

1

Selectivity Estimation for Predictive Spatio-Temporal Queries

Yufei Tao1, Jimeng Sun2, Dimitris Papadias2

1Department of Computer Science
Carnegie Mellon University

Pittsburgh PA, USA, 15213-3891
taoyf@cs.cmu.edu

2Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{ jimeng, dimitris}@cs.ust.hk

Abstract
This paper proposes a cost model for selectivity estimation
of predictive spatio-temporal window queries. Initially, we
focus on uniform data proposing formulae that capture
both points and rectangles, and any type of object/query
mobility combination (i.e., dynamic objects, dynamic
queries or both). Then, we apply the model to non-uniform
datasets by introducing spatio-temporal histograms, which
in addition to the spatial, also consider the velocity
distributions during partitioning. The advantages of our
techniques are (i) high accuracy (1-2 orders of magnitude
lower error than previous techniques), (ii) ability to handle
all query types, and (iii) efficient handling of updates.

1. Introduction
Spatio-temporal database management systems (STDBMS)
have received considerable attention [AAE00, KGT99,
PJT99, SJLL00, SJ02, TP01, TP02] in recent years due to
the emergence of numerous applications (e.g., traffic
supervision, flight control, weather forecast, etc) that
require management of continuously moving objects. An
important operation in these systems is to predict objects’
future location based on information at the current time. For
this purpose object movement is usually represented as a
function of time, and the database stores the function
parameters. For example, given the location o(0) of object o
at the current time 0 and its velocity oV, its position at some
future time t can be estimated as o(t)=o(0)+oV ·t. An update
to the database is necessary only when the function
parameters (i.e., oV) change.
The most common query type in STDBMS is the window
query, which, given a query region qR and a future time
interval qT, retrieves all objects whose extents will intersect
qR during qT. For instance, consider “retrieve all residential
areas that will be covered by typhoon Mike tomorrow based
on its current spreading speed”. In this example, data
(residential areas) are static and the query (typhoon) is
dynamic, while in some cases (e.g., “return all vehicles that
will be in the city center within the next 10 minutes”) the
reverse is true. Furthermore, both the data and the query
can be moving (e.g., “report all airplanes that will be within
10 miles from flight UA100 in 20 minutes”).
The selectivity of a window query is defined as the number
of retrieved objects divided by the cardinality of the dataset,

and its accurate estimation is important for query
optimization. Although various techniques [APR99, AN00,
BF95, KF93, SAE02] have been proposed to estimate
selectivity in traditional spatial databases (of static objects),
their application to moving objects results in significant
errors. Choi and Chung [CC02] conducted the first analysis
for STDBMS, focusing on moving points and static queries.
They derive formulae for one-dimensional space, which are
then extended for the multi-dimensional case. As discussed
shortly, however, this method may lead to large errors even
in two dimensions. Furthermore, it does not address
rectangular data and moving queries (which are common in
practice).
This paper presents a comprehensive study for window
query selectivity estimation that supports all types of
objects (static/dynamic, points/rectangles) and moving
queries. In particular, we prove several interesting
properties which reduce complex problems (e.g., dynamic
rectangle data) to simpler ones (i.e., static point data), and
thus simplify the derivation and the resulting equations
considerably. Unlike the previous methods, our analysis
solves the problem directly in the multi-dimensional space,
avoiding the inaccuracy caused by approximations.
Furthermore, we present a spatio-temporal histogram,
which (i) leads to accurate estimation for arbitrary data
distributions, and (ii) can be incrementally maintained
(while the traditional methods require very frequent re-
building). Extensive experimentation confirms that the
proposed techniques yield error less than 10% in all cases.
The rest of the paper is organized as follows. Section 2
introduces related work on selectivity estimation,
histograms and spatio-temporal access methods. Section 3
analyzes the problem for uniform data, while Section 4
extends the results to non-uniform datasets using
histograms. Section 5 experimentally evaluates the
proposed methods, and Section 6 concludes the paper with
directions for future work.

2. Related Work
Section 2.1 reviews the only existing approach ([CC02]) for
window selectivity estimation in STDBMS. Then, Section
2.2 introduces MinSkew, a popular histogram for spatial
databases, and discusses how it can be adapted for moving
data.

2

2.1 Existing Estimation Technique
Choi and Chung [CC02] focus on dynamic point data and
static queries (i.e., the query region remains fixed) starting
from the one-dimensional case, where the spatial universe is
a line segment [Umin, Umax] (Umin and Umax are the
coordinates of the boundaries). Their goal is to predict the
percentage of points that will intersect the query extent qR
during the query interval qT=[qT-, qT+] (0≤qT-≤qT+, the
current time is 0). Figure 2.1a shows qR and the positions
p(qT-) and p(qT+) of a data point p at the starting qT- and
ending qT+ timestamps of qT, respectively. The distance
between p(qT-) and p(qT+) depends on the velocity pV of p,
which distributes uniformly in the range [Vmin, Vmax].
Clearly, point p satisfies the query if and only if the
segment connecting p(qT-) and p(qT+) intersects qR.
Assuming that the location of p at the current time 0 follows
uniform distribution in [Umin, Umax], [CC02] derives the
probability (i.e., also the selectivity of q) that a data point
qualifies q, as a function of Umin, Umax, Vmin, Vmax, and the
query parameters.

qR

p(qT-)

location of p at the
starting time of qT

location of p at the
ending time of

Umin Umax

p (qT+)

q
T

x-axis

y-axis

A
B

py(qT+)

py(qT-) p(qT-)

p(qT+)

px(qT-) px(qT+)

qR

qRy qRx

(a) 1D case (b) 2D case

Figure 2.1: Window queries in 1D and 2D spaces

The multi-dimensional version of the problem is converted
to the 1D case by projecting objects and queries onto
individual dimensions. In particular, the probability that p
satisfies q is computed as ∏i=1~mSeli, where m is the
dimensionality and Seli is the 1D selectivity (i.e., the
probability that the projection pi of point p on the i-th
dimension intersects the projection qi of the query during
interval qT). This, however, is inaccurate due to the fact that
a data point may still violate a query q, even if its projection
intersects that of q on every dimension. For instance, in
Figure 2.1b p is not a qualifying point because it never
appears in the region qR. However, the projections of its
trajectory (during qT) on both dimensions intersect the
corresponding projections of qR (i.e., segments qRx and qRy).
Therefore ∏i=1~mSeli over-estimates the actual probability.
In general, an object o satisfies a spatio-temporal window
query q if (i) the trajectory projection of o intersects that of
q on each dimension (i.e., the spatial condition), and (ii) the
intersection time intervals on all dimensions must overlap
(i.e., the temporal condition). Let TA and TB be the
timestamps when p reaches location A and B in Figure 2.1b;
then the x-intersection interval (i.e., the period when the x-
projections of p and q intersect) is [TB, qT+], while that on
the y-dimension is [qT-, TA]. Point p does not satisfy the
query because the two intersection intervals are disjoint,

thus violating condition (ii). The estimation in [CC02]
ignores the temporal condition (hence in the sequel we refer
to the method as the time-oblivious approach), which as
shown in the experiments may lead to significant estimation
error. In Section 3, we will mathematically quantify this
error and elaborate the influential factors. Finally, as
mentioned earlier, [CC02] does not address rectangle
objects and moving queries.

