Artificial
Intelligence

okt o
B

LSEVIE Artificia Intelligence 137 (2002) 43-90

www.elsevier.com/locate/artint

L earning Bayesian networks from data:
An information-theory based approach

Jie Cheng?*, Russell Greiner 2, Jonathan Kelly 2, David Bell ®,
Weiru Liu®

@ Department of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8
b Faculty of Informatics, University of Ulster, UK

Received 20 September 2000; received in revised form 13 December 2001

Abstract

This paper provides algorithms that use an information-theoretic analysis to learn Bayesian
network structures from data. Based on our three-phase learning framework, we develop efficient
agorithms that can effectively learn Bayesian networks, requiring only polynomia numbers of
conditional independence (Cl) tests in typical cases. We provide precise conditions that specify
when these algorithms are guaranteed to be correct as well as empirical evidence (from rea world
applications and simulation tests) that demonstrates that these systems work efficiently and reliably
in practice. 0 2002 Elsevier Science B.V. All rights reserved.

Keywords: Bayesian belief nets; Learning; Probabilistic model; Knowledge discovery; Data mining; Conditional
independence test; Monotone DAG-faithful; Information theory

1. Introduction

Bayesian networks (BNs; defined below) are a powerful formalism for representing
and reasoning under conditions of uncertainty. Their success has led to a recent furry of
agorithms for learning Bayesian networks from data. Although many of these learners
produce good results on some benchmark data sets, there are still several problems:

* Corresponding author. Now at Global Analytics, Canadian Imperial Bank of Commerce, BCE-11, 161 Bay
Street, Toronto, ON, Canada M5J 2S8.
E-mail addresses: jcheng@cs.uaberta.ca (J. Cheng), greiner@cs.ualberta.ca (R. Greiner),
jkelly@cs.uaberta.ca (J. Kelly), dabell@ulster.ac.uk (D. Bell), w.liu@ulster.ac.uk (W. Liu).

0004-3702/02/$ — see front matter [2002 Elsevier Science B.V. All rights reserved.
Pll: S0004-3702(02)00191-1

44 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

e Node ordering requirement. Many BN-learning algorithmsrequire additional informa-
tion—notably an ordering of the nodes to reduce the search space (see [17,29]).
Unfortunately, this information is not always available. We therefore want a learner
that can exploit such prior information if it is available, but which can still learn
effectively if it is not.

e Computational complexity. Practically all BN learnersare slow, both in theory [13] and
in practice—e.g., most dependency-analysisbased algorithms (defined below) require
an exponential numbers of “conditional independence” tests.

e Lack of publicly available learning tools. Although there are many algorithmsfor this
learning task, very few systems for learning Bayesian networks systems are publicly
available. Even fewer can be applied to real-world data-mining applications where the
data sets often have hundreds of variables and millions of records.

This motivates us to devel op more effective algorithms for learning Bayesian networks
from training data. Using ideas from information theory, we developed a three-phase
dependency analysis algorithm, TPDA.! This TPDA agorithm is correct (i.e., will produce
the perfect model of the distribution) given a sufficient quantity of training data whenever
the underlying model is monotone DAG-faithful (see below). Moreover, it requires at most
O(N*) Cl teststolearn an N-variable BN. Inthe special case whereacorrect nodeordering
is given, we developed arelated algorithm, TPDA-IT, that requires O(N?) Cl tests and is
correct whenever the underlying model is DAG-faithful. These algorithms employ various
other heuristics that enable it to work well in practice, including the use of the Chow—
Liu agorithm to produce an initial structure; see Section 7.1. A more general TPDA*
algorithm, which is correct under DAG-faithfulness assumption, is a so briefly introduced.
We show that the efficiency of TPDA* is actually very similar to TPDA in most real world
applications.

Both TPDA and TPDA-IT algorithms have been incorporated into the Bayesian Network
Power Constructor system, which has been freely available on the Internet since October
1997 and has already been downloaded over 2000 times, with very positive feedback
from the user community. To make these algorithms more useful to practitioners, both
algorithms can exploit other types of prior knowledge that human experts may supply—
such as the claim that there must (or must not) be an arc between two nodes [19]. The
user can also specify various specia cases for the structures—e.g., that it must be a tree-
augmented Naive Bayesian net (TAN) structure, or a Bayesian network augmented Naive
Bayesian net (BAN) structure[11,23]. We have also used this system to win the KDD Cup
2001 datamining competition (task one)—the Bayesian network model we learned gives
the best prediction accuracy among 114 submissions on a very challenging biological data
set [39].

The remainder of the paper is organized as follows. Section 2 introduces Bayesian
network learning from an information theoretic perspective. Table 1 provides a succinct
summary of the terms that will be used. The subsequent two sections present simplified

1 “TPDA" stands for Three-Phase Dependency Analysis and the suffix “-I7" indicates that this algorithm
expects an ordering of the nodes. We will later use “SLA” for Simple Learning Algorithm.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 45

Table 1

Terms used

AdjPathg (A, B) Nodes appears on adjacency path connecting nodes A to B within graph G. See
Definition 2.

Adjacency path An open path, ignoring the directions of the edges. See Definition 2.

Arc Directed edge (within a graph).

Bayesian network
Cl test
Collider

Condition-set
Cut-set

DAG-faithful

DAG-Isomorph

Dependency-map (D-map)

Drafting
d-separation
Edge
EdgeNeeded*
EdgeNeeded_H

EdgeNeeded

Independency map (I-map)

Monotone DAG-faithful

Node ordering
OrientEdges
Pathg (X, Y)

Perfect map (P-map)

SLA
SLA-IT
Thickening
Thinning
TPDA
TPDA-IT

v-structure

A kind of graphical model of ajoint distribution. See Section 2.

Conditional independence test—Egs. (2.1) and (2.2).

A node on a path where two arcs “collide’. The node “C” in A — C <« B. See
Section 2.

The“C” in“P(A|C)". SeeEq. (2.2).

Ingraph G, if aset of nodes S can d-separate X and Y, we say that S isacut-set
between X and Y in G.

A dataset is DAG-faithful if its underlying probabilistic model is DAG structured.
See Section 2.2.

A distribution that can be represented by a DAG. See Section 2.2.

A graph that can express al the dependencies of the underlying model. See
Definition 3 (Section 2.2).

A phasein our Bayesian network learning agorithm TPDA (and TPDA-IT) where
adraft graph is generated by using pair-wise statistics. See Section 5.

Directed separation of two nodes in a graph according to a set of rules. See
Definition 1 (Section 2).

Connection between a pair of nodes (not necessarily directed).

An (potentially exponential-time) routine that determines if adirect edge between
two nodes is needed. This routine is guaranteed correct given DAG-faithful
assumption. See Section 4.2.1.

A routine that determines if a direct edge between two nodes is needed. This
routine uses a heuristic. See Section 4.2.2.

A routine that determines if a direct edge between two nodes is needed. This
routine is guaranteed correct given monotone DAG-faithful assumption. See
Section 4.2.3.

A graph that can express al the independencies of the underlying model.
Definition 3 (Section 2.2).

The underlying model satisfies a stronger assumption than DAG-faithful. See
Definition 5 (Section 4.1).

The temporal or causal ordering of the nodes. See Definition 4 (Section 3.1).

A routine is used in TPDA to orient edges. See Section 4.3.

The set of adjacency paths between X and Y in G. See Definition 5 (Section 4.1).
A graph that is both a D-map and an |I-map. See Definition 3 (Section 2.2).

A simple learning algorithm for learning Bayesian networks when the node
ordering is not given. See Section 4.

A simple learning agorithm for learning Bayesian networks when node ordering
is given. See Section 3.

A phase in our Bayesian network learning TPDA (and TPDA-IT) that tries to add
more edges as aresult of Cl tests. See Section 5.

A phase in our Bayesian network learning TPDA (and TPDA-IT) that tries to
remove edges from the current graph as aresult of Cl tests. See Section 5.

A three phase learning algorithm for learning Bayesian networks when node
ordering is not given. See Section 5.1.

A three phase learning algorithm for learning Bayesian networks when node
ordering is given. See Section 5.3.

A structure where two nodes are both connected to athird node and the two nodes
are not directly connected. See Section 2.1 (aka “unshielded collider”).

46 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

versions of the algorithms, to help illustrate the basic ideas. Section 3 presents the simple
SLA-IT learning agorithm, which applies when a correct node ordering is available.
That section also describes when SLA-TIT is provably correct and analyses its complexity.
Section 4 presents a more general algorithm, SLA, to handle the situation when the user
does not provide a node ordering. It also proves the correctness of this algorithm, and
analyses its complexity. Section 5 presents our actual agorithms—called TPDA for the
general case, and TPDA-IT for the agorithm that takes a node ordering as input—which
incorporate severa heuristics to be more efficient. Section 6 presents and analyses the
experimental results of both algorithms on real-world data sets. In addition to showing
that our algorithms work effectively, we also show that the heuristics incorporated within
TPDA make the system more efficient. Section 7 relates our learning algorithms to other
Bayesian network learning algorithms, and Section 8 lists our contributions and proposes
some future research directions. The appendices provide proofs of the theorems, discuss
our “monotone DAG-faithful” assumption, and quickly introduce our general Bayesian
network learning system, called the BN Power Constructor.

As a final comment, please note that our complexity results (e.g., O(N?) or O(N%))
refer to the number of Cl tests required. These results say nothing about the order of each
such test, and so do not necessarily bound the computational complexity of the algorithm.
In practice, however, these quantities are very informative, as they indicate the number of
times the agorithm must sweep through the dataset, and we have found that such sweeps
are in fact the mgjor cost of these algorithms; see Section 6.

2. Learning Bayesian networ ks using infor mation theory

A Bayesian network is represented by BN = (N, A, ®), where (N, A) is a directed
acyclic graph (DAG)—each noden € N represents a domain variable (corresponding per-
haps to a database attribute), and each arc a € A between nodes represents a probabilistic
dependency between the associated nodes. Associated with each node n; € N is a con-
ditional probability distribution (CPtable), collectively represented by @ = {6;}, which
quantifies how much a node depends on its parents (see [40]).

Learning a Bayesian network from data involves two subtasks. Learning the structure
of the network (i.e., determining what depends on what) and learning the parameters (i.e.,
the strength of these dependencies, as encoded by the entries in the CPtables). As it is
trivial to learn the parameters for a given structure from a compl ete data set (the observed
freguenciesare optimal with respect to the maximum likelihood estimation [17]), this paper
therefore focuses on the task of learning the structure.

