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Abstract

Incremental pattern discovery targets at streaming agjbics where the data are arriving contin-
uously in real-time. How to find patterns (main trends) inldtéae? How to efficiently update the
old patterns when new data arrive? How to utilize the pattersolve other problem such as anomaly
detection?

For example, 1) a sensor network monitors a large numbestflalited streams (such as temperature
and humidity); 2) network forensics monitor the Internetneounication patterns to identify the attacks;
3) cluster monitoring examines the system behaviors of abeurof machines for potential failures;
4) social network analysis monitors a dynamic graph for camities and abnormal individuals; 5)
financial fraud detection tries to find fraudulent actigtigom a large number of transactions in real-
time.

In this thesis proposal, we first investigate a powerful dataleltensor strean{TS) where there
is one tensor per timestamp. To capture diverse data formatshave a zero-order TS for a single
time-series (stock price for google over time), a first-or@& for multiple time-series (e.g., sensor
measurement streams), a second-order TS for a matrix ¢eagphs), and a high-order TS for a multi-
array (e.g. Internet communication network, source-dattin-port). Second, we develop different
online algorithms on TS: 1) the centralized and distribl&dRIT for mining a first-order T @3];
2) compact matrix decomposition (CMD) for a second—order@; 3) the dynamic tensor analysis
(DTA) and streaming tensor analysis (STA) for a high-ord&r[B4]. From the methodology aspect,
we propose to extend CMD for incremental data and generdlezenethods to handle more constraints
(such as nonnegativity) and different distance measurgsBeegman divergence). From the evaluation
aspect, we propose to apply our methods in depth to someppltations such as network forensics,
cluster monitoring and financial fraud detection.
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1 Introduction

Incremental pattern discovery targets at streaming applications wherardataiving continuously in real-
time. The goal is to answer the following questions: How to find patterns (maidgyen real-time? How
to efficiently update the old patterns when new data arrive? How to utilize ttexpéo solve other problem
such as anomaly detection and clustering?

Some examples include:

e Sensor Networkeonitor different measurements (such as temperature and humidity) frorgea lar
number of distributed sensors. The task is to monitor correlations amongediffeensors over time
and identify anomalies.

e Cluster Managememnonitors many metrics (such as CPU and memory utilization, disk space, num-
ber of processes, etc) of a group of machines. The task is to find madstagl identify anomalies
or potential failures.

e Social Network Analysigbserves an evolving network on social activities (such as citation nietwor
The task is find communities and abnormal individuals.

e Network Forensicsnonitors the Internet communication in the form of (source, destination, port,
time, number of packets). The task is to summarize the main communication patteideatify the
attacks and anomalies;

e Financial Fraud Detectiorexamines transactional activities of a company over time and tries to iden-
tify the abnormal/fraudulent behaviors.

Data Model:

To deal with the diversity of data, we introduce an expressive data rtetdrfrom multi-linear analy-
sis M]. For the Sensor Networks example, we have one measurententdeperature) from each sensor
every timestamp, which forms a high dimensional vector (first order teasafiown in Figure 1(a). For the
Social Network Analysis, we have authors publishing papers, whichd@raphs represented by matrices
(second order tensors). For the network forensics example, thed@edtensor for a given time period has
three modes: source, destination and port, which can be viewed as a@8butie (see Figure 1(c)). An
entry (, j, k) in that tensor (like the small blue cube/in Figure 1(c)) has the number é&eafrom the
corresponding sourceto the destination through portk, during the given time period.

Focusing on incremental applications, we proposetémsor strean(TS) which is an unbounded se-
guence of tensors. The streaming aspect comes from the fact thatmssmstare arriving continuously.
Incremental Pattern Discovery.

Incremental Pattern discovery is an online summarization process. In this,th@ focus on incre-
mentally identifying low-rank structures of the data aspagernsand monitor them over time. In another
words, we consider the incremental pattern discovery as an incremantigionality reduction process.

Let us illustrate the main idea through the network forensics application. Inxaism@e, the hourly
communication data are represented by high dimensional (3rd orderjdewsich are summarized as low
dimensional (3rd order) core tensors in a different space specifidftetprojections (see Figure 2).



Keywords o
§
(]
g =
] g
z £
Sensors 8 Py
‘ ‘ ‘ ‘ Sources
(a) 1st-order (b) 2nd-order (c) 3rd-order

Figure 1: Tensor examples: The blue region indicates a single element im#ue seich as a measurement
from a single sensor in (a), the number of papers that an author wretgigan keyword in (b), the number
of packets sent from a source IP to a destination IP through a certdimgoy.

Moreover, the projections capture the overall correlations or hiddgablas along three aspecturce,
destination and portFor example, th&ource projectiortharacterizes the client correlations; hestina-
tion projectionsummarizes the server correlations; Bogt projectionmonitors the port traffic correlations.
The projections are dynamically monitored over time.

Furthermore, the core tensor indicates the association across ditispatts. More specifically, if there
are 3 source hidden variables, 5 destination hidden variables and Bighaenh variables, the core tensor is
a 3-by-5-by-6 3D array, in which the values correspond to the levalsebciation across three different
aspects active at different time. More details are covered in Section 3.2.4

For example some web-server hidden variable is always associated withctient behavior through
port 80 since those clients always talk to those web servers. In thgtwaseill see a high value in the
corresponding element in the core tensor. Note that this association isdymamely, we may observe

different association over time.
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Figure 2: Pattern discovery on a 3rd order tensor

The incremental aspect of the algorithms arrives from the fact that meeels to be constantly updated.
More specifically, the problem we study is the follows: Given a stream sbied; . . . X,,, how to compress
them incrementally and efficiently? How to find patterns and anomalies? We paldlitess two aspects of
incremental pattern discovery:

¢ Incremental updateWe want to update the old model efficiently, when a new tensor arriveska&y
is to avoid redundant computation and storage.
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e Model efficiencyVe want an efficient method in term of computational cost and storagecgmi®n.
The goal is to achieve linear computation and storage requirement to thie o

For example, Figure 3 shows the monitoring streams on a storage servarisvaicexample of a first order
tensor stream. Each vertical slice correspond a first order tensto(eThe goal is to find main trend and
anomalies as reported on Figure 3(b).
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Figure 3: InteMon@l]: automatic cluster monitoring system

Why it is useful?:
The result from incremental pattern discovery can be used for many ampoasks:

e CompressionThe core tensor capture most of the information of the original data butincé lower
dimension.

e Anomaly detectianFrom the core tensor, we can approximate the original tensor and cothgute
reconstruction error. A large reconstruction error is often an indidat@an anomaly.

e Clustering We can often cluster the original data based the projection (see Sectidri@.details).
The idea is closely related to latent semantic indexing () [29].