2.2 MinSkew
MinSkew [APR99] is a spatial histogram originally
proposed for selectivity estimation of window queries in
non-uniform datasets. It partitions the space into a set of
buckets such that the minimum bounding rectangles
(MBRs) of all buckets are disjoint, and their union covers
the entire universe. Each bucket bi contains the number
bi.num of objects whose centroids fall inside bi.MBR, and
the average extent bi.len of these objects. Figure 2.2
illustrates a query q and an intersecting bucket b in the 2D
space. The gray area corresponds to the intersection
between b.MBR and the extended query region, obtained
by enlarging each edge of q with distance b.len/2. The
expected number of rectangles in b intersecting q is
estimated as b.num×areaG/area(b.MBR), where areaG and
area(b.MBR) are the areas of the gray region and b.MBR,
respectively. The estimated selectivity is obtained by
summing the results for all such intersecting buckets.

bucket b

b.len/2

b.len/2

query q

Figure 2.2: Estimating the selectivity inside a bucket

To ensure satisfactory accuracy, the above estimation
requires that (i) objects in each bucket b have similar sizes
and (ii) their centroids distribute uniformly in b.MBR. To
quantify the degree of uniformity, [APR99] defines the
spatial-skew (denoted as b.skew) for a bucket b as the
statistical variance 1 of the spatial densities2 of all points
inside it. Since a small spatial-skew indicates better
uniformity, MinSkew aims at minimizing
∑i=1~m(bi.num·bi.skew), i.e., the weighted sum of the spatial-
skews of the buckets. Computing the optimal buckets,
however, is NP-hard [MPS99]. To reduce the computation
cost, [APR99] partitions the original space into a grid with
H×H regular cells (where H is the resolution), and associate
each cell c with (i) the number c.num of objects whose
centroids fall in c.MBR, (ii) the average extent length c.len
of objects satisfying (i), and (iii) the density c.den of the

1 Given n numbers a1, a2, …, an, the statistical variance

equals ()2

1

1 n

i
i

a a
n =

−∑ , where a is the average of a1, a2, …, an.
2 The density of a point is defined as the number of objects
that cover the point.

3

cell (i.e., the number of objects intersecting c.MBR). Figure
2.3a shows an example (H=3) for a dataset with 8 objects,
and Figure 2.3b illustrates the information associated with
the cells (len is not shown because it is not needed for
partitioning). A greedy algorithm builds the histogram that
minimizes the total-skew, under the constraint that each
bucket must cover an integer number of cells. The final
buckets are shown in Figure 2.3c, together with their
associated information computed as follows:

. .
each cell c in b

b num c num= ∑
,

. .

.
.

each cell c in b

each cell c in b

c num c len

b len
c num

⋅
=

∑

∑

()2

1
. .

| | each cell c in b

b skew c den den
C

= −∑

where b denotes a bucket, |C| is the number of cells covered

by b, and den denotes their average density. MinSkew can
be applied in arbitrary dimensionality with straightforward
modifications.

num=1
den=3

num=1
den=2

num=0
den=0

num=0
den=0

num=2
den=2

num=1
den=2

num=1
den=1

num=1
den=1

num=1
den=1

num=5
skew=0.1875

num=0
skew=0

num=2
skew=0

(a) 3×3 grid (b) Cell information (c) Final buckets

Figure 2.3: Building the histogram

 [CC02] extends MinSkew with velocities for spatio-
temporal window queries. Figure 2.4a shows 8 moving
points, where the arrows (numbers) indicate the directions
(values) of their velocities (a minus value indicates
movement towards the negative direction of the axis).
Figure 2.4b shows the corresponding spatio-temporal
histogram built in two steps.

1

1

-2

-2

-3 1

-1

-2
1

2 -1

-1

a

c

d

e
f

g

h
i

1

-3

1-2

-1

-1

2-1

b1 b2

b3

(a) Location and velocities (b) The final buckets

Figure 2.4: A spatio-temporal histogram

First, the spatial extents of the buckets are determined in the
same way as the traditional MinSkew algorithm (by
ignoring the velocities). Then, each bucket b is associated
with a velocity bounding rectangle (VBR) (bVx-, bVx+, bVy-,
bVy+), such that (i) bVx- (bVx+) equals the minimum
(maximum) velocity along the x-dimension of the objects
inside, and (ii) bVy- (bVy+) is defined similarly with respect to
the y-dimension. In Figure 2.4b, the VBRs of buckets b1,
b2, and b3 are (-2, 1, -3, 1), (0, 0, 0, 0), and (-1, 2, -1, -1),
respectively.

Accurate spatio-temporal selectivity estimation requires that
the location (velocities) of the objects inside a bucket
uniformly distribute in the bucket’s MBR (VBR). The data
partition in Figure 2.4, however, is decided according to
spatial information; thus, the uniformity of velocity cannot
be guaranteed, which may lead to significant estimation
error. Furthermore, the histogram is not incrementally
updatable and must be re-built very frequently to maintain
satisfactory accuracy ([CC02] suggests re-building at every
single timestamp). To see this, assume that in Figure 2.4
the y-velocity of object d (which determines b1Vy-) changes
to -1, after which b1Vy- should be adjusted to the y-velocity
of c (i.e., -2), because it is now the minimum y-velocity of
all objects in b1. This, however, is not possible because the
histogram does not contain detailed information about the
velocities of individual objects. In Section 4, we discuss
alternative solutions to overcome these problems.

3. Spatio-Temporal Window Query Selectivity
Let r be a moving rectangle in m-dimensional space. The
extent of r at the current time 0 is a 2m-dimensional vector
rR = {rR1-, rR1+, rR2-, rR2+, …, rRm-, rRm+}, where [rRi-, rRi+] is
the extent along the i-th dimension (1≤i≤m). Vector rV =
{rV1-, rV1+, rV2-, rV2+, …, rVm-, rVm+} represents the velocities
of r, such that rVi- (rVi+) is the velocity of the lower (upper)
boundary of r on the i-th dimension (1≤i≤m). The extent
rR(t) (also a 2m-dimensional vector) of r at some future time
t can be computed from rR and rV as: rR(t)=rR+t·rV. A
moving point p is represented in a similar way: pR={pR1,
pR2, …, pRm} and pV={pV1, pV2, …, pVm} are the coordinates
and velocities on the m dimensions. Note that this
representation captures static objects by setting all
velocities to 0. Without loss of generality, we consider that
for the i-th dimension, the space has extent [Umin-i, Umax-i],
and possible velocity values fall in the range [Vmin-i, Vmax-i]
(i.e., the velocity space). Following the common
methodology, we assume independent dimensions.
Given a set S of moving objects, a spatio-temporal query q
specifies (i) a moving rectangle with current extent qR and
velocity vector qV , (ii) a future time interval qT=[qT-, qT+]
(0≤qT-≤qT+), and retrieves all objects o that intersect q
during qT, or more formally, there exists some timestamp
t∈ [qT-, qT+] such that oR(t) intersects qR(t). If qT-=0 (i.e., the
current time), the query is called a current query. In this
section we deal with uniform data, i.e., the extent [rRi-, rRi+]
of a rectangle r (or pRi of a point p) uniformly distributes in
[Umin-i, Umax-i], and similarly, the velocity range [rVi-, rVi+] of
r (or pVi of p) follows uniform distribution in [Vmin-i, Vmax-i],
for all 1≤i≤m. The goal is to predict the selectivity using
[Umin-i, Umax-i], [Vmin-i, Vmax-i] and q.
Our analysis is based on the observation that any case of
spatio-temporal selectivity estimation can be reduced to
predicting the selectivity of a moving rectangle query on a
set of static points. In section 3.1 we study this basic

4

problem, and then, illustrate how to reduce other problem
instances to the basic case. Table 3.1 lists the symbols that
will be used frequently in the derivation.

