anchor frame set. The third is
the NEMO [46] baseline. The fourth is the Key+Uniform baseline,
which selects all the patches in the keyframe and equally spaced
patches in the remaining frames as anchor patches.

Scheduling interval. Unless otherwise noted, we use a schedul-
ing interval equal to the GoP (i.e., 2 seconds).

Parallelism. The parallelized Palantir and the vanilla Palantir are
two different implementations of the same selection method and
lead to the same anchor patch set, so the results in Sec. 7.2 apply to
both implementations. The latency results in Sec. 7.3 are obtained
using the parallelized Palantir. Finally, the two implementations
are compared in Sec. 7.4.

Hardware. We use a server with a 16-core AMD Ryzen proces-
sor and an NVIDIA A10 GPU as our media server, where graph
construction and anchor selection are performed. The scheduling
latency is measured on the server. Considering the deployment cost
constraint in real-world applications, we only use CPU for Palantir,
the NeuroScaler baseline, and the Key+Uniform baseline. However,
to speed up our experiment, we further use the NVIDIA A10 GPU
for the NEMO baseline, as the NEMO baseline requires numerous
times of SR DNN inferences for anchor frame selection. We also
use a Xiaomi 12S smartphone, which was announced in July 2022
and equipped with the Qualcomm Snapdragon 8+ Gen 1 Mobile
Platform, to measure the energy efficiency when running SR DNN
inference on mobile receiver devices.

7.2 Anchor Effectiveness

Quality Gain. We compute the peak-signal-to-noise-ration (PSNR)
between the SR video and the original HR video to quantify the
effectiveness of an anchor set. To make a fair comparison, we keep
the total sizes of the anchor regions the same, i.e., compare the
quality gain under the m-element anchor frame set selected by
some frame-level baseline with that under the (15 - m)-element
anchor patch set selected by Palantir or the Key+Uniform baseline.
The only exception here is the Per-frame baseline, where all the
frames are always treated as anchors and the size of the anchor

https://palantir-sr.github.io
https://palantir-sr.github.io

Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming

Table 1: A comparison of anchor effectiveness.

Video Per-frame DNN-based SR + Reusing-based SR (dB)
(dB) NeuroScaler NEMO Key+Uniform Palantir
1 105 (22,41,51) (2.8,4.4,54) (2.1,2.8,32) (3.8,54,6.4)
2 57 (05,20,2.6) (17,24 30) (05, 1.4,20) (19,2.8,3.3)
3 6.5 (1.1,23,31) (2.3,3.2,3.7) (11,16, 1.9) (2.1,3.0,35)
4 11.6 (44, 64,7.4) (47,66,76) (44,51,56) (5.4,7.1, 8.0)
5 6.6 (38,48,52) (4.2,50,53) (38,43, 45) (4.2,5.1,5.5)
6 3.9 (30,44,51) (35,47,53) (3.0,3.3,36) (4.0,5.3,5.9)
Average 33 (25,40,47) (3.2.44,51) (25,3.1,35) (3.6,4.8,5.4)

Annotations: For any triple located in the last three columns, it is composed of the
quality gain under m = 1, that under m = 2, and that under m = 3.

Table 2: A comparison of energy overhead.

Video NeuroScaler (mAh) Palantir (mAh)
1 (27.63, 41.33, 63.40) (21.21, 30.73, 41.72)
2 (28.94, 42,27, 56,21) (18.06, 26.17, 40.82)
3 (26.92, 4148, 63.94) (21.07, 34.90, 47.91)
1 (2875, 41.71, 63.40) (26.08, 37.77, 47.05)
5 (26.98, 41.18, 62.79) (26.37, 35.88, 45.47)
6 (27.15, 40.64, 63.05) (23.98, 32.10, 40.85)

Annotations: For any triple located in the second column, it is composed of the
energy overhead under |AF| = 1, that under |AF| = 2, and that under |AF| = 3. As
for any triple located in the last column, each of its elements is the result under some

AP corresponding to the AF.

regions is thus always larger than other methods. Furthermore, we
empirically limit m to not be greater than 3 since: (1) m = 3 can
deliver quality gains that are comparable to the setting of applying
DNN-based SR on all frames; (2) further increasing the value of m
leads to a significant overhead.

