
Incremental Pattern Discovery
on Streams, Graphs and Tensors

Jimeng Sun

Thesis Committee:
Christos Faloutsos

Tom Mitchell
David Steier, External member
Philip S. Yu, External member

Hui Zhang

Abstract

Incremental pattern discovery targets at streaming applications where the data are arriving contin-
uously in real-time. How to find patterns (main trends) in real-time? How to efficiently update the
old patterns when new data arrive? How to utilize the patternto solve other problem such as anomaly
detection?

For example, 1) a sensor network monitors a large number of distributed streams (such as temperature
and humidity); 2) network forensics monitor the Internet communication patterns to identify the attacks;
3) cluster monitoring examines the system behaviors of a number of machines for potential failures;
4) social network analysis monitors a dynamic graph for communities and abnormal individuals; 5)
financial fraud detection tries to find fraudulent activities from a large number of transactions in real-
time.

In this thesis proposal, we first investigate a powerful datamodel tensor stream(TS) where there
is one tensor per timestamp. To capture diverse data formats: we have a zero-order TS for a single
time-series (stock price for google over time), a first-order TS for multiple time-series (e.g., sensor
measurement streams), a second-order TS for a matrix (e.g.,graphs), and a high-order TS for a multi-
array (e.g. Internet communication network, source-destination-port). Second, we develop different
online algorithms on TS: 1) the centralized and distributedSPIRIT for mining a first-order TS [30, 33];
2) compact matrix decomposition (CMD) for a second-order TS[35]; 3) the dynamic tensor analysis
(DTA) and streaming tensor analysis (STA) for a high-order TS [34]. From the methodology aspect,
we propose to extend CMD for incremental data and generalizethe methods to handle more constraints
(such as nonnegativity) and different distance measures (e.g. Bregman divergence). From the evaluation
aspect, we propose to apply our methods in depth to some real applications such as network forensics,
cluster monitoring and financial fraud detection.

1

Contents

1 Introduction 3

2 Survey 6
2.1 Low rank approximation 7

2.1.1 Singular value decomposition (SVD) .. 7
2.1.2 Principal component analysis (PCA) 7
2.1.3 CUR decomposition . 8

2.2 Multilinear Analysis .. 8
2.2.1 Tensor Basics .. 8
2.2.2 Tensor Decomposition .10

2.3 Stream Mining .. 10
2.4 Graph Mining .. . 11

3 Current Work 11
3.1 SPIRIT: incremental pattern discovery for 1st order tensor streams. 11

3.1.1 Monitoring variance matrix . 12
3.1.2 SPIRIT . 12
3.1.3 Experiment . 14

3.2 DTA and STA: incremental pattern discovery for high order tensor streams 15
3.2.1 Problem Definition . 15
3.2.2 Dynamic Tensor Analysis .15
3.2.3 Streaming Tensor Analysis .. 16
3.2.4 Key applications . 17
3.2.5 Experiment . 17

3.3 Compact Matrix Decomposition for large sparse graphs 21
3.3.1 Subspace Construction .. . 22
3.3.2 Low rank approximation .22
3.3.3 CMD in practice . 23
3.3.4 Experiment . 23

4 Proposed Work 25
4.1 P1: Effective example-based projection 25
4.2 P2: Incremental CMD 26
4.3 P3: Example-based tensor decomposition 26
4.4 P4: Other Divergence (distance function) 27
4.5 Evaluation plan .. . 27

5 Conclusion 27

2

1 Introduction

Incremental pattern discovery targets at streaming applications where dataare arriving continuously in real-
time. The goal is to answer the following questions: How to find patterns (main trends) in real-time? How
to efficiently update the old patterns when new data arrive? How to utilize the pattern to solve other problem
such as anomaly detection and clustering?

Some examples include:

• Sensor Networksmonitor different measurements (such as temperature and humidity) from a large
number of distributed sensors. The task is to monitor correlations among different sensors over time
and identify anomalies.

• Cluster Managementmonitors many metrics (such as CPU and memory utilization, disk space, num-
ber of processes, etc) of a group of machines. The task is to find main trends and identify anomalies
or potential failures.

• Social Network Analysisobserves an evolving network on social activities (such as citation network).
The task is find communities and abnormal individuals.

• Network Forensicsmonitors the Internet communication in the form of (source, destination, port,
time, number of packets). The task is to summarize the main communication patterns and identify the
attacks and anomalies;

• Financial Fraud Detectionexamines transactional activities of a company over time and tries to iden-
tify the abnormal/fraudulent behaviors.

Data Model:
To deal with the diversity of data, we introduce an expressive data modeltensorfrom multi-linear analy-

sis [10]. For the Sensor Networks example, we have one measurement (e.g., temperature) from each sensor
every timestamp, which forms a high dimensional vector (first order tensor)as shown in Figure 1(a). For the
Social Network Analysis, we have authors publishing papers, which forms graphs represented by matrices
(second order tensors). For the network forensics example, the 3rd order tensor for a given time period has
three modes: source, destination and port, which can be viewed as a 3D data cube (see Figure 1(c)). An
entry (i, j, k) in that tensor (like the small blue cube in Figure 1(c)) has the number of packets from the
corresponding sourcei to the destinationj through portk, during the given time period.

Focusing on incremental applications, we propose thetensor stream(TS) which is an unbounded se-
quence of tensors. The streaming aspect comes from the fact that new tensors are arriving continuously.
Incremental Pattern Discovery:

Incremental Pattern discovery is an online summarization process. In this thesis, we focus on incre-
mentally identifying low-rank structures of the data as thepatternsand monitor them over time. In another
words, we consider the incremental pattern discovery as an incremental dimensionality reduction process.

Let us illustrate the main idea through the network forensics application. In this example, the hourly
communication data are represented by high dimensional (3rd order) tensors, which are summarized as low
dimensional (3rd order) core tensors in a different space specified by the projections (see Figure 2).

3

Sensors

A
ut

ho
rs

Keywords

Sources

D
e

st
in

a
tio

n
s

P
or

ts

(a) 1st-order (b) 2nd-order (c) 3rd-order

Figure 1: Tensor examples: The blue region indicates a single element in the tensor such as a measurement
from a single sensor in (a), the number of papers that an author wrote ona given keyword in (b), the number
of packets sent from a source IP to a destination IP through a certain port in (c).

Moreover, the projections capture the overall correlations or hidden variables along three aspects:source,
destination and port. For example, theSource projectioncharacterizes the client correlations; theDestina-
tion projectionsummarizes the server correlations; thePort projectionmonitors the port traffic correlations.
The projections are dynamically monitored over time.

Furthermore, the core tensor indicates the association across differentaspects. More specifically, if there
are 3 source hidden variables, 5 destination hidden variables and 6 porthidden variables, the core tensor is
a 3-by-5-by-6 3D array, in which the values correspond to the level ofassociation across three different
aspects active at different time. More details are covered in Section 3.2.4

For example some web-server hidden variable is always associated with some client behavior through
port 80 since those clients always talk to those web servers. In that case, we will see a high value in the
corresponding element in the core tensor. Note that this association is dynamic, namely, we may observe
different association over time.

Sources

D
e

st
in

a
ti
o
n

s
P

or
ts

Source
Projection

D
e
s
ti
n
a

ti
o
n

P

ro
je

c
tio

n

Port
Projection

Core Tensor

Figure 2: Pattern discovery on a 3rd order tensor

The incremental aspect of the algorithms arrives from the fact that modelneeds to be constantly updated.
More specifically, the problem we study is the follows: Given a stream of tensorsX1 . . .Xn, how to compress
them incrementally and efficiently? How to find patterns and anomalies? We plan toaddress two aspects of
incremental pattern discovery:

• Incremental update: We want to update the old model efficiently, when a new tensor arrives. The key
is to avoid redundant computation and storage.

4

• Model efficiencyWe want an efficient method in term of computational cost and storage consumption.
The goal is to achieve linear computation and storage requirement to the update size.

For example, Figure 3 shows the monitoring streams on a storage server which is an example of a first order
tensor stream. Each vertical slice correspond a first order tensor (vector). The goal is to find main trend and
anomalies as reported on Figure 3(b).

(a) sensor measurement streams (b) anomalies detected over time

Figure 3: InteMon [21]: automatic cluster monitoring system

Why it is useful?:
The result from incremental pattern discovery can be used for many important tasks:

• Compression: The core tensor capture most of the information of the original data but in amuch lower
dimension.

• Anomaly detection: From the core tensor, we can approximate the original tensor and computethe
reconstruction error. A large reconstruction error is often an indicatorfor an anomaly.