Symbol Description
DS the data space
m dimensionality of DS

[Umin-i, Umax-i] the extent of DS on the i-th axis
[Vmin-i, Vmax-i] the velocity range on the i-th axis

rR={rR1-, rR1+, rR2-, rR2+,
…, rRm-, rRm+}

extent of moving rectangle r at
the current time

rV={rV1-, rV1+, rV2-, rV2+,
…, rVm-, rVm+}

velocity vector of moving
rectangle r

pR={pR1, pR2, …, pRm} coordinates of moving point p
pV={pV1, pV2, …, pVm} velocities of moving point p

qT=[qT-, qT+] query time interval

CX(q)
the convex hull of corner points

of qR(qT−) and qR(qT+)
Selstatic-pt selectivity for static points

Selpt selectivity for dynamic points
Selrec selectivity for dynamic rectangles

Table 3.1: Frequent symbols in the analysis

3.1 Static Point Data
A static point p satisfies a moving query q if p lies inside
qR(t) at some timestamp t∈ qT. For the sake of simplicity, we
first focus on current queries (i.e., qT-=0). Figure 3.1a shows
a 2D moving query q, where qR and qR(qT+) (i.e., rectangles
ABCD and A'B'C'D') indicate the positions of q at the
starting (0) and ending time (qT+) of qT, respectively. The
velocity directions of qV are indicated with arrows. Let
CX(q) be the convex hull of all the corner points of qR and
qR(qT+) (i.e., polygon ADCC'B'A' in Figure 3.1a).

A B

CD

A' B'

C'D'

qR

qR(qT+)

A B

CD

A' B'

C'D'

qR
qR(qT+)

A B

CD

A' B'

C'D'

qR(qT+)

qR

(a) 2 trapezoids (b) 3 trapezoids (c) 4 trapezoids

Figure 3.1: Calculating the area of CX(q)

CX(q) corresponds to the region that is “swept” by q during
qT, and as a result, a data point p will be retrieved if and
only if it lies in CX(q). Since the data distribution is
uniform, the probability for a point to fall inside CX(q) is
the ratio between the area of CX(q) and that of the spatial
universe, which is also the selectivity Selstatic-pt of q:

() ()()
()

_

max min
1

, , , ,static pt Ri Ri Vi Vi T m

i i
i

area CX q
Sel q q q q q

U U
− + − +

− −
=

=
−∏

 (3-1)

The area of CX(q) depends on the velocity directions of qV.
In Figure 3.1a, for example, qVi- and qVi+ have the same
directions along all dimensions (qVx- and qVx+ are to the
right, while qVy- and qVy+ are upwards). In this case, the area
of CX(q) is the sum of rectangle ABCD (i.e., query’s extent

at the current time), and two trapezoids ABB'A' and BCC'B'.
In particular, trapezoid ABB'A' (BCC'D') is the region swept
by segment AB (BC) during qT. Figure 3.1b shows another
case where qVx- and qVx+ still have the same direction, while
qVy- and qVy+ are opposite. Then, the area of CX(q) is the
sum of rectangle ABCD, and three trapezoids ABB'A',
BCC'B', and DD'C'C (swept by segments AB, BC, CD
respectively). Figure 3.1c illustrates the third case where
velocities on all dimensions have opposite directions; the
area of CX(q) is the sum of rectangle ABCD and four
trapezoids ABB'A', BCC'B', DD'C'C, AA'D'D (swept by
segments AB, BC, CD, DA).
Computing the area of a single trapezoid is relatively easy.
Consider, for example, trapezoid ABB'A', where the lengths
of AB and A'B' are (qRx+−qRx-) and (qRx+−qRx-)+(qVx+−qVx-)
·(qT+−qT-), respectively. Furthermore, note that the vertical
distance between AB and A'B' is qVy+·(qT+−qT-); thus, the
area of trapezoid ABB'A' is given by:

()
() ()() ()

' '

1 22 Rx Rx Vx Vx T T Vy T T

area ABB A

q q q q q q q q q+ − + − + − + + −

=

 − + − − ⋅ − 

In general m-dimensional spaces, each trapezoid is the
region swept by a boundary of qR, which is a (m−1)-
dimensional rectangle. Specifically, the trapezoid volumes
decided by the lower and upper boundaries on the i-th
dimension (1≤i≤m) can be calculated using equations (3-2)
and (3-3), respectively:

() ()
()

() ()()

1
2Lower i Vi T T

Rj Rj
j i

Rj Rj Vj Vj T T
j i

area Trapezoid q q q

q q

q q q q q q

− − + −

+ −
≠

+ − + − + −
≠

= − ⋅

 − +
  
 

 − + − −    

∏

∏

 (3-2)

() ()
()

() ()()

1
2Upper i Vi T T

Rj Rj
j i

Rj Rj Vj Vj T T
j i

area Trapezoid q q q

q q

q q q q q q

− + + −

+ −
≠

+ − + − + −
≠

= − ⋅

 − +
  
 

 − + − −    

∏

∏

 (3-3)

Figure 3.2 shows the algorithm for computing the volume
of CX(q) in m-dimensional spaces, after which the
selectivity of the query can be obtained using equation (3-
1). The handling of non-current queries (i.e., qT->0) is
straightforward. The only difference is that CX(q) should be
the convex hull of the corner points of rectangles qR(qT-)
and qR(qT+). The volume of CX(q) can still be calculated
using the algorithm of Figure 3.2.
So far we have assumed that CX(q) lies entirely in the
spatial universe DS, while in some cases part of CX(q) may
fall outside DS (i.e., the query moves out of DS during qT)
as shown in Figure 3.3. Note that the probability that a data
point satisfies q now corresponds to the area of the
intersection between CX(q) and DS. In Figure 3.3, for
example, the intersection region is hexagon AEFGCD,

5

whose area is the sum of ABCD (i.e., the extent of the query
at the current time) and two trapezoids ABFE and BCGF.

Algorithm compute_CX_vol (q)
1. ∏i=1~m[qRi+(qT-)−qRi-(qT-)]
2. for each dimension 1≤i≤m
3. if qVi-<0 and qVi+<0 then
4. sum=sum+area(TrapezoidLower-i) (equation 3-2)
5. if qVi->0 and qVi+>0 then
6. sum=sum+area(TrapezoidUpper-i) (equation 3-3)
7. if qVi-<0 and qVi+>0 then
8. sum=sum+area(TrapezoidLower−i)
 +area(TrapezoidUpper-i)
9. return sum
End compute_CX_vol

Figure 3.2: Algorithm for computing volume of CX(q)

Umax-y

A B

C

E F

G
CX (q)

D

Umin-y
Umax-xUmin-x

qR(qT+)

qR

Figure 3.3: CX(q) is not completely in DS

3.2 Dynamic Point Data
In this section we discuss selectivity estimation for dynamic
points, where the location pRi and velocity pVi of each point
p along the i-th (1≤i≤m) dimension distributes uniformly in
[Umin-i, Umax-i] and [Vmin-i, Vmax-i], respectively. Given a
moving query q, we aim at deriving the probability P(u1, u2,
…, um) that a point p satisfies q when its velocity pVi takes a
specific value ui (1≤i≤m). Once P(u1, u2, …, um) has been
derived, the query selectivity Selpt can be obtained by
integrating all possible values of pVi:

()