The results are shown in Table. 1, from which we have sev-
eral observations: (1) Palantir outperforms all the baselines with
its ability to identify beneficial patches. (2) When compared with
the NeuroScaler baseline, the state-of-the-art real-time scheduling
method, Palantir boosts the quality gain of neural enhancement by
3.7 times at most and 1.4 times on average. (3) Compared to the
non-realtime NEMO baseline, which requires significant time for
initial measurements and does not support live streaming, Palantir
still achieves a quality enhancement of up to 1.4 times in optimal
conditions and 1.1 times on average. However, Palantir exhibits
slightly inferior performance to NEMO in the worst-case scenario,
specifically on the third benchmark video. A comprehensive analy-
sis of this performance decline is provided in Appendix § A.5. (4)
The fine-grained scheduling-based Key+Uniform baseline even falls
behind the coarse-grained scheduling-based NeuroScaler baseline,
so the effect of fine-grained scheduling heavily depends on the an-
chor selection method. (5) Palantir reduces the SR DNN inference
overhead by 20 times with m = 3 (or 60 times with m = 1) while
compared to the Per-frame baseline. With such a remarkable over-
head reduction, Palantir still preserves 54.0-82.6% (or 32.8-64.0%) of
the quality gain of the Per-frame baseline.

Energy Efficiency. We now examine how the anchor efficiency of
Palantir transfers to energy efficiency when running the SR decoder
on mobile devices. The detailed energy consumption measurement
method is presented in Appendix § A.6.

20

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

@ |AF|=1 8 |AF|=2 O |AF|=3
__100
25 8
S T 60 7
281 . Zﬂ Z_ﬂ l
0 L 7.
1 2 3 4 5 6

Video
Figure 9: The ratio of the monetary cost of Palantir to that

of the NeuroScaler baseline.

Chunk (n frames)
——
Contribution - -

0

DAG Construction

Per-frame
Latency (ms)
=

Anchor Selection | 5
L Lo} Lo | 0 |
111 21 31 41 51 60
to ty t, t; Time Frame Index

Figure 11: Per-frame latency
of decoding for DAG con-
struction during a GoP.

Figure 10: The timeline of
Palantir. The numbers within
the blocks represent the frame
indices.

For each anchor frame set AF selected by the NeuroScaler base-
line, we find the minimal anchor patch set AP which is selected by
Palantir and achieves an equivalent or higher PSNR than AF. We
compare the energy overhead under AF with that under AP. As
shown in Table. 2, Palantir reduces the energy overhead over all
cases. The reduction ratio is 38.1% at most and 22.4% on average.

Monetary cost reduction. We now present how Palantir reduces
the monetary cost when running the SR decoder on cloud servers.
We use the same method as measuring energy efficiency to find the
corresponding AF for every AP. The monetary cost is estimated
to be linear to the DNN computation complexity under the cache
profile (AF or AP), and the keras-flops package [42] is used to mea-
sure the computation complexity. The ratio of the monetary cost
incurred by Palantir to that incurred by the NeuroScaler baseline is
presented in Fig. 9. Compared to NeuroScaler, Palantir reduces the
monetary cost by 80.1% at most and 38.4% on average.

7.3 Scheduling Latency

End-to-end (E2E) latency is an important metric in live streaming [1,
7,19, 41]. To ensure that the live streaming latency can be lower
than the GoP, modern streaming standards such as CMAF [26]
allow a chunk (which can be part of a GoP) to be immediately
packaged (i.e., chunked packaging [9]) and delivered (i.e., chunked
delivery [9]) when ready. Here we denote the chunk length as n
frames and assume the scheduling interval of Palantir to be equal to
n for simplicity. As shown in Fig. 10, the streamer contributes new
video frames at a constant rate. Every new chunk of n frames is
contributed per time duration of L = m In a traditional
streaming pipeline without neural enhancement, the new chunk
can be immediately packaged and delivered at t;. However, two
additional latency sources are presented in Palantir, i.e., the DAG
construction latency Ly and the DAG-based anchor selection L3. We
evaluate whether Ly + L3 is small enough to well support latency-
sensitive UHD live streaming applications.

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

We first examine the value of Ly. Note that we can directly feed a
newly contributed frame to the decoder (working in the first mode
introduced in Sec. 7.1) for DAG construction, so Ly should be equal
to the processing latency of the last frame in the scheduling interval
if the decoder runs above 30fps. As shown in Fig. 11, the measured
per-frame decoding latency for DAG construction is indeed always
below 33 ms, so we estimate Ly to be the average of the measured
per-frame decoding latencies in Fig. 11, i.e., 7.2ms.