We view the BN structure as encoding a group of conditional independence relation-
ships among the nodes, according to the concept of d-separation (defined below). Thissug-
gests learning the BN structure by identifying the conditional independence relationships
among the nodes. Using some statistical tests (such as chi-squared or mutual information),
we can find the conditional independence relationships among the nodes and use these re-
lationships as constraints to construct a BN. These algorithms are referred as dependency
analysis based algorithmsor constraint-based algorithms[8,9,49]. Section 7 comparesthis
approach with the other standard approach, based on maximizing some score.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 a7

2.1. Overview of the learning algorithms (SLA, TPDA)

Our godl isto find “what is connected to what”—that is, which nodes should be joined
by arcs. As explained below, our algorithms each work incrementally: at each point, it
has a current set of arcs, and is considering adding some new arc, or perhaps deleting an
existing one. Such decisions are based on “information flow” between a pair of nodes,
relative to the rest of the current network. To elaborate this“flow” metaphor:

We can view a Bayesian network as a network of information channels or pipelines,
where each nodeis avalvethat is either active or inactive and the valves are connected
by noisy information channels (arcs). Information can flow through an active valve
but not an inactive one. Now suppose two nodes—say X and Y—are not directly
connected within the current network structure. If this structure is correct, then there
should be no information flow between these nodes after closing al of the existing
indirect connections between X and Y. Our learning algorithms will therefore try to
close off all of these connections, then ask if the dataset exhibits additional information
flow between these nodes. If so, the learner will realize the current structure is not
correct, and so will add anew arc (think “pipeline”) between X and Y.

To be more precise, a path between nodes X and Y isclosed, given some evidence C, if
X and Y are conditionally independent given C. Graphically, thisis defined by the concept
called direction dependent separation or d-separation [40]. Based on this concept, all the
valid conditional independencerelationsin aDAG-faithful distribution can aso be directly
derived from the topology of the corresponding Bayesian network.

That is,

Definition 1 (Adjacency path, d-separation, collider, cut-set, d-connected). For any two
nodes X, Y € V, an “adjacency path” P = (a1, az, ..., a;) betweena; = X anday =Y is
a sequence of arcs that, if viewed as undirected edges, would connect X and Y.

For a DAG G = (N, A), for any nodes X, Y € N where X # Y, and “evidence”
C C N\{X, Y}, wesay that “X and Y are d-separated given C in G” if and only if there
exists no open adjacency path between X and Y, where any such adjacency path P is
considered open iff

(i) every collider on P isin C or hasadescendent in C and
(if) no other nodeson path P isin C.

where anode v isacollider of the path (a1, ...,ai—1 = (X, v), a; = (Y, v),...,a) if the
two directed arcs associated with that node, here a;_1 = (X, v) and a; = (Y, v), ‘collide
atv.2

Herewe call thisset C acut-set. If X and Y are not d-separated given C we say that X
and Y are d-connected given C.

2 The other nodes are called non-colliders of the path. Note that the concept of collider is always related to
aparticular path, as anode can be a collider in one path and a non-collider in another path.

48 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Fig. 1. A simple multi-connected Bayesian net.

InFig. 1, C—E-D is an adjacency path connecting C and D, even though the arcs are
in different directions; we also say that E is a collider in the path C—E—D. Given empty
evidence (i.e., the empty cut-set { }), C and D are d-separated.

In our analog, putting a node into the cut-set is equivalent to altering the status of the
corresponding valves—hence, putting the collider E into the cut-set will open the path
between C and D; while putting the non-collider B into the cut-set will close both the
A—B—C—E and the A—-B—D—E paths, thereby d-separating A and E.

Hence, to decide whether to add a new arc between nodes A and E, with respect to this
graph, our learning algorithms (e.g., TPDA) will try to block the information flow from
every other indirect set of pipelines, by making inactive at least one valve in each path.
Here, this can be accomplished by adding B to the cut-set. As noted above, if there is
residual information flow between these nodes given this cut-set, TPDA will then add an
arc directly connecting A—E.

In general, we measure the volume of information flow between two variables (read
“nodes’) A and B using mutual information

P(a,b)

P@)P(b)’ (21)

I(A,B)=_P(a,b)log
a,b

and the conditional mutual information, with respect to the set of “evidence” variables
(condition-set) C,

P(a,b|c)

_ (2.2)
P@a|c)P(b|c)

I(A,B|C)=Y_ P(a.b,c)log

a,b,c

The mutual information between variables A and B measures the expected information
gained about B, after observing the value of the variable A. In Bayesian networks, if two
nodes are dependent, knowing the value of one node will give us some information about
the value of the other node. Hence, the mutual information between two nodes can tell us
if the two nodes are dependent and if so, how close their relationshipis.

Given the actua probability distribution P(x), we would clam that A and B are
independent iff (A, B) = 0. Unfortunately, our learning algorithms do not have access
to the true distribution P(x), but instead use empirical estimates Pp (x), based on the
dataset D. We therefore use Ip(A, B), which approximates 7(A, B) but uses ﬁD(x)
rather than P(x). Our algorithms will therefore claim that A is independent of B
whenever Ip (A, B) < ¢, for some suitably small threshold ¢ > 0. We will similarly define
Ip(A, B | C), and declare conditional independencewhenever Ip(A, B| C) < e.

Note the computational cost of computing Ip (A, B | C) is exponentia in the size of
C—i.e, requirestime proportional to the product of the sizes of the domainsof A, B, and
of al of the nodes of C. It is also linear in the size of the dataset D, as our learner will

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 49

sweep through the entire dataset to gather the relevant statistics (to determine, in parallel,
all necessary Pp(x) values).
Finally, we will later use the following two definitions:

Definition 2 (Ngbr, AdjPath). For any graph G = (V, A), let
Ngbr; (@) =Ngbr(a) ={ve V| (v,a) e Aor(a,v) € A}

be the set of nodes connecting node ¢ € V by an edge. Also, for any pair of nodes A,
BeV,let

AdjPath(A, B) = AdjPath; (A, B)
be the set of nodes in the adjacency paths connecting A to B within G.

2.2. Input, output and assumptions

Our goal is to use the training data to learn an accurate model of the underlying
distribution; here, this reduces to identifying exactly which arcs to include. We can state
this more precisely using the following ideas:

Definition 3 (Dependency map, independency map and perfect map). A graph G
is a dependency map (D-map) of a probabilistic distribution P if every dependence
relationship derived from G istruein P; G is an independency map (I-map) of P if every
independence rel ationship derived from G istruein P. If G isboth aD-map and an I-map
of P, wecal it aperfect map (P-map) of P, and cal P a DAG-Isomorph of G [40]. Here
we say that P and G are faithful to each other [49].

While our goal, in general, is a graph that is a P-map of the true distribution, thisis
not always possible; there are some distributions whose independence relations cannot all
be represented. For instance, let Z stand for the sound of a bell that rings whenever the
outcomesof two fair coins, X and Y, are the same [40]. Clearly the only BN structuresthat
can represent this domain must contain X — Z < Y. Notice these networks, however, are
not perfect, as they do not represent the facts that X and Z (respectively, Y and Z) are
marginally independent.

While we can create distributions that have no P-maps (such as this X — Z < Y),
Spirtes et al. [49] argue that most real-world probabilistic models in socia sciences are
faithful to Bayesian networks. They also shows that in a strong measure-theoretic sense,
amost all Gaussian distributions for a given network structure are faithful. Meek [38]
proves that the same claim is aso hold for discrete distributions. This paper, therefore,
focuses on learning Bayesian networks from data sets that are drawn from distributions
that have faithful probabilistic models.

The set of conditional independence relations implied in P may not be sufficient to
define a single faithful BN model; for example, every distribution can be represented by
the graph can aso be represented by . The independence rel ationships,
however, are sufficient to define the essential graph (also caled “pattern”, see [49]) of
the underlying BN, where the essential graph of a BN is a graph that has the same edges

50 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Table 2
Assumptions

1. The records occur independently given the underlying probabilistic model of the data (that is, the dataset is
“independent and identically distributed”, iid).

2. Thecasesin the data are drawn iid from a DAG-faithful distribution.

3. Theattributes of atable have discrete values and there are no missing values in any of the records.

4. The quantity of data is large enough for the ClI tests used in our algorithms to be reliable; that is Ip(...) =~
I(...).

of the BN and the same “v-structures’. (A triple of nodes X, Y, Z forms a v-structure
if X > Z <« Y and X is not adjacent to Y.3) Note the essential graph does specify the
direction of the arcs that lead into the collider (here, Z), and also constrains the directions
of the other edges to avoid forcing the non-colliders to appear as colliders. We will later
use this fact to orient edges when node ordering is not given. Moreover,

Theorem 1[14,49]. Every DAG-faithful distribution has a unique essential graph.

Our agorithms require the assumptions listed in Table 2 about the input data. In
addition, the SLA-IT and TPDA-IT algorithms assume the appropriate node ordering;
and the SLA and TPDA algorithms require a stronger first assumption—monotone DAG-
faithfulness assumption.

3. Simplelearning algorithm (given ordering): SLA-IT

This section presentsthe simple SLA-IT agorithm, which takes adata set and a (correct)
node ordering as input and constructs a Bayesian network structure as output. (Recall that
filling in the CPtable parameters is trivial.) Section 4 then provides a genera algorithm,
SLA, that does not require a node ordering, and Section 5 then presents more efficient
versions of these algorithms, that use the “three phase” idea.

Section 3.1 first provides a formal specification of our task, which requires specifying
the node ordering. It also specifies when this algorithm is guaranteed to perform correctly,
and gives its complexity. (Appendix A.3 proves the associated theorem.) Section 3.2 then
presents the actual SLA-IT agorithm.

3.1. Formal description

Like many other Bayesian network learning algorithms [17,29], our SLA-IT system
takes as input both a table of database entries and a node ordering.

Definition 4 (Node ordering). A node ordering is atotal ordering of the nodes of the graph
(variables of the domain)—specifying perhaps a causal or temporal ordering.

3 Thisisalso called an “unshielded collider” [20].

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 51

This information can specify a causal or tempora order of the nodes of the graph
(variables of the domain), in that any node cannot be a cause or happen earlier than the
nodes appearing earlier in the order. If a node ordering is consistent with the underlying
model of a data set, we say it isacorrect ordering. For example, in Fig. 1, A-B—C—D—E
and A—B—D—C—E are two correct orderings.