() ()
max 1 max 2 max

min 1 min 2 min

1 2 1 2 2 1

, , , ,

, , , , , ,
m

m

pt Ri Ri Vi Vi T

V V V

m m m

V V V

Sel q q q q q

P u u u f u u u du du du
− − −

− − −

− + − + =

∫ ∫ ∫… … … …

 (3-4)

where f(u1, u2, …, um) is the unified probability density
function of u1, u2, …, um. Since all dimensions are
independent and ui uniformly distributes in [Vmin-i, Vmax-i],
we have:

() () () ()1 2 1 2

1 max min

, , ,

1

m m

m

i i i

f u u u f u f u f u

V V= − −

= ⋅ ⋅ ⋅ =

 
 − 

∏

… …

Hence equation (3-4) can be written as:

()

()
max 1 max 2 max

min 1 min 2 min

1 max min

1 2 2 1

1
, , , ,

, , ,
m

m

m

pt Ri Ri Vi Vi T
i i i

V V V

m m

V V V

Sel q q q q q
V V

P u u u du du du
− − −

− − −

− + − +
= − −

 
= ⋅ − 
∏

∫ ∫ ∫… … …

 (3-5)

The derivation of P(u1, u2, …, um) can be reduced to the
case of static points based on the following lemma:
Lemma 3.1: Let p be a m-D point with current location pR
and velocity vector pV={pV1, pV2, …, pVm}. Given a moving
query q, we formulate another query q' such that (i) its
current extent qR' and time interval qT' are the same as qR
and qT, and (ii) qVi-'=qVi-−pVi, qVi+'=qVi+−pVi. Then, p
satisfies q, if and only if query q' covers the static point pR
during qT. ■
Lemma 3.1 indicates that deciding whether a moving point
p intersects a moving rectangle q can be achieved by
examining the intersection between a static point pR and a
moving rectangle q', where pR is the current location of p,
and q' is formulated as described above. To illustrate this,
consider Figure 3.4a which shows two moving 2D points A,
B and query q with time interval qT=[0, 1]. AR(1), BR(1),
qR(1) correspond to the positions of points A, B, and query
q at time 1, respectively. It is clear that A satisfies q while B
does not. Figure 3.4b shows the formulated query q' in
order to decide the intersection of A (observe how the
velocities of q' change from those of q).

20 4 6 8 10

2

4

6

8

10

x axis

y axis

2

-2

1

2

-2

-2

-2

-2qR(1)

qR

AR

BR

AR(1)

BR(1)

(a) A qualifies and B does not

-3

20 4 6 8 10

2

4

6

8

10

x axis

y axis

-4

qR’

qR’(1)
-4

-3

AR

 20 4 6 8 10

2

4

6

8

10

x axis

y axis

-4

qR’qR’(1)

-4

BR

 (b) Query formulated for A (c) Query formulated for B

Figure 3.4: Illustration of Lemma 3.1

According to Lemma 3.1 the fact that A is a qualifying
object guarantees that q' must cover static point AR during
qT, which is indeed the case as shown in Figure 3.4b. In
particular, notice that the relative positions of AR and qR'(1)
in Figure 3.4b are the same as those of AR(1) and qR (1) in
Figure 3.4a. In general, given a data point p and a query q,
the relative positions between pR(t) and qR(t) are always the
same as those between static point pR and the extent qR'(t)
of the transformed query q' at any future time t. Figure 3.4c
demonstrates the formulated query q' with respect to point
B (notice that the y-velocities of q' are 0). Since B does not

6

intersect q, by Lemma 3.1 we can infer that q' does not
cover BR.
Therefore, the probability P(u1, u2, …, um) for a moving
point p with velocities u1, u2, …, um to intersect a query q
equals the probability that the corresponding formulated
query q' covers the static point pR. Specifically, P(u1, u2, …,
um) can be represented as:

() ()
()

1 2, , , , , , ,

 , , , ,

m static pt Ri Ri Vi Vi T

static pt Ri Ri Vi i Vi i T

P u u u Sel q ' q ' q ' q ' q '

Sel q q q u q u q

− − + − +

− − + − +

=

= − −

… (3-6)

where Selstatic-pt is the selectivity for static points in equation
(3-1). As discussed earlier, after solving P(u1, u2, …, um),
equation (3-5) estimates the selectivity of spatio-temporal
window queries on moving points. Static queries over
dynamic points (i.e., the case discussed in [CC02])
constitute just a special instance of the general problem and
can be solved by the above method.

3.3 Dynamic Rectangles
This section analyzes the problem for a set S of moving
rectangles. For each rectangle r∈ S and each dimension i
(1≤i≤m), (i) the extent of r equals Li (a dataset constant),
and rRi- (the left boundary) uniformly distributes in [Umin-i,
Umax-i−Li], (ii) the velocity range rVi+−rVi- equals LVi (also a
constant), and rVi- (the velocity of the left boundary) follows
uniform distribution in [Vmin-i, Vmax-i−LVi]. Datasets with
rectangles that have different extents and velocity ranges
will be handled using histograms in the next section.
Similar to the analysis for dynamic points, we aim at
deriving the probability P(u1, u2, …, um) that a rectangle r,
whose rVi- takes specific a value ui (1≤i≤m), satisfies the
query. Once P(u1, u2, …, um) is available, Selrec can be
obtained by equation (3-7) (notice the changes in the upper
limits of the integrals compared with equation 3-4):

()

() ()
max 1 1 max 2 2 max

min 1 min 2 min

1 2 1 2 2 1

, , , ,

... , ,..., , ,..., ...
m m

m

rec Ri Ri Vi Vi T

V LV V LV V LV

m m m

V V V

Sel q q q q q

P u u u f u u u du du du
− − −

− − −

− + − +

− − −

=

∫ ∫ ∫

(3-7)

Since ui distributes uniformly in [Vmin-i, Vmax-i−LVi], we
have:

()

() () ()

1 2

1 2
1 max min

, , ,

1

m

m

m
i i i i

f u u u

f u f u f u
V LV V= − −

=

 
⋅ ⋅ ⋅ =  − − 

∏

…

…

Thus, equation (3-7) becomes:

()

()
max 1 1 max 2 2 max

min 1 min 2 min

1 max min

1 2 2 1

1
, , , ,

, , ,
m m

m

m

rec Ri Ri Vi Vi T
i i i i

V LV V LV V LV

m m

V V V

Sel q q q q q
V LV V

P u u u du du du
− − −

− − −

− + − +
= − −

− − −

 
=  − − 
∏

∫ ∫ ∫… … …

 (3-8)

The following lemma reduces the intersection examination
between two moving rectangles r and q to that between a
static point (a corner point of rR) and a formulated moving
rectangle q'.

Lemma 3.2: Let r be a m-dimensional rectangle whose
current extent is rR={rR1-, rR1+, rR2-, rR2+, …, rRm-, rRm+} and
velocity vector is rV={rV1-, rV1+, rV2-, rV2+, …, rVm-, rVm+}.
Given a moving query q with qR={qR1-, qR1+, qR2-, qR2+, …,
qRm-, qRm+}, and qV={qV1-, qV1+, qV2-, qV2+, …, qVm-, qVm+},
we formulate another query q' such that (i) qT'=qT, (ii) qRi-'
=qR1-−(rR1+−rR1-), qRi+'=qRi+, and (iii) qVi-'=qVi-−rVi+,
qVi+'=qVi+−rVi-. Then, r satisfies q, if and only if query q'
covers the static point p {rR1-, rR2-, …, rRm-} (i.e., a corner
point of rR). ■
Consider Figure 3.5a which shows data rectangles A, B,
query q (with interval qT=[0, 1]), and their extents at time 1.
Notice that A intersects q during qT, while B does not.
Figure 3.5b shows the transformed query q' with respect to
A, as well as the lower-left corner point PA of AR. Notice
that the current extent qR' of q' is obtained by enlarging qR
by the size of AR. The value (-5) of qVx-', for example, is
computed by subtracting AVx+ (3) from qVx- (-2). Since q'
covers static point PA during qT, by Lemma 3.2 we can
assert that the original object A satisfies q. Similarly, Figure
3.5c demonstrates the formulated query q' for B, which
does not cover point PB (lower-left corner point of BR)
during qT, indicating that object B does not qualify q.