The DAG-based anchor selection latency L3 depends on the
scheduling interval and the ratio of anchor patches. For ULL UHD
live streaming applications [41] requiring an E2E latency below
200ms, we set the scheduling interval to be 66.67ms (i.e., 2 frames
in the 30-fps evaluation videos). As for LL live streaming appli-
cations [1, 7, 19] whose E2E latency requirements range from 2
seconds to 10 seconds, we consider five different settings (with the
latency requirement being 2s, 4s, 6s, 8s, and 10s, respectively) and
set the scheduling interval to be one-fifth of the latency require-
ment under each setting. As illustrated in Sec. 7.2, using only an
anchor ratio of 5% can lead to large quality gains, so we set the ratio
to be 5% for latency measurement. Under the above settings, the
relationship between the overall scheduling latency Ly + L3 (with
Ly fixed to 7.2ms) and the E2E latency requirement is measured
and plotted in Table. 3. We have two observations from the results:
(1) Although the scheduling latency of Palantir is a little higher
than that of NeuroScaler, it only accounts for a negligible portion
(i.e., 0.6-3.9%) of the E2E latency requirement. (2) As for the NEMO
baseline, its scheduling latency is 88.2-225.6 times higher than that
of Palantir and fails to support live streaming. A detailed discussion
of NEMO’s high latency is available in Appendix §A.7.

As a final note, the scheduling latency of Palantir can be even
further optimized if necessary. We demonstrate in Appendix §A.8
that a simple modification can further reduce the latency by 3.1
times while incurring a quality degradation of no more than 0.1dB.

7.4 Ablation Study

SR error DAG. The key to selecting a beneficial anchor patch
set is our DAG-based modeling. We use a theoretical analysis to
determine the values of the static weight attributes of the edges
and the static TC attributes of patch nodes (see Sec. 5 and 6.1). To
quantify the importance of setting appropriate values, we evaluate
with the makeup review video and compare Palantir with two vari-
ants. In the first variant (Palantir w/o weight), the only predecessor
node of the patch node P;;’ (located at the i-th row and j-th column
of the patch grid of the n-th frame) is P:lj_ ; and the weight of the
edge connecting them equals 1. However, the TC attributes in the
first variant are kept the same as in Palantir. Note that the first
variant resembles the NeuroSclaer baseline when the patch size
equals the frame resolution. In the second variant (Palantir w/o TC),
the weight attributes are kept the same as in Palantir, but the TC
attributes of all nodes are set to 1. As shown in Fig. 12(a), Palantir
consistently outperforms the two variants.

Parallel Searching. We have introduced intra-set and inter-set
parallelism (see Sec. 6.2) to speed up the quality estimation process
in our greedy searching algorithm. We measure the DAG-based
anchor selection latency (i.e., L3) under three different settings: (1)
the vanilla Palantir- nodes in the original DAG are processed serially

21

Jin and Zhu, et al.

Table 3: The relationship between the overall scheduling
latency and the E2E latency requirement.

Setting E2E Latency Scheduling Latency (ms)
Requirement (ms) NeuroScaler Palantir NEMO
ULL 200 0.5 7.7 678.9

LL: Setting 1 2000 1.4 12.6 2842.2
LL: Setting 2 4000 2.0 27.0 5975.5
LL: Setting 3 6000 2.6 56.9 10509.3
LL: Setting 4 8000 5.0 92.4 16656.3
LL: Setting 5 10000 6.5 140.6 23126.7

Annotations: The presented result is the average latency over all the videos as the
latencies for different videos are fairly close.

Optimized

————— Palantir
Palantir w/o weight

—e—Partially Optimized

_ Palantir w/o TC Vanilla
3 6 o 3100 2226y 43.736 63,578
N = R PPN
‘E P S 1| spa 7% Bt
= 2 /) o
[/ 01 0.133
g0 001 Looss 0089
0 9 18 27 36 45 15 30 a5
Number of Anchors per #Anchor Patches
Chunk Per Scheduling Interval
(a) Analysis on the DAG’s at- (b) Analysis on the paral-
tributes. lelism mechanisms.

