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Abstract 
This paper proposes a cost model for selectivity estimation 
of predictive spatio-temporal window queries. Initially, we 
focus on uniform data proposing formulae that capture 
both points and rectangles, and any type of object/query 
mobility combination (i.e., dynamic objects, dynamic 
queries or both). Then, we apply the model to non-uniform 
datasets by introducing spatio-temporal histograms, which 
in addition to the spatial, also consider the velocity 
distributions during partitioning. The advantages of our 
techniques are (i) high accuracy (1-2 orders of magnitude 
lower error than previous techniques), (ii) ability to handle 
all query types, and (iii) efficient handling of updates.  

1. Introduction 
Spatio-temporal database management systems (STDBMS) 
have received considerable attention [AAE00, KGT99, 
PJT99, SJLL00, SJ02, TP01, TP02] in recent years due to 
the emergence of numerous applications (e.g., traffic 
supervision, flight control, weather forecast, etc) that 
require management of continuously moving objects. An 
important operation in these systems is to predict objects’ 
future location based on information at the current time. For 
this purpose object movement is usually represented as a 
function of time, and the database stores the function 
parameters. For example, given the location o(0) of object o 
at the current time 0 and its velocity oV, its position at some 
future time t can be estimated as o(t)=o(0)+oV ·t. An update 
to the database is necessary only when the function 
parameters (i.e., oV) change.  
The most common query type in STDBMS is the window 
query, which, given a query region qR and a future time 
interval qT, retrieves all objects whose extents will intersect 
qR during qT. For instance, consider “retrieve all residential 
areas that will be covered by typhoon Mike tomorrow based 
on its current spreading speed”. In this example, data 
(residential areas) are static and the query (typhoon) is 
dynamic, while in some cases (e.g., “return all vehicles that 
will be in the city center within the next 10 minutes”) the 
reverse is true. Furthermore, both the data and the query 
can be moving (e.g., “report all airplanes that will be within 
10 miles from flight UA100 in 20 minutes”).   
The selectivity of a window query is defined as the number 
of retrieved objects divided by the cardinality of the dataset, 

and its accurate estimation is important for query 
optimization. Although various techniques [APR99, AN00, 
BF95, KF93, SAE02] have been proposed to estimate 
selectivity in traditional spatial databases (of static objects), 
their application to moving objects results in significant 
errors. Choi and Chung [CC02] conducted the first analysis 
for STDBMS, focusing on moving points and static queries. 
They derive formulae for one-dimensional space, which are 
then extended for the multi-dimensional case. As discussed 
shortly, however, this method may lead to large errors even 
in two dimensions. Furthermore, it does not address 
rectangular data and moving queries (which are common in 
practice).  
This paper presents a comprehensive study for window 
query selectivity estimation that supports all types of 
objects (static/dynamic, points/rectangles) and moving 
queries. In particular, we prove several interesting 
properties which reduce complex problems (e.g., dynamic 
rectangle data) to simpler ones (i.e., static point data), and 
thus simplify the derivation and the resulting equations 
considerably. Unlike the previous methods, our analysis 
solves the problem directly in the multi-dimensional space, 
avoiding the inaccuracy caused by approximations. 
Furthermore, we present a spatio-temporal histogram, 
which (i) leads to accurate estimation for arbitrary data 
distributions, and (ii) can be incrementally maintained 
(while the traditional methods require very frequent re-
building). Extensive experimentation confirms that the 
proposed techniques yield error less than 10% in all cases. 
The rest of the paper is organized as follows. Section 2 
introduces related work on selectivity estimation, 
histograms and spatio-temporal access methods. Section 3 
analyzes the problem for uniform data, while Section 4 
extends the results to non-uniform datasets using 
histograms. Section 5 experimentally evaluates the 
proposed methods, and Section 6 concludes the paper with 
directions for future work. 

2. Related Work 
Section 2.1 reviews the only existing approach ([CC02]) for 
window selectivity estimation in STDBMS. Then, Section 
2.2 introduces MinSkew, a popular histogram for spatial 
databases, and discusses how it can be adapted for moving 
data.  
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2.1 Existing Estimation Technique  
Choi and Chung [CC02] focus on dynamic point data and 
static queries (i.e., the query region remains fixed) starting 
from the one-dimensional case, where the spatial universe is 
a line segment [Umin, Umax] (Umin and Umax are the 
coordinates of the boundaries). Their goal is to predict the 
percentage of points that will intersect the query extent qR 
during the query interval qT=[qT-, qT+] (0≤qT-≤qT+, the 
current time is 0). Figure 2.1a shows qR and the positions 
p(qT-) and p(qT+) of a data point p at the starting qT- and 
ending qT+ timestamps of qT, respectively. The distance 
between p(qT-) and p(qT+) depends on the velocity pV of p, 
which distributes uniformly in the range [Vmin, Vmax]. 
Clearly, point p satisfies the query if and only if the 
segment connecting p(qT-) and p(qT+) intersects qR. 
Assuming that the location of p at the current time 0 follows 
uniform distribution in [Umin, Umax], [CC02] derives the 
probability (i.e., also the selectivity of q) that a data point 
qualifies q, as a function of Umin, Umax, Vmin, Vmax, and the 
query parameters.  

qR

p(qT-) 

location of p at the 
starting time of qT

location of p at the 
ending time of 

Umin Umax

p (qT+) 

q
T

x-axis

y-axis

A
B

py(qT+)

py(qT-) p(qT-)

p(qT+)

px(qT-) px(qT+)

qR

qRy qRx

 
(a) 1D case (b) 2D case 

Figure 2.1: Window queries in 1D and 2D spaces 

The multi-dimensional version of the problem is converted 
to the 1D case by projecting objects and queries onto 
individual dimensions. In particular, the probability that p 
satisfies q is computed as ∏i=1~mSeli, where m is the 
dimensionality and Seli is the 1D selectivity (i.e., the 
probability that the projection pi of point p on the i-th 
dimension intersects the projection qi of the query during 
interval qT). This, however, is inaccurate due to the fact that 
a data point may still violate a query q, even if its projection 
intersects that of q on every dimension. For instance, in 
Figure 2.1b p is not a qualifying point because it never 
appears in the region qR. However, the projections of its 
trajectory (during qT) on both dimensions intersect the 
corresponding projections of qR (i.e., segments qRx and qRy). 
Therefore ∏i=1~mSeli over-estimates the actual probability.  
In general, an object o satisfies a spatio-temporal window 
query q if (i) the trajectory projection of o intersects that of 
q on each dimension (i.e., the spatial condition), and (ii) the 
intersection time intervals on all dimensions must overlap 
(i.e., the temporal condition). Let TA and TB be the 
timestamps when p reaches location A and B in Figure 2.1b; 
then the x-intersection interval (i.e., the period when the x-
projections of p and q intersect) is [TB, qT+], while that on 
the y-dimension is [qT-, TA]. Point p does not satisfy the 
query because the two intersection intervals are disjoint, 

thus violating condition (ii). The estimation in [CC02] 
ignores the temporal condition (hence in the sequel we refer 
to the method as the time-oblivious approach), which as 
shown in the experiments may lead to significant estimation 
error. In Section 3, we will mathematically quantify this 
error and elaborate the influential factors. Finally, as 
mentioned earlier, [CC02] does not address rectangle 
objects and moving queries.  