20 4 6 8 10

2

4

6

8

10

x axis

y axis

-2

-2

-2

-2

qR

2 3
1

3

-2

3
BR

AR

qR(1)

2

AR(1)

BR(1)

(a) A qualifies and B does not

-3

20 4 6 8 10

2

4

6

8

10

x axis

y axis

-4

qR’

qR’(1)
-5

-5

PA

 20 4 6 8 10

2

4

6

8

10

x axis

y axis

-4

qR’qR’(1)

-5

-2

PA

PB

 (b) Query formulated for A (c) Query formulated for B
Figure 3.5: Illustration for Lemma 3.2

Hence the probability P(u1, u2, …, um) that a moving
rectangle r with rVi-=ui (1≤i≤m) satisfies q can be
represented as:

() ()
()

1 2, , , , , , ,

 , , , ,

m static pt Ri Ri Vi Vi T

static pt Ri i Ri Vi i i Vi i T

P u u u Sel q ' q ' q ' q ' q '

Sel q L q q u LV q u q

− − + − +

− − + − +

=

= − − − −

… (3-6)

where Li and LVi are the spatial and velocity ranges of r
along the i-th dimension respectively, and Selstatic-pt is shown
in equation (3-1), except that the volume of the universe

7

should be modified to ∏i=1~m(Umax-i−Li−Umin-i) (i.e., the left
boundary of a data rectangle ranges in [Umin-i, Umax-i−Li]).
Replacing P(u1, u2, …, um) with equation (3-6), we obtain
the model for estimating the selectivity for moving
rectangles. It is worth pointing out that the general
reduction methodology is independent of the model, e.g., it
can be applied in conjunction with the formulae of [CC02]
to capture dynamic queries and rectangle objects.

3.4 Error of the Time-Oblivious Approach
As discussed in Section 2.1, the time-oblivious approach
estimates the selectivity Sel by simply taking the product of
the qualifying probability Seli on each dimension (1≤i≤m).
Note that Seli can also be obtained from our derivation (i.e.,
the dimensionality equals 1); hence by comparing the
difference between Sel and ∏i=1~mSeli we can quantify the
error of the time-oblivious approach. To illustrate the
factors that affect the error, in the sequel we consider the
case (moving points and static queries) targeted in [CC02],
for which the resulting equations are simplest and can be
solved into closed form (similar conclusions can be drawn
for general settings as shown in the experiments).
Specifically, given (i) a set S of 2D points such that, for
each point p∈ S, pRi and pVi uniformly distribute in [0, U]
and [0, V] respectively, and (ii) a static query q whose
extent is qR and interval is [0, T] (i.e., a current query), the
actual selectivity Sel is:

() ()
()()

2

2

2 Rx Rx Ry Ry

Rx Rx Ry Ry

VT
Sel q q q q

U

q q q q

U

+ − + −

+ − + −

 = − + − 

− −
+

 (3-7)

The qualifying probability Seli on each dimension (1≤i≤m)
can be obtained with similar analysis:

2
Ri Ri

i

q q VT
Sel

U U
+ −−= + (3-8)

Thus, the estimation Sel' obtained by the time-oblivious
approach is:

() ()
()()

2

2 2

2 2

'

2

4

x y Rx Rx Ry Ry

Rx Rx Ry Ry

Sel

VT
Sel Sel q q q q

U

q q q q V T

U U

+ − + −

+ − + −

=

 ⋅ = − + − + 

− −
+

 (3-9)

Comparing equations (3-9) and (3-7), the relative error Err
of Sel' is:

() () ()()
2 2

'

2 4Rx Rx Ry Ry Rx Rx Ry Ry

Sel Sel
Err

Sel

V T

VT q q q q q q q q+ − + − + − + −

−= =

 − + − + − − 

 (3-10)

Note that (qRx+−qRx-)+(qRy+−qRy-) and (qRx+−qRx-)·(qRy+−qRy-)
correspond to the perimeter and area of qR, respectively.
The error grows with the interval T and the length of the
velocity range, decreases with qR, and is not affected by the
length of the spatial universe U.

4. Spatio-Temporal Histograms
This section deals with non-uniform data using histograms
that partition objects into buckets, such that the distribution
within a bucket is almost uniform. Then, the uniform
models are applied locally (in each bucket), and the overall
prediction is calculated by summing up the individual
estimations. In Section 4.1, we discuss the defects of
existing histograms, and then present an alternative solution
to avoid their problems. Section 4.2 elaborates the
algorithm for estimation.

4.1 Histogram Construction and Maintenance
The spatio-temporal histogram of [CC02] partitions the
objects based on their spatial location using the
conventional MinSkew algorithm, and then decides the
VBRs of the buckets. Since the velocity information is not
considered during data partition, the resulting histogram
cannot ensure the uniformity of velocity distribution in the
buckets. Assume, for example, that we want to build a
histogram with 2 buckets for the dataset in Figure 4.1a. In
Figure 4.1b the buckets are decided based on the objects’
location. In particular, the first two columns of cells are
grouped into the same bucket because all of them contain
exactly one point (i.e., no variance), while cells in the last
column (with 2 points each) constitute the second bucket.
Notice that, although the location distribution is fairly
uniform, the velocity distribution is rather skewed. Consider
the left bucket in Figure 4.1b, whose (x-) velocity range is
[-10, 8] (i.e., decided by the velocities of points b and e).
Notice that, there are 5 points with velocities in the range
[-10, -2], while only one (i.e., e) has positive velocity (8).
Similarly, the velocity range of the right bucket is [-8, 10],
but ranges [-8, 0] and [2, 10] contain 2 and 4 points
respectively.

8

a

c

d

e

f

g

h

i

-10

-8

-6 -4

-2

-6

-8

2

6

4

b

k

l

j 10

(a) Cell information

8

a

c

d

e

f

g

h

i

-10

-8

-6 -4

-2

-6

-8

2

6

4

b

k

l

j 10

8

a

c

d

e

f

g

h

i

-10

-8

-6 -4

-2

-6

-8

2

6

4

b

k

l

j 10

(b) Considering only location (c) Location and velocity

Figure 4.1: Uniform velocity distribution

An effective spatio-temporal histogram should partition the
data based on both location and velocity information.
Continuing the previous example, Figure 4.1c shows such a
histogram, where the left and right buckets contain the first
and the last two columns of cells respectively. Compared

