
Appears in ACM SIGOPS Operating Systems Review, 40(3): pages 38-44. ACM Press, July 2006.

InteMon: Continuous Mining of Sensor Data in Large-scale
Self-* Infrastructures

Evan Hoke Jimeng Sun John D. Strunk Gregory R. Ganger Christos Faloutsos
Carnegie Mellon University

ABSTRACT
Modern data centers have a large number of components that must
be monitored, including servers, switches/routers, and environmen-
tal control systems. This paper describes InteMon, a prototype
monitoring and mining system for data centers. It uses the SNMP
protocol to monitor a new data center at Carnegie Mellon. It stores
the monitoring data in a MySQL database, allowing visualization
of the time-series data using a JSP web-based frontend interface
for system administrators. What sets InteMon apart from other
cluster monitoring systems is its ability to automatically analyze
correlations in the monitoring data in real time and alert administra-
tors of potential anomalies. It uses efficient, state of the art stream
mining methods to report broken correlations among input streams.
It also uses these methods to intelligently compress historical data
and avoid the need for administrators to configure threshold-based
monitoring bands.

1. INTRODUCTION
The increasing size and density of computational clusters and data
centers pose many management challenges for system administra-
tors. Not only is the number of systems that they must configure,
monitor, and tune increasing, but the interactions between systems
are growing as well. System administrators must constantly moni-
tor the performance, availability, and reliability of their infrastruc-
ture to ensure they are providing appropriate levels of service to
their users.

Modern data centers are awash in monitoring data. Nearly every
application, host, and network device exports statistics that could
(and should) be monitored. Additionally, many of the infrastructure
components such as UPSes, power distribution units, and computer
room air conditioners (CRACs) provide data about the status of
the computing environment. Being able to monitor and respond to
abnormal conditions is critical for maintaining a high availability
installation.

Administrators have long relied upon monitoring software to ana-
lyze the current state of networks, hosts, and applications. These
software packages continue to evolve and improve in their scala-
bility as well as the breadth of devices and conditions they moni-
tor. Unfortunately, with the scale of today’s systems, it is still very
difficult to effectively monitor an entire data center. Our target is
the Data Center Observatory, a data center environment under con-
struction at Carnegie Mellon designed to bring together automation
research and real computation and storage needs.

Traditional monitoring software has three significant weaknesses
that make the capture and analysis of monitoring data difficult.

Configuration: Monitoring software requires significant time and
expertise to properly configure. For each data stream that the ad-
ministrator intends to monitor, he must decide upon proper thresh-
olds for the data values. That is, he must define, for each data
stream, what constitutes “normal” behavior. While classes of de-
vices or instances of applications may share a common set of these
thresholds, the administrator is still left with quite a challenge. All
this effort means the administrator is unlikely to take advantage of
much of the information available.

Reasoning: When troubleshooting problems within the data center,
simple monitoring of independent data streams is not very helpful
for tracking down problems. For example, the administrator may
receive an alert that an application’s response time is too large, but
the administrator is still left with the difficult task of determining
the root cause.

Historical data: When troubleshooting, it is very useful to know
how a system has performed in the past. Current monitoring soft-
ware attempts to answer this by providing historical averages as
a way of summarizing past system behavior. While maintaining
high resolution data from thousands of data streams over a long
period of time is impractical in many situations, better techniques
for summarizing the data are necessary. An administrator needs to
not only know averages, but variations and extremes to efficiently
troubleshoot problems.

Using stream-based data mining, InteMon is designed to address
these weaknesses of current monitoring software. InteMon uses
the SPIRIT [25] stream mining algorithm to analyze the many data
streams available in modern data centers.

InteMon is designed to be a monitoring application for large-
scale clusters and data centers. It will complement existing solu-
tions by providing automatic mining as well as efficient storage for
the many data streams common in today’s clusters. In particular,
it can observe the correlations across data streams, summarizing
them in a succinct manner; it can pick up anomalous behaviors that
manifest as broken correlations; it can summarize historical data
as compact “hidden variables” that can be used to approximately
reconstruct the historical data when needed.