Of course, we can represent any distribution using a graph that is consistent with any
node ordering. However, only some such graphs will be DAG-faithful. (As an example,
consider a naive-bayes distribution, with a classification node C pointing to a set of
attribute nodes {A;}. In the ordering (C, A1, Ao, ...), the obvious structure will be the
standard naive-bayes structure, which is a P-map. However, the ordering (A1, A2, ..., C)
will typically produce a much larger structure—perhaps even one that is completely
connected—which is not a P-map. Here, the first ordering would be considered correct,
but the second would not.)

The next section provides an algorithm that can recover the underlying structure,
given such a correct ordering together with a dataset that satisfies the conditions listed
in Section 2.2.

3.2. Actual SLA-IT algorithm

The SLA-IT agorithm, shown in Fig. 2, incrementally grows, then shrinks, the graph
structure: It first computes a list of al node-pairs that have sufficient mutual information
to be considered,

L={(X,Y)|I(X,Y) > &).

As the underlying model is assumed to be DAG-faithful, the resulting graph should reflect
al (and only) these dependencies, by including some (possibly indirect) path connecting
each such X to Y. SLA-TIT thereforefirst determines, for each pair of nodes X, Y, whether
thereisalready sufficient information flow between X and Y in the current structure. Thisis
donein step 2, “Thickening”, which first finds a cut-set C = MinCutSet(A, B; (V, A), IT)
separating X from Y in the graph.* Note this depends on both the graph structure (V, A)
(which changes as new edges are added to A), and also on the node ordering 77, as that
ordering determines the directions of the edges, which identifies which nodesin the paths
between X and Y are colliders and which are not.

If the current structureis correct—and in particular, if no arc is needed connecting X to
Y—this cut-set C should turn off al of the paths, stopping all information flow between X
and Y. Thismeansthe Cl test: “Is Ip (X, Y | C) greater than ¢?’ should fail. (We typically

4 Of course, we would like to find as small a cut-set as possible—as that makes the code more efficient, and
also means (given a limited number of training instances) that the results will be more religble. As finding a
minimum cut-set (a cut-set with minimum number of nodes) is NP-hard [1], we use greedy search to find a small
cut-set. The basic idea is to repeatedly add a node to the cut-set that can close the maximum number of paths,
until al paths are closed. See [8] for details.

52 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Subroutine SLA-IT (D: Dataset, IT: node ordering, ¢: threshold):
returns G = (V, A): graph structure
1. LetV :=({attributesin D}, A :={}
L:={(X,Y)|I(X,Y) > ¢} bethelist of al pairs of distinct nodes (X, Y)
where X, Y e Vand X <Y inIT, with at least ¢ mutual information.
Begin [Thickening]
2. Foreach(X,Y)inL:
C :=MinCutSet(X, Y; (V, A), IT)
fIp(X,Y|C)>e¢
Add (X,Y)to A
Begin [Thinning]
3. Foreach(X,Y)inA:
If there are other paths, besides thisarc, connecting X and Y,
A':=A—(X,Y) %i.e,temporarily remove thisedge from A
C :=MinCutSet(X, Y; (v, A", IT)
IfIp(X,Y|C)<e
%i.e, if X can be separated fromY in current “ reduced” graph
A:=A" %thenremove (X, Y) from A
4. Return (V, A)

Fig. 2. The SLA-IT agorithm.

use the threshold ¢ ~ 0.01 here.?) Otherwise, the data D suggests that an arc is needed,
and so SLA-IT will add this (X, Y) arc.

After this sweep (i.e, after step 2 in Fig. 2), we know that that resulting graph
G2 = (V, A2) will include a (possibly indirect) connection between each pair of nodesthat
have a non-trivial dependence. (Thisis sufficient, thanks to the DAG-faithful assumption.)
G2 may, however, aso include other unnecessary arcs—included only because the more
appropriate (indirect) connection was not yet been included within the graph when this
X-Y pair was considered. SLA-IT therefore makes another sweep over the arcs produced,
again using aCl test to determineif each arc is superfluous; if so, SLA-IT removesthat arc
from the current network. Here, SLA-IT first identifies each arc connecting a pair of nodes
that is also connected by one or more other paths. Since it is possible that the other arcs
already explainthe X—Y dependency, SLA-IT temporarily removesthis arc, then computes
acut-set C that should separate X from Y in the reduced graph. If there is no information
flow wrt thisC—i.e,, if Ip(X,Y | C) < e—thenthe (X, Y) arc was not needed, and so is
eliminated.

We prove, in Appendix A.3:

Theorem 2. Given the four assumptions listed in Table 2 (i.e., a “ sufficiently large’
database of compl eteinstancesthat are drawn, iid, froma DAG-faithful probability model),
together with a correct node ordering, the SLA-IT algorithm will recover the correct
underlying network. Moreover, this algorithmwill require O(N?) Cl tests.

5 we regard this as a constant (see Section 5.4.3). Others, including [11,20,25], have used learning techniques
to obtain the value of ¢ that works best for each dataset.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 53

Subroutine SLA (D: Dataset, ¢: threshold): returns G = (V, E): graph structure
1. LetV ={attributesin D}, E ={}
L={(X,Y)|I(X,Y) > ¢} bethelist of al pairs of distinct nodes (X,Y) where X,Y € V
and X # Y, with at least ¢ mutual information (Eqg. (2.1))
Begin [Thickening]
2. Foreach (X,Y)inL:
If EdgeNeeded((V, E), X, Y; D, ¢)
Add (X,Y)t0E
Begin [Thinning]
3. Foreach (X,Y)InE:
If there are other paths, besides thisarc, connecting X and Y,
E'=E—(X,Y) %i.e,temporarily remove this edge from E
If ~EdgeNeeded((V, E'), X, Y; D, ¢) then
%i.e, if X can be separated from Y in current “ reduced” graph
E=E %thenremove (X,Y) from E
4. Return[OrientEdges((V, E), D)]

Fig. 3. SLA: Simple Bayesian net structure learner w/o ordering.

4, Simple (order-free) learning algorithm: SLA
4.1. Overall SLA algorithm

The SLA agorithm, shownin Fig. 3, hasthe same structureasthe SLA-IT algorithm, asit
too incrementally grows, then shrinks, the graph structure. However, as S_A does not have
access to the node orderings, these growing and shrinking processes are more complex.
As with SLA-TT, we want to first determine whether there is additional information flow
connecting X to Y, beyond the flow implied by the current graph (V, E). Once again,
we first seek a cut-set C that should separate X and Y, then add in the (X, Y) arc if
Ip(X,Y | C) > e. Thechallenge hereisfinding an appropriate cut-set: As SLA-IT knew the
node ordering, it could determine thedirection of the edges, and so identify which nodes(in
the paths connecting X to Y) are collidersversus non-colliders, and then determinewhether
to exclude or include them within the cut-set C. SLA does not have this information. It
therefore uses the EdgeNeeded subroutine, defined in Section 4.2 below, to first find an
appropriate cut-set and then make this determination. (Note SLA uses EdgeNeeded in both
places that S_A-IT had used a single Cl test—i.e., in both adding new arcs, and aso in
deleting superfluous ones.®) SL A needs one additional step, beyond the steps used by SLA-
IT: it must also find the appropriate direction for (some of) the edges.

The next two subsections address the two challenges: (1) deciding whether an edgeis
required, given the rest of the current graph; and (2) orienting the edges.

6 Step 2 of LA, like SLA-IT’s step 2, may produce extra edges as some of the eventual arcs were not included
when (X, Y) was being considered. In addition, S_LA may aso include extra arcs as it may be unable to find the
appropriate cut-set, as it does not know the directions of the arcs.

54 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

4.2. Determineif an edgeis needed

In general, EdgeNeeded(G, X, Y, ...) triesto determineif thereis additional “informa-
tion flow” between X and Y, once every known “path” between them has been blocked.
Here, it triesto form acut-set C that blockseach X—Y path, then returns*Yes(i.e., an edge
is needed)” if the conditional mutual information Ip (X, Y | C) exceeds athreshold ¢ for
this cut-set. (We continueto use ¢ ~ 0.01.)

An appropriate cut-set C should block every known path. If the node ordering is known,
we can determine C immediately (as SLA-IT does), and therefore only one Cl test is
reguired to check if two nodes are independent. Unfortunately, as S_A does not know this
ordering information, it must use a group of Cl teststo find this C.

We show below three procedures for this task: Section 4.2.1 shows the straightforward
exponential procedure EdgeNeeded*, which is correct given the assumptions of Table 2
but not efficient. Sections 4.2.2 and 4.2.3 use the idea of quantitative measurements to
improve the efficiency, assuming that the data is monotone DAG-faithful. Section 4.2.2
illustrate the basic ideas using the heuristic procedure EdgeNeeded H, which is very
efficient but not always correct. We then use this as a basis for describing EdgeNeeded
in Section 4.2.3, which is guaranteed to be correct given the monotone DAG-faithful
assumption. (While SLA uses only the correct EdgeNeeded, the actual TDPA algorithm
will gain some efficiency by using EdgeNeeded_H in some situations; see Section 5.) We
first need some definitions:

Definition 5 (paths, open, monotone DAG-faithful).

e paths; (X, Y) isthe set of all adjacency pathsbetween X to Y ingraph G.
e openg (X, Y | C) isthe subset of paths; (X, Y) that are open by cut-set C.
o A DAG-faithful model G = (V, E, ®) is monotone DAG-faithful iff

foral nodes A, BV, if Openg(X,Y | C") € Openg;(X,Y | C),
then I(X,Y |CH<I(X,Y|CO).

Appendix B discusses these notionsin more detail.
Using these subroutines, we prove (in Appendix A):

Theorem 3. Given a “ sufficiently large” database of complete instances that are drawn,
iid, from a monotone DAG-faithful probability model, the SLA algorithm will recover the
correct underlying essential network. Moreover, this algorithmrequires O(N#) conditional
independence tests.

4.2.1. Subroutine EdgeNeeded* (exponential)

Consider any two nodes X and Y; we assume that Y is not an ancestor of X. From
the Markov condition, we know that we can close all the indirect pipelines between these
nodes by setting the cut-set C to be all the parents of Y, but not any children. Since we
do not know which of these Y -neighbor nodes are parents, one approach is to sequentially
consider every subset. That is, let Cy through C,« be the 2 subsets of ¥’s k neighbors.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 55

Subroutine EdgeNeeded* (G: graph, X, Y: node, D: Dataset, ¢: threshold): boolean
% Returns true iff the dataset D requires an arc between X and Y,
% in addition to the links currently present in G
% Also sets global CutSet
1. Let Sy = Ngbr(X) N AdjPath(X, Y) be the neighbors of X that are on an adjacency path
between X and Y; similarly Sy = Ngbr (Y) N AdjPath(X, Y). CutSet := {}
2. Remove from Sy any currently known child-nodes of X; and from Sy any child-nodes of Y.
3. For each condition-set C € {Sx, Sy} do
For each subset C’ C C do
Lets:=1Ip(X,Y | C)).[Eq. (2.2)]
Ifs <e¢,
Let CutSet := CutSet U {({X,Y}, C")};
return (‘false’). % i.e, data does NOT require an arc between these nodes
4. Return(‘true’) %i.e, thereissignificant flow from X to Y

Fig. 4. EdgeNeeded* subroutine.