• Clustering: We can often cluster the original data based the projection (see Section 3.2.4 for details).
The idea is closely related to latent semantic indexing (LSI) [29].

More importantly, all these tasks can be done incrementally which is essential tomany monitoring applica-
tions as listed in the beginning of this section.
Thesis scope:

Our current work concerns two aspects of the incremental pattern discovery: First,tensor ordervaries
from one [30, 33], two [35] to higher order [34]. The complexity1 increases dramatically as going to higher
order tensor. Second, we exploit differentsubspace formationstrategies: 1)orthogonal projection, which
forms orthogonal matrices based on the data (such as SVD, PCA) [30, 33, 34], 2)example-based projection,
which select judiciously examples from data to form the subspace [35].

Our proposed work includes:

1Not only the space and time complexity, but the convergence property increases with the tensor order

5

Symbol Description

v a vector (lower-case bold)
v(i) thei-element of vectorv
A a matrix (upper-case bold)
AT the transpose ofA
Ai|

n
i=1 a sequence ofN matricesA1, . . . ,An

A(i, j) the entry(i, j) of A
A(i, :) or A(:, i) i-th row or column ofA
A a tensor (calligraphic style)
A(i1, . . . , iM) the element ofX with index(i1, . . . , iM)

M the order of the tensor
Ni the dimensionality of theith mode (1 ≤ i ≤ M)

Table 1: Description of notation.

• Effective example-based projection: The example-based method uses the actual data instead of some
other abstract notion like orthogonal basis. It has the advantages of intuitive interpretability and sparse
encoding. One problem is that the current method [13] sometimes gives a much worse projection (in
term of reconstruction error) according to our empirical study than the orthogonal projection such as
SVD. We plan to develop a robust method for doing the example-based projection.

• Incremental example-based projection: We plan to further extend the exmaple-based method for
streaming applications. The goal is to smartly reuse the old model to reduce the computational cost
and construct more robust model when new data arrive.

• Other divergence and distribution: Currently, we only use theL2 (Euclidean) distance, which assumes
the Gaussian distribution. However, the Gaussian distribution may not be a good assumption for many
realistic scenarios where nonnegativity and heavy-tailed distribution are required. To address that, we
propose to generalize our methods for other divergence such as the Bregman divergence [6].

• Extensive case study: To validate the practical value of our methods, we plan to apply the methods on
several real applications such as network forensics, cluster monitoringand financial application. We
will try to have in-depth study and collaboration with the domain experts in those fields in order to
develop practical algorithms.

The layout of this thesis proposal is as follows: Section 2 discusses the related work. Section 3 presents
the completed work, followed by the proposed work in Section 4. Finally we conclude in Section 5.

2 Survey

In this section, we first discuss some related work in low rank approximation.Second, we introduce multi-
linear analysis specially tensor operations. Finally, we present the study on stream and graph mining which
are two special cases under the tensor model.

6

2.1 Low rank approximation

2.1.1 Singular value decomposition (SVD)

SVD of matrixA ∈ R
m×n is a factorizationA = UΣVT whereU andV are orthogonal andΣ is diagonal.

In addition, the entries ofΣ are nonnegative in nonincreasing order. The bestk rank approximation can be
computed asUkΣkVk whereΣk is the top leftk-by-k sub-matrix ofΣ, andUk andVk are the firstk
columns ofU andV respectively.

SVD has served as a building block for many important applications, such asPCA [23] and LSI [29, 11],
and has been used as a compression technique [25]. It has also been applied as correlation detection routine
for streaming settings [18, 30].
Pros: SVD is often used as a dimensionality reduction tool for matrices with low rank structures (i.e.,
k ≪ min(m, n)). The computed singular vectors are also useful for tasks such as clustering and outlier
detection.
Cons: When matrixA is sparse, it can be stored in sparse matrix representation so that the space require-
ment is proportional to the number of nonzero entries. Unfortunately, after SVD, U andV become dense
due to the orthogonalization process. Although the new matrix dimensionk is still small for low rank ap-
proximation, the total space for storingU andV, may become much larger than the space required for
storingA. Even worse, if the dimensions ofA are large(m andn are large), SVD becomes computationally
too expensive to perform.

2.1.2 Principal component analysis (PCA)

As shown in Figure 4, PCA finds the best linear projections of a set of highdimensional points that mini-
mizes least-squares cost. More formally, givenn points represented as row vectorsxi|

n
i=1 ∈ R

N in anN

dimensional space, PCA computesn pointsyi|
n
i=1 ∈ R

R (R ≪ N) in a lower dimensional space and the
projection matrixU ∈ R

N×R such that the least-squares coste =
∑n

i=1 ‖xi − yiU
T ‖22 is minimized2.

x1
x2���n

N
y1
y2���n

R

UTR

N

Figure 4: PCA projects theN -D vectorxis intoR-D vectoryis andU is the projection matrix.

The solution of PCA can be computed efficiently by diagonalizing the covariance matrix ofxi|
n
i=1.

Alternatively, if the rows are zero mean, then PCA is computed by the SingularValue Decomposition (SVD):
if the SVD ofX is X = Usvd ×Σsvd ×Vsvd

T , then ourY = Usvd ×Σsvd andU = Vsvd

2Bothx andy are row vectors.

7

2.1.3 CUR decomposition

Drineas et al. [13] proposed a powerful method, called CUR decomposition, to perform matrix factorization.
Such method approximates the input matrixA ∈ R

m×n as a product of three small matrices constructed
from sampled columns and rows, while preserving the sparsity of the original A after decomposition. More
formally, it approximates matrixA asÃ = CUR, whereC ∈ R

m×c (R ∈ R
r×n) containsc(r) scaled

columns(rows) sampled fromA, andU ∈ R
c×r is a small dense matrix which can be computed fromC

andR.
The key idea of CUR is to sample matrix rows and columns strategically, with replacement biased

towards those ones with higher norms (see Figure 5). In other words, thecolumns and rows with higher
entry values will have higher chance to be selected multiple times. Once we obtaina set of sampled rowsR
and columnsC, we can computẽA as the projection ofA onto the span ofC.

C

 RX
m

n

r

c

Am

n

Figure 5: CUR approximates matrixA ∈ R
m×n by the product of three matricesC, U, R whereC andR

are sampled columns and rows,U is the pseudo-inverse ofX (the intersection ofC andR)

Pros: CUR provides an efficient approximation of SVD. It requires only two passes over the input matrix
A ∈ R

m×n with a small buffer size on the order ofO(m+n). Unlike SVD, the resulting matrices from CUR
are still sparse (except for the matrixU ∈ R

c×r which is not necessarily stored since it can be computed
from C andR). Because CUR does not require orthogonalization on the entire matrixA, it is also faster in
computation than SVD.
Cons: The biased sampling with replacement usually results in many duplicate columns and rows inC and
R, especially for input graphs that follow power-law distributions. On the one hand, these duplicates are
necessary for the algorithm to achieve a low sum of squared error (SSE). Furthermore, simply ignoring the
duplicate samples does not solve the problem and usually brings huge error. On the other hand, they do
incur repeated computation and additional space requirement.

2.2 Multilinear Analysis

2.2.1 Tensor Basics

A tensor of orderM closely resembles a Data Cube withM dimensions. Formally, we write anM th order
tensorX ∈ R

N1×···×NM asX[N1,...,NM], whereNi (1 ≤ i ≤ M) is thedimensionalityof the ith mode
(“dimension” in OLAP terminology). For brevity, we often omit the subscript[N1, . . . , NM].

We will also follow the typical conventions, and denote matrices with upper case bold letters (e.g.,U)
row vectors with lower-case bold letters (e.g.,x), scalars with lower-case normal font (e.g.,n), and tensors

8

with calligraphic font (e.g.,X). From the tensor literature we need the following definitions:

Definition 1 (Matricizing or Matrix Unfolding) The mode-d matricizing or matrix unfolding of anM th
order tensorX ∈ R

N1×···×NM are vectors inRNd obtained by keeping indexd fixed and varying the other

indices. Therefore, the mode-d matricizingX(d) is in R
(

Q

i6=d Ni)×Nd .

The operation of mode-d matricizingX is denoted as unfold(X ,d)= X(d). Similarly, the inverse operation
is denoted as fold(X(d)). In particular, we haveX = fold(unfold(X , d)). Figure 6 shows an example of
mode-1 matricizing of a 3rd order tensorX ∈ R

N1×N2×N3 to the(N2 ×N3)×N1-matrixX(1). Note that
the shaded area ofX(1) in Figure 6 the slice of the 3rd mode along the 2nd dimension.