More importantly, all these tasks can be done incrementally which is esserntialnyp monitoring applica-
tions as listed in the beginning of this section.
Thesis scope

Our current work concerns two aspects of the incremental patternveigcd-irst,tensor ordervaries
from one [@{)BB], two@5] to higher ordém—[k%]. The compleﬁt’mcreases dramatically as going to higher
order tensor. Second, we exploit differenutbspace formatioatrategies: 1prthogonal projectionwhich
forms orthogonal matrices based on the data (such as SVD, PC ) [@Ba)example—based projection
which select judiciously examples from data to form the subs@ce [35].

Our proposed work includes:

INot only the space and time complexity, but the convergence propersgises with the tensor order



[ Symbol | Description

v a vector (lower-case bold)

v(i) thei-element of vectoxr

A a matrix (upper-case bold)

AT the transpose oA

Al a sequence aV matricesAq,..., A,
A(i,7) the entry(i, j) of A

A(i,:) or A(:, %) i-th row or column ofA

A a tensor (calligraphic style)

A(ir,...,im) |the element oft with index (i1, ..., i)

M the order of the tensor

N; the dimensionality of theth mode { < i < M)

Table 1: Description of notation.

e Effective example-based projectiofhe example-based method uses the actual data instead of some
other abstract notion like orthogonal basis. It has the advantages itimtaterpretability and sparse
encoding. One problem is that the current method [13] sometimes givestawause projection (in
term of reconstruction error) according to our empirical study than tth@gonal projection such as
SVD. We plan to develop a robust method for doing the example-basedtiwoje

¢ Incremental example-based projectioVe plan to further extend the exmaple-based method for
streaming applications. The goal is to smartly reuse the old model to reducentipaitational cost
and construct more robust model when new data arrive.

e Other divergence and distributioCurrently, we only use thé, (Euclidean) distance, which assumes
the Gaussian distribution. However, the Gaussian distribution may not ledaageumption for many
realistic scenarios where nonnegativity and heavy-tailed distributioregueéred. To address that, we
propose to generalize our methods for other divergence such asahman divergencg[6].

e Extensive case studyo validate the practical value of our methods, we plan to apply the methods on
several real applications such as network forensics, cluster monitamieshdinancial application. We
will try to have in-depth study and collaboration with the domain experts in thekisfin order to
develop practical algorithms.

The layout of this thesis proposal is as follows: Section 2 discussesléted&vork/ Section|3 presents
the completed work, followed by the proposed work in Section 4. Finally welode in Section 5.

2 Survey

In this section, we first discuss some related work in low rank approxima#ieoond, we introduce multi-
linear analysis specially tensor operations. Finally, we present the stustygam and graph mining which
are two special cases under the tensor model.



2.1 Low rank approximation
2.1.1 Singular value decomposition (SVD)

SVD of matrixA € R™*" is a factorizatiolA = UXV” whereU andV are orthogonal anB is diagonal.
In addition, the entries aE are nonnegative in nonincreasing order. The kasink approximation can be
computed adJ, X,V whereX; is the top leftk-by-k sub-matrix ofX, andU, andV, are the firstk
columns ofU andV respectively.

SVD has served as a building block for many important applications, SLEBA] and LSI@QEl],
and has been used as a compression techrﬁue [25]. It has alsqpéed as correlation detection routine
for streaming setting@@O].

Pros: SVD is often used as a dimensionality reduction tool for matrices with low rémictsires (i.e.,

k < min(m,n)). The computed singular vectors are also useful for tasks such dsrioigsand outlier
detection.

Cons When matrixA is sparse, it can be stored in sparse matrix representation so that teeaspaice-
ment is proportional to the number of nonzero entries. Unfortunately, 8t®, U andV become dense
due to the orthogonalization process. Although the new matrix dimensisstill small for low rank ap-
proximation, the total space for storidg and V, may become much larger than the space required for
storingA.. Even worse, if the dimensions &f are largef: andn are large), SVD becomes computationally
too expensive to perform.

2.1.2 Principal component analysis (PCA)

As shown in Figure 4, PCA finds the best linear projections of a set of diiglensional points that mini-
mizes least-squares cost. More formally, givepoints represented as row vecterg, € RY inan N
dimensional space, PCA computepointsy;|"; € RE (R < N) in a lower dimensional space and the
projection matrixU € RV*% such that the least-squares cest > ", ||x; — y; U7 ||} is minimized.

N R
— Xop—— Y- N
n A~n - |XR u't

Figure 4: PCA projects th&-D vectorx;s into R-D vectory;s andU is the projection matrix.

The solution of PCA can be computed efficiently by diagonalizing the cowsgiamatrix ofx;|? ;.
Alternatively, if the rows are zero mean, then PCA is computed by the Sindallae Decomposition (SVD):
if the SVD of X is X = Ugyg X Zsvd X Vea', thenourY = Uy x B0 andU = V,y

2Both x andy are row vectors.



2.1.3 CUR decomposition

Drineas et aIJEB] proposed a powerful method, called CUR decompuogitiperform matrix factorization.

Such method approximates the input matkixc R™*™ as a product of three small matrices constructed
from sampled columns and rows, while preserving the sparsity of the drigimdter decomposition. More
formally, it approximates matriA asA = CUR, whereC € R™*¢ (R € R"*") containsc(r) scaled
columns(rows) sampled from, andU € R“*" is a small dense matrix which can be computed fil@m
andR.

The key idea of CUR is to sample matrix rows and columns strategically, with erplad biased
towards those ones with higher norms (see Figure 5). In other wordspthmns and rows with higher
entry values will have higher chance to be selected multiple times. Once we alsiof sampled ronR
and columngC, we can computé as the projection oA onto the span of.

n n

xR

m A ™~ m

Figure 5: CUR approximates matrix € R™*" by the product of three matric&s, U, R whereC andR
are sampled columns and rovi§,is the pseudo-inverse & (the intersection o€ andR)

Pros. CUR provides an efficient approximation of SVD. It requires only tweges over the input matrix
A e R™*™ with a small buffer size on the order 6fm+n). Unlike SVD, the resulting matrices from CUR
are still sparse (except for the matiix € R“*" which is not necessarily stored since it can be computed
from C andR). Because CUR does not require orthogonalization on the entire n#atitis also faster in
computation than SVD.

Cons The biased sampling with replacement usually results in many duplicate colutimeves inC and

R, especially for input graphs that follow power-law distributions. On the loand, these duplicates are
necessary for the algorithm to achieve a low sum of squared error) (E8Ehermore, simply ignoring the
duplicate samples does not solve the problem and usually brings huge @rrdhe other hand, they do
incur repeated computation and additional space requirement.