Figure 12: Ablation study.

for estimation; (2) the partially optimized Palantir setting - only the
intra-set parallelism is enabled; (3) the optimized Palantir- both the
two parallelism mechanisms are enabled. The measured DAG-based
selection latencies (i.e., L3) are shown in Fig. 12(b), showing that
the optimized Palantir speeds up selection by 493 times at most.

8 Conclusion

In this work, we propose Palantir, the first neural-enhanced UHD
live streaming system with fine-grained scheduling. Palantir seeks
to improve efficiency via reasonable scheduling while minimizing
the scheduling latency. Based on our first-principles reasoning,
Palantir adopts DAG-based quality estimation to select a beneficial
anchor patch set with low computation cost. Palantir further inte-
grates two practical challenges to improve its feasibility and latency.
The evaluation results demonstrate the superiority of Palantir.

Acknowledgments

This work is supported in part by the National Key Research and
Development Program of China under grant No. 2024YFC2607400,
the National Natural Science Foundation of China under grant
No. 62302259, 62432008, 62472248, 62371269, and the Guangdong
Innovative and Entrepreneurial Research Team Program under
grant No. 2021ZT09L197.

Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming

References

[10

[11

[12

[13

[14

[15

[16

(18

[19

[20

[21

[22

]

]

]

2022. GB/T 28181-2022 PDF English. https://www.chinesestandard.net/PDF.
aspx/GBT28181-2022, last accessed on Feb. 18, 2025.

2023. Live encoding with VP9 using FFmpeg. https://developers.google.com/
media/vp9/live-encoding, last accessed on Mar. 15, 2024.

2024. FFmpeg. https://ffmpeg.org/, last accessed on Mar. 15, 2024.

2024. webm/libvpx - Git at Google. https://chromium.googlesource.com/webm/
libvpx, last accessed on Mar. 15, 2024.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation. USENIX Association, Savannah, GA, 265-283.
Ahsan Alj, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: machine
learning inference serving on serverless platforms with adaptive batching. In
Proceedings of the 2020 International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, Article 69, 15 pages.

Amazon Web Services, Inc. 2025. Video Latency in Live Streaming. https:
//aws.amazon.com/media/tech/video-latency-in-live-streaming, last accessed on
Feb. 18, 2025.

Duin Baek, Mallesham Dasari, Samir R. Das, and Jihoon Ryoo. 2021. DcSR:
Practical Video Quality Enhancement Using Data-Centric Super Resolution. In
Proceedings of the 17th International Conference on Emerging Networking EXperi-
ments and Technologies. Association for Computing Machinery, New York, NY,
USA, 336-343.

Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen, Sarra Hammoudi,
and Roger Zimmermann. 2023. Toward One-Second Latency: Evolution of Live
Media Streaming. (2023). arXiv preprint arXiv:2310.03256.

Xuecheng Chen, Haoyang Wang, Yuhan Cheng, Haohao Fu, Yuxuan Liu, Fan
Dang, Yunhao Liu, Jingiang Cui, and Xinlei Chen. 2024. DDL: Empowering
Delivery Drones With Large-Scale Urban Sensing Capability. IEEE Journal of
Selected Topics in Signal Processing 18, 3 (2024), 502-515.

Xuecheng Chen, Haoyang Wang, Zuxin Li, Wenbo Ding, Fan Dang, Chengye Wu,
and Xinlei Chen. 2023. DeliverSense: Efficient Delivery Drone Scheduling for
Crowdsensing with Deep Reinforcement Learning. In Adjunct Proceedings of the
2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and the 2022 ACM International Symposium on Wearable Computers. Association
for Computing Machinery, New York, NY, USA, 403-408.

Xuecheng Chen, Zijian Xiao, Yuhan Cheng, Chen-Chun Hsia, Haoyang Wang,
Jingao Xu, Susu Xu, Fan Dang, Xiao-Ping Zhang, Yunhao Liu, and Xinlei Chen.
2024. SOScheduler: Toward Proactive and Adaptive Wildfire Suppression via
Multi-UAV Collaborative Scheduling. IEEE Internet of Things Journal 11, 14 (2024),
24858-24871.

Yuhan Cheng, Jirong Zha, Renjue Yang, Zhi Sun, Susu Xu, and Xinlei Chen. 2024.
Multi-Agent Target Pursuit Using Perception Uncertainty-Aware Reinforcement
Learning. In Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking. Association for Computing Machinery, New York,
NY, USA, 1992-1997.