2.2 MinSkew 
MinSkew [APR99] is a spatial histogram originally 
proposed for selectivity estimation of window queries in 
non-uniform datasets. It partitions the space into a set of 
buckets such that the minimum bounding rectangles 
(MBRs) of all buckets are disjoint, and their union covers 
the entire universe. Each bucket bi contains the number 
bi.num of objects whose centroids fall inside bi.MBR, and 
the average extent bi.len of these objects. Figure 2.2 
illustrates a query q and an intersecting bucket b in the 2D 
space. The gray area corresponds to the intersection 
between b.MBR and the extended query region, obtained 
by enlarging each edge of q with distance b.len/2. The 
expected number of rectangles in b intersecting q is 
estimated as b.num×areaG/area(b.MBR), where areaG and 
area(b.MBR) are the areas of the gray region and b.MBR, 
respectively. The estimated selectivity is obtained by 
summing the results for all such intersecting buckets.  

bucket b

b.len/2

b.len/2

query q

 
Figure 2.2: Estimating the selectivity inside a bucket 

To ensure satisfactory accuracy, the above estimation 
requires that (i) objects in each bucket b have similar sizes 
and (ii) their centroids distribute uniformly in b.MBR. To 
quantify the degree of uniformity, [APR99] defines the 
spatial-skew (denoted as b.skew) for a bucket b as the 
statistical variance 1  of the spatial densities2  of all points 
inside it. Since a small spatial-skew indicates better 
uniformity, MinSkew aims at minimizing 
∑i=1~m(bi.num·bi.skew), i.e., the weighted sum of the spatial-
skews of the buckets. Computing the optimal buckets, 
however, is NP-hard [MPS99]. To reduce the computation 
cost, [APR99] partitions the original space into a grid with 
H×H regular cells (where H is the resolution), and associate 
each cell c with (i) the number c.num of objects whose 
centroids fall in c.MBR, (ii) the average extent length c.len 
of objects satisfying (i), and (iii) the density c.den of the 
                                                                 
1 Given n numbers a1, a2, …, an, the statistical variance 

equals ( )2

1

1 n

i
i

a a
n =

−∑ , where a  is the average of a1, a2, …, an. 
2 The density of a point is defined as the number of objects 
that cover the point.  
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cell (i.e., the number of objects intersecting c.MBR). Figure 
2.3a shows an example (H=3) for a dataset with 8 objects, 
and Figure 2.3b illustrates the information associated with 
the cells (len is not shown because it is not needed for 
partitioning). A greedy algorithm builds the histogram that 
minimizes the total-skew, under the constraint that each 
bucket must cover an integer number of cells. The final 
buckets are shown in Figure 2.3c, together with their 
associated information computed as follows:  

  

. .
each cell c in b

b num c num= ∑
, 

  

  

. .

.
.

each cell c in b

each cell c in b

c num c len

b len
c num

⋅
=

∑

∑
 

( )2

  

1
. .

| | each cell c in b

b skew c den den
C

= −∑
 

where b denotes a bucket, |C| is the number of cells covered 

by b, and den  denotes their average density. MinSkew can 
be applied in arbitrary dimensionality with straightforward 
modifications. 
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(a) 3×3 grid (b) Cell information (c) Final buckets 

Figure 2.3: Building the histogram  

 [CC02] extends MinSkew with velocities for spatio-
temporal window queries. Figure 2.4a shows 8 moving 
points, where the arrows (numbers) indicate the directions 
(values) of their velocities (a minus value indicates 
movement towards the negative direction of the axis). 
Figure 2.4b shows the corresponding spatio-temporal 
histogram built in two steps.  
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(a) Location and velocities (b) The final buckets 

Figure 2.4: A spatio-temporal histogram  

First, the spatial extents of the buckets are determined in the 
same way as the traditional MinSkew algorithm (by 
ignoring the velocities). Then, each bucket b is associated 
with a velocity bounding rectangle (VBR) (bVx-, bVx+, bVy-, 
bVy+), such that (i) bVx- (bVx+) equals the minimum 
(maximum) velocity along the x-dimension of the objects 
inside, and (ii) bVy- (bVy+) is defined similarly with respect to 
the y-dimension. In Figure 2.4b, the VBRs of buckets b1, 
b2, and b3 are (-2, 1, -3, 1), (0, 0, 0, 0), and (-1, 2, -1, -1), 
respectively. 

Accurate spatio-temporal selectivity estimation requires that 
the location (velocities) of the objects inside a bucket 
uniformly distribute in the bucket’s MBR (VBR). The data 
partition in Figure 2.4, however, is decided according to 
spatial information; thus, the uniformity of velocity cannot 
be guaranteed, which may lead to significant estimation 
error. Furthermore, the histogram is not incrementally 
updatable and must be re-built very frequently to maintain 
satisfactory accuracy ([CC02] suggests re-building at every 
single timestamp). To see this, assume that in Figure 2.4  
the y-velocity of object d (which determines b1Vy-) changes 
to -1, after which b1Vy- should be adjusted to the y-velocity 
of c (i.e., -2), because it is now the minimum y-velocity of 
all objects in b1. This, however, is not possible because the 
histogram does not contain detailed information about the 
velocities of individual objects. In Section 4, we discuss 
alternative solutions to overcome these problems.  