Asone of these sets—say C;—must include exactly the parentsof Y, I(X,Y | C;) will be
effectively Oif X and Y areindependent. Thisbasic “try each subset” algorithm is used by
essentially al other dependency-analysis based algorithms, including the SGS algorithm
[47], the Verma—Pearl algorithm [56] and the PC algorithm [48]. Of course, this can require
an exponential number of CI tests.

In step 3, the procedure tries every subset C’ of C. If one of the C’ can successfully
block the information flow between X and Y, then we consider C’ as a proper cut-set that
can separate X and Y. The procedure then returns ‘false’ since no extra edge is needed
between X and Y. The cut-set information is stored in a global structure CutSet, which is
used later in the procedure OrientEdges.

By replacing EdgeNeeded with procedure EdgeNeeded* in SLA, we can define an
algorithm SLA*, which is guaranteed to be correct given DAG-faithfulness assumption.
The correctness proof is omitted since it is very straightforward.

4.2.2. Subroutine EdgeNeeded H (heuristic)

Asthereis no way to avoid an exponential number on ClI tests if the result of each trial
isonlyabinary ‘yes or ‘no’, wetherefore devel oped a novel method that uses quantitative
measurements—measuring the amount of information flow between nodes X and Y, for
a given cut-set C. For a given structure G, and pair of nodes X and Y, EdgeNeeded H
begins with a certain set C that is guaranteed to be a superset of a proper cut-set. It then
triesto identify and remove the inappropriate nodesfrom C one at atime, by using agroup
of mutual information tests. This entire process requires only O(k?) Cl tests (as opposed
to the EdgeNeeded* , which must consider testing each of the 2 subsets of ¥’s neighbors).
In Appendix A.1, we prove that this quantitative Cl test method is correct whenever the
underlying model is monotone DAG-faithful.

From the above discussion we know that if X and Y are not adjacent, then either the
parents of X or the parents of Y will form a proper cut-set. Therefore, we can try to find
a cut-set by identifying the parents of X from X’s neighborhood (or parents of Y from
Y’s neighbors). From the definition of monotone DAG-faithfulness, we know that if we do

56 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Fig. 5. Bayesian net to illustrate the EdgeNeeded algorithm.

not close any path then the information flow will not decrease. Given the assumption that
removing a parent node of X (or Y) from the condition-set containing all the neighbors of
X (or Y) will seldom close any path, we conclude that we will not make the information
flow decrease if we remove a parent node. Therefore, we can find a proper cut-set by
distinguishing the parent nodes versus child nodes in the neighborhood of X (or Y) using
mutual information tests. To illustrate the working mechanism of this separating procedure,
we use the simple Bayesian network whose true structureis shown in Fig. 5.

Suppose we trying to determine whether there should be a direct edge between X and
Y, where (we assume) we know all of the other relevant edges of the true structure; see
Fig. 5. If the node ordering is given, i.e., the directions of the edges are known, we
easily see that V1 and V2 are parents of Y, and that Y is not an ancestor of X. So
P ={V1,V2}isaproper cut-set that can separate X and Y. However, as we do not know
the directions of edges, we do not know whether a node is a parent of Y or not. Our
EdgeNeeded H procedure (Fig. 6), therefore, first gets Sx and Sy, which both happen to
be {V1, V2, V3, V4" Instep “3(1)", weuse C = {V1, V2, V3, V4} as the condition-set
and perform a Cl test—determining if Ip (X, Y | C) > ¢ for this C. While this condition-
set does close the paths X—V 1-Y and X—V 2-Y, it also opens X—V 3-Y and X-V4-Y (see
the definition of d-separation in Section 2.2). Thismeansit does not separate X and Y, and
so the CI test will fail, meaning the algorithm will go to step “3(2)”. This step considers
each 3-node subsets of {V1, V2, V3, V4} asapossible condition-set: viz., {V1, V2, V3},
{V1,Vv2,V4}, {V1,V3,V4} and {V2, V3, V4}. As the data is monotone DAG-faithful
(Definition 5 in Section 2.2), either {V1,V2,V3} or {V1, V2, V4} will give the smallest
value on Cl tests. Thisis because they each leave only one path open (path X—V3-Y or
path X—V4-Y respectively) while each of the other condition-sets|eave open three paths.
Assuming {V1, V2, V3} gives the smallest value, we will conclude that V4 is a collider,
and so will remove V4 from the condition-set, and will never again consider including
thisnode again (in this X—Y context). In the next iteration, EdgeNeeded H considers each
2-node subset of {V1, V2, V3} as apossible condition-sets; viz., {V1, V2}, {V1, V3} and
{Vv2, V3}. After three CI tests, we see that the cut-set {V1, V2} can separate X and Y,

7 In general, these sets will be different; in that case, we will consider each of them, as we know at least
a subset of one of them should work if the two nodes are not connected. This is because at least one of the two
nodes must be a non-ancestor of the other.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 57

Subroutine EdgeNeeded H (G: graph, X, Y: node, D: Dataset, ¢: threshold): boolean
% Returns true iff the dataset D requires an arc between X and Y,
% in addition to the links currently present in G
% Also sets global CutSet
1. Let Sy = Ngbr(X) N AdjPath(X, Y) be the neighbors of X that are on an adjacency path
between X and Y; similarly Sy = Ngbr (Y) N AdjPath(X, Y).
2. Remove from Sy any currently known child-nodes of X; and from Sy any child-nodes of Y.
3. For each condition-set C € {Sx, Sy} do
(1) Lets:=IpX,Y|C).[Eq.(2.2)]
If s < ¢, let CutSet := CutSet U {{{X, Y}, C')}; return (‘false’).
% i.e., data does NOT require an arc between these nodes
(2) While|C| > 1do
a Foreachi,let C:=C\{theithnodeof C},s; =I(X,Y | C;).
b. Let m =argmin;{sq, s2,...}.
c. Ifsy <e, %sy; =min(sy, s2,...).
Then return (‘false’);
Elself s, > s THEN BREAK (get next C, in step 3);
ElseLet s := sy, C := C;,;, CONTINUE (go to step “3(2)").
4. Return (‘true’) %i.e., thereissignificant flow from X to Y.

Fig. 6. EdgeNeeded H subroutine.

asIp(X,Y | {V1,V2}) ~ 0. EdgeNeeded H therefore returns “false”, which means SLA
will not add anew arc here, asis appropriate.

(Given an alternative dataset, drawn from a distribution where there was an additional
dependency between X and Y, this Ip(X, Y | {V 1, V2}) quantity would remain large, and
EdgeNeeded H would continue seeking subsets. Eventually it would find that there was
significant flow between X and Y for al of the condition-sets considered, which means
EdgeNeeded H would return “true”, which would cause SLA to add adirect X—Y link.)

As EdgeNeeded H will “permanently” exclude a node on each iteration, it will not
have to consider every subset of Sy as a condition-set, and thus it avoids the need for an
exponential number of Cl tests.

4.2.3. Subroutine EdgeNeeded (guaranteed)

This EdgeNeeded H procedure uses the heuristic that removing a parent of X (or
Y) from the condition-set will seldom close any path between X and Y. However, such
aclosing can happen in some unusual structures. In particular, it may not be able to separate
nodes X and Y when the structure satisfies both of the following conditions.

(1) Thereexists at least one path from X to Y through a child of ¥ and this child-nodeis
acollider on the path.

(2) In such paths, there is one or more colliders besides the child node and all of these
colliders are the ancestors of Y.

58 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

x)) .

Fig. 7. Problematic case.

In such structures, EdgeNeeded_H may incorrectly think a parent of Y isachild of Y
and so erroneously remove it from the conditioning. As aresult, the procedure will fail to
separate two nodes that can be separated. Fig. 7 shows an example of such a structure.

Here we may try to separate X and Y using a certain subset of the neighbor-set of Y,
N2 ={A, C, D}. The EdgeNeeded_H procedure will first use {A, C, D} asthe condition-
set. As this leaves two paths open, X—A—-B—C-Y and X—A—-B—D-Y, it will therefore
consider the 2-element subsets {A, C}, {A, D} and {C, D} as possible condition-sets. Each
of these condition-sets |leaves open one path—viz., Xx—A-B—-C-Y, X—A—B—D-Y and X—
A-Y, respectively. If the mutual information between X and Y is smallest when X—A-Y
is open, the procedure will remove node A from further trials. Clearly, this will lead to
afailure on separating X and Y. In this example, it happens that the neighbor-set of X,
C = {A}, can separate X and Y, but there are more complex models that this procedure
will fail to find, from either Sx or Sy. However, such structures are rare in real world
situations and we have found this heuristic method works very well in most cases.

The procedure, EdgeNeeded, defined in Fig. 8, is correct, even for such problematic
situations. We prove (in Appendix A.1) that this algorithm will find the correct structures
for al probabilistic models that are monotone DAG-faithful.

The mgjor difference between EdgeNeeded H and EdgeNeeded is that, in addition
to including/excluding each neighbor of X—called S,—EdgeNeeded will also consider
including/excluding each neighbors of those neighbors (called Sx/). (Similarly Sy and
Sy’). Notice also that EdgeNeeded only considers one of the sets—either Sy U Sx or
Sy U Sys; n.b., it does not have to consider both of these sets.

Since atering the statuses of two consecutive nodesin a path can aways close the path
(two consecutive nodes cannot both be colliders in a path), we know there is a subset of
Sx U Sy (respectively, of Sy U Sy/) that can close al the paths that connect X and Y
through two or more nodes. The only open paths are those connecting X and Y through
one collider. Under this circumstance, we can remove all the colliders connecting X and
Y without opening any previoudy closed paths. Thus, al paths between X and Y in the
underlying model can be closed. For the example shown in Fig. 7, this procedure will first
use{A, B, C, D} asthe condition-set. Clearly, X and Y can be successfully separated using
this cut-set.