2.2 Multilinear Analysis
2.2.1 Tensor Basics

A tensor of orderM closely resembles a Data Cube with dimensions. Formally, we write ai'th order
tensorX € RV *Nu as Xy, 1, WhereN; (1 < i < M) is thedimensionalityof the ith mode
(“dimension” in OLAP terminology). For brevity, we often omit the subscigt, . . ., Ny

We will also follow the typical conventions, and denote matrices with upper bakl letters (e.g.U)
row vectors with lower-case bold letters (exj), scalars with lower-case normal font (e.@), and tensors



with calligraphic font (e.g.sX). From the tensor literature we need the following definitions:

Definition 1 (Matricizing or Matrix Unfolding) The mode# matricizing or matrix unfolding of ard/th
order tensorX € RV > *xNum gre vectors inR™N¢ obtained by keeping indekfixed and varying the other

indices. Therefore, the modkmatricizingX 4 is in R(ITiza Ni)xNa

The operation of modé-matricizing X' is denoted as unfold(,d)= X ;. Similarly, the inverse operation
is denoted as fol&4)). In particular, we haveX = fold(unfold(¥X, d)). shows an example of
moded matricizing of a 3rd order tenso¥ € RN1*N2xNs to the (N, x N3) x Ni-matrix X ;). Note that
the shaded area & ;) in|Figure 6 the slice of the 3rd mode along the 2nd dimension.

Ny

N. N, E
N5~
N, \/t .
Py Ny \
X

Figure 6: 3rd order tenso¥ € RV *N2xNs js matricized along mode-1 to a mati ;) € R(V2xNa)x N,
The shaded area is the slice of the 3rd mode along the 2nd dimension.

Definition 2 (Mode Product) The mode product’ x,; U of a tensort’ € RV1**Nu and a matrixU €
RN*N" is the tensor iR x> Nimt X N'xNiw1x- XNt defined by:

(X X]l\i[U) (i17 cee 7id717j7id+17 cee 7ZM)
= Zidizl X(il’ cee 7id—1,idaid+lv cee 7ZM)U(ld7])

1)
for all index values.
TheMode Producfor 2nd order tensor degenerates to matrix product. Figure 7 showsampée of 3rd

order tensoft mode-1 multiplies a matriXJ. The process is equivalent to first matriciXealong mode-1,
then to do matrix multiplication oK; andU, finally to fold the result back as a tensor.

R
N N
o N 7
N, X Xl U —_N,

Ny

Figure 7: 3rd order tensokjy, v, n,] X1 U results in a new tensor iR~z s



In general, a tensot’ € RN1>*Nu can multiply a sequence of matrickg|M, € RVi*fi as: ¥ x;
M
U - x 3y Uy € REv-xEar which can be written a& [] «, U; for clarity. Furthermore, the notation for

=1
X x1Uq - x21 Uiy X010 Uiy -+ - xar Uy (i€ multiplication of allU ;s except theé-th) is simplified

asX [] x,U;.
J#

Definition 3 (Rank-(R1, ..., Ry;) approximation) Givenatenso’ € RV1**Nu gtensort € RV **Num

~ ~ 12
with rank (X(d)) = Ryfor1 < d < M, that minimizes the least-squares c#&t — XHF ,is the best rank-
(Ry,- -+, Ryr) approximation ofXE

- M
The best rank approximatiokl = Y [] «, U/, where the core tens@t € R ><<Ex and the projection
=1

matricesU;|M | € RNx*Fu,

2.2.2 Tensor Decomposition

Tensor algebra and multilinear analysis have been applied successfully@rﬁmainsﬁdzz,r% . Pow-
erful tools have been proposed, including Tucker decomposit [B6Rllel factor analysis EﬂQ] or
canonical decompositiorf [7]. Tensors have been recently used in madbkion research, for example by
Shashua and Levirﬂ:%l] for linear image coding, by Vasilescu and pet#os B?] for face recognition.
Ye m] presented the generalized low rank approximations which exe@ésfrom the vectors (1st-order
tensors) into matrices (2nd order tensors). Ding and&e [12] propmseghproximation of@Z]. Similar
approach is also proposed in [20]. Xu et al. | [40] formally presentedeahsor representation for PCA
and applied it for face recognition. Drineas and Mahoney [15] shdvegdto approximate the tensor SVD
using biased sampling.

These methods do one or more of the following assumptions: the dataseses derstatic. We are
interested in sparse, streams of tensors, like the IP traffic matrices over time.

2.3 Stream Mining

Data streams has been extensively studied in recent years. The ggabisdss the incoming data efficiently
without recomputing from scratch and without buffering much historictd.ddawo recent surveya[EbS]
have discussed many data streams algorithms, among which we highlight tteal telehniques: sampling
and sketches.

Sampling is a simple and efficient method to deal with large massive datasetgssapling algorithms
have been proposed in the streaming setting such as reservoir sa?md]ircgnf&@se samples, and counting
samplesﬁ?]. These advanced sampling techniques are related to oylexsased projection technique.

“Sketch” is another powerful technique to estimate many important statistich, asi,,-norm [22,
@],of an unbounded stream using a compact structure. The underly@ogytbf “sketch” is to perform
dimensionality reduction using random projections as opposed to thé lbask approximations. Random

Ny Nt
*The square Frobenius norm is defined|ag|s = > -+ >~ X (i1, ..., in)°.

i=1 i=1
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projection has the advantage that it is fast to compute and preservestredibetween nodes. However,
the projection leads to dense data representation.

2.4 Graph Mining

Graph mining has been a very active area in data mining community. Becaitsarmgortance and expres-
siveness, various problems are studied under graph mining.

From the explorative aspect, Faloutsos et al. [16] have shown therlpawdistribution on the Internet
graph. Kumar et alJﬂ6] studied the model for web graphs. Leskovat 57] discoverd the shrinking
diameter phenomena on time-evolving graphs.

From the algorithmic aspect, Yan et al. [41] proposed an algorithm to pperdabstructure similarity
search on graph databases, which is based on the algorithm for ctagsierit itemset mining. Cormode and
Muthukrishnanﬁ9] proposed streaming algorithms to (1) estimate frequeoayents of degrees, (2) find
heavy hitter degrees, and (3) compute range sums of degree valugeanssof edges of communication
graphs, i.e., (source, destination) pairs. In our work, we view graplngias a matrix decomposition
problem (2nd order tensor) and try to approximate the entire graph, \ididifferent from most of the
existing graph mining work.

3 Current Work

Our current work consists of the following parts:

e SPIRT and distributed SPIR@),E&]: SPIRIT is a streaming algorithm for finding patterns in mul-
tiple co-evolving streams (first order tensor streams). We further eX@&1RIT into a distributed
algorithm where distributed streams are assigned into different growgss)dbal patterns are com-
puted from each group, and finally global patterns are constructaddlidocal patterns. In addition
to the experiments on several real datasets, we implemented two prototypessyateireless sensor
Motes E;] and machine monitorin@Zl], respectively.

e Dynamic and Streaming Tensor Analy@]: We proposed tensor streams as a general and expres-
sive data model for many different applications. Two incremental algorigm@proposed, namely,
dynamic tensor analysis (DTA) and streaming tensor analysis (STA).

e Compact Matrix Decomposition (CM [ﬁ{%]: Observing the sparsity in many real data, we studied an
alternative decomposition method to SVD, which preserves the sparsitgrpy@nd provides more
intuitive results.