3. Spatio-Temporal Window Query Selectivity 
Let r be a moving rectangle in m-dimensional space. The 
extent of r at the current time 0 is a 2m-dimensional vector 
rR = {rR1-, rR1+, rR2-, rR2+, …, rRm-, rRm+}, where [rRi-, rRi+] is 
the extent along the i-th dimension (1≤i≤m). Vector rV = 
{rV1-, rV1+, rV2-, rV2+, …, rVm-, rVm+} represents the velocities 
of r, such that rVi- (rVi+) is the velocity of the lower (upper) 
boundary of r on the i-th dimension (1≤i≤m). The extent 
rR(t) (also a 2m-dimensional vector) of r at some future time 
t can be computed from rR and rV as: rR(t)=rR+t·rV. A 
moving point p is represented in a similar way: pR={pR1, 
pR2, …, pRm} and pV={pV1, pV2, …, pVm} are the coordinates 
and velocities on the m dimensions. Note that this 
representation captures static objects by setting all 
velocities to 0. Without loss of generality, we consider that 
for the i-th dimension, the space has extent [Umin-i, Umax-i], 
and possible velocity values fall in the range [Vmin-i, Vmax-i] 
(i.e., the velocity space). Following the common 
methodology, we assume independent dimensions. 
Given a set S of moving objects, a spatio-temporal query q 
specifies (i) a moving rectangle with current extent qR and 
velocity vector qV , (ii) a future time interval qT=[qT-, qT+] 
(0≤qT-≤qT+), and retrieves all objects o that intersect q 
during qT, or more formally, there exists some timestamp 
t∈ [qT-, qT+] such that oR(t) intersects qR(t). If qT-=0 (i.e., the 
current time), the query is called a current query. In this 
section we deal with uniform data, i.e., the extent [rRi-, rRi+] 
of a rectangle r (or pRi of a point p) uniformly distributes in 
[Umin-i, Umax-i], and similarly, the velocity range [rVi-, rVi+] of 
r (or pVi of p) follows uniform distribution in [Vmin-i, Vmax-i], 
for all 1≤i≤m. The goal is to predict the selectivity using 
[Umin-i, Umax-i], [Vmin-i, Vmax-i] and q.  
Our analysis is based on the observation that any case of 
spatio-temporal selectivity estimation can be reduced to 
predicting the selectivity of a moving rectangle query on a 
set of static points. In section 3.1 we study this basic 
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problem, and then, illustrate how to reduce other problem 
instances to the basic case. Table 3.1 lists the symbols that 
will be used frequently in the derivation. 

Symbol Description 
DS the data space 
m dimensionality of DS 

[Umin-i, Umax-i] the extent of DS on the i-th axis 
[Vmin-i, Vmax-i] the velocity range on the i-th axis 

rR={rR1-, rR1+, rR2-, rR2+, 
…, rRm-, rRm+} 

extent of  moving rectangle r at 
the current time 

rV={rV1-, rV1+, rV2-, rV2+, 
…, rVm-, rVm+} 

velocity vector of moving 
rectangle r 

pR={pR1, pR2, …, pRm} coordinates of moving point p  
pV={pV1, pV2, …, pVm} velocities of moving point p 

qT=[qT-, qT+] query time interval 

CX(q) 
the convex hull of corner points 

of qR(qT−) and qR(qT+) 
Selstatic-pt selectivity for static points 

Selpt selectivity for dynamic points 
Selrec selectivity for dynamic rectangles 

Table 3.1: Frequent symbols in the analysis 

3.1 Static Point Data  
A static point p satisfies a moving query q if p lies inside 
qR(t) at some timestamp t∈ qT. For the sake of simplicity, we 
first focus on current queries (i.e., qT-=0). Figure 3.1a shows 
a 2D moving query q, where qR and qR(qT+) (i.e., rectangles 
ABCD and A'B'C'D') indicate the positions of q at the 
starting (0) and ending time (qT+) of qT, respectively. The 
velocity directions of qV are indicated with arrows. Let 
CX(q) be the convex hull of all the corner points of qR and 
qR(qT+) (i.e., polygon ADCC'B'A' in Figure 3.1a).   
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(a) 2 trapezoids (b) 3 trapezoids  (c) 4 trapezoids  

Figure 3.1: Calculating the area of CX(q) 

CX(q) corresponds to the region that is “swept” by q during 
qT, and as a result, a data point p will be retrieved if and 
only if it lies in CX(q). Since the data distribution is 
uniform, the probability for a point to fall inside CX(q) is 
the ratio between the area of CX(q) and that of the spatial 
universe, which is also the selectivity Selstatic-pt of q: 

( ) ( )( )
( )

_

max min
1

, , , ,static pt Ri Ri Vi Vi T m

i i
i

area CX q
Sel q q q q q

U U
− + − +

− −
=

=
−∏

 (3-1) 

The area of CX(q) depends on the velocity directions of qV. 
In Figure 3.1a, for example, qVi- and qVi+ have the same 
directions along all dimensions (qVx- and qVx+ are to the 
right, while qVy- and qVy+ are upwards). In this case, the area 
of CX(q) is the sum of rectangle ABCD (i.e., query’s extent 

at the current time), and two trapezoids ABB'A' and BCC'B'. 
In particular, trapezoid ABB'A' (BCC'D') is the region swept 
by segment AB (BC) during qT. Figure 3.1b shows another 
case where qVx- and qVx+ still have the same direction, while 
qVy- and qVy+ are opposite. Then, the area of CX(q) is the 
sum of rectangle ABCD, and three trapezoids ABB'A', 
BCC'B', and DD'C'C (swept by segments AB, BC, CD 
respectively). Figure 3.1c illustrates the third case where 
velocities on all dimensions have opposite directions; the 
area of CX(q) is the sum of rectangle ABCD and four 
trapezoids ABB'A', BCC'B', DD'C'C, AA'D'D (swept by 
segments AB, BC, CD, DA). 
Computing the area of a single trapezoid is relatively easy. 
Consider, for example, trapezoid ABB'A', where the lengths 
of AB and A'B' are (qRx+−qRx-) and (qRx+−qRx-)+(qVx+−qVx-) 
·(qT+−qT-), respectively. Furthermore, note that the vertical 
distance between AB and A'B' is qVy+·(qT+−qT-); thus, the 
area of trapezoid ABB'A' is given by:  

( )
( ) ( )( ) ( )

' '

1 22 Rx Rx Vx Vx T T Vy T T

area ABB A

q q q q q q q q q+ − + − + − + + −

=

 − + − − ⋅ − 

 

In general m-dimensional spaces, each trapezoid is the 
region swept by a boundary of qR, which is a (m−1)-
dimensional rectangle. Specifically, the trapezoid volumes 
decided by the lower and upper boundaries on the i-th 
dimension (1≤i≤m) can be calculated using equations (3-2) 
and (3-3), respectively: 

( ) ( )
( )

( ) ( )( )

1
2Lower i Vi T T

Rj Rj
j i

Rj Rj Vj Vj T T
j i

area Trapezoid q q q

q q

q q q q q q

− − + −

+ −
≠

+ − + − + −
≠

= − ⋅

 − +
  
 

 − + − −    

∏

∏

      (3-2) 

 

( ) ( )
( )

( ) ( )( )

1
2Upper i Vi T T

Rj Rj
j i

Rj Rj Vj Vj T T
j i

area Trapezoid q q q

q q

q q q q q q

− + + −

+ −
≠

+ − + − + −
≠

= − ⋅

 − +
  
 

 − + − −    

∏

∏

       (3-3) 

Figure 3.2 shows the algorithm for computing the volume 
of CX(q) in m-dimensional spaces, after which the 
selectivity of the query can be obtained using equation (3-
1). The handling of non-current queries (i.e., qT->0) is 
straightforward. The only difference is that CX(q) should be 
the convex hull of the corner points of rectangles qR(qT-) 
and qR(qT+). The volume of CX(q) can still be calculated 
using the algorithm of Figure 3.2. 
So far we have assumed that CX(q) lies entirely in the 
spatial universe DS, while in some cases part of CX(q) may 
fall outside DS (i.e., the query moves out of DS during qT) 
as shown in Figure 3.3. Note that the probability that a data 
point satisfies q now corresponds to the area of the 
intersection between CX(q) and DS. In Figure 3.3, for 
example, the intersection region is hexagon AEFGCD, 
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whose area is the sum of ABCD (i.e., the extent of the query 
at the current time) and two trapezoids ABFE and BCGF.  