InteMon seeks to decrease the burden of system monitoring in
several ways. First, it decreases the level of expertise necessary to
configure the monitoring system. It accomplishes this by remov-
ing the need for the administrator to set “alert” thresholds for the
incoming data. Through stream mining techniques, it learns corre-
lations in the data stream and can flag deviations.



Second, instead of just examining each data stream in isolation,
InteMon looks for correlations across data streams. An alert is
generated when the SPIRIT algorithm detects a change in the level
of correlation across data streams. The existence (or disappear-
ance) of these correlations provides the system administrator with
a starting point for troubleshooting activities.

Third, by performing a variant of incremental principal component
analysis, SPIRIT [25] is able to incrementally and compactly ex-
press the correlations and variations of the data across streams as
well as detect abnormal behavior. This allows historical data to be
intelligently summarized, preserving cross-stream correlation and
flagging regions of interest that should be preserved in high detail
for future reference. The techniques and benefits of InteMon
are complementary to those provided by existing monitoring in-
frastructures, improving the types of (mis-)behaviors that can be
flagged and improving the detail with which historical data is pre-
served.

Our prototype system allows these techniques to be evaluated in a
real environment. It provides a web-based interface to allow a sys-
tem administrator to view anomalies detected in the monitored data
streams. It is currently monitoring a subset of the infrastructure in
Carnegie Mellon’s Data Center Observatory.

The rest of the paper is organized as follows: Section 2 gives a
brief literature survey; Section 3 discusses the key ideas behind
InteMon; Section 4 presents the architecture of our system; Sec-
tion 5 illustrates the stream mining algorithm; Section 6 discusses
some early experiences with the system as well as future work;
Section 7 concludes.

2. RELATED WORK
There are a number of research and commercial monitoring sys-
tems, mainly focusing on system architecture issues such as scala-
bility and reliability. Ganglia [26] is a hierarchical monitoring sys-
tem that uses a multicast-based listen/announce protocol to moni-
tor nodes within clusters, and it uses a tree structure to aggregate
the information of multiple clusters. SuperMon [27] is another
hierarchical monitoring system which uses a custom kernel mod-
ule running on each cluster node. ParMon [8] is a client/server
monitoring system similar to ours but without mining capabilities.
There exist commercial monitoring suites, such as OpenView [18],
Tivoli [19], and Big Brother [5], as well as several open-source
alternatives, including Nagios [22]. These systems are primarily
driven by threshold-based checks. As long as the result of a query
lies within a predefined range, the service is considered to be oper-
ating normally.

While our main focus is discovering anomalous behavior to aid sys-
tem administrators, others have examined ways of using this data to
address performance tuning or workload distribution. Magpie [4]
creates a statistical model of requests moving through a distributed
system to analyze system performance. Weatherman [20] examines
environmental data (e.g., workload distribution, cooling configura-
tion, and physical topology) via a neural network to predict thermal
behavior. Cohen, et al. [12] have had success using performance
monitoring data and Tree-Augmented Bayesian Networks to infer
whether a system is meeting its service-level objective (SLO).

There is a lot of work on querying stream data, which includes
Aurora [1], Stream [21], Telegraph [11] and Gigascope [13]. The
common hypothesis is that (i) massive data streams come into the

system at a very fast rate, and (ii) near real-time monitoring and
analysis of incoming data streams is required. The new challenges
have made researchers re-think many parts of traditional DBMS de-
sign in the streaming context, especially on query processing using
correlated attributes [16], scheduling [3, 9], load shedding [14, 28]
and memory requirements [2].

Here, we focus on the SPIRIT algorithm [25], which performs PCA
in a streaming fashion, discovering the hidden variables among the
given n input streams and automatically determining when more or
fewer hidden variables are needed.

3. MAIN IDEA
In this section, we present the main idea behind InteMon. In a
nutshell, it tries to spot correlations and redundancies. For exam-
ple, if the load on disk1, disk2, . . . disk5 moves in unison (perhaps
they are part of the same RAID volume), we want InteMon to
spot this correlation, report it the first time it happens, and report it
again when this correlation breaks (e.g., because disk2 starts mal-
functioning).

The key insight is the concept of hidden variables: when all five
units work in sync, they report five loads, but in reality all five
numbers are repetitions of the same value, which we refer to as
a “hidden variable.” Correlations can also be more complicated
(e.g., for a specific application, the disk load is a fraction of the
CPU load). There can even be anti-correlations.