3.1 SPIRIT: incremental pattern discovery for 1st order tensor streams

Given a collection ofV streams, SPIRIT does the following:
e Adapts the number df main trends (hidden variables) to summarize Ahstreams.

e Adapts the projection matriXJ which determines the participation weights of each streams on a
hidden variable.

11



More formally, the collection of streams X ¢ R™ " where 1) every row is av-dimensional vector
containing values at a certain timestamp anc:2% increasing and unbounded over time; SPIRIT finds
X = YUT incrementally where the hidden variate ¢ R"* % and the projection matrikJ € RV*E In

a sensor network example, at every time tick thereMm@easurements each from a temperature sensor in
Wean hall; Thes&' measurements (one row in mat&X) map toR hidden variables (one row in matrix)
through the projection matrikJ. An additional complication is thdll is changing over time based on the
recent values fronX.

3.1.1 Monitoring variance matrix

Let us consider the offline version first wheXeis bounded and static. Given a mati € R"*V, the
variance matrix is defined &8 = X7 X. And the diagonalization of gives us the projection matriJ,
namely,C = UXU?. The hidden variable¥ = XU.

For the online version when new values arrive as a marjx,, € R" >V @ the variance matrix can
be updated a€,,.., = C + Xfewxnew. And the new projection matrix can be obtained by diagonalizing
C..ew- Again, the hidden variabl¥ .., = X6 Chew-

Complexity: AssumingX,,.., is a vector, the computation complexity@® R N?) and the space complexity

O(N?) whereR is the number of hidden variables antthe number of streams.

3.1.2 SPIRIT

The previous algorithm is simple and exact but still too expensive for sppleation when the number of
streamsV is large. We proposed SPIRIT, an approximation achieving linear spatesmputation cost in
N.
Tracking a projection matrix : The diagonalization process in the previous algorithm can be expensive
Especially, when the change of the variance matrix is small, it is not worth wlgigong that matrix. The
idea is to continuously track the changes of projection matrices using thesikecleast-square technique
for sequentially estimating the principal components.

The main idea behind the tracking algorithm is to read in a new vectord perform three steps:

1. Compute the projectiop by projectingx ontoU;

2. Estimate the reconstruction erre)) @nd the energy (the sum of squares of all the past values), based
on they values; and

3. Update the estimates bf.

Intuitively, the goal is to adaptively updaié quickly based on the new values. The larger the esror
the moreU is updated. However, the magnitude of this update should also take intona¢hewpast data
currently “captured” byU. For this reason, the update is inversely proportional to the cuergrgy(the
sum of squares of all the previous values).

Complexity: The computation and space complexity &€V R).
Detecting the number of hidden variablesR:

4Whenn' = 1, X,.., becomes a vector which is equivalent to add one more row to originabatr

12



We use the Energy thresholdihtp deterimine the numbeR. The idea is to increase or decrease the
number of hidden variables when the ratio between the energy kept bidthenhvariables and the one kept
by the input values is below or above a certain threshold (e.g. .95 and .98 @xjperiments).

Other extensions

In addition to spotting the correlations across different streams, SPI&iTalso help to provide the

following functionalities:

e Forgetting factor We can adapt to more recent behavior by using an exponential foédittor
0 < A < 1tothe old energy. This allows us to follow trend drifts over time.

e Forecasting We can apply any forecasting algorithm on the hidden variaklésstead of original
valuesX. This is a much better method for forecasting, becausdfitijency the number of hidden
variables is much smaller than the original streamseffctivenessa simple forecasting method
like autoregression may work well since the hidden variables are utai@deby construction (same
reason as PCA).

e Missing values When we have a forecasting model, we can use the forecast to estimategmissin
values. We then use these estimated missing values to update the projectiolUnasiwell as the
forecasting model.

e Distributed streamsWe present a hierarchical approacm [33] to deal with distributedrsise This
method avoids many drawbacks of the centralized approach such asmimglef failure, communi-
cation bottleneck, and scalability issue. It requires limited shared informatrossdifferent groups.
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%It is a common method to determine how many principal components aded@B].
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Figure 9: Hidden variables: The third and fourth hidden variables armiittent and indicate “anomalous
behavior”. Note that the axes limits are different in each plot.

3.1.3 Experiment

We did extensive experiments on many real datasets for both centralidetistmibuted scenariog[3ﬁ33].
And we implemented two systems using this algorithm on actual Motes se@bm[ﬂzluster monitor-
ing M]. Here we present one experiment to illustrate the point.

Description The Mot es light dataset consists of 48 light intensity measurements collected usingl®erke
Mote sensors, at several different locations in a labj (see Figuree)agperiod of a week (2000 timestamps).
Data characteristicsThe main characteristics are:

e A clear global periodic pattern (daily cycle).
e Occasional big spikes from some sensors (outliers).

Results of SPIRIT SPIRIT detects four hidden variables (see Figure 9). Two of thesat@renittent and
correspond to outliers, or changes in the correlated trends. We shawdhestructions for some of the
observed variables in Figure 8(b).

Interpretation In summary, the first two hidden variables (see Figure 9) correspond gidhal trends and
the last two, which are intermittently present, correspond to outliers. In pkatic

e The first hidden variable captures the global periodic pattern.

e The interpretation of the second one is due to the phase-shift acrom®dtfstreams. The first two
hidden variables together are sufficient to express arbitrary phitse sh

e The third and fourth hidden variables indicate some of the potential outliers ithetta. For example,
there is a big spike in the 4th hidden variable at time 1033, as shown in Figure|9. Examining the
corresponding participation weights 1 at that timestamp, we can find the corresponding sensors
“responsible” for this anomaly, i.e., those sensors whose participatiortsdigve very high magni-
tude. Among these, the most prominent are sensors 31 and 32. Lookirgaattial measurements
from these sensors, we see that before tiree 1033 they are almost 0. Then, very large increases
occur around = 1033, which bring an additional hidden variable into the system.
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3.2 DTA and STA: incremental pattern discovery for high order tensor streams
3.2.1 Problem Definition

Here we first formally define thiensor streamsThen we overview the operations on them.

Definition 4 (Tensor stream) A sequence aof/th order tensord; ... X,,, where eacht; ¢ RN1xxNu
(1 <i < n),is called a tensor streamiif is a positive integer that increases with time.

Intuitively, we can consider a tensor stream as a sequence of tenabasdftoming incrementally over
time whereY,, is the latest tensor in the stream. In the network monitoring example, a newdandtensor
(as the one in Figure 1(c)) comes every hour.

After we defined the data models, the main operation is to represent the btégiears in some other
basis such that underlying patterns are easily revealed.