N3

N1

N2

N1

N2

N3

X(1)

Figure 6: 3rd order tensorX ∈ R
N1×N2×N3 is matricized along mode-1 to a matrixX(1) ∈ R

(N2×N3)×N1 .
The shaded area is the slice of the 3rd mode along the 2nd dimension.

Definition 2 (Mode Product) The mode productX ×d U of a tensorX ∈ R
N1×···×NM and a matrixU ∈

R
Ni×N ′

is the tensor inRN1×···×Ni−1×N ′×Ni+1×···×NM defined by:

(X ×d U) (i1, . . . , id−1, j, id+1, . . . , iM)

=
∑Ni

id=1X (i1, . . . , id−1, id, id+1, . . . , iM)U(id, j)
(1)

for all index values.

TheMode Productfor 2nd order tensor degenerates to matrix product. Figure 7 shows an example of 3rd
order tensorX mode-1 multiplies a matrixU. The process is equivalent to first matricizeX along mode-1,
then to do matrix multiplication ofX1 andU, finally to fold the result back as a tensor.

N3

N1

N2 1
U

N1

R
N3

R

N2

Figure 7: 3rd order tensorX[N1,N2,N3] ×1 U results in a new tensor inRR×N2×N3

9

In general, a tensorX ∈ R
N1×···×NM can multiply a sequence of matricesUi|

M
i=1 ∈ R

Ni×Ri as:X ×1

U1 · · ·×M UM ∈ R
R1×···×RM ,which can be written asX

M
∏

i=1
×i

Ui for clarity. Furthermore, the notation for

X ×1 U1 · · · ×i−1 Ui−1×i+1 Ui+1 · · · ×M UM (i.e. multiplication of allUjs except thei-th) is simplified

asX
∏

j 6=i
×j

Uj .

Definition 3 (Rank-(R1, . . . , RM) approximation) Given a tensorX ∈ R
N1×···×NM , a tensorX̃ ∈ R

N1×···×NM

with rank
(

X̃(d)

)

= Rd for 1 ≤ d ≤M , that minimizes the least-squares cost
∥

∥

∥
X − X̃

∥

∥

∥

2

F
, is the best rank-

(R1, · · · , RM) approximation ofX .3

The best rank approximatioñX = Y
M
∏

l=1
×l

UT
l , where the core tensorY ∈ R

R1×···×RM and the projection

matricesUl|
M
l=1 ∈ R

Nl×Rl .

2.2.2 Tensor Decomposition

Tensor algebra and multilinear analysis have been applied successfully in many domains [10, 24, 38]. Pow-
erful tools have been proposed, including Tucker decomposition [36],parallel factor analysis [19] or
canonical decomposition [7]. Tensors have been recently used in machine vision research, for example by
Shashua and Levin [31] for linear image coding, by Vasilescu and Terzopoulos [37] for face recognition.
Ye [42] presented the generalized low rank approximations which extendsPCA from the vectors (1st-order
tensors) into matrices (2nd order tensors). Ding and Ye [12] proposedan approximation of [42]. Similar
approach is also proposed in [20]. Xu et al. [40] formally presented thetensor representation for PCA
and applied it for face recognition. Drineas and Mahoney [15] showedhow to approximate the tensor SVD
using biased sampling.

These methods do one or more of the following assumptions: the dataset is dense, or static. We are
interested in sparse, streams of tensors, like the IP traffic matrices over time.

2.3 Stream Mining

Data streams has been extensively studied in recent years. The goal is toprocess the incoming data efficiently
without recomputing from scratch and without buffering much historical data. Two recent surveys [3, 28]
have discussed many data streams algorithms, among which we highlight two related techniques: sampling
and sketches.

Sampling is a simple and efficient method to deal with large massive datasets. Many sampling algorithms
have been proposed in the streaming setting such as reservoir sampling [39], concise samples, and counting
samples [17]. These advanced sampling techniques are related to our example-based projection technique.

“Sketch” is another powerful technique to estimate many important statistics, such asLp-norm [22,
8],of an unbounded stream using a compact structure. The underlying theory of “sketch” is to perform
dimensionality reduction using random projections as opposed to the best-k rank approximations. Random

3The square Frobenius norm is defined as‖X‖2
F =

N1
X

i=1

· · ·

NM
X

i=1

X (i1, ..., iM)2.

10

projection has the advantage that it is fast to compute and preserves the distance between nodes. However,
the projection leads to dense data representation.

2.4 Graph Mining

Graph mining has been a very active area in data mining community. Because ofits importance and expres-
siveness, various problems are studied under graph mining.

From the explorative aspect, Faloutsos et al. [16] have shown the powerlaw distribution on the Internet
graph. Kumar et al. [26] studied the model for web graphs. Leskovec et al. [27] discoverd the shrinking
diameter phenomena on time-evolving graphs.

From the algorithmic aspect, Yan et al. [41] proposed an algorithm to perform substructure similarity
search on graph databases, which is based on the algorithm for classic frequent itemset mining. Cormode and
Muthukrishnan [9] proposed streaming algorithms to (1) estimate frequencymoments of degrees, (2) find
heavy hitter degrees, and (3) compute range sums of degree values on streams of edges of communication
graphs, i.e., (source, destination) pairs. In our work, we view graph mining as a matrix decomposition
problem (2nd order tensor) and try to approximate the entire graph, whichis different from most of the
existing graph mining work.

3 Current Work

Our current work consists of the following parts:

• SPIRT and distributed SPIRIT[30, 33]: SPIRIT is a streaming algorithm for finding patterns in mul-
tiple co-evolving streams (first order tensor streams). We further extendSPIRIT into a distributed
algorithm where distributed streams are assigned into different groups, then local patterns are com-
puted from each group, and finally global patterns are constructed from all local patterns. In addition
to the experiments on several real datasets, we implemented two prototype systems on wireless sensor
Motes [32] and machine monitoring [21], respectively.

• Dynamic and Streaming Tensor Analysis[34]: We proposed tensor streams as a general and expres-
sive data model for many different applications. Two incremental algorithmsare proposed, namely,
dynamic tensor analysis (DTA) and streaming tensor analysis (STA).

• Compact Matrix Decomposition (CMD)[35]: Observing the sparsity in many real data, we studied an
alternative decomposition method to SVD, which preserves the sparsity property and provides more
intuitive results.

3.1 SPIRIT: incremental pattern discovery for 1st order tensor streams

Given a collection ofN streams, SPIRIT does the following:

• Adapts the number ofk main trends (hidden variables) to summarize theN streams.

• Adapts the projection matrixU which determines the participation weights of each streams on a
hidden variable.

11

More formally, the collection of streams isX ∈ R
n×N where 1) every row is aN -dimensional vector

containing values at a certain timestamp and 2)n is increasing and unbounded over time; SPIRIT finds
X = YUT incrementally where the hidden variableY ∈ R

n×R and the projection matrixU ∈ R
N×R. In

a sensor network example, at every time tick there areN measurements each from a temperature sensor in
Wean hall; TheseN measurements (one row in matrixX) map toR hidden variables (one row in matrixY)
through the projection matrixU. An additional complication is thatU is changing over time based on the
recent values fromX.

3.1.1 Monitoring variance matrix

Let us consider the offline version first whereX is bounded and static. Given a matrixX ∈ R
n×N , the

variance matrix is defined asC = XTX. And the diagonalization ofC gives us the projection matrixU,
namely,C = UΣUT . The hidden variablesY = XU.

For the online version when new values arrive as a matrixXnew ∈ R
n′×N 4, the variance matrix can

be updated asCnew = C + XT
newXnew. And the new projection matrix can be obtained by diagonalizing

Cnew. Again, the hidden variableYnew = XnewCnew.
Complexity: AssumingXnew is a vector, the computation complexity isO(RN2) and the space complexity
O(N2) whereR is the number of hidden variables andN the number of streams.

3.1.2 SPIRIT

The previous algorithm is simple and exact but still too expensive for some application when the number of
streamsN is large. We proposed SPIRIT, an approximation achieving linear space and computation cost in
N .
Tracking a projection matrix : The diagonalization process in the previous algorithm can be expensive.
Especially, when the change of the variance matrix is small, it is not worth diagonalizing that matrix. The
idea is to continuously track the changes of projection matrices using the recursive least-square technique
for sequentially estimating the principal components.