Asin EdgeNeeded* (Fig. 4) and EdgeNeeded_H, the EdgeNeeded procedure also uses
the global structure CutSet to store the cut-sets between pairs of nodes.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 59

Subroutine EdgeNeeded (G: graph, X, Y: node, D: Dataset, ¢: threshold): boolean
% Returns true iff the dataset D requires an edge between X and Y,
% in addition to the links currently present in G
% Also sets global CutSet
1. Let Sy = Ngbr(X) N AdjPath(X, Y) be the neighbors of X that are on an adjacency path
between X and Y; similarly Sy = Ngbr (Y) N AdjPath(X, Y).
2. Let Sy = AdjPath(X,Y) N (UxeSX Ngbr ; (x) — Sx) be the neighbors of the nodes in Sy
that are on the adjacency paths between X and Y, and do not belong to Sx; similarly
Sy = AdiPath(X, Y) N (Uyes, Ngbrg (y) — Sy)
3. Let C besmaller of {Sx U Sy, Sy U Sy}
(i.e,if |Sx USy/| <|Sy USy/|then C = Sx U Sy lseC = Sy U Sy+.)
Lets=1Ip(X,Y|C).[Eq. (2.2)].
If s <e,let CutSet := CutSet U {{({X, Y}, C)}; return (‘false’) % no edge is needed
6. While|C|> 1do
(a) Foreach i, let C; = C\{theithnode of C},s; = Ip(X,Y | C;).
(b) Let m =argmin; {sq, s, ...}.
©) Ifs;m <e, Y%sy, =min(sy, s2,...).
Then let CutSet := CutSet U {{({X, Y}, Cp)}; return (‘false’);
Elself s, > s THEN BREAK (goto step “7");
ELSE et s := sy, C := C;,, CONTINUE (go to step “6").
7. Return(‘true’) % 3 significant flow from X to Y.

o s

Fig. 8. EdgeNeeded subroutine.

4.3. Orienting edges

Among the nodes in Bayesian networks, only colliders can let information flow pass
through them when they are instantiated. The working mechanism for identifying colliders
is described as follows. For any three nodes X, Y and Z of aBayesian network of the form
X-Y-Z (i.e, X and Y, and Y and Z, are directly connected; and X and Z are not directly
connected), there are only three possible structures, (1) X - Y — Z,(2) X < Y — Z and
(3) X — Y « Z. Among them, only thethird type (called av-structure) can et information
passfrom X to Z when Y isinstantiated. In other words, only the v-structure makes X and
Z dependent conditional on {Y}—i.e., only hereis I (X, Z | {Y}) > 0.

Using this characteristic of Bayesian networks, we can identify all the v-structuresin
anetwork and orient the edgesin such structures using Cl tests. Then, we can try to orient
as many edges as possible using these identified colliders.

As noted above, the methods based on identifying colliders will not be able to orient
al the edges in a network. The actual number of arcs that can be oriented is limited by
the structure of the network. (In an extreme case, when the network does not contain any
v-structures, these methods may not be able to orient any edges at al.) However, this
method is quite popular among Bayesian network learning algorithms due to its efficiency
and reliability [48,56]. There are a few algorithms[24,35] that use pure search & scoring
methods to search for the correct directions of the edges. But these methods are generally
slower than collider identification based methods since the search space is much larger
when node ordering is not given [20].

60 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Procedure OrientEdges (G = (V, E): graph)
% Modifies the graph G by adding directions to some of the edges
% Uses global variable CutSet, defined by EdgeNeeded.
1. Forany threenodes X, Y and Z that X and Y, and Y and Z, are directly connected; and X
and Z are not directly connected

if ({X,Z},C)eCutSetandY ¢ C, or ({X, Z}, C) ¢ CutSet

let X beaparent of Y and let Z be aparent of Y.
2. Foranythreenodes X, Y, Z,inV
if (i) X isaparent of Y, (ii) Y and Z are adjacent,
(iii) X and Z are not adjacent, and (iv) edge (Y, Z) is not oriented,
let Y be aparent of Z.
3. Forany edge (X, Y) that is not oriented.
If thereisadirected path from X to Y, let X be aparent of Y.

Fig. 9. OrientEdges subroutine.

Instep 1, procedure OrientEdgestriesto find apair of nodesthat may be the endpoints of
av-structure. It then triesto check whether Y isacollider by searching the global structure
CutSet—if Y isacollider in the path X—Y—Z, Y should not be in the cut-set that separate
X and Z. This process continues until al triples of nodes have been examined. Step 2
uses the identified colliders to infer the directions of other edges. The inference procedure
applies two rules: (1) If an undirected edge belongs to a v-structure and the other edge
in the structure is pointing to the mid-node, we orient the undirected edge from the mid-
node to the end node. (Otherwise, the mid-node would be a collider and this should have
been identified earlier.) (2) For an undirected edge, if there is a directed path between the
two nodes, we can orient the edge according to the direction of that path. These latter two
rules are the same as those used in al of the other collider-identification based methods
mentioned above.

Appendices A.1 and A.2 prove that this overall SLA procedure is both correct and
efficient (in terms of the number of CI tests).

5. Thethree-phase dependency analysisalgorithm

While the algorithm sketched above is guaranteed to work correctly, there are several
ways to make it more efficient. We have incorporated two of these ideas into the TPDA
agorithm. First, rather than start from empty graph (with no arcs), TPDA instead uses
an efficient technique to produce a graph that we expect will be close to the correct one.
Second, rather than call the full EdgeNeeded procedure for each check, TPDA instead uses
the approximation EdgeNeeded_H is some places, and only calls the correct EdgeNeeded
procedure at the end of the third phase.

After Section 5.1 presents the general TPDA agorithm, Section 5.2 uses an exampleto
illustrate the ideas, and Section 5.3 then overviews the TPDA-IT algorithm that can use
anode ordering.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 61

5.1. TPDA algorithm for learning, without ordering

The three phases of the TPDA algorithm are drafting, thickening and thinning. Unlike
the simpler SLA algorithm (Fig. 3), which uses EdgeNeeded to decide whether to add
an edge starting from the empty graph, TPDA begins with a “drafting” phase, which
produces an initial set of edges based on a simpler test—basicaly just having sufficient
pair-wise mutual information; see Fig. 10. The draft is a singly-connected graph (a graph
without loops), found using (essentially) the Chow—Liu [15] algorithm (see Section 7.1).
The other two phases correspond directly to stepsin the SLA algorithm. The second phase,
“thickening”, correspondsto SLA'sstep 2: here TPDA adds edgesto the current graph when
the pairs of nodes cannot be separated using a set of relevant Cl tests. The graph produced
by this phase will contain all the edges of the underlying dependency model when the
underlying model is DAG-faithful. The third “thinning” phase corresponds to step 3: here
each edge is examined and it will be removed if the two nodes of the edge are found to
be conditionally independent. As before, the result of this phase contains exactly the same
edges as those in the underlying model, given the earlier assumptions. TPDA then runs

Subroutine TPDA (D: Dataset, ¢: threshold): returns G = (V, E): graph structure
Begin [Drafting].
1. LetV ={attributesin D}, E ={}
L={X,Y)|I(X,Y)> ¢} bethelist of al pairs of distinct nodes (X,Y) where X,Y € V
and X # Y, with at least ¢ mutual information.
2. Sort L into decreasing order, wrt 7 (X, Y).
3. Foreach(X,Y)inL:
If thereis no adjacency path between X and Y in current graph (V, E)
add (X, Y) to E and
remove (X, Y) from L.
Begin [Thickening].
4. Foreach(X,Y)inL:
If EdgeNeeded H((V, E), X,Y; D, ¢)
Add (X,Y)tOE
Begin [Thinning].
5. Foreach(X,Y)IinE:
If there are other paths, besides thisarc, connecting X and Y,
E'=E—(X,Y) %i.e,temporarily remove thisedge from E
If —-EdgeNeeded H((V,E’),X,Y;D,s) %i.e,if X can be separated fromY
% in current “ reduced” graph
E=E %thenremove (X,Y) from E
6. Foreach(X,Y)IinE:
If X has at least three neighbors other than Y, or Y has at |east three neighbors other than X,
E'=E—(X,Y) %i.e,temporarily remove thisedge from E
If ~EdgeNeeded((V, E'), X, Y; D, ¢)
%i.e, if X can be separated fromY in current “ reduced” graph
E=E %thenremove (X,Y) from E
7. Return [OrientEdges((V, E), D)].

Fig. 10. TPDA agorithm.

62 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

eée

(a)

>

>

@
© ©
€ @

©
® e?e

(©)

®

d)

>
©)
@‘@

Fig. 11. A simple multi-connected network and the results after Phasel, I1, |11 of TPDA.

the OrientEdges procedure to orient the essential arcs of the learned graph, to produce an
essential graph. (Recall that the direction of some of the arcsisirrelevant, in that astructure
is correct under any appropriate assignment of directions.)

5.2. Example

Here we illustrate this algorithm using a multi-connected network, borrowed from
Spirtes et al. [49]. Our data set is drawn from the Bayesian network shown in Fig. 11(a).
Of course, our learning algorithm does not know this network, nor even the node ordering.
Our task is to recover the underlying network structure from this data. We first compute
the mutual information of all 10 pairs of nodes (step 2). Suppose the mutual information
isordered I(B, D) > I(C,E) > I(B,E)>1(A,B)>I(B,C) > I(C,D) > I(D,E) >
I(A,D) > I(A,E) > I(A,C), and dl the mutual information is greater than ¢ (i.e,
I1(A,C) >e¢).

Instep 3, TPDA iteratively examinesapair of nodesfrom L, and connectsthe two nodes
by an edge and removesthe node-pair from L if thereisno existing adjacency path between
them. At the end of this phase, L = [(B, C), (C, D), (D, E), (A, D), (A, E), (A, C)]
contains the pairs of nodes that are not directly connected in Phase | but have mutual
information greater than . The draft is shown in Fig. 11(b). We can see that the draft
already resembles the true underlying graph; the only discrepancies are that the edge
(B, E) is wrongly added and (D, E) and (B, C) are missing because of the existing
adjacency paths (D—B—E) and (B—E—C).

When creating the draft, we try to minimize the number of missing arcs and the number
of wrongly added arcs compared to the (unknown) real model. Since we use only pair-wise
statistics, reducing one kind of errorswill often increase the other. Our stopping condition
reflects a trade-off between the two types of errors—the draft-learning procedure stops
when every pair-wise dependency is expressed by an adjacency path in the draft. As an
adjacency path may not be a true open path, some pair-wise dependencies may not be
really expressed in the draft—for example, as the dependency between B and C appears
to be explained by B—E—C we will not add an B—C arc. Note however that B—E—C is not
atrue open path.