This viewpoint simplifies all three problems we mentioned in the
introduction. Tracking a few, well chosen hidden variables allows
for automatic configuration, anomaly detection, and compression:

Configuration: the human user does not need to know the normal
behavior of a data stream: InteMon will learn it on the fly, and it
will complain if there are deviations from it.

Reasoning: InteMon will report the timestamp and the numer-
ical weights of the input data streams that caused the change in
correlation. This provides the administrator with an ordered list of
data streams that were involved in the anomaly, allowing him to
focus on the most likely culprit.

Historical data: We can save a significant amount of space when
storing historical data. First, there are fewer hidden variables than
raw data streams, but there is still enough information to approxi-
mately reconstruct the history, because there are redundancies and
correlations. Second, since we know which timestamps were anoma-
lous, we can store them with full information, compressing the rest
of normal, “boring” data. This is analogous to compression for
video surveillance cameras: during the vast majority of the time,
things are normal, successive frames are near-identical, and thus
they can be easily and safely compressed; we only need to store the
snapshots of a few “normal” timestamps, as well as the snapshots
of all the “anomalous” ones.

Next, we present the details of our implementation: the software
architecture of our system and the user interface. In Section 5, we
also present the mathematical technique to achieve on-line, contin-
uous monitoring of the hidden variables.

4. SYSTEM ARCHITECTURE
In this section, we present our system design in detail. Section 4.1
introduces the real-time data collection process for monitoring sen-



Figure 1: InteMon System architecture

Name Description
ifInOctets.2 Bytes Received
ifInUcastPkts.2 Unicast Packets Received
ifOutOctets.2 Bytes Sent
ifOutUcastPkts.2 Unicast Packets Sent
ssCpuRawUser.0 Unprivileged CPU Utilization
ssCpuRawSystem.0 Privileged CPU Utilization
ssCpuRawNice.0 Other CPU Utilization
ssCpuRawIdle.0 CPU Idle Time
memAvailReal.0 Available Memory
hrSystemNumUsers.0 Number of Users
hrSystemProcesses.0 Number of Processes
hrStorageUsed.1 Disk Usage

Table 1: Example SNMP metrics used by InteMon

sor metrics in a production data center. Section 4.2 presents the
database schemas for data storage. Then Section 4.3 shows the
functionalities of the web interface. The overall system design is
shown in Figure 1.

4.1 Monitoring sensor metrics
Monitoring is done via the Simple Network Management Protocol
(SNMP) [10]. SNMP was chosen because it is a widely used pro-
tocol for managing devices remotely, such as routers, hosts, room
temperature sensors, etc. The large number of devices that support
SNMP made it a natural place to start for data collection. However,
any protocol that allows time-series data to be obtained could be
used with InteMon.

Data collection is done through a daemon process running on a
designated server. This server is configured to query a designated
set of sensor metrics (see Table 1) from all hosts in the data center
using SNMP. At specific intervals, typically a minute, the server
will query, via the snmpget program, each of the hosts and store
the result in a customized MySQL database. Individual queries are
spread out uniformly in the entire period to reduce the concurrent
server load, and the load on clients is negligible. The streaming
algorithms are then run across the incoming data to detect any ab-
normalities.

4.2 Database backend
In order to facilitate easily grabbing data via SNMP, the MACHINE
table contains the host names of all the machines to be monitored,
and the SIGNAL TYPE table contains the OIDs of all the signals

Table Fields
MACHINE id, type, name, address
SIGNAL TYPE id, properties, name, oid
STREAM id, machine, signal type
SPIRIT INSTANCE id, name, normalize function
NORMALIZE FUNCTION id, name, function
INSTANCE MEMBER stream id, spirit id
RAW DATA stream id, time, value
HIDDEN hidden id, spirit id, time, value
RECONSTRUCT stream id, spirit id, time, value
ALERT spirit id, time, alert id, properties
ALERT WEIGHT alert id, stream id, weight