Algorithm compute_CX_vol (q) 
1. ∏i=1~m[qRi+(qT-)−qRi-(qT-)]  
2. for each dimension 1≤i≤m  
3.  if qVi-<0 and qVi+<0 then 
4.    sum=sum+area(TrapezoidLower-i) (equation 3-2) 
5.  if qVi->0 and qVi+>0 then 
6.   sum=sum+area(TrapezoidUpper-i) (equation 3-3) 
7.  if qVi-<0 and qVi+>0 then 
8.    sum=sum+area(TrapezoidLower−i) 
   +area(TrapezoidUpper-i)  
9. return sum 
End compute_CX_vol 

Figure 3.2: Algorithm for computing volume of CX(q) 

Umax-y

A B
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E F

G
CX (q) 

D

Umin-y
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Figure 3.3: CX(q) is not completely in DS 

3.2 Dynamic Point Data 
In this section we discuss selectivity estimation for dynamic 
points, where the location pRi and velocity pVi of each point 
p along the i-th (1≤i≤m) dimension distributes uniformly in 
[Umin-i, Umax-i] and [Vmin-i, Vmax-i], respectively. Given a 
moving query q, we aim at deriving the probability P(u1, u2, 
…, um) that a point p satisfies q when its velocity pVi takes a 
specific value ui (1≤i≤m). Once P(u1, u2, …, um) has been 
derived, the query selectivity Selpt can be obtained by 
integrating all possible values of pVi: 

( )

( ) ( )
max 1 max 2 max

min 1 min 2 min

1 2 1 2 2 1

, , , ,

, , , , , ,
m

m

pt Ri Ri Vi Vi T

V V V

m m m

V V V

Sel q q q q q

P u u u f u u u du du du
− − −

− − −

− + − + =

∫ ∫ ∫… … … …

 (3-4) 

where f(u1, u2, …, um) is the unified probability density 
function of u1, u2, …, um. Since all dimensions are 
independent and ui uniformly distributes in [Vmin-i, Vmax-i], 
we have: 

( ) ( ) ( ) ( )1 2 1 2

1 max min

, , ,

1

m m

m

i i i

f u u u f u f u f u

V V= − −

= ⋅ ⋅ ⋅ =

 
 − 

∏

… …

 

Hence equation (3-4) can be written as: 

( )

( )
max 1 max 2 max

min 1 min 2 min

1 max min

1 2 2 1

1
, , , ,

, , ,
m

m

m

pt Ri Ri Vi Vi T
i i i

V V V

m m

V V V

Sel q q q q q
V V

P u u u du du du
− − −

− − −

− + − +
= − −

 
= ⋅ − 
∏

∫ ∫ ∫… … …

  (3-5) 

The derivation of P(u1, u2, …, um) can be reduced to the 
case of static points based on the following lemma: 
Lemma 3.1: Let p be a m-D point with current location pR 
and velocity vector pV={pV1, pV2, …, pVm}. Given a moving 
query q, we formulate another query q' such that (i) its 
current extent qR' and time interval qT' are the same as qR 
and qT, and (ii) qVi-'=qVi-−pVi, qVi+'=qVi+−pVi. Then, p 
satisfies q, if and only if query q' covers the static point pR 
during qT.     ■ 
Lemma 3.1 indicates that deciding whether a moving point 
p intersects a moving rectangle q can be achieved by 
examining the intersection between a static point pR and a 
moving rectangle q', where pR is the current location of p, 
and q' is formulated as described above. To illustrate this, 
consider Figure 3.4a which shows two moving 2D points A, 
B and query q with time interval qT=[0, 1]. AR(1), BR(1), 
qR(1) correspond to the positions of points A, B, and query 
q at time 1, respectively. It is clear that A satisfies q while B 
does not. Figure 3.4b shows the formulated query q' in 
order to decide the intersection of A (observe how the 
velocities of q' change from those of q). 
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Figure 3.4: Illustration of Lemma 3.1  

According to Lemma 3.1 the fact that A is a qualifying 
object guarantees that q' must cover static point AR during 
qT, which is indeed the case as shown in Figure 3.4b. In 
particular, notice that the relative positions of AR and qR'(1) 
in Figure 3.4b are the same as those of AR(1) and qR (1) in 
Figure 3.4a. In general, given a data point p and a query q, 
the relative positions between pR(t) and qR(t) are always the 
same as those between static point pR and the extent qR'(t) 
of the transformed query q' at any future time t. Figure 3.4c 
demonstrates the formulated query q' with respect to point 
B (notice that the y-velocities of q' are 0). Since B does not 
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intersect q, by Lemma 3.1 we can infer that q' does not 
cover BR. 
Therefore, the probability P(u1, u2, …, um) for a moving 
point p with velocities u1, u2, …, um to intersect a query q 
equals the probability that the corresponding formulated 
query q' covers the static point pR. Specifically, P(u1, u2, …, 
um) can be represented as: 

( ) ( )
( )

1 2, , , , , , ,

                        , , , ,

m static pt Ri Ri Vi Vi T

static pt Ri Ri Vi i Vi i T

P u u u Sel q ' q ' q ' q ' q '

Sel q q q u q u q

− − + − +

− − + − +

=

= − −

…  (3-6) 

where Selstatic-pt is the selectivity for static points in equation 
(3-1). As discussed earlier, after solving P(u1, u2, …, um), 
equation (3-5) estimates the selectivity of spatio-temporal 
window queries on moving points. Static queries over 
dynamic points (i.e., the case discussed in [CC02]) 
constitute just a special instance of the general problem and 
can be solved by the above method. 