The main idea behind the tracking algorithm is to read in a new vectorx and perform three steps:

1. Compute the projectiony by projectingx ontoU;

2. Estimate the reconstruction error (e) and the energy (the sum of squares of all the past values), based
on they values; and

3. Update the estimates ofU.

Intuitively, the goal is to adaptively updateU quickly based on the new values. The larger the errore,
the moreU is updated. However, the magnitude of this update should also take into account the past data
currently “captured” byU. For this reason, the update is inversely proportional to the currentenergy(the
sum of squares of all the previous values).
Complexity: The computation and space complexity areO(NR).
Detecting the number of hidden variablesR:

4 Whenn′ = 1, Xnew becomes a vector which is equivalent to add one more row to original matrix X.

12

We use the Energy thresholding5 to deterimine the numberR. The idea is to increase or decrease the
number of hidden variables when the ratio between the energy kept by the hidden variables and the one kept
by the input values is below or above a certain threshold (e.g. .95 and .98 in our experiments).
Other extensions:

In addition to spotting the correlations across different streams, SPIRIT can also help to provide the
following functionalities:

• Forgetting factor: We can adapt to more recent behavior by using an exponential forgetting factor
0 < λ < 1 to the old energy. This allows us to follow trend drifts over time.

• Forecasting: We can apply any forecasting algorithm on the hidden variablesY instead of original
valuesX. This is a much better method for forecasting, because 1)efficiency: the number of hidden
variables is much smaller than the original streams; 2)effectiveness: a simple forecasting method
like autoregression may work well since the hidden variables are uncorrelated by construction (same
reason as PCA).

• Missing values: When we have a forecasting model, we can use the forecast to estimate missing
values. We then use these estimated missing values to update the projection matrixU, as well as the
forecasting model.

• Distributed streams: We present a hierarchical approach in [33] to deal with distributed streams. This
method avoids many drawbacks of the centralized approach such as singlepoint of failure, communi-
cation bottleneck, and scalability issue. It requires limited shared information across different groups.

0 500 1000 1500 2000

0
50

0
10

00
15

00

measurements + reconstruction of sensor 31

0
50

0
10

00
15

00

measurements + reconstruction of sensor 32

(a) Lab map (b) Original measurements vs. reconstruction

Figure 8: Mote dataset: it shows the measurements (bold) and reconstruction (thin) on node 31 and 32
(highlighted in (a)).

5It is a common method to determine how many principal components are needed [23].

13

0 500 1000 1500 2000

0
20

00
40

00
60

00
80

00

hid
de

n v
ar

 1

0 500 1000 1500 2000

−3
00

0
−1

00
0

0
10

00
20

00

hid
de

n v
ar

 2

0
10

00
20

00
30

00

hid
de

n v
ar

 3

0
50

0
10

00
15

00
20

00
25

00

hid
de

n v
ar

 4

Figure 9: Hidden variables: The third and fourth hidden variables are intermittent and indicate “anomalous
behavior”. Note that the axes limits are different in each plot.

3.1.3 Experiment

We did extensive experiments on many real datasets for both centralized and distributed scenarios [30, 33].
And we implemented two systems using this algorithm on actual Motes sensors [32] and cluster monitor-
ing [21]. Here we present one experiment to illustrate the point.
Description TheMotes light dataset consists of 48 light intensity measurements collected using Berkeley
Mote sensors, at several different locations in a lab (see Figure 8), over a period of a week (2000 timestamps).
Data characteristicsThe main characteristics are:

• A clear global periodic pattern (daily cycle).

• Occasional big spikes from some sensors (outliers).

Results of SPIRIT SPIRIT detects four hidden variables (see Figure 9). Two of these areintermittent and
correspond to outliers, or changes in the correlated trends. We show thereconstructions for some of the
observed variables in Figure 8(b).
Interpretation In summary, the first two hidden variables (see Figure 9) correspond to the global trends and
the last two, which are intermittently present, correspond to outliers. In particular:

• The first hidden variable captures the global periodic pattern.

• The interpretation of the second one is due to the phase-shift across different streams. The first two
hidden variables together are sufficient to express arbitrary phase shifts.

• The third and fourth hidden variables indicate some of the potential outliers in the data. For example,
there is a big spike in the 4th hidden variable at timet = 1033, as shown in Figure 9. Examining the
corresponding participation weights inU at that timestamp, we can find the corresponding sensors
“responsible” for this anomaly, i.e., those sensors whose participation weights have very high magni-
tude. Among these, the most prominent are sensors 31 and 32. Looking at the actual measurements
from these sensors, we see that before timet = 1033 they are almost 0. Then, very large increases
occur aroundt = 1033, which bring an additional hidden variable into the system.

14

3.2 DTA and STA: incremental pattern discovery for high order tensor streams

3.2.1 Problem Definition

Here we first formally define thetensor streams. Then we overview the operations on them.

Definition 4 (Tensor stream) A sequence ofM th order tensorX1 . . .Xn, where eachXi ∈ R
N1×···×NM

(1 ≤ i ≤ n), is called a tensor stream ifn is a positive integer that increases with time.

Intuitively, we can consider a tensor stream as a sequence of tensors that are coming incrementally over
time whereXn is the latest tensor in the stream. In the network monitoring example, a new 3rd order tensor
(as the one in Figure 1(c)) comes every hour.

After we defined the data models, the main operation is to represent the original tensors in some other
basis such that underlying patterns are easily revealed.

Definition 5 (Tensor analysis) Given a sequence of tensorsX1 . . .Xn, where eachXi ∈ R
N1×···×NM (1 ≤

i ≤ n), find the orthogonal matricesUi ∈ R
Ni×Ri |Mi=1, one for each mode, such that the reconstruction

error e is minimized:e =
∑n

t=1

∥

∥

∥

∥

Xt −Xt

M
∏

i=1
×i

(UiU
T
i)

∥

∥

∥

∥

2

F

Note thatXt

M
∏

i=1
×i

(UiU
T
i) is the approximation ofXt under the space spanned byUi|

M
i=1. And it can be

rewritten asYt

M
∏

i=1
×i

UT
i whereYt is the core tensor defined asYt = Xt

M
∏

i=1
×i

Ui (see Figure 12 for the

intuition behind).
More specifically, we propose two variants undertensor analysis: dynamic tensor analysis (DTA) and

streaming tensor analysis (STA) for a tensor stream.

3.2.2 Dynamic Tensor Analysis

Here we present the dynamic tensor analysis (DTA), an incremental algorithm for tensor dimensionality
reduction.
Intuition: The idea of the incremental algorithm is to exploit two facts:

1. In generaltensor analysiscan be computed relatively quickly once the variance matrices6are avail-
able;

2. Variance matrices can be incrementally updated without storing any historical tensor as shown in
Section 3.1.1.

The algorithm processes each mode of the tensor at a time. In particular, thevariance matrix of thedth mode
is updated as:

Cd ← Cd + XT
(d)X(d)

15

dU

T
dU

=

Reconstruct Variance Matrix

dC

× =

()dX()
T
dX

() ()
T
d dX X

M
a
tr

ic
iz

e
,

T
ra

n
sp

o
se

Construct Variance Matrix of
Incremental Tensor

dC

Update Variance Matrix

Diagonalize
Variance Matrix

dS

dU

T
dU

dS

Matricize

Figure 10: New tensorX is matricized along thedth mode. Then variance matrixCd is updated by
XT

(d)X(d). The projection matrixUd is computed by diagonalizingCd.

whereX(d) ∈ R
(
Q

i6=d Ni)×Nd is the mode-d matricizing of the tensorX . The updated projection matrices
can be computed by diagonalization:Cd = UdSdU

T
d , whereU is orthogonal matrix andS is diagonal

matrix. The process is visualized in Figure 10.
Similar to the SPIRIT, we incorporate theforgetting factorto emphasize the recent data and use the

energy criterionto estimate the number of hidden variables along each mode.
Complexity: The space consumption for the incremental algorithm is

∏M
i=1 Ni +

∑M
i=1 Ni×Ri +

∑M
i=1 Ri

whereNi is the dimensionality of theith mode andRi the number of hidden variables along theith mode
(the rank along theith mode). The dominant factor is from the first term O(

∏M
i=1 Ni). However, standard

offline tensor analysis requires O(n
∏M

i=1 Ni) for storing all tensors up to timen, which is unbounded.
The computation cost isO(

∑M
i=1 RiN

2
i +

∏M
i=1 Ni. Note that for medium or low mode tensors (i.e.,

orderM ≤ 5), the diagonalization (O(
∑M

i=1 RiN
2
i)) is the main cost. Section 3.2.3 introduces a faster

approximation of DTA that avoids diagonalization.
While for high order tensors (i.e., orderM > 5), the dominate cost becomes O(

∏M
i=1 Ni) from updating

the variance matrix . Nevertheless, the improvement of DTA is still tremendous compared to the offline
methods O(n

∏M
i=1 Ni) wheren is the number of all tensors up to current time.