Table 2: Database tables used by InteMon

Figure 2: Main InteMon screen

to be monitored. When the daemon runs, it performs a lookup in
the STREAM table for all the streams that belong to each ma-
chine and queries the current value of each OID, via SNMP. The
returned values are then stored in the RAW DATA table, keyed by
their stream id and time. Because the STREAM table maps OIDs
to machines, we have complete flexibility over which signals are
monitored on each machine. SPIRIT INSTANCE allows complete
flexibility over which signals are grouped together for analysis. An
entry in this table exists for each distinct set of streams that are
analyzed together with a given normalization function that points
to entries in a NORMALIZE FUNCTION table. A NORMAL-
IZE FUNCTION entry is a function applied to the data before it is
analyzed for correlations. There is also an INSTANCE MEMBER
table that maps each signal to the SPIRIT INSTANCEs to which
they belong. For example, to analyze correlations in network ac-
tivity, a SPIRIT INSTANCE could be created with all the network
activity streams as members.

The data is then analyzed for correlations and the resulting hid-
den variables found are stored in the HIDDEN table, keyed by
the SPIRIT INSTANCE to which they belong, as well as the time.
A change in the number of hidden variables indicates something
anomalous is happening, causing the current correlations to break
down. This triggers an alert which is stored into the ALERT table.
The alert id keys into the ALERT WEIGHT table, which contains
the relative weights of the signals that contribute to the new hidden
variable. This provides an indication of what caused the correla-
tion to break down, and it is useful for diagnosing the source of the
problem. As a sanity check of the hidden variables, the original
data is reconstructed from the hidden variables and stored in the
RECONSTRUCT table.



4.3 Web interface
The JSP-based web interface is currently running on Apache Tom-
cat 5.5.15 with JRE 1.5.0. It consists of a main page with links to
monitoring pages for each type of signal and each host. Also, this
page lists the most recent alerts and the hosts/signals they affect as
well as a link to a more extensive page of abnormalities. This pro-
vides the system administrator with the pertinent information that
needs to be addressed immediately as well as tools to investigate
further. An example of the main InteMon screen is shown in
Figure 2.

The individual monitoring pages consist of three graphs, shown
in Figure 3. These graphs are generated with the JFreeChart li-
brary version 1.0.1. Current graphs are cached for improved per-
formance, while graphs of older data are generated on the fly. For
the signal monitoring pages, the first graph contains a minute-by-
minute plot of all the signals of a given type, across hosts.

The second graph contains the hidden variables. For example, if
all machines show the same pattern of CPU utilization, (e.g., a
daily cycle), we have only one hidden variable, which is exactly a
sinusoid-like wave with 24 hour period; now if half of the machines
get overloaded to a 90% utilization, we need a second hidden vari-
able, constant at 90%, to capture the fact. The system not only
flags the abnormal timestamp, but also identifies the cause from as-
sociation weights to the new hidden variable. In this case, CPU
utilization has the largest association weight to the second hidden
variable.

The last graph gives the reconstructed data. This graph uses only
the hidden variables to try to approximate the original data, giving
the user a feel for how well the algorithm is working. The host
monitoring pages are similar, except they provide graphs of all sig-
nals monitored on a specific host. On each graph, vertical bars are
drawn at the locations where abnormalities occur (i.e., the num-
ber of hidden variables changes). These pages provide navigation
to other monitoring pages via pull down menus as well as links to
move forward and backward in time.

5. STREAM MINING
In this section, we describe the underlying mining algorithm in
more detail. We follow standard matrix algebra notation for the
symbols: Bold capital letters are matrices (e.g., U); the transpose
of a matrix is denoted with a T super-script (e.g., UT ); bold lower
case letters represent vectors (e.g., x); normal lower case letters are
scalars (e.g., n, k).

5.1 Correlation Detection
Given a collection of n streams, we want to do the following:

• Adapt the number of k main trends (hidden variables) to
summarize the n streams.

• Adapt the projection matrix, U, which determines the partic-
ipation weights of each stream on a hidden variable.

More formally, the collection of streams is X ∈ RT×n where 1)
every row is a n-dimensional vector containing values at a certain
timestamp and 2) T is increasing and unbounded over time; the al-
gorithm finds X = YUT incrementally where the hidden variable
Y ∈ RT×k and the projection matrix U ∈ Rn×k. In a sensor

Input:
projection matrix U ∈ Rn×k

energy vector s ∈ Rn

input vector x ∈ Rn

Output:
updated projection matrix U
updated energy vector s
1. As each point xt+1 arrives, initialize x́ := xt+1.