3.3 Dynamic Rectangles 
This section analyzes the problem for a set S of moving 
rectangles. For each rectangle r∈ S and each dimension i 
(1≤i≤m), (i) the extent of r equals Li (a dataset constant), 
and rRi- (the left boundary) uniformly distributes in [Umin-i, 
Umax-i−Li], (ii) the velocity range rVi+−rVi- equals LVi (also a 
constant), and rVi- (the velocity of the left boundary) follows 
uniform distribution in [Vmin-i, Vmax-i−LVi]. Datasets with 
rectangles that have different extents and velocity ranges 
will be handled using histograms in the next section. 
Similar to the analysis for dynamic points, we aim at 
deriving the probability P(u1, u2, …, um) that a rectangle r, 
whose rVi- takes specific a value ui (1≤i≤m), satisfies the 
query. Once P(u1, u2, …, um) is available, Selrec can be 
obtained by equation (3-7) (notice the changes in the upper 
limits of the integrals compared with equation 3-4): 

( )

( ) ( )
max 1 1 max 2 2 max

min 1 min 2 min

1 2 1 2 2 1

, , , ,

... , ,..., , ,..., ...
m m

m

rec Ri Ri Vi Vi T

V LV V LV V LV

m m m

V V V

Sel q q q q q

P u u u f u u u du du du
− − −

− − −

− + − +

− − −

=

∫ ∫ ∫

(3-7) 

Since ui distributes uniformly in [Vmin-i, Vmax-i−LVi], we 
have: 

( )

( ) ( ) ( )

1 2

1 2
1 max min

, , ,

1

m

m

m
i i i i

f u u u

f u f u f u
V LV V= − −

=

 
⋅ ⋅ ⋅ =  − − 

∏

…

…

 

Thus, equation (3-7) becomes: 

( )

( )
max 1 1 max 2 2 max

min 1 min 2 min

1 max min

1 2 2 1

1
, , , ,

, , ,
m m

m

m

rec Ri Ri Vi Vi T
i i i i

V LV V LV V LV

m m

V V V

Sel q q q q q
V LV V

P u u u du du du
− − −

− − −

− + − +
= − −

− − −

 
=  − − 
∏

∫ ∫ ∫… … …

 (3-8) 

The following lemma reduces the intersection examination 
between two moving rectangles r and q to that between a 
static point (a corner point of rR) and a formulated moving 
rectangle q'. 

Lemma 3.2: Let r be a m-dimensional rectangle whose 
current extent is rR={rR1-, rR1+, rR2-, rR2+, …, rRm-, rRm+} and 
velocity vector is rV={rV1-, rV1+, rV2-, rV2+, …, rVm-, rVm+}. 
Given a moving query q with qR={qR1-, qR1+, qR2-, qR2+, …, 
qRm-, qRm+}, and qV={qV1-, qV1+, qV2-, qV2+, …, qVm-, qVm+}, 
we formulate another query q' such that (i) qT'=qT, (ii) qRi-' 
=qR1-−(rR1+−rR1-), qRi+'=qRi+, and (iii) qVi-'=qVi-−rVi+, 
qVi+'=qVi+−rVi-. Then, r satisfies q, if and only if query q' 
covers the static point p {rR1-, rR2-, …, rRm-} (i.e., a corner 
point of rR).     ■ 
Consider Figure 3.5a which shows data rectangles A, B, 
query q (with interval qT=[0, 1]), and their extents at time 1. 
Notice that A intersects q during qT, while B does not. 
Figure 3.5b shows the transformed query q' with respect to 
A, as well as the lower-left corner point PA of AR. Notice 
that the current extent qR' of q' is obtained by enlarging qR 
by the size of AR. The value (-5) of qVx-', for example, is 
computed by subtracting AVx+ (3) from qVx- (-2). Since q' 
covers static point PA during qT, by Lemma 3.2 we can 
assert that the original object A satisfies q. Similarly, Figure 
3.5c demonstrates the formulated query q' for B, which 
does not cover point PB (lower-left corner point of BR) 
during qT, indicating that object B does not qualify q. 
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Figure 3.5: Illustration for Lemma 3.2 

Hence the probability P(u1, u2, …, um) that a moving 
rectangle r with rVi-=ui (1≤i≤m) satisfies q can be 
represented as: 

( ) ( )
( )

1 2, , , , , , ,

                        , , , ,

m static pt Ri Ri Vi Vi T

static pt Ri i Ri Vi i i Vi i T

P u u u Sel q ' q ' q ' q ' q '

Sel q L q q u LV q u q

− − + − +

− − + − +

=

= − − − −

… (3-6) 

where Li and LVi are the spatial and velocity ranges of r 
along the i-th dimension respectively, and Selstatic-pt is shown 
in equation (3-1), except that the volume of the universe 



 
7 

should be modified to ∏i=1~m(Umax-i−Li−Umin-i) (i.e., the left 
boundary of a data rectangle ranges in [Umin-i, Umax-i−Li]). 
Replacing P(u1, u2, …, um) with equation (3-6), we obtain 
the model for estimating the selectivity for moving 
rectangles. It is worth pointing out that the general 
reduction methodology is independent of the model, e.g., it 
can be applied in conjunction with the formulae of [CC02] 
to capture dynamic queries and rectangle objects. 

3.4 Error of the Time-Oblivious Approach 
As discussed in Section 2.1, the time-oblivious approach 
estimates the selectivity Sel by simply taking the product of 
the qualifying probability Seli on each dimension (1≤i≤m). 
Note that Seli can also be obtained from our derivation (i.e., 
the dimensionality equals 1); hence by comparing the 
difference between Sel and ∏i=1~mSeli we can quantify the 
error of the time-oblivious approach. To illustrate the 
factors that affect the error, in the sequel we consider the 
case (moving points and static queries) targeted in [CC02], 
for which the resulting equations are simplest and can be 
solved into closed form (similar conclusions can be drawn 
for general settings as shown in the experiments). 
Specifically, given (i) a set S of 2D points such that, for 
each point p∈ S, pRi and pVi uniformly distribute in [0, U] 
and [0, V] respectively, and (ii) a static query q whose 
extent is qR and interval is [0, T] (i.e., a current query), the 
actual selectivity Sel is: 

( ) ( )
( )( )

2

2

2 Rx Rx Ry Ry

Rx Rx Ry Ry

VT
Sel q q q q

U

q q q q

U

+ − + −

+ − + −

 = − + − 

− −
+

      (3-7) 

The qualifying probability Seli on each dimension (1≤i≤m) 
can be obtained with similar analysis: 

2
Ri Ri

i

q q VT
Sel

U U
+ −−= +     (3-8) 

Thus, the estimation Sel' obtained by the time-oblivious 
approach is: 

( ) ( )
( )( )

2

2 2

2 2

'

2

4

x y Rx Rx Ry Ry

Rx Rx Ry Ry

Sel

VT
Sel Sel q q q q

U

q q q q V T

U U

+ − + −

+ − + −

=

 ⋅ = − + − + 

− −
+

   (3-9) 

Comparing equations (3-9) and (3-7), the relative error Err 
of Sel' is: 

( ) ( ) ( )( )
2 2

'

2 4Rx Rx Ry Ry Rx Rx Ry Ry

Sel Sel
Err

Sel

V T

VT q q q q q q q q+ − + − + − + −

−= =

 − + − + − − 

 (3-10) 

Note that (qRx+−qRx-)+(qRy+−qRy-) and (qRx+−qRx-)·(qRy+−qRy-) 
correspond to the perimeter and area of qR, respectively. 
The error grows with the interval T and the length of the 
velocity range, decreases with qR, and is not affected by the 
length of the spatial universe U. 