3.2.3 Streaming Tensor Analysis

Now we present thestreaming tensor analysis(STA), a fast algorithm to approximate DTA without diago-
nalization.

The goal of STA is to adjust projection matrices smoothly as the new tensor comes in. Note that the
tracking process has to be run on all modes of the new tensor. For a given mode, we first matricize the tensor
X into a matrixX(d), then adjust the projection matrixUd by applying SPIRIT algorithm (see Section 3.1)
over the rows ofX(d). The process is visualized in Figure 11.

To further reduce the time complexity, we can select only a subset of the vectors inX(d). For example,
we can sample vectors with high norms, because those potentially give higherimpact to the projection
matrix.
Complexity: The space complexity of STA is the same as DTA, which is only the size of the new tensor.
The computational complexity is O((

∑

i Ri)
∏

i Ni) which is smaller than DTA (whenRi ≪ Ni). The STA

6Recall the variance matrix along thedth mode ofX(d) ∈ R
(
Q

i6=d
Ni)×Nd is defined asC = XT

(d)X(d) ∈ R
Nd×Nd .

16

can be further improved with random sampling technique, i.e., use only subset of rows ofX(d) for update.

()
T
dX

Matricizing

dU

dS

x

iu

is

Pop out

Pop out Update

Update

Pop out

dS

dU

Figure 11: New tensorX is matricized along thedth mode. For every row ofXd, we update the projection
matrixUd. And Sd helps determine the update size.

3.2.4 Key applications

We investigate the following two applications of DTA and STA:
Anomaly detection: We envision the abnormal detection as a multi-level screening process, where we try
to find the anomaly from the broadest level and gradually narrow down to the specifics. In particular, it
can be considered as a three-level process for tensor streams: 1) given a sequence of tensors, identify the
abnormal ones; 2) on those suspicious tensors, we locate the abnormal modes; 3) and then find the abnormal
dimensions of the given mode. In the network monitoring example, the system first tries to determine
when the anomaly occurs; then it tries to find why it occurs by looking at the traffic patterns from sources,
destinations and ports, respectively; finally, it narrows down the problem on specific hosts or ports.

DTA/STA enables us to quantify the multi-level anomaly score through a simple reconstruction error.
Multi-way latent semantic indexing: The goal of the multi-way LSI is to find highly correlated dimensions
within the same mode and across different modes, and monitor them over time. Consider the DBLP example,
author-keyword over time, Figure 12 shows that initially (inX1) there is only one group, DB, in which all
authors and keywords are related to databases; later on (inXn) two groups appear, namely, databases (DB)
and data mining (DM).

3.2.5 Experiment

Network data: The traffic trace consists of TCP flow records collected at the backbone router of a class-
B university network. Each record in the trace corresponds to a directional TCP flow between two hosts
through a server port with timestamps indicating when the flow started and finished. We partition raw data
stream into disjoint hourly based windows and construct a tensor for each window.

Because the tensors are very sparse and the traffic flows are skewedtowards a small number of dimen-
sions on each mode, we select onlyN1=N2=500 sources and destinations andN3=100 port numbers with

17

DBA
ut

ho
rs

Keywords

1

DM

DB

n

UA

UK

1

n

Figure 12: UA andUK capture the DB (stars) and DM (circles) concepts in authors and keywords, respec-
tively; initially, only DB is activated inY1; later on both DB and DM are inYn.

name description dimension timestamps
IP2D Network 2D 500-by-500 1200
IP3D Network 3D 500-by-500-by-100 1200
DBLP DBLP data 4584-by-3741 11

Figure 13: Three datasets

high traffic. Figure 14(a) shows an example source-destination matrix constructed using traffic data gener-
ated from 10AM to 11AM on 01/06/2005. We observe that the matrix is indeed sparse, with most of the
traffic to or from a small set of server like hosts.

Moreover, the distribution of the entry values is very skewed (a power lawdistribution) as shown in
Figure 14(b). Most of hosts have zero traffic, with only a few of exceptions which were involved with high
volumes of traffic (over104 flows during that hour). Given such skewed traffic distribution, we re-scale all
the non-zero entries by taking the natural logarithm (actually,log(x + 1), to account forx = 0), so that the
matrix decomposition results will not be dominated by a small number of very largeentry values.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

source

de
st

in
at

io
n

10
0

10
2

10
4

10
1

10
2

10
3

10
4

e
n

tr
y

co
u

n
t

volume

(a) Source-destination matrix (b) Entry distribution

Figure 14: Network Flow: the example source-destination matrix is very sparse but the entry values are
skewed.

Bibliographic data: Based on DBLP data [1], we generate author-keyword 2nd order tensors of KDD and

18

VLDB conferences from year 1994 to 2004 (one tensor per year). The entry(a, k) in such a tensor indicates
that authora has published a paper with keywordk in the title during that year. The value of the entry(a, k)
is the number of timesk appear in the title during that year. In total, there are 4,584 authors and 3,741
keywords. Note that the keywords are generated from the paper title after simple stemming and stop-word
removal.
Computational cost: We first compare three different methods, namely, offline tensor analysis(OTA),
dynamic tensor analysis (DTA), streaming tensor analysis (STA), in terms ofcomputation time for different
datasets. Figure 15 shows the CPU time in logarithm as a function of relapse time.Since the new tensors
keep coming, the cost of OTA increases linearly7; while DTA and STA remains more or less constant. Note
that DBLP in Figure 15(c) shows lightly increasing trend on DTA and STA because the tensors become
denser over time (i.e., the number of published paper per year are increasing over time), which affects the
computation cost slightly.

0 20 40 60 80 100

10
0

10
1

10
2

time

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

0 20 40 60 80 100

10
1

10
2

10
3

time

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

1994 1996 1998 2000 2002 2004

10
2

year

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

(a) IP2D (b) IP3D (c) DBLP

Figure 15: Both DTA and STA use much less time than OTA over time across different datasets

We show that STA provides an efficient way to approximate DTA over time, especially with sampling.
More specifically, after matricizing, we sample the vectors with high norms to update the projection ma-
trices. Figure 16 shows the CPU time vs. sampling rate, where STA runs much faster compared to DTA.

100% 75% 50% 25%
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sampling percentage

tim
e(

se
c)

DTA
STA

100% 75% 50% 25%
0

2

4

6

8

10

12

sampling percentage

tim
e(

se
c)

DTA
STA

100% 75% 50% 25%
0

5

10

15

20

25

30

35

40

45

sampling percentage

tim
e(

se
c)

DTA
STA

(a) IP2D (b) IP3D (c) DBLP

Figure 16: STA uses much less CPU time than DTA across different datasets

Accuracy comparison:Now we evaluate the approximation accuracy of DTA and STA compared to OTA.

7We estimate CPU time by extrapolation because OTA runs out of the memory after a few timestamps.

19

Performance metric: Intuitively, the goal is to be able to compare how accurate each tensor decomposition
is to the original tensors. Therefore, reconstruction error provides anatural way to quantify the accuracy.
Recall the reconstruction error is defined in Definition 5. Error can always be reduced when more eigenvec-
tors are included (more columns in the projection matrices). Therefore, we fix the number of eigenvectors
in the projection matrices for all three methods such that the reconstruction error for OTA is 20%. And we
use the error ratios between DTA/STA to OTA as the performance indices.
Evaluation results: Overall the reconstruction error of DTA and STA are close to the expensive OTA
method (see Figure 17(d)). Note that the cost for doing OTA is very expensive in both space and time
complexity. That is why only a few timestamps are shown in Figure 17 since afterthat point OTA runs out
of the memory.

In more details, Figure 17(a)-(c) plot the error ratios over time for three datasets. There we also plot the
one that never updates the original projection matrices as a lower-bound baseline.

DTA performs very close to OTA, which suggests a cheap incremental methods over the expensive
OTA. The even cheaper method, STA, usually gives good approximation toDTA (see Figure 17(a) and (b)
for IP2D and IP3D). But note that STA performs considerably worse inDBLP in Figure 17(c) because
the adaptive subspace tracking technique as STA cannot keep up to the big changes of DBLP tensors over
consecutive timestamps. Therefore, STA is only recommended for the fastincoming tensors with significant
time-dependency (i.e., the changes over consecutive timestamps should notbe too big).