2. For 1 ≤ i ≤ k

y(i) = U(:, i)T x́i (projection onto U(:, i))

s(i)← s(i) + y(i)2 (energy ∝ i-th eigenval)
e = x́− y(i)U(:, i) (error, e ⊥ U(:, i))

U(:, i)← U(:, i) +
1

s(i)
y(i)e (update PC estimate)

x́(i + 1)← x́i − y(i)U(:, i) (repeat with remainder).

Figure 4: Tracking a projection matrix

example, at every time tick there are n measurements from temper-
ature sensors in the data center. These n measurements (one row in
matrix X) map to k hidden variables (one row in matrix Y) through
the projection matrix U. An additional complication is that U is
changing over time based on the recent values from X.

Tracking a projection matrix: Many correlation detection meth-
ods are available in the literature, but most require O(n2) compar-
isons where n is the number sensor metrics every time tick. This is
clearly too expensive for this environment. We use the SPIRIT [25]
algorithm to monitor the multiple time series. It only requires
O(nk) where n is the number of sensor metrics and k is the number
of hidden variables.

The idea behind the tracking algorithm, shown in Figure 4, is to
continuously track the changes of projection matrices using the re-
cursive least-square technique for sequentially estimating the prin-
cipal components. To accomplish this, the tracking algorithm reads
in a new vector x and performs three steps:

1. Compute the projection y by projecting x onto U;

2. Estimate the reconstruction error (e) and the energy (the sum
of squares of all the past values), based on the y values; and

3. Update the estimates of U.

Intuitively, the goal is to adaptively update U quickly based on the
new values. The larger the error e, the more U is updated. How-
ever, the magnitude of this update should also take into account the
past data currently “captured” by U. For this reason, the update is
inversely proportional to the current energy (the sum of squares of
all the previous values).

Complexity: The computation and space complexity are O(nk).

Detecting the number of hidden variables k: We use energy
thresholding [17] to determine the number of hidden variables k.
The idea is to increase or decrease the number of hidden variables



(a) original (b) hidden variables (c) reconstruction

Figure 3: Web interface screenshots

when the ratio between the energy kept by the hidden variables and
the one kept by the input values is below or above a certain thresh-
old (e.g., 0.95 and 0.98 in our experiments).

For example, if we are monitoring the number of packets sent over
the network across n hosts, the data is grouped into an n dimen-
sional vector and the algorithm is applied to project this vector into
a k dimensional space (k � n). The projections are the hidden
variables (or the overall correlations). And, the number of hidden
variables are automatically determined based on the reconstruction
error. Given the desirable energy threshold (e.g., 5%), the algo-
rithm will pick the smallest number of hidden variables that satis-
fies the threshold.

Anomaly detection: We consider anomalies to be sudden changes
of system behavior, that are indicated by a change in the num-
ber of hidden variables. More specifically, if the number of di-
mensions in this space changes, it signifies an abnormality. This
sophisticated definition can capture anomalies beyond traditional
threshold-based schemes, because our system observes the past,
summarizes it in a few latent/hidden variables, and issues an alert
when the past is not good enough to describe the present.

Missing values: Missing values can occur in the system, usually
because SNMP uses UDP which is unreliable. In this case, we use
the reconstruction values as a substitute. If no value is observed
for an extended period of time, that host is marked as a dead node,
which is also recorded as an abnormal event.

Asynchronous arrival: The data collection is staggered across
different hosts. However, the correlation detection algorithm re-
quires synchronized streams. Therefore, we interpolate the indi-
vidual streams and correlate all streams at the beginning of each
time period.

6. DISCUSSION
This section discusses an early success with the InteMon system
as well as shows how InteMon can help with automatic configu-
ration and management of historical data.

6.1 Case study: Environmental monitoring
An early success of the InteMonmonitoring system was to detect
an anomaly in the environmental data from our data center.