Sorting the mutual information from large to small in L is a heuristic, justified by the
intuition that a pair with larger mutual information is more likely to represent a direct

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 63

connection (an edge) than a pair with smaller mutual information, which may represent an
indirect connection. In fact, thisintuition is provably correct when the underlying graphis
a singly connected graph (a graph without loops). In this case, Phase | of this algorithm
is essentially the Chow-Liu agorithm, which is guaranteed to produce a network that
is correct (as DAG-faithful here means the true distribution will have a tree structure);
here the second and the third phases will not change anything. Therefore, the Chow-Liu
algorithm can be viewed as a specia case of our algorithm for the Bayesian networks that
have tree structures.

Although the draft can be anything from an empty graph to a complete graph,® without
affecting the correctness of the final outcome of the algorithm, the closer the draft isto the
real underlying model, the more efficient the algorithm will be.

The edge-set E produced by Phase | may omit some of L’s node-pairs only because
there were other adjacency paths between the pairs of nodes. The second phase,
“Thickening”, therefore uses a more elaborate test, EdgeNeeded H, to determine if we
should connect those pairs of nodes.

This phase corresponds exactly to SLA’'s step 2, except (1) rather than the entire list L,
Thickening only uses the subset of “correlated” node-pairs that have not already been
included in E, and (2) it uses the heuristic EdgeNeeded_H rather than the guaranteed
EdgeNeeded; see Fig. 6.

Inmoredetail, here TPDA examinesall pairs (X, Y) of nodesthat remainin L—i.e., the
pairs of nodes that have mutual information greater than ¢ and are not directly connected.
It then adds an edge between (X, Y) unless EdgeNeeded H states that these two nodes are
found to be independent conditional on some relevant cut-set.

In our example, Fig. 11(c) showsthe graph after the Thickening Phase. Arcs (B, C) and
(D, E) are added because EdgeNeeded H cannot separate these pairs of nodes using CI
tests. Arc (A, C) is not added because the Cl tests reveal that A and C are independent
given cut-set {B}. Edges (A, D), (C, D) and (A, E) are not added for similar reasons.

Appendix A.1 provesthat this phase will find al of the edges of the underlying model—
i.e., no edge of the underlying model is missing after this phase. The resulting graph may,
however, include some extra edges—i.e., it may fail to separate some pairs of nodes that
are actually conditionally independent. Thisis because:

(1) Somereal edges may be missing until the end of this phase, and these missing edges
can prevent EdgeNeeded H from finding the correct cut-set.

(2) AsEdgeNeeded H uses a heuristic method, it may not be able to find the correct cut-
set for some classes of structures; see Section 4.2.3.

Since both of the first two phases (drafting and thickening) can add unnecessary edges,
this third phase, “Thinning”, attempts to identify these wrongly-added edges and remove
them. This phase correspondsto SLA-step 3. While EdgeNeeded H and EdgeNeeded have
the same functionality and require the same O(N*) Cl tests, in practice we have found
that EdgeNeeded H usually uses fewer Cl tests and requires smaller condition-sets. TPDA

8 Note that our draft will always be atree structure.

64 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

therefore does a preliminary sweep using the heuristic EdgeNeeded_H routine, asaninitial
filter. To ensure that TPDA will always generate a correct structure, TPDA then double-
checksthe remaining edges using the slower, but correct EdgeNeeded; see Fig. 8. Note that
the second sweep does not examine every edges—it examinesan edge X-Y only if X has
at least three other neighborsbesides Y or Y has at least three other neighbors besides X.
This is safe because if both X and Y have at most two neighbors, EdgeNeeded H will
actually try every subset of the neighbors and make the correct decision. So, in the real-
world situationswhen the underlying model s are sparse, the correct procedure EdgeNeeded
is seldom called. This also makes it affordable to define a correct algorithm TPDA* that
does not require the monotone DAG-faithful assumption, by simply replacing EdgeNeeded
with the exponential EdgeNeeded*. The algorithm should still be efficient in most cases
since the expensive EdgeNeeded* will seldom be called.

The ‘thinned’ graph of our example, shown in Fig. 11(d), has the same structure as the
original graph. Arc (B, E) is removed because B and E are independent given {C, D}.
Given that the underlying dependency model has a monotone DAG-faithful probability
distribution (and that we have sufficient quantity of data, etc.), the structure generated by
this procedure contains exactly the same edges as those of the underlying model.

Finally, TPDA orientsthe edges. Here, it can orient only two out of fivearcs, viz., (C, E)
and (D, E). Note these are the only arcs that need to be oriented; any distribution that can
be represented with the other arcs oriented one way, can be represented with those arcs
oriented in any other consistent fashion.® Hence, this is the best possible—i.e., no other
learning method can do better for this structure. Note the number of “direction”-able arcs
depends on the number of edges and collidersin the true distribution. For instance, 42 out
of 46 edges can be oriented in the ALARM network (see Section 6.1).

5.3. TPDA-IT algorithmfor learning, given ordering

Our deployed PowerConstructor system actually used avariant of SLA-I7, called TPDA-
IT, to learn from data together with a node order. As the name suggests, TPDA-IT is quite
similar to TPDA, and in particular, uses the same three phases—viz. drafting, thickening
and thinning. In the first phase, TPDA-IT computes mutual information of each pair of
nodes as a measure of closeness, and creates a draft based on this information. The only
way this phase differs from TPDA's is that, while TPDA adds an edge if there is no
adjacency path between the two nodes, TPDA-IT adds an arc if there is no open path.
The difference meansthat the stopping condition of TPDA-IT is finer—it stops when every
pair-wise dependency is expressed by an open path in thedraft. Toillustrate the differences,
we use the same multi-connected network asin Section 5.2. For instance, the B — C arcis
added because we know that the adjacency path B—E—C is not an open path. The result of
Phase | is shown in Fig. 12(b). As before, TPDA-IT may miss some edges that do belong
in the model.

Phase |1 therefore uses a more definitive test to determine if we should connect each
such pair: by first finding a cut set C that should separate A and B (if the current graphis

9 Assuming we avoid any node ordering that introduce inappropriate v-structures.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 65

© ©
BB A | BB ®
(D (D)
() (b)
© ©
B B XD e
© (©) © (d)
Fig. 12. A simple multi-connected network and the results after Phase |, Il, |11 of TPDA-IT.

correct), and then connecting these nodes if there is additional information flow between
these nodes, after using C. As TPDA-IT knows the direction of the edges, it can easily
determine a sufficient cut-set. For example, to separate two nodes X and Y, where X
appearsearlier inthe ordering, we can just set C to bethe parentsof Y. ThismeansPhasell
of TPDA-IT ismuch simpler that Phase || of TPDA, as the latter, not knowing the direction
of the edges, hasto use a set of Cl tests for each such decision.

Since these phases will include an edge between two nodes except when they are
independent, the resulting graph is guaranteed to include al of the correct edges whenever
the underlying model is DAG-faithful; see the proof in Appendix A.3. In our example, the
graph after Phase Il isshown in Fig. 12(c). We can see that the graph induced after Phase |
contains all the real arcs of the underlying model, that is, it is an I-map of the underlying
model. Thisgraph may, however, include some additional, incorrect edges. (Thisis because
some edges will not be added until the end of this phase, and these missing edges might
have prevented a proper cut-set from being found.) Similar to our discussion in Section 5.2,
if weuse SLA-IT instead, the structure after “thickening” may be acompl ete graph—where
each nodeis connected to every other node.

Since both Phase | and Phase Il can add some incorrect arcs, we use a third phase,
“Thinning”, to identify thosewrongly-added arcs and removethem. Asin Phasell, we need
only one CI test to make this decision. However, this time we can be sure that the decision
iscorrect, aswe know that the current graph is an I-map of the underlying model. (Thiswas
not true until the end of Phase I1: thickening.) Since we can remove all the wrongly-added
arcs, theresult after Phasel1l is guaranteed to be a perfect map (see Section 2.2); see proof
in Appendix A.3. The ‘thinned’ graph of our exampleis shownin Fig. 12(d), which hasthe
structure of the original graph. Hence, after the three phases, the correct Bayesian network
isrediscovered. (Recall that TPDA-IT does not need to orient the edges asit already knows
the direction of the arc when connecting two nodes, as that comes from the node ordering.)

5.4. Discussion

5.4.1. The three-phase mechanism

Virtualy al dependency-analysis-based algorithms have to determine whether there
should be an edge or not between every pair of nodes in a network, and O(N?) such
decisions will alow usto determine the correct network structure. However, if we require

66 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

every such decision to be correct from the beginning, each single decision can require
an exponential number of Cl tests. Unlike the other algorithms, we divide the structure
learning process into three phases. In the first and second phases, we will allow some
decisionsto beincorrect (although of course we try to minimize such bad decisions). Inthe
general TPDA version (without ordering), for each pair of nodes, each decision in Phase |
requires one Cl test and each decision in Phase |1 requires O(N?) Cl tests, where N is
the number of nodes. Phase |11 then requires O(N2) Cl tests to verify each edge proposed
in these two phases. Hence, we must make O(N?) correct decisions to produce the BN
structure, and each such decision requires O(N?) Cl tests. This means TPDA requires at
most O(N#) Cl tests to discover the edges.

5.4.2. Quantitative conditional independence tests

Although the three-phase mechanism alone is enough to avoid the exponential number
of Cl tests in the specia case when the node ordering is given (TPDA-IT), it must work
with the quantitative Cl test method to avoid exponential complexity in the general case.

Our agorithms use conditional mutual information tests as quantitative Cl tests.
However, it is also possible to use other possible quantitative ClI tests, such as the
likelihood-ratio chi-squared tests or the Pearson chi-squared test [3]. We view Bayesian
network learning from an information-theoretic perspective as we think it provides
a natural and convenient to present our algorithms. Moreover, by using information
theoretic measures, we can easily relate our algorithmsto entropy scoring and MDL -based
algorithms like the BENEDICT Algorithm [2] and the Lam—Bacchus Algorithm [35]; see
Section 7 below. One of our further research directions is to combine our approach with
the cross entropy or MDL based scoring approach.

5.4.3. Threshold in conditional independencetests

Like al other conditional independence test based algorithms, our algorithms rely on
the effectiveness of the conditional independence tests to learn the accurate structures.
Unfortunately, these tests are sensitive to the noise when sample sizes are not large enough.
The common practice to overcome this problem is to use some technique to adjust the
threshold ¢ according to the sample size and the underlying distribution of the data.