Coastal Safety Group. 2021. Beach Cameras and Image Analytics——Coastal
Safety Group. https://coastalsafetygroup.com.au/news/beach-cameras-and-
image-analytics, last accessed on Jun. 26, 2024.

CommsEase. 2022. Al Super-Resolution. https://doc.commsease.com/en/nertc/
guide/zYzMjcONTA?platform=android, last accessed on Jun. 26, 2024.
Flyability. 2024. Ultimate Guide to Wind Turbine Inspection Techniques. https:
//www.flyability.com/blog/wind- turbine-inspection, last accessed on Jun. 26,
2024.

Global Market Insights Inc. 2024. 4K Technology Market, Share & Analysis Report,
2024-2032. https://www.gminsights.com/industry-analysis/4k-technology-
market, last accessed on Jun. 26, 2024.

Constantino Goémez, Filippo Mantovani, Erich Focht, and Marc Casas. 2021.
Efficiently running SpMV on long vector architectures. In Proceedings of the 26th
ACM Symposium on Principles and Practice of Parallel Programming. Association
for Computing Machinery, New York, NY, USA, 292-303.

Google. 2025. Live streaming latency - YouTube Help. https://support.google.
com/youtube/answer/7444635%hl=en, last accessed on Feb. 18, 2025.

Google. 2025. YouTube recommended upload encoding settings. https://support.
google.com/youtube/answer/1722171?hl=en, last accessed on Jun. 18, 2025.
Adrian Grange, Peter de Rivaz, and Jonathan Hunt. 2016. VP9 Bitstream
& Decoding Process Specification v0.6. https://storage.googleapis.com/
downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-
20160331-draft.pdf, last accessed on Mar. 15, 2024.

Yu-Wen Huang, Bing-Yu Hsieh, Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee
Chen. 2006. Analysis and complexity reduction of multiple reference frames
motion estimation in H.264/AVC. IEEE Transactions on Circuits and Systems for
Video Technology 16, 4 (2006), 507-522.

22

[23

[24

[25

Iy
&

[27

[28

[29

[31

[32

(33]

&
=

[35

[36

(37

&
&,

[39

[40

[41

[43

[44

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

Indrajit Ghosh. 2024. List of the Best AV1 Hardware Support in 2024 — Encode &
Decode. https://www.faceofit.com/av1-hardware- support-in-2024/, last accessed
on Feb. 18, 2025.

International Olympic Committee. 2022. Beijing 2022 set to be the most immersive
Olympic Winter Games yet. https://olympics.com/ioc/news/beijing-2022-set-
to-be-the-most-immersive-olympic-winter- games-yet, last accessed on Jun. 26,
2024.

International Olympic Committee. 2024. Intel unveils AI-Platform Innovation for
Paris 2024. https://olympics.com/ioc/news/intel-unveils-ai-platform-innovation-
for-paris-2024, last accessed on Jun. 26, 2024.

ISOIEC JTC 1SC 29. 2024. ISOIEC 23000-19:2024 — Multimedia application format
(MPEG-A) — Part 19: Common media application format (CMAF) for segmented
media. https://www.iso.org/standard/85623.html, last accessed on Feb. 18, 2025.
JDT Developer. 2022. The practice and application of video super-resolution
technology. https://developer.jdcloud.com/en/article/2267, last accessed on Jun.
26, 2024.

Zhuozhu Jian, Qixuan Li, Shengtao Zheng, Xuegian Wang, and Xinlei Chen.
2024. LVCP: LiDAR-Vision Tightly Coupled Collaborative Real-time Relative
Positioning. arXiv:2407.10782 [cs.RO] https://arxiv.org/abs/2407.10782
Soowon Kang, Hyeonwoo Choi, Sooyoung Park, Chunjong Park, Jemin Lee,
Uichin Lee, and Sung-Ju Lee. 2019. Fire in Your Hands: Understanding Ther-
mal Behavior of Smartphones. In Proceedings of the 25th Annual International
Conference on Mobile Computing and Networking. Association for Computing
Machinery, New York, NY, USA, Article 13, 16 pages.

Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han.
2020. Neural-Enhanced Live Streaming: Improving Live Video Ingest via Online
Learning. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication. Association for Computing Machinery,
New York, NY, USA, 107-125.