8

with Figure 4.1b, the spatial uniformity is slightly worse
(only in the right bucket), while the velocity uniformity is
significantly better. Specifically, the velocities uniformly
distribute in ranges [-10, -6] and [-8, 10] for the two
buckets respectively. As a result, the new histogram is
expected to produce better prediction.
The overall velocity distribution for the dataset of Figure
4.1 is uniform. If the distribution is skewed, ignoring the
velocities during partitioning is even more problematic.
Consider, for example, Figure 4.2a where object velocities
have only two values -10 and 10. Observe that, partitioning
the spatial universe is useless because (i) the overall
location distribution is already fairly uniform (i.e., 2 points
in each cell), and (ii) for all possible partitions, the resulting
buckets still have extremely skewed velocity distribution. In
fact, in this case the best partition should be based entirely
on the velocity dimension. Specifically, the first bucket
(Figure 4.2b) contains all the points with negative
velocities, whereas the second one (Figure 4.2c) involves
those with positive ones. Notice that the resulting buckets
have uniform location (one point from each cell) and
velocity (all points have the same velocity) distributions.

a

f

h

i

k

m
-10

10

-10
10

-10

-10

d

q

p 10

10
b

c
-10

10
e

10
g

10
j

l
-10

n
-10

o
-10

r 10

-10

10

(a) Cell information

-10

a

f

h

i

-10

-10

-10

-10
q

c
-10

l
-10

n
-10

o
-10

k

m

10

10

10

d p

10

10

b
10g

10j

r

10

10
e

(b) Bucket 1 (c) Bucket 2
Figure 4.2: Skewed velocity distribution

Motivated by the above observations we propose spatio-
temporal histograms (STHs) that partition on both velocity
and location. A bucket bj (1≤j≤h) has spatial extents
bj.MBR, and velocity ranges bj.VBR (where VBR stands
for velocity bounding rectangle). In general, a m-
dimensional dataset requires a 2m-dimensional STH. Figure
4.3a illustrates a STH with 4 buckets, assuming that the
data space contains only one dimension (i.e., m=1). The
MBR of b1, for example, is [0, 40], while its VBR covers
velocities [-20, 20] (i.e., the minimum and maximum
velocity among all points in the bucket). Point p belongs to
b2, because its coordinate pR=30 and velocity pV=25 fall in
b2.MBR and b2.VBR, respectively.
Moving intervals (hyper-rectangles in higher dimensions),
on the other hand, are assigned according to the coordinates

and velocities of their centroids. For instance, interval r
(with spatial extent [30, 60] and velocity extent [10, 20]) is
allocated to bucket b4, which contains the coordinate 45 and
the velocity 15 of its centroid. In addition to MBR and
VBR, each bucket bj also stores (i) the number bj.num of
assigned objects, and (ii) the sum of velocity bj.LVi and
spatial (for hyper-rectangles) bj.Li length of these objects
along each dimension (1≤i≤m). Similar to moving objects,
the MBR of bj also grows according to its VBR, and in the
sequel we denote its MBR at future timestamp t as
bj.MBR(t). Such a STH can be constructed using any
existing algorithm for conventional multi-dimensional
histograms, by treating a m-dimensional moving object as a
2m-dimensional box.

spatial

velocity
b
2

b
1

b
4

b
3

10

0

20

30

-10

-20

p

p'

q

q'

0 1004030

25
r

60

time

t

spatial
0

histogram
building
time

b2.MBR b4.MBR
b3 .MBR &

p

p()t

p'

b1 .MBR &

pV=25 p'V =-10

q

q()t

q'

qV=25 q'V =-10

0 40 100

(a) Histogram buckets (b) Update of point p
Figure 4.3: Updating the histogram

Assume that the histogram of Figure 4.3a is constructed at
time 0, and point p updates its velocity (from 25 to -10) at
some future time t (when its position is p(t)). After the
change p does not belong to bucket b2 any more, because its
new velocity falls out of b2.VBR [20, 30]. Furthermore, p
cannot be inserted to the bucket that contains its current
position p(t) and velocity (-10), since the histogram is based
on information at time 0 (meaning that future object
positions are calculated based on the time elapsed with
respect to time 0). To decide the new bucket for p, we must
find its surrogate point p' at the histogram construction
time (0), such that p' will reach the same position p(t) with
the updated velocity.
To illustrate this, consider Figure 4.2b, where the velocity
of a point is represented as the slope of its trajectory. The
projection point p' is the intersection of the spatial axis and
the line with slope 10 that crosses p(t), which spatially
belongs to buckets b3 and b4, but only b3.VBR covers the
new velocity value 3 . To reflect the change, we should
update b2.num (=b2.num-1) and b2.LV (=b2.LV-25), and
modify b3 accordingly (b3.num+=1, b3.LV−= 10). In some
cases, the surrogate point may fall outside the universe, in
which case the boundary bucket needs to be enlarged. As an

3 Here we assume the bucket extents are disjoint, which
holds for many histograms (e.g., the Minskew [APR99]
deployed in our experiments), so that the bucket containing
the projection point is unique. For histograms without this
property, there may be multiple candidate buckets, in which
case the final bucket can be selected randomly.

9

example, the MBR of bucket b3 must be expanded to cover
the surrogate point q' (of q) in Figure 4.3. It is worth
mentioning that, the VBR of the selected bucket for
expansion includes the updated velocity of q' (i.e., hence b4
is not expanded).
Incrementally updating the histogram reduces the
maintenance cost significantly. Whenever the system
receives an object update, the new information is
intercepted to modify the histogram accordingly. However,
the uniformity (in buckets) may gradually deteriorate as the
data (location and velocity) distributions vary. When the
distribution changes significantly, the histogram needs to be
re-built in order to ensure satisfactory estimation accuracy.
A simple heuristic to ensure satisfactory estimation
accuracy is to re-construct the histogram when the number
of modifications reaches a certain threshold, as evaluated in
the experiments.

4.2 Performing Estimation with Histograms
Given a query q, we estimate its selectivity by applying the
uniform model in each bucket. Specifically, for a bucket b,
the probability b.Sel that an object (in b) satisfies q is
estimated using the uniform model, treating b.MBR and
b.VBR as the spatial and velocity spaces respectively. Thus,
the expected number of objects in b satisfying q is
b.num·b.Sel, where b.num is the total number of objects in
b. As a result, the overall selectivity can be estimated by
summing up the qualifying object number from every
bucket and then dividing the sum by the dataset cardinality
N, or more formally: Sel=(∑i=1~Bbi.num·bi.Sel)/N, where B is
the total number of buckets in the histogram.
To reduce the estimation time, we aim at minimizing the
number of buckets for which selectivity estimation is
necessary (in our implementation we use a numerical
approach, or specifically the trapezoid rule [PFTV02], to
evaluate the integrals in the uniform models). Figure 4.4
shows the extents b1R, b2R of two buckets b1, b2 for point
objects (arrows indicate the velocity directions of their
VBRs). Consider the query (with qT-=0), whose current
extent qR is the gray region, and the dashed rectangles
represent the extents b1R(qT+), b2R(qT+), qR(qT+) of b1, b2,
and q at time qT+, respectively. Notice that selectivity
estimation can be avoided for b1, because its MBR does not
intersect that of q during query interval qT, indicating that
none of the objects inside can possibly intersect q. Bucket
b2, on the other hand, must be considered (i.e., it is a
qualifying bucket).

b1R

b1R(qT+)

b2R(qT+)

b2R

qR

qR(qT+)