4. Spatio-Temporal Histograms 
This section deals with non-uniform data using histograms 
that partition objects into buckets, such that the distribution 
within a bucket is almost uniform. Then, the uniform 
models are applied locally (in each bucket), and the overall 
prediction is calculated by summing up the individual 
estimations. In Section 4.1, we discuss the defects of 
existing histograms, and then present an alternative solution 
to avoid their problems. Section 4.2 elaborates the 
algorithm for estimation. 

4.1 Histogram Construction and Maintenance 
The spatio-temporal histogram of [CC02] partitions the 
objects based on their spatial location using the 
conventional MinSkew algorithm, and then decides the 
VBRs of the buckets. Since the velocity information is not 
considered during data partition, the resulting histogram 
cannot ensure the uniformity of velocity distribution in the 
buckets. Assume, for example, that we want to build a 
histogram with 2 buckets for the dataset in Figure 4.1a. In 
Figure 4.1b the buckets are decided based on the objects’ 
location. In particular, the first two columns of cells are 
grouped into the same bucket because all of them contain 
exactly one point (i.e., no variance), while cells in the last 
column (with 2 points each) constitute the second bucket. 
Notice that, although the location distribution is fairly 
uniform, the velocity distribution is rather skewed. Consider 
the left bucket in Figure 4.1b, whose (x-) velocity range is 
[-10, 8] (i.e., decided by the velocities of points b and e). 
Notice that, there are 5 points with velocities in the range  
[-10, -2], while only one (i.e., e) has positive velocity (8). 
Similarly, the velocity range of the right bucket is [-8, 10], 
but ranges [-8, 0] and [2, 10] contain 2 and 4 points 
respectively.  
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(b) Considering only location (c) Location and velocity 

Figure 4.1: Uniform velocity distribution 

An effective spatio-temporal histogram should partition the 
data based on both location and velocity information. 
Continuing the previous example, Figure 4.1c shows such a 
histogram, where the left and right buckets contain the first 
and the last two columns of cells respectively. Compared 
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with Figure 4.1b, the spatial uniformity is slightly worse 
(only in the right bucket), while the velocity uniformity is 
significantly better. Specifically, the velocities uniformly 
distribute in ranges [-10, -6] and [-8, 10] for the two 
buckets respectively. As a result, the new histogram is 
expected to produce better prediction. 
The overall velocity distribution for the dataset of Figure 
4.1 is uniform. If the distribution is skewed, ignoring the 
velocities during partitioning is even more problematic. 
Consider, for example, Figure 4.2a where object velocities 
have only two values -10 and 10. Observe that, partitioning 
the spatial universe is useless because (i) the overall 
location distribution is already fairly uniform (i.e., 2 points 
in each cell), and (ii) for all possible partitions, the resulting 
buckets still have extremely skewed velocity distribution. In 
fact, in this case the best partition should be based entirely 
on the velocity dimension. Specifically, the first bucket 
(Figure 4.2b) contains all the points with negative 
velocities, whereas the second one (Figure 4.2c) involves 
those with positive ones. Notice that the resulting buckets 
have uniform location (one point from each cell) and 
velocity (all points have the same velocity) distributions. 
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(b) Bucket 1  (c) Bucket 2 
Figure 4.2: Skewed velocity distribution 

Motivated by the above observations we propose spatio-
temporal histograms (STHs) that partition on both velocity 
and location. A bucket bj (1≤j≤h) has spatial extents 
bj.MBR, and velocity ranges bj.VBR (where VBR stands 
for velocity bounding rectangle). In general, a m-
dimensional dataset requires a 2m-dimensional STH. Figure 
4.3a illustrates a STH with 4 buckets, assuming that the 
data space contains only one dimension (i.e., m=1). The 
MBR of b1, for example, is [0, 40], while its VBR covers 
velocities [-20, 20] (i.e., the minimum and maximum 
velocity among all points in the bucket). Point p belongs to 
b2, because its coordinate pR=30 and velocity pV=25 fall in 
b2.MBR and b2.VBR, respectively.  
Moving intervals (hyper-rectangles in higher dimensions), 
on the other hand, are assigned according to the coordinates 

and velocities of their centroids. For instance, interval r 
(with spatial extent [30, 60] and velocity extent [10, 20]) is 
allocated to bucket b4, which contains the coordinate 45 and 
the velocity 15 of its centroid. In addition to MBR and 
VBR, each bucket bj also stores (i) the number bj.num of 
assigned objects, and (ii) the sum of velocity bj.LVi and 
spatial (for hyper-rectangles) bj.Li length of these objects 
along each dimension (1≤i≤m). Similar to moving objects, 
the MBR of bj also grows according to its VBR, and in the 
sequel we denote its MBR at future timestamp t as 
bj.MBR(t). Such a STH can be constructed using any 
existing algorithm for conventional multi-dimensional 
histograms, by treating a m-dimensional moving object as a 
2m-dimensional box.  
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Figure 4.3: Updating the histogram 

Assume that the histogram of Figure 4.3a is constructed at 
time 0, and point p updates its velocity (from 25 to -10) at 
some future time t (when its position is p(t)). After the 
change p does not belong to bucket b2 any more, because its 
new velocity falls out of b2.VBR [20, 30]. Furthermore, p 
cannot be inserted to the bucket that contains its current 
position p(t) and velocity (-10), since the histogram is based 
on information at time 0 (meaning that future object 
positions are calculated based on the time elapsed with 
respect to time 0). To decide the new bucket for p, we must 
find its surrogate point p' at the histogram construction 
time (0), such that p' will reach the same position p(t) with 
the updated velocity.  
To illustrate this, consider Figure 4.2b, where the velocity 
of a point is represented as the slope of its trajectory. The 
projection point p' is the intersection of the spatial axis and 
the line with slope 10 that crosses p(t), which spatially 
belongs to buckets b3 and b4, but only b3.VBR covers the 
new velocity value 3 . To reflect the change, we should 
update b2.num (=b2.num-1) and b2.LV (=b2.LV-25), and 
modify b3 accordingly (b3.num+=1, b3.LV−= 10). In some 
cases, the surrogate point may fall outside the universe, in 
which case the boundary bucket needs to be enlarged. As an 