Definition 5 (Tensor analysis) Given a sequence of tenso¥s . . . &,,, where eacht; €¢ RV *xNw (1 <
i < n), find the orthogonal matrice&); € RN} ~one for each mode, such that the reconstruction

M
X — X [T «, (G, U])
=1

error e is minimizedee = )",

F

M
Note thatX; [] «,(U;U7) is the approximation oft; under the space spanned By|},. And it can be
=1

M M
rewritten as); || XiU;fF where); is the core tensor defined 33 = &; [] «,U; (see Figure 12 for the

i=1 i=1
intuition behind).
More specifically, we propose two variants untlemsor analysisdynamic tensor analysis (DTA) and
streaming tensor analysis (STA) for a tensor stream.

3.2.2 Dynamic Tensor Analysis

Here we present the dynamic tensor analysis (DTA), an incrementalthigdior tensor dimensionality
reduction.
Intuition: The idea of the incremental algorithm is to exploit two facts:

1. In generatensor analysi€an be computed relatively quickly once the variance matfiaes avail-
able;

2. Variance matrices can be incrementally updated without storing any hatteitsor as shown in

Section 3.1.1.

The algorithm processes each mode of the tensor at a time. In particulzayiduece matrix of theth mode
is updated as:
Cy — Ca+ X[ X(q)
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Figure 10: New tensof’ is matricized along thelth mode. Then variance matr&€,; is updated by
X@)X(d)- The projection matriXJ, is computed by diagonalizin@,.

whereX ;) € RUlizaNi)>Na s the moded matricizing of the tensof’. The updated projection matrices
can be computed by diagonalizatio@; = U;S,U”, whereU is orthogonal matrix an® is diagonal
matrix. The process is visualized in Figure 10.

Similar to the SPIRIT, we incorporate thiergetting factorto emphasize the recent data and use the
energy criterionto estimate the number of hidden variables along each mode.

Complexity: The space consumption for the incremental algorithp{§8, N; + XM N; x R; + M R,
where N; is the dimensionality of théth mode andR; the number of hidden variables along tile mode
(the rank along théth mode). The dominant factor is from the first termH.‘é‘ﬁ1 N;). However, standard
offline tensor analysis requires @Hi]‘il N;) for storing all tensors up to time, which is unbounded.

The computation cost i©(>" M R;N? + T[], N;. Note that for medium or low mode tensors (i.e.,
order M < 5), the diagonalization(@(Zf\i1 R;N?)) is the main cost/ Section 3.2.3 introduces a faster
approximation of DTA that avoids diagonalization.

While for high order tensors (i.e., ordéf > 5), the dominate cost becomes]?[);&1 N;) from updating
the variance matrix . Nevertheless, the improvement of DTA is still tremendoupared to the offline
methods Of Hf\il N;) wheren is the number of all tensors up to current time.

3.2.3 Streaming Tensor Analysis

Now we present thetreaming tensor analys{§TA), a fast algorithm to approximate DTA without diago-
nalization.

The goal of STA is to adjust projection matrices smoothly as the new tensorsdomélote that the
tracking process has to be run on all modes of the new tensor. Forargade, we first matricize the tensor
X into a matrixX 4, then adjust the projection matd, by applying SPIRIT algorithm (see Section[3.1)
over the rows oX ;). The process is visualized|in Figure 11.

To further reduce the time complexity, we can select only a subset of therseeX ;). For example,
we can sample vectors with high norms, because those potentially give ligbact to the projection
matrix.

Complexity: The space complexity of STA is the same as DTA, which is only the size of taaresor.
The computational complexity is OC; R;) [ [, IVi) which is smaller than DTA (wheR; < N;). The STA

®Recall the variance matrix along thiéh mode ofX (4, € R{Liza Ni)XNa js defined a€C = Xy X (q) € RN2*Na.,
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can be further improved with random sampling technique, i.e., use onlytsafosevs of X ;) for update.
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G L L
Matricizing | W
X KR
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Ug | Ug
L_*|Pop out|*

Figure 11: New tensak’ is matricized along théth mode. For every row aX 4, we update the projection
matrix U,. And S, helps determine the update size.

3.2.4 Key applications

We investigate the following two applications of DTA and STA:
Anomaly detection: We envision the abnormal detection as a multi-level screening processe wie try
to find the anomaly from the broadest level and gradually narrow downetspkcifics. In particular, it
can be considered as a three-level process for tensor streamse)agsequence of tensors, identify the
abnormal ones; 2) on those suspicious tensors, we locate the abnordes;i8pand then find the abnormal
dimensions of the given mode. In the network monitoring example, the systsiiriigs to determine
when the anomaly occurs; then it tries to find why it occurs by looking at #feictipatterns from sources,
destinations and ports, respectively; finally, it narrows down the pmoble specific hosts or ports.
DTA/STA enables us to quantify the multi-level anomaly score through a simpdasgruction error.
Multi-way latent semantic indexing: The goal of the multi-way LSl is to find highly correlated dimensions
within the same mode and across different modes, and monitor them over timgd@ahe DBLP example,
author-keyword over time, Figure 12 shows that initially {if) there is only one group, DB, in which all
authors and keywords are related to databases; later o, Jitwo groups appear, namely, databases (DB)
and data mining (DM).

3.2.5 Experiment

Network data: The traffic trace consists of TCP flow records collected at the baekbmuter of a class-
B university network. Each record in the trace corresponds to a dine¢tiiCP flow between two hosts
through a server port with timestamps indicating when the flow started andefthi$kie partition raw data
stream into disjoint hourly based windows and construct a tensor faneiaciow.

Because the tensors are very sparse and the traffic flows are st@awads a small number of dimen-
sions on each mode, we select otNy=/N>=500 sources and destinations aNg=100 port numbers with
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Figure 12: U 4 andU g capture the DB (stars) and DM (circles) concepts in authors and kegwaspec-
tively; initially, only DB is activated in)y; later on both DB and DM are ipy,,.

name | description dimension timestamps
| P2D | Network 2D 500-by-500 1200

| P3D | Network 3D | 500-by-500-by-100 1200
DBLP | DBLP data 4584-by-3741 11

Figure 13: Three datasets

high traffic.| Figure 14(a) shows an example source-destination matrstroeted using traffic data gener-
ated from 10AM to 11AM on 01/06/2005. We observe that the matrix is indpatss, with most of the
traffic to or from a small set of server like hosts.

Moreover, the distribution of the entry values is very skewed (a powerdiawibution) as shown in
Figure 14(b). Most of hosts have zero traffic, with only a few of exiogys which were involved with high
volumes of traffic (over0* flows during that hour). Given such skewed traffic distribution, weaale all
the non-zero entries by taking the natural logarithm (actullg(z + 1), to account for: = 0), so that the
matrix decomposition results will not be dominated by a small number of very éaryg values.

destination
entry count

10° 10
source x 10" volume

(a) Source-destination matrix (b) Entry distribution

Figure 14: Network Flow: the example source-destination matrix is verysegart the entry values are
skewed.

Bibliographic data: Based on DBLP datg[l], we generate author-keyword 2nd ordsotsiof KDD and
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VLDB conferences from year 1994 to 2004 (one tensor per ye&®.€htry(a, k) in such a tensor indicates
that authow has published a paper with keywadtdn the title during that year. The value of the entay k)

is the number of timeg appear in the title during that year. In total, there are 4,584 authors antl 3,74
keywords. Note that the keywords are generated from the paper tittesaftple stemming and stop-word
removal.