Figure 4.4: Filtering buckets for selectivity estimation

5. Experiments
This section experimentally evaluates the proposed
methods. All the experiments were performed on a Pentium
III 1Ghz CPU with 256 Mbytes memory. The first set of
experiments demonstrates the correctness of the proposed
formulae for uniform datasets. For this purpose we
generated a dataset with 1 million points such that for each
point (i) its location distributes uniformly in the 2D spatial
universe [0, 10000]2 (i.e., each axis has extent [0, 10000]) ,
and (ii) its velocity (on each dimension) is uniformly
generated in [-50, 50]. A query q is a moving rectangle such
that its extent qR at the current time is a square with side
length qRlen (e.g., if qRlen=1000, qR covers 1% of the
space) and its velocity extent qVi+−qVi- (i.e., the difference
of the velocities of the lower and upper boundaries) on each
dimension i equals a constant qVlen (if qVlen=0, the extent
of the query does not change with time). Query workloads
consist of 200 queries with the same parameters qRlen,
qVlen, and qT (i.e., the query interval length): (i) the left
boundary qRi- of each query q distributes uniformly in [0,
10000−qRlen] (qRi+=qRi-+qRlen), (ii) the velocity qVi- is
generated uniformly in [-50, 50−qVlen], and (iii) qT- follows
a uniform distribution in [0, 100−qT].
Let acti and esti be the actual and estimated numbers of
objects retrieved from the i-th query (1≤i≤200); then the
workload error rate is computed as [APR99]:

Errworkload = (∑i=1~200|esti−acti|)/(∑i=1~200acti).
As mentioned earlier, in order to obtain esti in our models
we evaluate the integrals using the trapezoid rule approach
[PFTV02], which partitions the integral range into 10 equal
lengths and approximates the integral result with the area
sum of a set of trapezoids. We compare the error rates of
our model (denoted as TSP) with that of [CC02] (denoted
as CC). Since the original CC only captures static queries
over dynamic objects, we apply our reduction techniques to
obtain the corresponding formulae for dynamic queries and
rectangle objects.
Figure 5.1a shows the error rates of TSP and CC as a
function of qRlen, fixing qVlen and qT to 10 and 50,
respectively. TSP yields extremely accurate prediction
(with maximum error less than 1%), confirming the
probabilistic correctness of our derivation. On the other
hand, it is clear that CC leads to substantial errors (greater
than 100%), indicating that the temporal intersection
condition (introduced in Section 2.1) cannot be ignored.
Observe that the error rates of both methods decrease when
the query becomes larger, which is consistent with previous
studies on spatial window selectivity [APR99, AN00].
Figure 5.1b shows the results with respect to various qVlen
(from 0 to 20), fixing qRlen=600, qT=50. Again our model
is precise whereas CC produces around 100% error. In
Figure 5.1c, we fix qRlen and qVlen, and increase qT from 0
to 100. CC is accurate only when qT=0 because, for

10

timestamp queries, ignoring the temporal condition does not
cause any error: if an object satisfies a query q, then the
intersection intervals on all dimensions consist of a single
timestamp qT- (=qT+). On the other hand, as predicted by
equation (3-10), the error rate of CC increases fast with qT.
Experiments with uniform rectangles give similar results.

TSP CC

0%

1%

10%

100%

1000%

200 400 600 800 1000

error rate

qRlen
(a) Error vs qRlen (qVlen=10, qT=50)

error rate

qVlen

0%

1%

10%

100%

1000%

0 5 10 15 20

error rate

0%

1%

10%

100%

1000%

0 25 50 75 100
qT

(b) Error vs qVlen
(qRlen=600, qT=50)

(c) Error rate vs qT

(qRlen=600, qVlen=10)
Figure 5.1: Accuracy for uniform data

Next we evaluate the proposed techniques for non-uniform
datasets. Due to the lack of data for real moving objects, we
generated synthetic datasets as follows. First, the location
distribution is taken from real spatial datasets [Web] CA
(with 2.2 million rectangles representing streets in
California) and LA (containing 1.3 million rectangles
corresponding to places in Los Angeles). Then, each
rectangle r (in the static dataset) is associated with
velocities such that on the i-th dimension (1≤i≤2), (i) the
absolute value of rVi- (i.e., velocity of the lower boundary)
follows a Zipf distribution (skew coefficient 0.8) in [0,
50−rVlen], where rVlen is generated randomly in [0, 5] (i.e.,
objects can have different velocity extents), and (ii) rVi- has
equal probability to be positive or negative. The creation of
moving points is similar, except that (i) the current position
of a point is the centroid of a rectangle in CA or LA, and (ii)
rVlen is set to 0. In the sequel, we refer to the resulting
datasets as CArec (CApt) and LArec (LApt) where the
subscripts indicate rectangle (point) data.
We compare the error rates of three approaches. The first
one, called 4Dhis+TSP, uses the proposed 4D STH
(considering both location and velocities) and applies our
uniform model in each bucket. The second one, 2Dhis+TSP,
combines TSP with the histogram of [CC02] (i.e., where
partitioning is based solely on location). The last method,
referred to as 2Dhis+CC, corresponds to the solution
proposed in [CC02], i.e., 2D histogram and the CC model.

The resolutions (i.e., for the initial grid before applying
MinSkew) are set to 15 and 50 for 4Dhis and 2Dhis
respectively, so that we need only 4 (6) bits to represent a
spatial boundary for 4Dhis (2Dhis). As a result, each bucket
in 4Dhis takes 8 bytes to store the associated information,
while the size is 19 bytes for 2Dhis (note that the velocities
of 2Dhis cannot be compressed as in 4Dhis). We allow 25k
bytes memory for each histogram, and hence the number of
buckets in 4Dhis (2Dhis) is set to 3000 (1200), respectively.
After the cell initialization (the cost of which is the time of
scanning the database), the construction time for 2Dhis
(4Dhis) is 0.2 and 0.9 seconds respectively.
Figure 5.2a plots the error rates as a function of qRlen,
fixing qVlen and qT to their median values 10 and 50
respectively (CApt dataset). 4Dhis+TSP yields error below
5%, while the other methods are inaccurate. The fact that
2Dhis+TSP is considerably worse than 4Dhis+TSP indicates
that the 4D histogram achieves much better uniformity in
the buckets. In particular, since the velocities of each object
follow skewed distribution, the velocity distribution (of
each bucket) in 2Dhis is also skewed. 2Dhis+CC is even less
accurate than 2Dhis+TSP, due to the deficiency of CC.
Figure 5.2b illustrates the error rates with respect to various
qVlen (qRlen=600, qT=50). In Figure 5.2c, we fix qRlen and
qVlen, and increase the query interval qT up to 100. Note
that the accuracy of both 4Dhis+TSP and 2Dhis+TSP
improves with qT (because the number of qualifying objects
increases), while that of 2Dhis+CC actually deteriorates.
This is not surprising because when qT equals 0, 2Dhis+CC
has the same performance (60% error) as 2Dhis+TSP, but as
qT increases so does the effect of the temporal intersection
condition.

4Dhis+TSP 2Dhis+TSP 2Dhis+CC

200 400 600 800 1000

error rate

qRlen

1%

10%

100%

1000%

(a) Error vs qRlen (qVlen=10, qT=50)

error rate

qVlen

1%

10%

100%

1000%

0 5 10 15 20

error rate

1%

10%

100%

1000%

0 25 50 75 100
qT

(b) Error vs qVlen
(qRlen=600, qT=50)

(c) Error rate vs qT

(qRlen=600, qVlen=10)
Figure 5.2: Accuracy for CApt

11

Figure 5.3 confirms the generality of the above
observations by repeating the experiments using the LApt
dataset. Figures 5.4 and 5.5 demonstrate the results of the
same experiments with rectangles. The behavior of
alternative approaches is very similar to those for point
data. Specifically, 4Dhis+TSP is accurate in all cases, while
the other methods have significant errors. Notice that the
error rates are slightly higher than those of points because
rectangles have variable spatial and velocity extents, while
each bucket records only average values.