                                                                 
3  Here we assume the bucket extents are disjoint, which 
holds for many histograms (e.g., the Minskew [APR99] 
deployed in our experiments), so that the bucket containing 
the projection point is unique. For histograms without this 
property, there may be multiple candidate buckets, in which 
case the final bucket can be selected randomly.   
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example, the MBR of bucket b3 must be expanded to cover 
the surrogate point q' (of q) in Figure 4.3. It is worth 
mentioning that, the VBR of the selected bucket for 
expansion includes the updated velocity of q' (i.e., hence b4 
is not expanded).   
Incrementally updating the histogram reduces the 
maintenance cost significantly. Whenever the system 
receives an object update, the new information is 
intercepted to modify the histogram accordingly. However, 
the uniformity (in buckets) may gradually deteriorate as the 
data (location and velocity) distributions vary. When the 
distribution changes significantly, the histogram needs to be 
re-built in order to ensure satisfactory estimation accuracy. 
A simple heuristic to ensure satisfactory estimation 
accuracy is to re-construct the histogram when the number 
of modifications reaches a certain threshold, as evaluated in 
the experiments.  

4.2 Performing Estimation with Histograms 
Given a query q, we estimate its selectivity by applying the 
uniform model in each bucket. Specifically, for a bucket b, 
the probability b.Sel that an object (in b) satisfies q is 
estimated using the uniform model, treating b.MBR and 
b.VBR as the spatial and velocity spaces respectively. Thus, 
the expected number of objects in b satisfying q is 
b.num·b.Sel, where b.num is the total number of objects in 
b. As a result, the overall selectivity can be estimated by 
summing up the qualifying object number from every 
bucket and then dividing the sum by the dataset cardinality 
N, or more formally: Sel=(∑i=1~Bbi.num·bi.Sel)/N, where B is 
the total number of buckets in the histogram.  
To reduce the estimation time, we aim at minimizing the 
number of buckets for which selectivity estimation is 
necessary (in our implementation we use a numerical 
approach, or specifically the trapezoid rule [PFTV02], to 
evaluate the integrals in the uniform models). Figure 4.4 
shows the extents b1R, b2R of two buckets b1, b2 for point 
objects (arrows indicate the velocity directions of their 
VBRs). Consider the query (with qT-=0), whose current 
extent qR is the gray region, and the dashed rectangles 
represent the extents b1R(qT+), b2R(qT+), qR(qT+) of b1, b2, 
and q at time qT+, respectively. Notice that selectivity 
estimation can be avoided for b1, because its MBR does not 
intersect that of q during query interval qT, indicating that 
none of the objects inside can possibly intersect q. Bucket 
b2, on the other hand, must be considered (i.e., it is a 
qualifying bucket).  

b1R

b1R(qT+)

b2R(qT+)

b2R

qR 

qR(qT+) 

 
Figure 4.4: Filtering buckets for selectivity estimation 

5. Experiments 
This section experimentally evaluates the proposed 
methods. All the experiments were performed on a Pentium 
III 1Ghz CPU with 256 Mbytes memory. The first set of 
experiments demonstrates the correctness of the proposed 
formulae for uniform datasets. For this purpose we 
generated a dataset with 1 million points such that for each 
point (i) its location distributes uniformly in the 2D spatial 
universe [0, 10000]2 (i.e., each axis has extent [0, 10000]) , 
and (ii) its velocity (on each dimension) is uniformly 
generated in [-50, 50]. A query q is a moving rectangle such 
that its extent qR at the current time is a square with side 
length qRlen (e.g., if qRlen=1000, qR covers 1% of the 
space) and its velocity extent qVi+−qVi- (i.e., the difference 
of the velocities of the lower and upper boundaries) on each 
dimension i equals a constant qVlen (if qVlen=0, the extent 
of the query does not change with time). Query workloads 
consist of 200 queries with the same parameters qRlen, 
qVlen, and qT (i.e., the query interval length): (i) the left 
boundary qRi- of each query q distributes uniformly in [0, 
10000−qRlen] (qRi+=qRi-+qRlen), (ii) the velocity qVi- is 
generated uniformly in [-50, 50−qVlen], and (iii) qT- follows 
a uniform distribution in [0, 100−qT].  
Let acti and esti be the actual and estimated numbers of 
objects retrieved from the i-th query (1≤i≤200); then the 
workload error rate is computed as [APR99]:  

Errworkload = (∑i=1~200|esti−acti|)/(∑i=1~200acti).  
As mentioned earlier, in order to obtain esti in our models 
we evaluate the integrals using the trapezoid rule approach 
[PFTV02], which partitions the integral range into 10 equal 
lengths and approximates the integral result with the area 
sum of a set of trapezoids. We compare the error rates of 
our model (denoted as TSP) with that of [CC02] (denoted 
as CC). Since the original CC only captures static queries 
over dynamic objects, we apply our reduction techniques to 
obtain the corresponding formulae for dynamic queries and 
rectangle objects.  
Figure 5.1a shows the error rates of TSP and CC as a 
function of qRlen, fixing qVlen and qT to 10 and 50, 
respectively. TSP yields extremely accurate prediction 
(with maximum error less than 1%), confirming the 
probabilistic correctness of our derivation. On the other 
hand, it is clear that CC leads to substantial errors (greater 
than 100%), indicating that the temporal intersection 
condition (introduced in Section 2.1) cannot be ignored. 
Observe that the error rates of both methods decrease when 
the query becomes larger, which is consistent with previous 
studies on spatial window selectivity [APR99, AN00].  
Figure 5.1b shows the results with respect to various qVlen 
(from 0 to 20), fixing qRlen=600, qT=50. Again our model 
is precise whereas CC produces around 100% error. In 
Figure 5.1c, we fix qRlen and qVlen, and increase qT from 0 
to 100. CC is accurate only when qT=0 because, for 
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timestamp queries, ignoring the temporal condition does not 
cause any error: if an object satisfies a query q, then the 
intersection intervals on all dimensions consist of a single 
timestamp qT- (=qT+). On the other hand, as predicted by 
equation (3-10), the error rate of CC increases fast with qT. 
Experiments with uniform rectangles give similar results.  
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Figure 5.1: Accuracy for uniform data 