Computational cost: We first compare three different methods, namely, offline tensor andI93i8),
dynamic tensor analysis (DTA), streaming tensor analysis (STA), in termsnoputation time for different
datasets. Figure 15 shows the CPU time in logarithm as a function of relapseSinue. the new tensors
keep coming, the cost of OTA increases Iine@cri:yhile DTA and STA remains more or less constant. Note
that DBLP in| Figure 15(c) shows lightly increasing trend on DTA and STAabse the tensors become
denser over time (i.e., the number of published paper per year are iingreasr time), which affects the

computation cost slightly.
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Figure 15: Both DTA and STA use much less time than OTA over time acrossatiffdatasets

We show that STA provides an efficient way to approximate DTA over timgeaally with sampling.
More specifically, after matricizing, we sample the vectors with high norms tateptie projection ma-
trices. Figure 16 shows the CPU time vs. sampling rate, where STA runs rasieln €ompared to DTA.
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Figure 16: STA uses much less CPU time than DTA across different datasets

Accuracy comparison: Now we evaluate the approximation accuracy of DTA and STA comparedAo OT

"We estimate CPU time by extrapolation because OTA runs out of the merfteryadew timestamps.
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Performance metric: Intuitively, the goal is to be able to compare how accurate each tensangesdion

is to the original tensors. Therefore, reconstruction error providestwal way to quantify the accuracy.
Recall the reconstruction error is defined in Definition 5. Error canysvee reduced when more eigenvec-
tors are included (more columns in the projection matrices). Thereforexwieefinumber of eigenvectors
in the projection matrices for all three methods such that the reconstructarfar OTA is 20%. And we
use the error ratios between DTA/STA to OTA as the performance indices.

Evaluation results: Overall the reconstruction error of DTA and STA are close to the exper3TA
method (see Figure 17(d)). Note that the cost for doing OTA is veryresipe in both space and time
complexity. That is why only a few timestamps are shown in Figure 17 sincethétepoint OTA runs out
of the memory.

In more details, Figure 17(a)-(c) plot the error ratios over time for thetasits. There we also plot the
one that never updates the original projection matrices as a lower-basetre.

DTA performs very close to OTA, which suggests a cheap incremental oethwer the expensive
OTA. The even cheaper method, STA, usually gives good approximatibifAo(see Figure 17(a) and (b)
for IP2D and IP3D). But note that STA performs considerably worsBBLP in|Figure 17(c) because
the adaptive subspace tracking technique as STA cannot keep up tig tieabges of DBLP tensors over
consecutive timestamps. Therefore, STA is only recommended for thiadasting tensors with significant
time-dependency (i.e., the changes over consecutive timestamps shobiédtaotbig).

2. 1 4
<-DTA %-DTA <-DTA P20 M
5l ©-STA 125|©-STA 45 X ©-STA 35(|EIP3D
““I| - no update| “{[ -2 no update| e AP AN ~>-no update [IpBLP
a B 9/,9/&\ 3

15“‘“‘ " IHH
= 4 6 1 0

6 8 3 4
hours hours Years DTA STD No Update

(@) | P2D (b) 1 P3D (c) DBLP (d) Average

Figure 17: Reconstruction error over time

Case study I: Anomaly detection on Network traffic

For network traffic, normal host communication patterns in a network shoulghly be similar to each
other over time. A sudden change of approximation accuracy suggasttusat changes of communi-
cation patterns since the same approximation procedure can no longerdelepf the overall patterns.
Figure 18(a) shows the relative reconstruction eromer time using DTA. The anomaly points are the ones
above the red line, which is the threshold based on 3 standard deviatios tleomean error percentage.
The overall accuracy remains high. But a few unusual error bucstsre at hour 140 and 160 (circle in
Figure 18(a). We manually investigate into the trace further, and indeethénohset of worm-like hierar-
chical scanning activities. Figure 18 (b) and (c) shows the normaéigaash circle in (a)) and abnormal
(red solid circle in (a)) timestamps. The dot in Figure 18 means there aretgfémks between the corre-
sponding source and destination. The prominent difference betwesmtthie is mainly due to the unusual

8Relative error is the reconstruction error by the input tensor norm.
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| Authors \ Keywords [Year
michael carey,michael stonebraker, h. jagadish,hector gardiaano queri,parallel,optimization,concurr,objectori¢t95
surajit chaudhuri,mitch cherniack,michael stonebraker,ugur eteitedistribut,systems,view,storag,servic,process 2aok

jiawei han,jian pei,philip s. yu,jianyong wang,charu c. aggarwalstreams, pattern,support,cluster,index,gener,g064

Table 2: Example clusters: first two lines databases groups, last line dateymioup. Note that keywords
are after stemming

scanning activities (more columns with many dots). We can successfully igdémsfreal anomaly in the
data using reconstruction error from DTA.
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Figure 18: Network flow over time: we can detect anomalies by monitoring theaimation accuracy

Case study II: Multi-way LSI Similarly, we perform 2-way LS| on DBLP datasets over time. Two example
clusters are listed in Table 2. The algorithm correctly separates the twpg(data mining, databases) of
people and concepts (2nd and 3rd clusters). Furthermore, it identi@idedtis change over time as well,
e.g., 1st and 2nd groups are both about databases, but the foatighged from object-oriented (1995) to
stream (2004).

3.3 Compact Matrix Decomposition for large sparse graphs

Up to now, we only study orthogonal projection like what SVD or PCA do. @liph these methods are
very successful in general, for large sparse data they tend to régugesamounts of space, exactly because
their resulting matrices are not sparse any more. Another drawbackastteogonal projection is the lack
of an intuitive interpretation.

Recently, Drineas et aﬁll3] proposed the CUR decomposition methodh wbgomposes a large sparse
matrix into three smaller matrices by judiciously sampling columns and rows fromrigmal matrix.
Although the constructed low-rank approximations may not be optimal, CUR pasially address the
loss-of-sparsity issue.

We propose a new method, call&@bmpact Matrix Decomposition (CMDjor generating low-rank
matrix approximations. CMD provides provably equivalent decompositioB@R, but it requires much
lessspace and computation time, and hencenae efficient. More specifically, CMD approximates the
input matrixA € R™*" as a product of three small matrices constructed from sampled columnevasyd r
while preserving the sparsity of the original after decomposition. More formally, it approximates the
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matrix A asA = C;URg, whereCg € R"*¢ (R € R™*™) containsc(r) scaled columns(rows) sampled
from A, andU € R¢*"" is a small dense matrix which can be computed fil@gandRs.

3.3.1 Subspace Construction

Since the subspace is spanned by the columns of the matrix, we chooses#&mmed columns to represent
the subspace.