Kenli Li, Wangdong Yang, and Keqin Li. 2015. Performance Analysis and Opti-
mization for Sp)MV on GPU Using Probabilistic Modeling. IEEE Transactions on
Parallel and Distributed Systems 26, 1 (2015), 196-205.

Jinyeong Lim, Juncheol Ye, Jachong Kim, Hwijoon Lim, Hyunho Yeo, and Dongsu
Han. 2023. Neural Cloud Storage: Innovative Cloud Storage Solution for Cold
Video. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File
Systems. Association for Computing Machinery, New York, NY, USA, 1-7.

K. O. McGraw and S. P. Wong. 1992. A common language effect size statistic.
Psychological Bulletin 111, 2 (1992), 361-365.

Microsoft Edge Team. 2023. Video super resolution in Microsoft
Edge. https://blogs.windows.com/msedgedev/2023/03/08/video-super-
resolution-in-microsoft-edge/, last accessed on Jun. 26, 2024.

Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017. On-the-fly Operation
Batching in Dynamic Computation Graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Vol. 30. Curran Associates,
Inc.

Ookla, LLC. 2024. Speedtest Global Index - Internet Speed around the world.
https://www.speedtest.net/global-index, last accessed on Jun. 26, 2024.

Jiyuan Ren, Yanggang Xu, Zuxin Li, Chaopeng Hong, Xiao-Ping Zhang, and Xinlei
Chen. 2023. Scheduling UAV Swarm with Attention-based Graph Reinforcement
Learning for Ground-to-air Heterogeneous Data Communication. In Adjunct
Proceedings of the 2023 ACM International Joint Conference on Pervasive and
Ubiquitous Computing & the 2023 ACM International Symposium on Wearable
Computing. Association for Computing Machinery, New York, NY, USA, 670-675.
Mario Saldanha, Marcel Corréa, Guilherme Corréa, Daniel Palomino, Marcelo
Porto, Bruno Zatt, and Luciano Agostini. 2020. An Overview of Dedicated
Hardware Designs for State-of-the-Art AV1 and H.266/VVC Video Codecs. In
Proceedings of the 27th IEEE International Conference on Electronics, Circuits and
Systems. IEEE, 1-4.

Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2006. Analysis of Hierarchi-
cal B Pictures and MCTF. In Proceedings of the 2006 IEEE International Conference
on Multimedia and Expo. IEEE, 1929-1932.

Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the
Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Transactions
on Circuits and Systems for Video Technology 17, 9 (2007), 1103-1120.

Soliton Systems. 2025. Beyond Line of Sight Drones with Ultra Low La-
tency. https://www.solitonsystems.com/low-latency-video/remote-operation/
beyond-line-of-sight-command-and- control- of-drones, last accessed on Feb. 18,
2025.

Tokusumi. 2020. keras-flops - pypi. https://pypi.org/project/keras-flops/, last
accessed on Feb. 18, 2025.

Twitch. 2024. Broadcast Guidelines. https://help.twitch.tv/s/article/broadcast-
guidelines?language=en_US, last accessed on Mar. 15, 2024.

Haoyang Wang, Xuecheng Chen, Yuhan Cheng, Chenye Wu, Fan Dang, and Xinlei
Chen. 2023. H-SwarmLoc: Efficient Scheduling for Localization of Heterogeneous
MAV Swarm with Deep Reinforcement Learning. In Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems. Association for Computing
Machinery, New York, NY, USA, 1148-1154.