4Dhis+TSP 2Dhis+TSP 2Dhis+CC

200 400 600 800 1000

error rate

qRlen

1%

10%

100%

(a) Error vs qRlen (qVlen=10, qT=50)

error rate

qVlen

1%

10%

100%

0 5 10 15 20

error rate

qT

1%

10%

100%

1000%

0 25 50 75 100

(b) Error vs qVlen
(qRlen=600, qT=50)

(c) Error rate vs qT

(qRlen=600, qVlen=10)
Figure 5.3: Accuracy for LApt

4Dhis+TSP 2Dhis+TSP 2Dhis+CC

200 400 600 800 1000

error rate

qRlen

1%

10%

100%

1000%

(a) Error vs qRlen (qVlen=10, qT=50)

error rate

qVlen

1%

10%

100%

1000%

0 5 10 15 20

error rate

qT

1%

10%

100%

1000%

0 25 50 75 100

(b) Error vs qVlen
(qRlen=600, qT=50)

(c) Error rate vs qT

(qRlen=600, qVlen=10)
Figure 5.4: Accuracy for CArec

4Dhis+TSP 2Dhis+TSP 2Dhis+CC

200 400 600 800 1000

error rate

qRlen

1%

10%

100%

1000%

(a) Error vs qRlen (qVlen=10, qT=50)

error rate

1%

10%

100%

1000%

0 5 10 15 20
qVlen

error rate

qT

1%

10%

100%

1000%

0 25 50 75 100

(b) Error vs qVlen
(qRlen=600, qT=50)

(c) Error rate vs qT

(qRlen=600, qVlen=10)
Figure 5.5: Accuracy for LArec

STHs can be incrementally maintained to capture object
updates. To study the accuracy degradation with time, we
created dynamic data as follows. The initial histogram is
constructed at time 0, and at each of the subsequent 1000
timestamps, 10% of the objects update their velocities, such
that the velocity changes are uniformly distributed in [-5,
5]. In this way, the data distribution will gradually become
uniform. For each update the histogram is modified (if
necessary) as described in Section 4.1.
Next, we perform window queries with standard parameters
(i.e., qRlen=600, qVlen=10, qT=50) every 100 timestamps
and measure the average estimation error (using the
histogram information at the query time). Figure 5.6 shows
the results CApt and CArec. Notice that, the error rates
increase very slowly (due to the distribution change) along
with time for both cases. Even at the 1000-th timestamp, the
error rates of our approach (i.e., 25% and 35% for point
and rectangle data, respectively) are still significantly lower
than those of the other approaches reported in Figures 5.2
and 5.4. As a result, the histogram needs re-building very
infrequently (e.g., every 600 timestamps if maximum error
20% is allowed). The same observations hold for the LA
dataset. Recall that 2Dhis requires re-construction at every
timestamp.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 200 400 600 800 1000
number of elapsed timestamps

error rate

rectangles

points

Figure 5.6: Accuracy degradation with time for 4Dhis+TSP

 (CA, qRlen=600, qVlen=10, qT=50)

12

The last set of experiments evaluates the time of obtaining
estimate values. Figures 5.7a, b, c demonstrate the costs as
functions of qRlen, qVlen, and qT, respectively, comparing
the bucket filtering technique with the brute force method
(i.e., evaluating the uniform model for every bucket) on
dataset CApt. It is clear that the cost of bucket filtering
depends on the query parameters (the estimation time is less
than 0.3 seconds in all cases), while that of the brute force
is constant and significantly higher (around 1.5 seconds).

exhaustive scan bucket filtering

100

1k

10k

200 400 600 800 1000
qRlen

estimation time (ms)

(a) Estimation time vs qRlen (qVlen=10, qT=50)

1k

10k

qVlen

estimation time (ms)

100
0 5 10 15 20

 qT

1k

10k estimation time (ms)

100
0 25 50 75 100

(b) Estimation time vs qVlen

(qRlen=600, qT=50)
(c) Estimation time vs qT

(qRlen=600, qVlen=10)
Figure 5.7: Estimation costs for CApt

6. Conclusion
In spite of the importance of selectivity estimation in
STDBMS, the existing approaches are not able to provide
satisfactory prediction. This paper addresses the problem
with a comprehensive study that covers all types of objects
and query-object mobility combination. Particularly, we
prove several important lemmas that reduce complex
estimation problems into simple cases, and derive a model
that (i) is able to capture the selectivity accurately, and (ii)
is simpler and more flexible than the previous one.
Furthermore, we present a new spatio-temporal histogram,
which considers both locations and velocities for
partitioning. Extensive experimentation confirms that the
proposed techniques predict spatio-temporal query
selectivity very accurately.
We believe this work provides a solid foundation for further
analysis of spatio-temporal queries. For example, it will be
interesting to investigate the selectivity of spatio-temporal
join, which, given two sets of moving objects, retrieves all
object pairs that satisfy some spatio-temporal predicate
(e.g., intersection, distance). The selectivity is the number
of retrieved pairs divided by the product of the input
cardinalities. An even more challenging topic is to study the

selectivity of complex queries involving several datasets.
Furthermore, the proposed models may be extended to
estimate the number of page accesses for answering queries
using spatio-temporal access methods (e.g., TPR-trees).

Acknowledgements
This work was supported by grants HKUST 6081/01E and
HKUST 6197/02E from Hong Kong RGC.

References
[AAE00] Agarwal, P.K., Arge, L., Erickson, J. Indexing

Moving Points. PODS, 2000.
[AN00] Aboulnaga, A., Naughton, J. Accurate Estimation

of the Cost of Spatial Queries. ICDE, 2000.
[APR99] Acharya, S., Poosala, V., Ramaswamy, S.

Selectivity Estimation in Spatial Databases.
SIGMOD, 1999.

[BF95] Belussi, A., Faloutsos, C. Estimating the Selectivity
of Spatial Queries Using the Correlation's Fractal
Dimension. VLDB, 1995.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[CC02] Choi, Y., Chung, C. Selectivity Estimation for
Spatio-Temporal Queries to Moving Objects.
SIGMOD, 2002.

[KF93] Kamel, I., Faloutsos, C. On Packing R-Trees.
CIKM, 1993.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On
Indexing Mobile Objects. PODS, 1999.

[MPS99] Muthukrishnan, S., Poosala, V., Suel, T. On
Rectangular Partitionings in Two Dimensions:
Algorithms, Complexity, and Applications. ICDT,
1999.

[PFTV02] Press, W., Flannery, B., Teukolsky, S., Vetterling,
W. Numerical Recipes in C++ (second edition).
Cambridge University Press, 2002.

[PJT99] Pfoser, D., Jensen, C, Theodoridis, Y. Novel
Approaches to the Indexing of Moving Object
Trajectories. VLDB, 2000.

[SAE02] Sun, C., Agrawal, D., El Abbadi, A. Exploring
Spatial Datasets with Histograms. ICDE, 2002.

[SJ02] Saltenis, S., Jensen, C.S. Indexing of Moving
Objects for Location-Based Services. ICDE, 2002.

[SJLL00] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez,
M.A. Indexing the Positions of Continuously
Moving Objects. SIGMOD, 2000.

[TP01] Tao, Y., Papadias, D. The MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and
Interval Queries. VLDB, 2001.

[TP02] Tao, Y., Papadias, D. Time-Parameterized Queries
in Spatio-Temporal Databases. SIGMOD, 2002.

[Web] Http://dias.cti.gr/~ytheod/research/datasets/
 spatial.html