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

hours

e
rr

o
r

ra
tio

DTA
STA
no update

1 2 3 4 5 6
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

hours

e
rr

o
r

ra
tio

DTA
STA
no update

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

Years

e
rr

o
r

ra
tio

DTA
STA
no update

DTA STD No Update
0

0.5

1

1.5

2

2.5

3

3.5

4

a
ve

ra
g

e
 e

rr
o

r
ra

tio

IP2D
IP3D
DBLP

(a) IP2D (b) IP3D (c) DBLP (d) Average

Figure 17: Reconstruction error over time

Case study I: Anomaly detection on Network traffic
For network traffic, normal host communication patterns in a network shouldroughly be similar to each

other over time. A sudden change of approximation accuracy suggests structural changes of communi-
cation patterns since the same approximation procedure can no longer keeptrack of the overall patterns.
Figure 18(a) shows the relative reconstruction error8 over time using DTA. The anomaly points are the ones
above the red line, which is the threshold based on 3 standard deviation above the mean error percentage.
The overall accuracy remains high. But a few unusual error bursts occurs at hour 140 and 160 (circle in
Figure 18(a). We manually investigate into the trace further, and indeed findthe onset of worm-like hierar-
chical scanning activities. Figure 18 (b) and (c) shows the normal (green dash circle in (a)) and abnormal
(red solid circle in (a)) timestamps. The dot in Figure 18 means there are packet flows between the corre-
sponding source and destination. The prominent difference between these two is mainly due to the unusual

8Relative error is the reconstruction error by the input tensor norm.

20

Authors Keywords Year

michael carey,michael stonebraker, h. jagadish,hector garcia-molina queri,parallel,optimization,concurr,objectorient1995
surajit chaudhuri,mitch cherniack,michael stonebraker,ugur etintemel distribut,systems,view,storag,servic,process,cach2004

jiawei han,jian pei,philip s. yu,jianyong wang,charu c. aggarwalstreams,pattern,support,cluster,index,gener,queri2004

Table 2: Example clusters: first two lines databases groups, last line data mining group. Note that keywords
are after stemming

scanning activities (more columns with many dots). We can successfully identify this real anomaly in the
data using reconstruction error from DTA.

200 400 600 800 1000 1200
0

10

20

30

40

50

hours

er
ro

r

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

source

de
st

in
at

io
n

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

source

de
st

in
at

io
n

(a) error over time (b) normal (c) abnormal

Figure 18: Network flow over time: we can detect anomalies by monitoring the approximation accuracy

Case study II: Multi-way LSI Similarly, we perform 2-way LSI on DBLP datasets over time. Two example
clusters are listed in Table 2. The algorithm correctly separates the two groups (data mining, databases) of
people and concepts (2nd and 3rd clusters). Furthermore, it identifies the focus change over time as well,
e.g., 1st and 2nd groups are both about databases, but the focus haschanged from object-oriented (1995) to
stream (2004).

3.3 Compact Matrix Decomposition for large sparse graphs

Up to now, we only study orthogonal projection like what SVD or PCA do. Although these methods are
very successful in general, for large sparse data they tend to requirehuge amounts of space, exactly because
their resulting matrices are not sparse any more. Another drawback of anorthogonal projection is the lack
of an intuitive interpretation.

Recently, Drineas et al. [13] proposed the CUR decomposition method, which decomposes a large sparse
matrix into three smaller matrices by judiciously sampling columns and rows from the original matrix.
Although the constructed low-rank approximations may not be optimal, CUR does partially address the
loss-of-sparsity issue.

We propose a new method, calledCompact Matrix Decomposition (CMD), for generating low-rank
matrix approximations. CMD provides provably equivalent decomposition asCUR, but it requires much
lessspace and computation time, and hence ismoreefficient. More specifically, CMD approximates the
input matrixA ∈ R

m×n as a product of three small matrices constructed from sampled columns and rows,
while preserving the sparsity of the originalA after decomposition. More formally, it approximates the

21

matrixA asÃ = CsURs, whereCs ∈ R
m×c′ (Rs ∈ R

r′×n) containsc(r) scaled columns(rows) sampled
from A, andU ∈ R

c′×r′ is a small dense matrix which can be computed fromCs andRs.

3.3.1 Subspace Construction

Since the subspace is spanned by the columns of the matrix, we choose to usesampled columns to represent
the subspace.
Biased sampling:The key idea for picking the columns is to sample columns with replacement biased to-
wards those ones with higher norms. In other words, the columns with higherentry values will have higher
chance to be selected multiple times. Such sampling procedure is proved to yield an optimal approxima-
tion [13]. Note that, the biased sampling will bring a lot of duplicated samples.
Duplicate column removal: CMD carefully removes duplicate columns and rows after sampling, and thus
it reduces both the storage space as well as the computational effort. Intuitively, the directions of those
duplicate columns are more important than the other columns. Thus a key step ofsubspace construction is
to scale up the columns that are sampled multiple times while removing the duplicates. Pictorially, we take
matrix Cd and turn it into the much narrower matrixCs as shown in Figure 19(b), with proper scaling. In
[35] we proved that the rescaled distinct columns have the same bestk approximation as the columns with
duplicates.

Cd

 RdXd

m

n

r

c

Cs = C
����

Rs =
��

R

Cs

Rsx

m

n

r`

c`

(a)with duplicates (b) without duplicates

Figure 19: Illustration of CUR and CMD

3.3.2 Low rank approximation

The goal is to form an approximation of the original matrixX using the sampled columnCs. For clarity,
we useC for Cs. More specifically, we want to projectX onto the space spanned byC, which can be done
as follows:

Note that the set of selected columnsC ∈ R
m×c do not form an orthonormal basis. One possibility is

to use the fact that given an arbitrary basisB (not necessarily orthonormal), the projection to the span of
B is B(BTB)−1BT . Unfortunately, althoughC specifies the subspace, in generalC may not form a basis
because the columns may not be linearly independent for(CTC)−1 to exist.

We first construct the orthonormal basis ofC using SVD (sayC = UCΣCVT
C), and then projecting

the original matrix into this identified orthonormal basisUC ∈ R
m×c. Since bothUC andUT

C are usually
large and dense, we do not compute the projection of matrixA directly asUCUT

CA. Instead, we computes
a low rank approximation ofA based on the observation thatUc = CVCΣ−1

C , whereC ∈ R
m×c is large

22

but sparse,VC ∈ R
c×k is dense but small, andΣ ∈ R

k×k is a small diagonal matrix9. Therefore, we have
the following:

Ã = UcU
T
c A = CVCΣ−1

C (CVCΣ−1
C)TA

= C(VCΣ−2
C VT

CCT)A = CTA

whereT = (VCΣ−2
C VT

CCT) ∈ R
c×m.

AlthoughC ∈ R
m×c is sparse,T is still dense and big. we further optimize the low-rank approximation

by reducing the multiplication overhead of two large matricesT andA. Specifically, given two matricesA
andB (assumeAB is defined), we can sample both columns ofA and rows ofB using the biased sampling
algorithm (i.e., biased towards the ones with bigger norms). The selected rows and columns are then scaled
accordingly for multiplication. This sampling algorithm brings the same problem ascolumn sampling, i.e.,
there exist duplicate rows. Finally, CMD removes duplicate rows using a different scaling factor. In our
context, CMD samples and scalesr′ unique rows fromA and extracts the correspondingr′ columns from
CT (last term ofT).

3.3.3 CMD in practice

Modules

Data

 Current
Matrix

Data source

Sparsification
Matrix

Decomposition
Error

Measure

Applications

Anomaly
Detection

Historical
Analysis

Storage

Decomposed
Matrices

Figure 20: A flowchart for mining large graphs with low rank approximations

Figure 20 shows the flowchart of the whole mining process. The processtakes as input data from the ap-
plication, and generates as output mining results represented as low-rankdata summaries and approximation
errors. The results can be fed into different mining applications such as anomaly detection and historical
analysis.

Thedata sourceis assumed to generate a large volume of real time event records for constructing large
graphs (e.g., network traffic monitoring and analysis). Because it is oftenhard to buffer and process all data
that are streamed in, we propose one more step, namely,sparsification, to reduce the incoming data volume
by sampling and scaling data to approximate the original full data.

Given the input data summarized as acurrent matrixA, the next step ismatrix decomposition, which
is the core component of the entire flow to compute a lower-rank matrix approximation. Finally, theerror
measurequantifies the quality of the mining result as an additional output.

3.3.4 Experiment

We use the complete network and DBLP data for evaluation without any sampling.

9In our experiment, bothVC andΣC have significantly smaller number of entries thanA.