Biased sampling: The key idea for picking the columns is to sample columns with replacement biased to
wards those ones with higher norms. In other words, the columns with hegitgrvalues will have higher
chance to be selected multiple times. Such sampling procedure is proved toryigtdimal approxima-

tion ﬁTZ%]. Note that, the biased sampling will bring a lot of duplicated samples.

Duplicate column removal: CMD carefully removes duplicate columns and rows after sampling, and thus
it reduces both the storage space as well as the computational efforitivétyuthe directions of those
duplicate columns are more important than the other columns. Thus a key st@lpspfice construction is

to scale up the columns that are sampled multiple times while removing the duplicatesial®ycwe take
matrix C4 and turn it into the much narrower mati®, as shown in Figure 19(b), with proper scaling. In
[@5] we proved that the rescaled distinct columns have the samé: laggiroximation as the columns with
duplicates.

n n
& R
m m-< | Cs
e
(a)with duplicates (b) without duplicates

Figure 19: lllustration of CUR and CMD

3.3.2 Low rank approximation

The goal is to form an approximation of the original matkxusing the sampled colum@;. For clarity,
we useC for C,. More specifically, we want to proje& onto the space spanned @y which can be done
as follows:

Note that the set of selected colum@isc R”*¢ do not form an orthonormal basis. One possibility is
to use the fact that given an arbitrary baBignot necessarily orthonormal), the projection to the span of
B is B(B"B)~'B”. Unfortunately, althouglt specifies the subspace, in gendtainay not form a basis
because the columns may not be linearly independerfi@éiC) ! to exist.

We first construct the orthonormal basis@fusing SVD (sayC = UcXcV}), and then projecting
the original matrix into this identified orthonormal ba&ig: € R”*¢. Since bothU«~ andUg are usually
large and dense, we do not compute the projection of matriirectly asU-UZ A. Instead, we computes
a low rank approximation oA based on the observation tHdt = CVCEEI, whereC € R™*¢ is large
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but sparseV € R¢*¥ is dense but small, a8 € R*** is a small diagonal matri% Therefore, we have
the following:

A =UU'A =cvez i (CvexHTA
= C(VcE A VECT)A =CTA

whereT = (VeE2VECT) € R™,

AlthoughC € R™*¢ is sparseT is still dense and big. we further optimize the low-rank approximation
by reducing the multiplication overhead of two large matrigeand A.. Specifically, given two matriceA
andB (assumeAB is defined), we can sample both columnsAdo&nd rows ofB using the biased sampling
algorithm (i.e., biased towards the ones with bigger norms). The selectsdarmhcolumns are then scaled
accordingly for multiplication. This sampling algorithm brings the same probleoolasnn sampling, i.e.,
there exist duplicate rows. Finally, CMD removes duplicate rows using erdiif scaling factor. In our
context, CMD samples and scal€sunique rows fromA and extracts the correspondingcolumns from
C” (last term ofT).

3.3.3 CMD in practice

A 4

Applications:
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Matrix
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Data

Current
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Figure 20: A flowchart for mining large graphs with low rank approximations

shows the flowchart of the whole mining process. The proaless as input data from the ap-
plication, and generates as output mining results represented as lodatardummaries and approximation
errors. The results can be fed into different mining applications such@saly detection and historical
analysis.

Thedata sourcds assumed to generate a large volume of real time event records forumimgtiarge
graphs (e.g., network traffic monitoring and analysis). Because it is bé&shto buffer and process all data
that are streamed in, we propose one more step, naspalisification to reduce the incoming data volume
by sampling and scaling data to approximate the original full data.

Given the input data summarized aswrent matrixA, the next step isnatrix decompositiorwhich
is the core component of the entire flow to compute a lower-rank matrix ajppation. Finally, theerror
measurgjuantifies the quality of the mining result as an additional output.

3.3.4 Experiment

We use the complete network and DBLP data for evaluation without any sampling

°In our experiment, botlV < andX¢ have significantly smaller number of entries than
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data dimension | |E|| nonzero entries
Network flow 22K-by-22K| 12K 0.0025%
DBLP data | 428K-by-3.6K 64K 0.004%

Figure 21: Two datasets

Performance on Network data We first evaluate the space consumption for three different methods to
achieve a given approximation accuracy. Figure 22(a) shows the satic (to the original matrix) as the
function of the approximation accuracy for network flow data. Note thei¥-& in log scale. Among

the three methods, CMD uses the least amount of space consistently. 8¥fhasnost amount of space
(over 100X larger than the original matrix). CUR uses a similar amount afespa CMD to achieve a low
accuracy. But when we increase the target accuracy to achievegpdahe sonsumption of CUR increases
dramatically (over 50X larger than the original matrix). The reason is th& @&k to keep many duplicate
columns and rows in order to reach a high accuracy, while CMD keepsuoidye columns and rows.

2| A SVD
O CUR
0O CMD

A SVD
10 O CUR
0O CMD

10

space ratio
time(sec)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 S 0.6 0.8 1
accuracy accuracy

(a) space vs accuracy (b) time vs. accurarcy

Figure 22: Network flow: CMD takes the least amount of space and time tongszse the source-

destination matrix; the space and time required by CUR increases fast asctivacy increases due to
the duplicated columns and rows.

In terms of CPU time (see Figure 22), CMD achieves much more savings thareS¥CUR. There
are two reasons: first, CMD does not need to process duplicate samptesecond, no expensive SVD
is needed on the entire matrix (graph). CUR in general is faster to comput&tia, but because of the
duplicate samples, it spent a longer computation time than SVD to achieve a bigh&c The majority of
time spent by CUR is in performing SVD on the sampled columns.

DBLP: We observe similar performance trends using the DBLP dataset. CMIrgsdhe least amount
of space among the three methods (see Figure 23(a)). Notice that wé stoomothe high-accuracy points
for SVD, because of its huge memory requirements. Overall, SVD usesthar®000X more space than
the original data, even with a low accuracy (less tBat). The huge gap between SVD and the other
two methods is mainly because: (1) the data distribution of DBLP is not as dkasv¢hat of network
flow, therefore the low-rank approximation of SVD needs more dimensionsatch the same accuracy,
and (2) the dimension of left singular vector for DBLP (428,398) is muchdrighan that for network flow
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(21,837), which implies a much higher cost to store the result for DBLP thrameftwork flow. These results

demonstrates the importance of preserving sparsity in the result.
On the other hand, the difference between CUR and CMD in DBLP becorsesinificant than that

with network flow trace. The reason is that the data distribution is less skeltente are fewer duplicate
samples in CUR. In this case, CUR and CMD perform similarly.
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Figure 23: DBLP: CMD uses the least amount of space and time. Notice ¢fgespace and time that SVD

requires.

The computational cost of SVD is much higher compared to CMD and CURHigeee 23). This is

because the underlying matrix is denser and the dimension of each singetiar ig bigger, which explains
the high operation cost on the entire graph. CMD, again, has the béstrpance in CPU time for DBLP

data.