A critical part of maintaining a high-availability data center is prop-
erly controlling the data center’s environment (e.g., the tempera-
ture and humidity of the air). Many computer room air condition-
ing systems (CRACs) support remote monitoring of their operating

Figure 5: Temperature monitoring data

status, and ours are no exception. The InteMon system monitors
several parameters from the two CRACs in our data center. The
monitored parameters are:

Return temperature: the temperature of the air as it returns to the
CRAC to be cooled,

Supply temperature: the temperature of the air that is discharged
from the CRAC into the room,

Remote temperature and humidity: the average temperature and
humidity of the air across two remote sensors. These sensors are
used by the CRACs to control the temperature and humidity in the
data center.

The goal is to maintain the data center environmentals within the
specifications for “class 1” environments as specified by ASHRAE [29,
p10]. This specification provides a natural set of thresholds for con-
ventional monitoring systems (e.g., temperature between 68 and 77
degrees Fahrenheit and 40% to 55% relative humidity). However,
it is possible that the room needs attention even though both the
temperature and humidity are within bounds.

Having a system that is able to detect anomalous fluctuations in the
sensor data can alert the system administrator to trouble before the
availability of the data center is impacted. One such incident was
flagged by InteMon. The data in Figure 5 shows the measured
sensor values. While the data was still within range, InteMon
flagged the highlighted regions as anomalous. The altered pattern
of data was caused by a problem with the supply air into the data
center. The makeup air that was being introduced into the data cen-



ter (to meet building occupancy requirements) was of such high
humidity that the CRACs were over-cooling the air during dehu-
midification, triggering their internal reheat cycle. While this did
not interfere with the functioning of the data center, it signalled a
need to address the quality of the air entering the data center.

Although this condition could be detected by directly monitoring
the makeup air or the status of the CRACs’ reheat mode with a
traditional threshold-based monitoring system, the need to do so
(and the proper thresholds) were not obvious a priori. Instead,
InteMon was able to detect the problem, reflected in other (mon-
itored) sensor data and alert the administrator. Failure to detect and
correct this problem leads to excessive power consumption within
the data center and a potentially worsening of the problem until the
environment can no longer be adequately controlled.

6.2 Historical data and space savings
When storing historical data, InteMon only stores the hidden
variables and a small number of weight vectors (projection matri-
ces) depending on the number of alerts. Compared to the raw data,
it achieves a 10 to 1 savings when monitoring three machines with
ten streams each. This savings is expected to be much larger when
the number of streams is increased.

When it is necessary to access the historical data, it is reconstructed
using the hidden variables and the projection matrix. The accuracy
for that reconstruction is a configurable parameter, namely the en-
ergy threshold. In particular, to achieve the 10 to 1 savings, the
threshold was 90%, meaning that the target is 90% accuracy dur-
ing reconstruction.

6.3 Future extensions
Even the hidden variables often obey patterns, like 5 minute peri-
odicity for network daemons, daily, weekly (and possibly, yearly)
periodicity for workloads due to humans. The data mining litera-
ture has a long list of tools that can help us mine and compress the
hidden variables. These tools span the full range from centuries old
and well established, like Fourier analysis (e.g., [23]), into more
recent, but still well established, like Wavelets [15] and the auto-
regressive (AR, or Box-Jenkins) methodology [6, 7], to very recent
research prototypes, like the AWSOM method [24].

7. CONCLUSION
We developed InteMon, an intelligent monitoring system target-
ing large data centers. InteMon operates on a real production
cluster consisting of over 100 machines and about 250 TB of stor-
age at Carnegie Mellon. The design goal for InteMon is to ad-
dress three monitoring challenges: configuration, reasoning, and
storage of historical data. InteMon uses efficient, state of the
art algorithms to learn redundancies and correlations in the input
streams of measurements.

For configuration, it learns what has been happening in the past,
and it can flag deviations from the usual behavior. The human ad-
ministrator does not need to figure out and specify what constitutes
“normal” behavior.

For reasoning, InteMon reports not only what it considers anoma-
lous, but also the “weight” matrix of PCA, which pinpoints the
streams that caused the deviation.

For access to historical data, InteMon provides a natural way to
compress historical data adaptively. When many input streams are

correlated, InteMon stores only one copy of them, and it records
the scaling factors that are needed to reconstruct the rest. Moreover,
it pinpoints the timestamps of the anomalies. Thus, when com-
pressing historical data, InteMon can adaptively compress the
“normal” intervals, while spending more emphasis and disk space
on anomalies.