23

data dimension |E| nonzero entries
Network flow 22K-by-22K 12K 0.0025%
DBLP data 428K-by-3.6K 64K 0.004%

Figure 21: Two datasets

Performance on Network data: We first evaluate the space consumption for three different methods to
achieve a given approximation accuracy. Figure 22(a) shows the space ratio (to the original matrix) as the
function of the approximation accuracy for network flow data. Note the Y-axis is in log scale. Among
the three methods, CMD uses the least amount of space consistently. SVD uses the most amount of space
(over 100X larger than the original matrix). CUR uses a similar amount of space as CMD to achieve a low
accuracy. But when we increase the target accuracy to achieve, the space consumption of CUR increases
dramatically (over 50X larger than the original matrix). The reason is that CUR has to keep many duplicate
columns and rows in order to reach a high accuracy, while CMD keeps onlyunique columns and rows.

0 0.2 0.4 0.6 0.8 1

10
1

10
2

sp
a

ce
 r

a
tio

accuracy

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

tim
e

(s
e

c)

accuracy

SVD
CUR
CMD

(a) space vs accuracy (b) time vs. accurarcy

Figure 22: Network flow: CMD takes the least amount of space and time to decompose the source-
destination matrix; the space and time required by CUR increases fast as the accuracy increases due to
the duplicated columns and rows.

In terms of CPU time (see Figure 22), CMD achieves much more savings than SVDand CUR. There
are two reasons: first, CMD does not need to process duplicate samples,and second, no expensive SVD
is needed on the entire matrix (graph). CUR in general is faster to compute than SVD, but because of the
duplicate samples, it spent a longer computation time than SVD to achieve a high accuracy. The majority of
time spent by CUR is in performing SVD on the sampled columns.
DBLP: We observe similar performance trends using the DBLP dataset. CMD requires the least amount
of space among the three methods (see Figure 23(a)). Notice that we do not show the high-accuracy points
for SVD, because of its huge memory requirements. Overall, SVD uses morethan 2000X more space than
the original data, even with a low accuracy (less than30%). The huge gap between SVD and the other
two methods is mainly because: (1) the data distribution of DBLP is not as skewed as that of network
flow, therefore the low-rank approximation of SVD needs more dimensions toreach the same accuracy,
and (2) the dimension of left singular vector for DBLP (428,398) is much bigger than that for network flow

24

(21,837), which implies a much higher cost to store the result for DBLP than for network flow. These results
demonstrates the importance of preserving sparsity in the result.

On the other hand, the difference between CUR and CMD in DBLP becomes less significant than that
with network flow trace. The reason is that the data distribution is less skewed. There are fewer duplicate
samples in CUR. In this case, CUR and CMD perform similarly.

0 0.2 0.4 0.6 0.8 1

10
1

10
2

sp
a

ce
 r

a
tio

accuracy

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1

10
1

10
2

10
3

tim
e

(s
e

c)

accuracy

SVD
CUR
CMD

(a) space vs accuracy (b) time vs. accuracy

Figure 23: DBLP: CMD uses the least amount of space and time. Notice the huge space and time that SVD
requires.

The computational cost of SVD is much higher compared to CMD and CUR (seeFigure 23). This is
because the underlying matrix is denser and the dimension of each singular vector is bigger, which explains
the high operation cost on the entire graph. CMD, again, has the best performance in CPU time for DBLP
data.

4 Proposed Work

I propose to extend the current work in bothmethodologyandevaluationaspects. The methodology map is
listed in Table 3.

orthogonal projection example-based other divergence
Stream [30, 33, 32, 21]
Matrix(Graph) [35] [P1, P2]
Tensor [34] [P3] [P4]

Table 3: Methodology map: note that the solution to the bottom row is also a solutionto the rows above.

4.1 P1: Effective example-based projection

CUR [13] and our CMD [35] provide a good start for summarizing matrices using an example-based pro-
jection instead of an orthogonal projection. Both of them give the following bound:

25

Theorem 1 (CUR/CMD approximation) Given matrixA ∈ R
m×n, ‖A−Ã‖ ≤ ‖A−Ak‖+ǫ‖A‖ holds

in expectation and with high probability10.

Note that this is a bound on the entire matrix norm‖A‖ instead of the difference‖A −Ak‖. Ideally, we
want a method with the relative bound, i.e.,‖A− Ã‖ ≤ (1 + ǫ)‖A−Ak‖. There are theoretical advances
along this line [14], but currently that method is even more expensive than SVD.

We plan to investigate the possibility to speed up the process by adopting some heuristics. For example,
due to the sparsity of the data, the columns of the matrix are often in “near orthogonal” space. Namely, there
are many columns that disagree in most of non-zero elements. For example,(1, 0, 0, 0)T and(0, 1, 1, 0)T

disagree in all non-zero elements, which makes them orthogonal (i.e., the dot product of these two columns
equals 0). In this case, a greedy approach can iteratively select a column that disagrees with most of selected
columns (to span an orthogonal space) and has significant norm (to avoid numeric instability).

4.2 P2: Incremental CMD

Currently, we have completed the incremental model using orthogonal projection such as SPIRIT [30],
distributed SPIRIT [33] and DTA/STA [34]. However, the example-based projection is not yet incremental,
meaning that when a new matrix arrives, CMD has to run on that again withoutany reuse of historical
computation.

We plan to study the possibility of the incremental CMD where CMD is computed or approximated
incrementally over time. Possible problems include 1) how to reuse the past work? 2) when do we need to
recompute from scratch? 3) do we ever need to recompute from scratch?4) Can we provide any theoretical
guarantee of the result?

One possible answer for the first question is to re-use the columns or rowssampled from previous
time. The intuition is that the matrices (graphs) should be changing gradually if we assume there is a time
dependency. For example, the network communication patterns in this hour are similar to the previous
hour. Therefore, the subspace constructed from previous time may still be good for the current time. And
there are many options on how to execute this re-use strategy. For instance, 1) Exact reuse: We use the
exact old columns and rows from previous time; 2)Partial reuse: We pick the same column and row IDs
from previous time but use the current values of those columns and rows toconstruct the new subspace;
3) Multiple reuse: Instead of using the columns and rows from a single timestamp, we can aggregate the
information from multiple timestamps to form the new subspace.

4.3 P3: Example-based tensor decomposition

Both CUR and CMD are implemented for matrices only. However, many applications have high order data.
In theory, the generalization to tensors is not hard as described by Drineas et al. [15].

However, there are still a lot of the practical concerns on prototyping theidea. More importantly, a
necessary infrastructure has to be set up to implement this idea. For example, how to store a sparse tensor?
How to efficiently access the elements in a tensor (both individual elements andsub-tensors)? Most of
existing tensor prototypes [2] only deal with dense tensor and work with small datasets. To my knowledge,
the only sparse tensor implementation is a preliminary Matlab package by Kolda etal. [4] which has an

10[13] proves it in both Forbenius norm and spectral norm.

26

efficient storage format but does not have many access methods. We have implemented DTA/STA on top of
that package. And we plan to do the same for the example-based tensor decomposition.

4.4 P4: Other Divergence (distance function)

Most of matrix decompositions such as SVD, CUR and CMD assume Gaussian distribution with Euclidean
distance, which may not be realistic for many applications. For example, network traffic are always nonneg-
ative. However, SVD type of approach may have negative values in the result which are hard to interpret.

In general, we want to relax both the distribution assumption and the distance measure in our model.
More specifically, we plan to use the Bregman divergence [6] as a general divergence measure for computing
the difference between two tensors. Meanwhile, the distribution assumption isautomatically generalized to
the exponential families because of the existence of a bijection between the exponential family and the
Bregman divergence as shown in [5]. For example,L2 distance and KL-divergence correspond to Gaussian
and Multinomial distribution, respectively.

The goal is to develop an optimization algorithm such as a gradient descent algorithm on tensors using
the Bregman divergence.

4.5 Evaluation plan

We plan to continue using the real data and real application to evaluate our methods. In particular, we plan
to study the following data:

• Network flow data: (Thanks to Prof. Hui Zhang and Dr. Yinglian Xie.) I plan to spend more time to
understand the data and application in the network forensics. The goal is todevelop useful tools to
find interesting patterns and identify real anomalies for network forensics.

• Machine monitoring application: from the data center of PDL (Thanks to Prof Greg Ganger). We
continue developing the automatic monitoring system, InteMon [21].

• DBLP and IMDB: The bibliographic data and movie database provide good examples of social net-
works. The task is to spot communities and identify abnormal individuals.

Other possible datasets we consider to study are :

• fMRI data: (Thanks to Prof Tom Mitchell.) fMRI data is in the format of< (x, y, z), v > where
(x, y, z) specifies the 3D coordinates andv is the value at the location. These data form 3rd order
tensors naturally. The goal is to classify the data.