4 Proposed Work

| propose to extend the current work in batiethodologyandevaluationaspects. The methodology map is

listed in Table 3.

orthogonal projection example-based other divergence
Stream [30, 33, 32, 21]
Matrix(Graph) [35] [P1, P2]
Tensor [34] [P3] [P4]

Table 3: Methodology map: note that the solution to the bottom row is also a solatiba rows above.

4.1 P1: Effective example-based projection
CUR [13] and our CMD@S] provide a good start for summarizing matricesgian example-based pro-
jection instead of an orthogonal projection. Both of them give the followimgnol:
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Theorem 1 (CUR/CMD approximation) Given matrixA € R"™*", ||[A — A|| < ||[A — A.||+¢||A| holds
in expectation and with high probability.

Note that this is a bound on the entire matrix ndfs|| instead of the differencA — Ag||. Ideally, we
want a method with the relative bound, i.A — A|| < (1 + ¢)||A — A;|. There are theoretical advances
along this Iine[ﬁ4], but currently that method is even more expensive thén S

We plan to investigate the possibility to speed up the process by adopting sarstic® For example,
due to the sparsity of the data, the columns of the matrix are often in “neagortati space. Namely, there
are many columns that disagree in most of non-zero elements. For exdiplg), 0)” and(0,1,1,0)”
disagree in all non-zero elements, which makes them orthogonal (i.e.,ttpeodaoct of these two columns
equals 0). In this case, a greedy approach can iteratively selectrarctiat disagrees with most of selected
columns (to span an orthogonal space) and has significant norm {tbravaeric instability).

4.2 P2:Incremental CMD

Currently, we have completed the incremental model using orthogonalcponjesuch as SPIRITESO],
distributed SPIRIﬂﬁ3] and DTA/STm4]. However, the example-logsejection is not yet incremental,
meaning that when a new matrix arrives, CMD has to run on that again witmuteuse of historical
computation.

We plan to study the possibility of the incremental CMD where CMD is computegproaimated
incrementally over time. Possible problems include 1) how to reuse the pas? @pwhen do we need to
recompute from scratch? 3) do we ever need to recompute from scegt€leh we provide any theoretical
guarantee of the result?

One possible answer for the first question is to re-use the columns orsawgled from previous
time. The intuition is that the matrices (graphs) should be changing gradual/afsaume there is a time
dependency. For example, the network communication patterns in this heginaitar to the previous
hour. Therefore, the subspace constructed from previous time mayesgbdd for the current time. And
there are many options on how to execute this re-use strategy. For instaitect reuse We use the
exact old columns and rows from previous time;FP2rtial reuse We pick the same column and row IDs
from previous time but use the current values of those columns and roeengtruct the new subspace;
3) Multiple reuse Instead of using the columns and rows from a single timestamp, we cargatgtbe
information from multiple timestamps to form the new subspace.

4.3 P3: Example-based tensor decomposition

Both CUR and CMD are implemented for matrices only. However, many applicatiave high order data.
In theory, the generalization to tensors is not hard as described byaBratal. [15].

However, there are still a lot of the practical concerns on prototypingdié More importantly, a
necessary infrastructure has to be set up to implement this idea. For exaowl® store a sparse tensor?
How to efficiently access the elements in a tensor (both individual elementsudmténsors)? Most of
existing tensor prototypeE [2] only deal with dense tensor and work witll datasets. To my knowledge,
the only sparse tensor implementation is a preliminary Matlab package by Kohia@} which has an

lO] proves it in both Forbenius norm and spectral norm.
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efficient storage format but does not have many access methods Vé/ertemented DTA/STA on top of
that package. And we plan to do the same for the example-based tensormiesition.

4.4 P4: Other Divergence (distance function)

Most of matrix decompositions such as SVD, CUR and CMD assume Gausstidbudion with Euclidean
distance, which may not be realistic for many applications. For example, rietraffic are always nonneg-
ative. However, SVD type of approach may have negative values irethudt which are hard to interpret.

In general, we want to relax both the distribution assumption and the distarasuraen our model.
More specifically, we plan to use the Bregman divergce [6] as a@atieergence measure for computing
the difference between two tensors. Meanwhile, the distribution assumpgaitoisiatically generalized to
the exponential families because of the existence of a bijection betweenpheestial family and the
Bregman divergence as shown in [5]. For exampledistance and KL-divergence correspond to Gaussian
and Multinomial distribution, respectively.

The goal is to develop an optimization algorithm such as a gradient dedgeritran on tensors using
the Bregman divergence.

4.5 Evaluation plan

We plan to continue using the real data and real application to evaluate owdseth particular, we plan
to study the following data:

e Network flow data(Thanks to Prof. Hui Zhang and Dr. Yinglian Xie.) | plan to spend more time to
understand the data and application in the network forensics. The goadlévétop useful tools to
find interesting patterns and identify real anomalies for network forensics

e Machine monitoring applicatianfrom the data center of PDL (Thanks to Prof Greg Ganger). We
continue developing the automatic monitoring system, InteMon [21].

e DBLP and IMDB The bibliographic data and movie database provide good examples of setzia
works. The task is to spot communities and identify abnormal individuals.

Other possible datasets we consider to study are :

e fMRI data (Thanks to Prof Tom Mitchell.) fMRI data is in the format ef (z,y, z),v > where
(z,y, z) specifies the 3D coordinates ands the value at the location. These data form 3rd order
tensors naturally. The goal is to classify the data.

e Financial data Transaction datasets. The goal is anomaly detection.

5 Conclusion

We study incremental pattern discovery on streaming applications wherattharé arriving continuously
in real-time. The contributions are the following:

e We proposed th&ensor streanas a general dynamic data model for diverse applications. Under this
model data streams and time-evolving graphs become the first and sedendpecial cases.
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e We developed the streaming algorithms (SPIRIT, distributed SPIRIT) f&trdinder tensor streams.
We evaluated the methods on real data and developed two prototyped systenms the environ-
mental sensor network and one on the machine monitoring for a data center)

e We proposed two incremental methods for tensor streams (DTA/STA) wieatvaluated on different
datasets.

e We studied alternative methods for constructing low dimensional subspan®frices using biased
sampling. The proposed method, CMD, achieves better computational aages&dficiency than the
traditional method.

e We propose to study the possibility of the incremental CMD and further ex@vib for tensor
streams.

e We plan to study other distance measure such as Bregman divergeheadting more distribution
as Exponential family. The model under Kullback-Leibler divergencspicial case of Bregman
divergence) can deal with nonnegative data.

e We will evaluate our methods on real data and applications such as netwenisics, machine mon-
itoring and social networks.

Finally, let me end the proposal with the proposed schedule in Table 4.

1-3 months P1: Effective example-based projection
4-6 months P2: Incremental CMD
7-8 months P3: Example-based tensor decompositjon

9-11 months P4: Other distance measure
6-12 months Writing thesis
after 12 monthg Defense

Table 4: Time schedule
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