https://www.chinesestandard.net/PDF.aspx/GBT28181-2022
https://www.chinesestandard.net/PDF.aspx/GBT28181-2022
https://developers.google.com/media/vp9/live-encoding
https://developers.google.com/media/vp9/live-encoding
https://ffmpeg.org/
 https://chromium.googlesource.com/webm/libvpx
 https://chromium.googlesource.com/webm/libvpx
https://aws.amazon.com/media/tech/video-latency-in-live-streaming
https://aws.amazon.com/media/tech/video-latency-in-live-streaming
https://coastalsafetygroup.com.au/news/beach-cameras-and-image-analytics
https://coastalsafetygroup.com.au/news/beach-cameras-and-image-analytics
https://doc.commsease.com/en/nertc/guide/zYzMjc0NTA?platform=android
https://doc.commsease.com/en/nertc/guide/zYzMjc0NTA?platform=android
https://www.flyability.com/blog/wind-turbine-inspection
https://www.flyability.com/blog/wind-turbine-inspection
https://www.gminsights.com/industry-analysis/4k-technology-market
https://www.gminsights.com/industry-analysis/4k-technology-market
https://support.google.com/youtube/answer/7444635?hl=en
https://support.google.com/youtube/answer/7444635?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
https://www.faceofit.com/av1-hardware-support-in-2024/
https://olympics.com/ioc/news/beijing-2022-set-to-be-the-most-immersive-olympic-winter-games-yet
https://olympics.com/ioc/news/beijing-2022-set-to-be-the-most-immersive-olympic-winter-games-yet
https://olympics.com/ioc/news/intel-unveils-ai-platform-innovation-for-paris-2024
https://olympics.com/ioc/news/intel-unveils-ai-platform-innovation-for-paris-2024
https://www.iso.org/standard/85623.html
https://developer.jdcloud.com/en/article/2267
https://arxiv.org/abs/2407.10782
https://arxiv.org/abs/2407.10782
https://blogs.windows.com/msedgedev/2023/03/08/video-super-resolution-in-microsoft-edge/
https://blogs.windows.com/msedgedev/2023/03/08/video-super-resolution-in-microsoft-edge/
https://www.speedtest.net/global-index
https://www.solitonsystems.com/low-latency-video/remote-operation/beyond-line-of-sight-command-and-control-of-drones
https://www.solitonsystems.com/low-latency-video/remote-operation/beyond-line-of-sight-command-and-control-of-drones
https://pypi.org/project/keras-flops/
https://help.twitch.tv/s/article/broadcast-guidelines?language=en_US
https://help.twitch.tv/s/article/broadcast-guidelines?language=en_US

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

[45]

[46]

Guogqing Xiao, Kenli Li, Yuedan Chen, Wangquan He, Albert Y. Zomaya, and Tao
Li. 2021. CASpMV: A Customized and Accelerative SpMV Framework for the
Sunway TaihuLight. IEEE Transactions on Parallel and Distributed Systems 32, 1
(2021), 131-146.

Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
2020. NEMO: Enabling Neural-Enhanced Video Streaming on Commodity Mobile
Devices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. Association for Computing Machinery, New York,
NY, USA, Article 28, 14 pages.

Hyunho Yeo, Youngmok Jung, Jachong Kim, Jinwoo Shin, and Dongsu Han. 2018.
Neural adaptive content-aware internet video delivery. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation. 645-661.

23

Jin and Zhu, et al.

[48] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and

[49

[50

]

Dongsu Han. 2022. NeuroScaler: Neural Video Enhancement at Scale. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference. Association for Computing
Machinery, New York, NY, USA, 795-811.

Mu Yuan, Lan Zhang, Xuanke You, and Xiang-Yang Li. 2023. PacketGame: Multi-
Stream Packet Gating for Concurrent Video Inference at Scale. In Proceedings
of the ACM SIGCOMM 2023 Conference. Association for Computing Machinery,
New York, NY, USA, 724-737.

ZEGOCLOUD. 2025. ZegoExpressEngine. https://docs.zegocloud.com/article/
api?doc=express_video_sdk_API~java_android~class~ZegoExpressEngine#
enable-video- super-resolution, last accessed on Feb. 18, 2025.

https://docs.zegocloud.com/article/api?doc=express_video_sdk_API~java_android~class~ZegoExpressEngine#enable-video-super-resolution
https://docs.zegocloud.com/article/api?doc=express_video_sdk_API~java_android~class~ZegoExpressEngine#enable-video-super-resolution
https://docs.zegocloud.com/article/api?doc=express_video_sdk_API~java_android~class~ZegoExpressEngine#enable-video-super-resolution

	Abstract
	1 Introduction
	2 Background
	2.1 Primer on SR Streaming
	2.2 Reusing-based SR

	3 Limitations of existing solutions
	4 Palantír Overview
	5 First Principles Modeling
	5.1 Analysis of SR Error
	5.2 DAG Modeling

	6 Practical Techniques
	6.1 DAG Construction
	6.2 Parallel Selection

	7 Evaluation
	7.1 Experimental Setup
	7.2 Anchor Effectiveness
	7.3 Scheduling Latency
	7.4 Ablation Study

	8 Conclusion
	References