• Financial data: Transaction datasets. The goal is anomaly detection.

5 Conclusion

We study incremental pattern discovery on streaming applications where the data are arriving continuously
in real-time. The contributions are the following:

• We proposed thetensor streamas a general dynamic data model for diverse applications. Under this
model data streams and time-evolving graphs become the first and second order special cases.

27

• We developed the streaming algorithms (SPIRIT, distributed SPIRIT) for first order tensor streams.
We evaluated the methods on real data and developed two prototyped systems(one on the environ-
mental sensor network and one on the machine monitoring for a data center)

• We proposed two incremental methods for tensor streams (DTA/STA) which are evaluated on different
datasets.

• We studied alternative methods for constructing low dimensional subspace for matrices using biased
sampling. The proposed method, CMD, achieves better computational and storage efficiency than the
traditional method.

• We propose to study the possibility of the incremental CMD and further extendCMD for tensor
streams.

• We plan to study other distance measure such as Bregman divergence forhandling more distribution
as Exponential family. The model under Kullback-Leibler divergence (aspecial case of Bregman
divergence) can deal with nonnegative data.

• We will evaluate our methods on real data and applications such as network forensics, machine mon-
itoring and social networks.

Finally, let me end the proposal with the proposed schedule in Table 4.

1-3 months P1: Effective example-based projection
4-6 months P2: Incremental CMD
7-8 months P3: Example-based tensor decomposition
9-11 months P4: Other distance measure
6-12 months Writing thesis
after 12 months Defense

Table 4: Time schedule

References

[1] http://www.informatik.uni-trier.de/ ley/db/. pages 18

[2] http://www.models.kvl.dk/source/. pages 26

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, andJennifer Widom. Models and
issues in data stream systems. InPODS, 2002. pages 10

[4] Brett W. Bader and Tamara G. Kolda. Algorithm xxx: Matlab tensor classes for fast algorithm proto-
typing. ACM Transactions on Mathematical Software, to apprear. pages 26

[5] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering withbregman divergences.Journal of
Machine Learning Research, 6:1705–1749, Oct 2005. pages 27

28

[6] L. M. Bregman. The relaxation method to find the common point of convex sets and its applications to
the solution of problems in convex programming.USSR Computational Mathematics and Mathemati-
cal Physics, 7:200–217, 1967. pages 6, 27

[7] J. D. Carroll and J. Chang. Analysis of individual differences inmultidimensional scaling via an n-way
generalization of ’eckart-young’ decomposition.Psychometrika, 35(3):283–319, 1970. pages 10

[8] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams using
hamming norms (how to zero in).TKDE, 15(3), 2003. pages 10

[9] Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. InPODS,
2005. pages 11

[10] L. de Lathauwer.Signal Processing Based on Multilinear Algebra. PhD thesis, Katholieke, University
of Leuven, Belgium, 1997. pages 3, 10

[11] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.
Harshman. Indexing by latent semantic analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990. pages 7

[12] Chris Ding and Jieping Ye. Two-dimensional singular value decomposition (2dsvd) for 2d maps and
images. InSDM, 2005. pages 10

[13] P. Drineas, R. Kannan, and M.W. Mahoney. Fast monte carlo algorithms for matrices iii: Computing
a compressed approximate matrix decomposition.SIAM Journal of Computing, 2005. pages 6, 8, 21,
22, 25, 26

[14] P. Drineas, M. W. Mahoney, and S. (Muthu) Muthukrishnan. Polynomial time algorithm for column-
row based relative error low-rank matrix approximation. Inmanuscript, 2005. pages 26

[15] Petros Drineas and Michael W. Mahoney. A randomized algorithm for a tensor-based generalization
of the svd.technical report, 2005. pages 10, 26

[16] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the inter-
net topology. InSIGCOMM, 1999. pages 11

[17] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics for improving approxi-
mate query answers. InSIGMOD, 1998. pages 10

[18] Sudipto Guha, D. Gunopulos, and Nick Koudas. Correlating synchronous and asynchronous data
streams. InKDD, 2003. pages 7

[19] R.A. Harshman. Foundations of the parafac procedure: model and conditions for an explanatory multi-
mode factor analysis.UCLA working papers in phonetics, 16:1–84, 1970. pages 10

[20] Xiaofei He, Deng Cai, and Partha Niyogi. Tensor subspace analysis. InNIPS, 2005. pages 10

[21] Evan Hoke, Jimeng Sun, and Christos Faloutsos. Intemon : Intelligentsystem monitoring on large
clusters. InSubmitted to VLDB, 2006. pages 5, 11, 14, 25, 27

29

[22] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation. In
FOCS, 2000. pages 10

[23] I.T. Jolliffe. Principal Component Analysis. Springer, 2002. pages 7, 13

[24] A. Kapteyn, H. Neudecker, and T. Wansbeek. An approach to n-mode component analysis.Psychome-
trika, 51(2):269–275, 1986. pages 10

[25] Flip Korn, H. V. Jagadish, and Christos Faloutsos. Efficiently supporting ad hoc queries in large
datasets of time sequences. InSIGMOD, pages 289–300, 1997. pages 7

[26] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Extracting large-scale
knowledge bases from the web. InVLDB, 1999. pages 11

[27] Jurij Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphsover time: Densification laws, shrinking
diameters and possible explanations. InSIGKDD, 2005. pages 11

[28] S. Muthukrishnan.Data streams: algorithms and applications, volume 1. Foundations and Trends. in
Theoretical Computer Science, 2005. pages 10

[29] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, andSantosh Vempala. Latent se-
mantic indexing: A probabilistic analysis.JOURNAL OF COMPUTER AND SYSTEM SCIENCES,
61(2):217–235, 2000. pages 5, 7

[30] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern discovery in multiple
time-series. InVLDB, pages 697–708, 2005. pages 1, 5, 7, 11, 14, 25, 26

[31] Amnon Shashua and Anat Levin. Linear image coding for regression and classification using the
tensor-rank principle. InCVPR, number 1, pages 42–49, 2001. pages 10

[32] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Online latentvariable detection in sensor
networks. InProceedings of the IEEE International Conference on Data Engineering(ICDE), 2005.
pages 11, 14, 25

[33] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed pattern discovery in multiple
streams. InProceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), 2006. pages 1, 5, 11, 13, 14, 25, 26

[34] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streamsand graphs: Dynamic tensor
analysis. InCMU technical report, 2006. pages 1, 5, 11, 25, 26

[35] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Compact matrix decomposition for
large graphs: Theory and practice. InCMU technical report, 2006. pages 1, 5, 11, 22, 25

[36] L. R. Tucker. Some mathematical notes on three-mode factor analysis.Psychometrika, 31(3):279–311,
1966. pages 10

[37] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In
ECCV, pages 447–460, 2002. pages 10

30

[38] N. Viereck, M. Dyrby, and S. B. Engelsen.Monitoring Thermal Processes by NMR Technology.
Elsevier Academic Press, 2006. pages 10

[39] Jeffrey Scott Vitter. Random sampling with a reservoir.ACM Trans. Math. Software, 11(1):37–57,
1985. pages 10

[40] Dong Xu, Shuicheng Yan, Lei Zhang, Hong-Jiang Zhang, Zhengkai Liu, and Heung-Yeung Shum.
Concurrent subspaces analysis. InCVPR, pages 203–208, 2005. pages 10

[41] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases. In
SIGMOD, 2005. pages 11

[42] Jieping Ye. Generalized low rank approximations of matrices.Machine Learning, 61:167–191, 2004.
pages 10

31

	Introduction
	Survey
	Low rank approximation
	Singular value decomposition (SVD)
	Principal component analysis (PCA)
	CUR decomposition

	Multilinear Analysis
	Tensor Basics
	Tensor Decomposition

	Stream Mining
	Graph Mining

	Current Work
	SPIRIT: incremental pattern discovery for 1st order tensor streams
	Monitoring variance matrix
	SPIRIT
	Experiment

	DTA and STA: incremental pattern discovery for high order tensor streams
	Problem Definition
	Dynamic Tensor Analysis
	Streaming Tensor Analysis
	Key applications
	Experiment

	Compact Matrix Decomposition for large sparse graphs
	Subspace Construction
	Low rank approximation
	CMD in practice
	Experiment

	Proposed Work
	P1: Effective example-based projection
	P2: Incremental CMD
	P3: Example-based tensor decomposition
	P4: Other Divergence (distance function)
	Evaluation plan

	Conclusion