Because people may also need to learn Bayesian networks of different complexities, our
system allows usersto change the threshold value from the default value. However, we al'so
try to make the threshold value less sensitive to the sample size. Instead of automatically
adjusting the threshold according to the sample size, we developed an empirical formula
to filter out the noise in the mutual information tests. We consider a high dimensional
mutual informationtest asthe sum of many individual low dimensional mutual information
tests. The individual mutual information will only contribute to the sum if it meets certain
criterion, which takes the degrees of freedom of these tests into consideration. As aresult,
we found our mutual information tests to be quite reliable even when the date sets are
small. When the data sets are larger, the empirical formulahasvery little effect. Therefore,
our algorithm can achieve good accuracy using the same threshold when sample sizes are
different. In practice, we find that adjusting threshold in our system according to sample
size is not necessary and the default threshold value is good for most of the real-world

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 67

data sets, where the underlying models are sparse. Our experimental results on the three
benchmark data sets presented in Section 6 are all based on the default threshold.

In our work of Bayesian network classifier learning, we also search for the best
threshold using a wrapper approach, but here attempting to maximize the prediction
accuracy [12]; see also theresultsin [39].

5.4.4. Incorporating domain knowledge

A major advantage of Bayesian networks over many other formalisms (such as artificial
neural networks) is that they represent knowledge in a “semantic” way, in that the
individual components (such as specific nodes, or arcs, or even CPtable values) have some
meaning in isolation—which can be understood i ndependent of the “ meaning” of Bayesian
network as a whole [27]. This makes the network structure relatively easy to understand
and henceto build.

As TPDA is based on dependency analysis, it can be viewed as a constraint based
agorithm, which uses Cl test results as constraints. Therefore, domain knowledge can
naturally beincorporated as constraints. For instance, when direct cause and effect relations
are available, we can use them as a basis for generating a draft in Phase |. In Phase 11, the
learning algorithm will try to add an arc only if it agrees with the domain knowledge.
In Phase I11, the algorithm will not try to remove an arc if that arc is required by domain
experts. Partial node ordering, which specify the ordering of a subset of the node-pairs, can
a so be used to improve the learner’s efficiency. Each such pair declares which of the two
nodes should appear earlier than the other in a correct ordering. Obviously, these relations
can help usto orient some edgesin the first and second phases so that the edge orientation
procedure at the end of the third phase can be finished more quickly. These relations can
also be used in several other parts of the algorithm to improve performance. For example,
in EdgeNeeded H, we need to find Sy and Sy, which are the neighbor-setsof X and Y,
respectively. Since the procedure tries to separate the two nodes using only the parents of
X(Y)in Sx(Sy), if we know that some nodesin Sx (Sy) that are actually the children of
X (Y), we can remove them immediately without using any CI tests. This improves both
the efficiency and accuracy of this procedure.

5.4.5. Improving the efficiency

We have found that over 95% of the running time of the TPDA algorithmsis consumed
in database queries, which are required by the CI tests. Therefore, one obvious way to
make the algorithm more efficient is to reduce the number of database queries. There are
two ways to achieve this: by reducing the number of CI tests and by using one (more
complex) database query to provide information for more than one ClI test.

As noted above, we designed our algorithms to reduce the number of CI tests needed.
However, thereis a trade-off between using one query for more than one ClI test and using
one query for one Cl test. While thislatter method can reduce the total number of database
queries, it also increases the overhead of the query and demands more memory. Our TPDA
algorithm uses this method, but only in its first phase.

68 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

6. Empirical study

This section demonstrates empirically that our TPDA and TPDA-IT algorithms work
effectively, using three benchmark datasets and a group of datasets from randomly
generated distributions. It also demonstrates that the heuristics used (to change from SLA
to TPDA) do improve the performance. These tests were performed using our Bayesian
network learning tool, Power Constructor, which is described in Appendix C.

The three benchmark Bayesian networks are:

e ALARM: 37 nodes (each with 2—4 values); 46 arcs, 509 total parameters|[5].

e Hailfinder: 56 nodes (each with 2-11 values); 66 arcs, 2656 total parameters (http:
[lwww.sis.pitt.edu/~dsl/hailfinder/hailfinder25.dne).

e Chest-clinic: 8 nodes (each with 2 values); 8 arcs; 36 total parameters (http://www.
norsys.com/netlib/Asia.dnet).

The first two networks are from moderate complex real-world domains and the third
one is from a simple fictitious medical domain. In all cases, we generated synthesized
data sets from their underlying probabilistic models using a Monte Carlo technique, called
probabilistic logic sampling [30].

Note that our PowerConstructor system has also been successfully applied in many
real-world applications, both by ourselvesand by other users who downloaded the system.
However, since the underlying model s of these real-world data sets are usually unknown, it
isdifficult to evaluate and analyze the learning accuracy. Thisiswhy almost all researchers
in this area use synthesized data sets to evaluate their algorithms. We have also applied our
system to learn predictive models (classifiers) from real-world data sets; in those cases we
used performance (prediction accuracy) to evaluate our system. The resultsthere were aso
very encouraging; see[11,12,39].

Here, we evaluate each learned structure in two ways: first, based on the number of
missing arcs and wrongly added arcs, as compared to the true structure. This measure
is easy to determine; and clearly the score (0, 0) (read “O missing arcs and O wrongly
added arcs’) means the learned structureis perfect. Of course, some arcs may be difficult,
if not impossible, to find—e.g., consider an arc between the binary variables A and B,
when P(B=1|A=1)=03=P(B=1]| A=0). Here, this A — B arc is clearly
superfluous. Similarly, it can be extremely difficult to detect an arc if the dependency isvery
dight—e.g.,if P(B=1]A=1)=0.3001and P(B =1| A =0) =0.3000. Notice it will
take thousands of instances to have a chance to see this very dight difference; moreover,
anetwork that does not include this edgewill only be dightly different to one that includes
it. We therefore also report the mutual information associated with each missing link.

We aso measure the number and “order” of the CI tests (i.e., the cardindlity of the
conditioning set) that were performed; note that the number of “plInp” tests that are
performed (2.1; 2.2) will be exponential in this quantity, as a k-ary Cl test will involve
O(r¥+2) such computations, for r-ary variables.

All the experiments in this paper were conducted on a Pentium 11 300 MHz PC with
128 MB of RAM running under Windows NT 4.0. The data sets were stored in an MS-
Access® database.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 69

Fig. 13. The ALARM network.

6.1. Experimental results on the ALARM network

ALARM, which stands for ‘A Logical Alarm Reduction Mechanisn’, is a medical
diagnostic system for patient monitoring, which includes nodesfor 8 diagnoses, 16 findings
and 13 intermediate variables [5]. Each variable has two to four possible values. The
network structureis shown in Fig. 13.

The ALARM network isthe most widely used benchmark in this area; many researchers
have used this network to evaluate their algorithms.1? Sections 6.1.1 and 6.1.2 provide
detailed results on learning the ALARM network from a fixed number of cases (10,000)
using TPDA-IT and TPDA, respectively. Section 6.1.3 gives our results on learning from
different sample sizes of the ALARM network using both algorithms.

6.1.1. Use TPDA-IT to learn the ALARM network data

Here, we gave the TPDA-IT agorithm a set of 10,000 cases, drawn independently
from the correct Alarm BN, as well as a correct ordering of the variables (as inferred
from the structure). Table 3 summarizes our results, showing how each phase of TPDA-IT
performed, in terms of the structure learned and the number of Cl tests used. The Cl tests
are grouped by the cardinalities of their condition-sets.

Table 3 demonstrates that TPDA-IT can learn a nearly perfect structure (with only
one missing arc) from 10,000 cases. The result after Phase | already resembles the true
structure: this draft has 43 arcs, only 2 of which arcs are incorrect. The draft also missed 5
arcs of the true structure.

The result after the second phase (thickening) has 50 arcs, which continues to include
all thearcs of Phase| aswell as4 out of 5 arcsthat Phase | did not find. In addition, it also
wrongly added another arc. This is understandable, as it is always possible to add some

10 There are three different versions of it, which share the same structure but use sli ghtly different CPtables. In
this paper, wewill focus on the probabilistic distribution described at the web site of Norsys Software Corporation
http://www.norsys.com. We also tested our algorithms on the version presented in [29] and the one in [17], and
obtained similar results; see [10].

70 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Table 3
Results on the ALARM network (TPDA-IT)
Phase Results No. of Cl tests (of each order)

Arcs M.A. EA. 0 1 2 3 4+ Total
| 43 5 2 666 0 0 0 0 666
1] 49 0 3(2+1) 0 116 54 22 10 202
1" 45 1 0 0 12 1 1 3 17

M.A. = number of missing arcs; E.A. = number of extraarcs.

Phase Il
Phase Il 2%
23%

Phase |
75%

Fig. 14. The number of Cl tests used in each phase.

arcs wrongly before all the real arcs are discovered. In Phase |11, TPDA-IT ‘thinned’ the
structure successfully by removing all three previously wrongly added arcs. However, it
also deleted area arc 22 — 15 due to the fact that the connection between 22 and 15 is
very weak given node 35—i.e, 1(22,15 | 35) = 0.0045. The result after the third phase
has 45 arcs, all of which belong to the true structure.

From the complexity analysis of Appendix A.4, we know that each of the three phases
can require O(N?) Cl tests, in the worst case. However, the number of Cl tests used in
Phase | is quite different from that of Phases Il and Ill. This is because the ALARM
network is a sparse network and Phases I and |11 only require alarge number of Cl tests
when a network is densely connected, whereas Phase | always requires O(N?) Cl tests.
All our experiments on real-world data sets show similar patterns—i.e., most Cl tests are
used in Phase |. Table 3 aso shows that most Cl tests have small condition-sets. Here, the
largest condition-set contains only five variables. (Notice no node in the true structure had
more than 4 parents.)

As we mentioned in Section 5.4.5, most of the running time is consumed in database
querieswhile collecting information for Cl tests. Therefore, we can improve the efficiency
of our program by using high performance database query engines. To prove this, we
moved this data set to an ODBC database server (SQL-server 6.5 running remotely under
Windows NT Server 4) and repeated the experiment. Here we found that the experiment
ran 13% faster. Note that our basic system was still running on the local PC as before.

6.1.2. Use TPDA to learn the ALARM network data

We next consider TPDA, the version that does not have the node ordering. Table 4 shows
that TPDA can get a very good result when using 10,000 cases; here only two missing
edges. The result after Phase | (drafting) has 36 edges, among which 2 edges are wrongly

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 71

Table 4
Results on the ALARM network (TPDA)
Phase Results No. of Cl tests (of each order)

Edges M.A. E.A. 0 1 2 3 4+ Total
| 36 12 2 666 0 0 0 0 666
1] 49 2 2+3 0 127 61 22 7 217
1" 44 2 0 0 86 6 8 3 103

M.A. = number of missing arcs; E.A. = number of extraarcs.