In addition to its technical strengths, InteMon has been carefully
designed with an intuitive graphical web front-end and an interface
to a relational database management system (MySQL) for data stor-
age.

This is a joint effort to bridge the data mining and the operating
systems community; we believe that such collaboration is crucial to
our efforts to build self-monitoring, and eventually self-organizing,
data centers.

8. ACKNOWLEDGEMENTS
We thank the members and companies of the PDL Consortium (in-
cluding APC, EMC, Equallogic, Hewlett-Packard, Hitachi, IBM,
Intel, Microsoft, Network Appliance, Oracle, Panasas, Seagate,
Sun, and Symantec) for their interest, insights, feedback, and sup-
port. We also thank Intel, IBM, Network Appliance, Seagate, and
Sun for hardware donations that enabled this work. This material is
based on research sponsored in part by the National Science Foun-
dation, via grant #CNS-0326453 IIS-0209107 SENSOR-0329549
EF-0331657 IIS-0326322 IIS-0534205, and by the Army Research
Office, under agreement number DAAD19–02–1–0389. This work
is also supported in part by the Pennsylvania Infrastructure Tech-
nology Alliance (PITA), a partnership of Carnegie Mellon, Lehigh
University and the Commonwealth of Pennsylvania’s Department
of Community and Economic Development (DCED).

9. REFERENCES
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120–139, 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom.
Characterizing memory requirements for queries over
continuous data streams. In PODS, 2002.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain :
Operator scheduling for memory minimization in data
stream systems. In SIGMOD, pages 253–264, 2003.

[4] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Online modelling and performance-aware systems. In
HOTOS, pages 79–84. USENIX Association, 2003.

[5] Big Brother. http://www.bb4.org.

[6] G. E. Box and G. M. Jenkins. Time Series Analysis:
Forecasting and Control. Holden-Day Inc., San Francisco,
revised edition, 1976.

[7] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice Hall,
Englewood Cliffs, NJ, 3rd edition, 1994.

[8] R. Buyya. PARMON: a portable and scalable monitoring
system for clusters. Software - Practice and Experience,
30(7):723–739, 2000.



[9] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik,
M. Cherniack, and M. Stonebraker. Operator scheduling in a
data stream manager. In VLDB, 2003.

[10] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple
network management protocol (SNMP). RFC 1157, Network
Working Group, 1990.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah.
Telegraphcq: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[12] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. In SIGMOD, 2003.

[13] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: a stream database for network applications. In
SIGMOD, 2003.

[14] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, pages 40–51,
2003.

[15] I. Daubechies. Ten Lectures on Wavelets. Capital City Press,
Montpelier, Vermont, 1992. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA.

[16] A. Deshpande, C. Guestrin, S. Madden, and W. Hong.
Exploiting correlated attributes in acqusitional query
processing. In ICDE, 2005.

[17] K. Fukunaga. Introduction to Statistical Pattern Recognition.
Academic Press, 2nd edition, 1990.

[18] HP OpenView.
http://www.managementsoftware.hp.com/index.html.

[19] IBM Tivoli. http://www.ibm.com/software/tivoli/.

[20] J. Moore, J. Chase, and P. Ranganathan. Weatherman:
Automated, online, and predictive thermal mapping and
management for data centers. In International Conference on
Autonomic Computing, 2006.

[21] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation
in a data stream management system. In CIDR, 2003.

[22] Nagios. http://www.nagios.org.

[23] A. V. Oppenheim and R. W. Schafer. Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, N.J., 1975.

[24] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive,
hands-off stream mining. VLDB, Sept. 2003.

[25] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern
discovery in multiple time-series. In VLDB, pages 697–708,
2005.

[26] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler.
Wide area cluster monitoring with ganglia. In CLUSTER,
2003.

[27] M. J. Sottile and R. Minnich. Supermon: A high-speed
cluster monitoring system. In CLUSTER, pages 39–46, 2002.

[28] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager. In
VLDB, 2003.

[29] TC9.9 Mission Critical Facilities. Thermal Guidelines for
Data Processing Environments. ASHRAE, 2004.