Next we evaluate the proposed techniques for non-uniform 
datasets. Due to the lack of data for real moving objects, we 
generated synthetic datasets as follows. First, the location 
distribution is taken from real spatial datasets [Web] CA 
(with 2.2 million rectangles representing streets in 
California) and LA (containing 1.3 million rectangles 
corresponding to places in Los Angeles). Then, each 
rectangle r (in the static dataset) is associated with 
velocities such that on the i-th dimension (1≤i≤2), (i) the 
absolute value of rVi- (i.e., velocity of the lower boundary) 
follows a Zipf distribution (skew coefficient 0.8) in [0, 
50−rVlen], where rVlen is generated randomly in [0, 5] (i.e., 
objects can have different velocity extents), and (ii) rVi- has 
equal probability to be positive or negative. The creation of 
moving points is similar, except that (i) the current position 
of a point is the centroid of a rectangle in CA or LA, and (ii) 
rVlen is set to 0. In the sequel, we refer to the resulting 
datasets as CArec (CApt) and LArec (LApt) where the 
subscripts indicate rectangle (point) data. 
We compare the error rates of three approaches. The first 
one, called 4Dhis+TSP, uses the proposed 4D STH 
(considering both location and velocities) and applies our 
uniform model in each bucket. The second one, 2Dhis+TSP, 
combines TSP with the histogram of [CC02] (i.e., where 
partitioning is based solely on location). The last method, 
referred to as 2Dhis+CC, corresponds to the solution 
proposed in [CC02], i.e., 2D histogram and the CC model. 

The resolutions (i.e., for the initial grid before applying 
MinSkew) are set to 15 and 50 for 4Dhis and 2Dhis 
respectively, so that we need only 4 (6) bits to represent a 
spatial boundary for 4Dhis (2Dhis). As a result, each bucket 
in 4Dhis takes 8 bytes to store the associated information, 
while the size is 19 bytes for 2Dhis (note that the velocities 
of 2Dhis cannot be compressed as in 4Dhis). We allow 25k 
bytes memory for each histogram, and hence the number of 
buckets in 4Dhis (2Dhis) is set to 3000 (1200), respectively. 
After the cell initialization (the cost of which is the time of 
scanning the database), the construction time for 2Dhis 
(4Dhis) is 0.2 and 0.9 seconds respectively. 
Figure 5.2a plots the error rates as a function of qRlen, 
fixing qVlen and qT to their median values 10 and 50 
respectively (CApt dataset). 4Dhis+TSP yields error below 
5%, while the other methods are inaccurate. The fact that 
2Dhis+TSP is considerably worse than 4Dhis+TSP indicates 
that the 4D histogram achieves much better uniformity in 
the buckets. In particular, since the velocities of each object 
follow skewed distribution, the velocity distribution (of 
each bucket) in 2Dhis is also skewed. 2Dhis+CC is even less 
accurate than 2Dhis+TSP, due to the deficiency of CC.  
Figure 5.2b illustrates the error rates with respect to various 
qVlen (qRlen=600, qT=50). In Figure 5.2c, we fix qRlen and 
qVlen, and increase the query interval qT up to 100. Note 
that the accuracy of both 4Dhis+TSP and 2Dhis+TSP 
improves with qT (because the number of qualifying objects 
increases), while that of 2Dhis+CC actually deteriorates. 
This is not surprising because when qT equals 0, 2Dhis+CC 
has the same performance (60% error) as 2Dhis+TSP, but as 
qT increases so does the effect of the temporal intersection 
condition.  
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Figure 5.2: Accuracy for CApt 
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Figure 5.3 confirms the generality of the above 
observations by repeating the experiments using the LApt 
dataset. Figures 5.4 and 5.5 demonstrate the results of the 
same experiments with rectangles. The behavior of 
alternative approaches is very similar to those for point 
data. Specifically, 4Dhis+TSP is accurate in all cases, while 
the other methods have significant errors. Notice that the 
error rates are slightly higher than those of points because 
rectangles have variable spatial and velocity extents, while 
each bucket records only average values. 
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Figure 5.3: Accuracy for LApt 
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Figure 5.4: Accuracy for CArec 
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Figure 5.5: Accuracy for LArec 

STHs can be incrementally maintained to capture object 
updates. To study the accuracy degradation with time, we 
created dynamic data as follows. The initial histogram is 
constructed at time 0, and at each of the subsequent 1000 
timestamps, 10% of the objects update their velocities, such 
that the velocity changes are uniformly distributed in [-5, 
5]. In this way, the data distribution will gradually become 
uniform. For each update the histogram is modified (if 
necessary) as described in Section 4.1.  
Next, we perform window queries with standard parameters 
(i.e., qRlen=600, qVlen=10, qT=50) every 100 timestamps 
and measure the average estimation error (using the 
histogram information at the query time). Figure 5.6 shows 
the results CApt and CArec. Notice that, the error rates 
increase very slowly (due to the distribution change) along 
with time for both cases. Even at the 1000-th timestamp, the 
error rates of our approach (i.e., 25% and 35% for point 
and rectangle data, respectively) are still significantly lower 
than those of the other approaches reported in Figures 5.2 
and 5.4. As a result, the histogram needs re-building very 
infrequently (e.g., every 600 timestamps if maximum error 
20% is allowed). The same observations hold for the LA 
dataset. Recall that 2Dhis requires re-construction at every 
timestamp. 
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Figure 5.6: Accuracy degradation with time for 4Dhis+TSP 
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The last set of experiments evaluates the time of obtaining 
estimate values. Figures 5.7a, b, c demonstrate the costs as 
functions of qRlen, qVlen, and qT, respectively, comparing 
the bucket filtering technique with the brute force method 
(i.e., evaluating the uniform model for every bucket) on 
dataset CApt. It is clear that the cost of bucket filtering 
depends on the query parameters (the estimation time is less 
than 0.3 seconds in all cases), while that of the brute force 
is constant and significantly higher (around 1.5 seconds). 
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Figure 5.7: Estimation costs for CApt 

6. Conclusion 
In spite of the importance of selectivity estimation in 
STDBMS, the existing approaches are not able to provide 
satisfactory prediction. This paper addresses the problem 
with a comprehensive study that covers all types of objects 
and query-object mobility combination. Particularly, we 
prove several important lemmas that reduce complex 
estimation problems into simple cases, and derive a model 
that (i) is able to capture the selectivity accurately, and (ii) 
is simpler and more flexible than the previous one. 
Furthermore, we present a new spatio-temporal histogram, 
which considers both locations and velocities for 
partitioning. Extensive experimentation confirms that the 
proposed techniques predict spatio-temporal query 
selectivity very accurately. 
We believe this work provides a solid foundation for further 
analysis of spatio-temporal queries. For example, it will be 
interesting to investigate the selectivity of spatio-temporal 
join, which, given two sets of moving objects, retrieves all 
object pairs that satisfy some spatio-temporal predicate 
(e.g., intersection, distance). The selectivity is the number 
of retrieved pairs divided by the product of the input 
cardinalities. An even more challenging topic is to study the 

selectivity of complex queries involving several datasets. 
Furthermore, the proposed models may be extended to 
estimate the number of page accesses for answering queries 
using spatio-temporal access methods (e.g., TPR-trees).  
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