Phase Il
1%

=

Phase |
65%

Fig. 15. The number of Cl tests used at each phase.

added; the draft also missed 12 edges of the true structure. As TPDA does not know the
node ordering, it is easy to understand why TPDA’s draft is significantly worse than TPDA-
IT’s (Section 6.1.1), which only missed 5 edges.

The structure after TPDA's second phase (thickening) has 49 edges, which includes
all the arcs of Phase | and 10 out of 12 of the previously missing arcs. TPDA did not
discover the other two edges (22-15, 33-27) as those two relationships are too weak:
1(22,15| 35) = 0.0045; (33,27 | 34,14) = 0.0013. In addition, TPDA aso wrongly
added 3 edges. In Phase 111, TPDA *thinned’ the structure successfully by removing all five
wrongly added arcs. TPDA can also orient 40 of the 44 learned edges correctly. It cannot
orient the other 4 edges due to the limitation of collider identification based method; of
course, no other algorithm, given only this information, could do better. By comparing
Table 3 to Table 4, we can see that the results of the three phases of TPDA are not as good
as those of TPDA-IT, and Phase Il and Phase |11 of TPDA require more CI tests than the
two corresponding phases of TPDA-IT. Thisisnot surprising since the TPDA does not have
access to the node ordering, while TPDA-IT does.

From the complexity analysis of Appendix A.2, we know that the first phase requires
O(N?) Cl tests and the second and the third phases are of the complexity O(N%) in the
worst case. However, since most real-world situations have sparse Bayesian networks, the
numbers of CI tests used in the second and the third phases are usually much smaller
than the number of Cl tests used in the first phase, which is of complexity O(N?). Asin
Section 6.1.1, we use a pie chart (Fig. 15) to show the percentages of the number of Cl
tests used.

6.1.3. Experiments on different sample sizes
In this section, we present our experimental results on 1000, 3000, 6000 and 10,000
cases of the ALARM network data. The results are shown in Table 5.

72 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Table 5
Results on 1000, 3000, 6000 and 10,000 cases (M.O. and W.O. stand for missing
orientation and wrongly oriented)

Cases Ordering Results Time
M.A E.A. M.O. W.O. (seconds)

1000 Yes 0 3 N/A N/A 19
No 3 2 3 2 19
3000 Yes 1 3 N/A N/A 43
No 1 1 4 0 46
6000 Yes 1 0 N/A N/A 65
No 2 0 4 0 75
10,000 Yes 1 0 N/A N/A 100
No 2 0 4 0 115

140

120

100

—&— Dataset1 w.
ordering

—ili— Dataset1 w/o

60 / ordering
40
2 _/

0 2000 4000 6000 8000 10000 12000
sample size

80

%
\

running time (seconds)

Fig. 16. Therelationship between the sample sizes and the running time.

Fig. 16 shows that the running time is roughly linear to the number of cases in the
data set. This is what we expected, since most of the running time of the experimentsis
consumed by database queries; and response time of each database query is roughly linear
to the number of records in the database table. The fact that the run-time increases so
slowly suggests that our algorithmswill be able to handle very large data sets. Table 5 also
shows the learner typically produces more accurate networks, given larger data sets. Note
the results on 3000 cases are aready quite acceptable; this suggests that our algorithmscan
give reliable results even when the data set is not large for its domain. Thisis because our
algorithms can often avoid many high-order ClI tests, which are unreliable when the data
sets are not large enough.

6.1.4. Other learning algorithms

Many other learning algorithms have attempted to learn this network from a dataset (and
sometimes, from a node ordering as well). Table 6 below summarizes their performance.
(Section 7 summarizes many of these learning systems.)

Note that the Chu-Xiang algorithm is used to learn a Markov network (undirected
graph) so it does not need node ordering; and the HGC algorithm uses a prior network
as domain knowledge rather than node ordering. When evaluating the results, Friedman
and Goldszmidt use entropy distance rather than the direct comparison. By comparing the

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 73

Table 6
Experimental results of various agorithms on ALARM net data (M.A., E.A. and W.O. stand for missing edges,
extra edges and wrongly oriented edges)

Algorithm Node Sample Platform Running Results
ordering size time (min.)
K2 Yes 10,000 Macintosh |1 17 1MA.1EA.
Kutato Yes 10,000 Macintosh 11 1350 2M.A.2EA.
Chu—Xiang No. (Learn 10,000 AV X-series? 12 6 Unknown
Markov net) processors
Benedict Yes 3000 Unknown 10 4M.A.5EA.
CB No 10,000 Dec Station 5000 7 2E.A.2W.0.
Suzuki Yes 1000 Sun Sparc-2 306 5M.A.1EA.
Lam-Bacchus No 10,000 Unknown Unknown 3M.A.2W.0.
Friedman— No 250- Unknown Unknown Only in term of
Goldszmidt 32,000 scores
PC No 10,000 Dec Station 3100 6 3M.A.2EA.
HGC Using aprior net 10,000 PC Unknown 2EA.1W.0.
Spirtes-Meek No 10,000 Sun Sparc 20 150 1MA.
TPDA-IT Yes 10,000 PC 2 1M.A.
TPDA No 10,000 PC 2 2M.A.
D)

Templis {indFieldPin)
AingFelaPIn ETTETERD
SynForeng TingFielani EcenRelAMCIN AinswiiScen
RaoConthioist
SalContMoist 2345tarfost

MymtF eatures
7
-

GombMoisture

WVISCloudCoy IRCloudCover

CombClouds)

SfeWwndShiDis
WindAloft —) AreamaDryAlr

MarningGIn
WidLLapse

LatestCIMN

AMCIMInScen
e

-

LowlLapss
CldShadeOth
] .

PlainsFrst

MountainFest

CapinScen

CurPropCary

ScnRelPIFcsty |

Subjveriha

Boundaries
TD_7Truverhio

InsBclinScen

WWindHodograph

\ AreaMesCompP,m(

LoLevhoistAd

CombverMo

O utflowF ridt

TnsChange
CldShadeGony Tnsinbit AMInstabht

QGYerttotion

Fig. 17. The HailFinder network.

results of this table with our results, we can see that our results on the ALARM network
data are among the best.

6.2. The Hailfinder network

Hailfinder network is another real-world domain Bayesian belief network. It is
a normative system that forecasts severe summer hail in northeastern Colorado. The

74 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

network structure, shown in Fig. 17, contains 56 nodes and 66 arcs. Each node (variable)
has from two to eleven possible values. For detailed information about the Hailfinder
project and various related documents, please visit the web page http://www.sis.pitt.edu/
~dd/hailfinder.

To evaluate our algorithms, we generated a data set of 20,000 cases from the underlying
probabilistic model of Hailfinder network (version 2.5) using a probabilistic logic sampling
method.

6.2.1. Experimentson 10,000 cases

In this section, we give the detailed experimental results using the first 10,000 cases of
the Hailfinder data. The results are from two runs of our system, one with node ordering
(TPDA-IT), and the other without node ordering (TPDA). The node ordering we used
for Hailfinder network is the ordering described in the file http://www.sis.pitt.edu/~dsl/
hailfinder/hailfinder25.dne.

Table 7 showsthat the running time is about 4 minutes and that the learned networksare
very closeto theunderlying BN. Fig. 18 showsthat most CI tests are of thelow orders. Now
compare the number of CI tests used in both TPDA and TPDA-IT to learn the Hailfinder
network versus learning the ALARM network. Whilein theory TPDA may require O(N4)
Cl tests, its actual speed appearssimilar to that of TPDA-IT, whichis O(N?). Thissuggests
that in real-world situation, where the underlying networks are sparse, the actual time
complexity on Cl testsis close to O(N?2) even when node ordering is not given.

Table 7
R?J?]r?i ng time and the ClI tests used on 10,000 cases of Hailfinder data
Node No. of Cl tests (of each order) Results Time
ordering 0 1 2 3+ Total M.A. EA. M.O. W.O. (seconds)
Yes 1540 163 33 7 1743 3 0 N/A N/A 227
No 1540 290 18 1 1849 4 1 1 5 245

Op W4 O2 O34

20007
18001
1600
1400
12001
1000
800+
600
4001
200+

Number of Cl tests

TR

w. ordering w/c ordering

Fig. 18. The bar charts of Cl tests and running time. (The number 0, 1, 2, 3+ in the bar chart represent the
cardindlities of the condition-sets of Cl tests.)

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 75

Table 8
Results on different sample sizes of Hailfinder data
Cases Ordering Results Time
M.A. EA. M.O. W.O. (seconds)
2500 Yes 2 6 N/A N/A 132
No 5 4 1 5 133
5000 Yes 3 3 N/A N/A 172
No 3 2 0 2 174
10,000 Yes 3 0 N/A N/A 227
No 4 1 1 5 245
20,000 Yes 3 0 N/A N/A 369
No 4 1 1 5 403
450
400
%" 350 //:
& 300 / ——w. ordering
§ / |
2 250 / —=— w/o ordering
£ 200 e
2 150
g L
2 100
50
0 - T T T
0 5000 10000 15000 20000 25000
sample size

Fig. 19. The relationship between the sample sizes and the running time.

6.2.2. Experiments on different sample sizes

In this section, we present our experimental results on 2500, 5000, 10,000, 20,000 cases
of the Hailfinder data. The results are shown in Table 8.

These results on Hailfinder data repeat the trends we found on ALARM data—that is,
the growth of running time is roughly linear to the number of casesin the data set, and in
general, the number of errors decreases as the sample size increases. Table 8 shows that
we get the same results using 10,000 cases as we get using 20,000 cases; this suggests that
10,000 cases of Hailfinder datais aready large enough for our algorithms.

6.3. The Chest-clinic network

The Chest-clinic network (also known as the “Asia network™) is avery small Bayesian
network for a fictitious medical domain, relating whether a patient has tuberculosis,
lung cancer or bronchitis, to their X-ray, dyspnea, visit-to-Asia and smoking status. The
structure of this network is shown in Fig. 20, which contains 8 arcs connecting 8 nodes,
each of which has exactly two possible values. The underlying probabilistic distribution of
this network is described in http://www.norsys.com/netlib/Asia.dnet. We generated a data
set of 1000 cases using the probabilistic logic sampling method. We use this simple
Bayesian network to show the performance of our algorithms on small domains.

76 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

(Visit To Asia)
A 4
Tuberculosis

Tuberculosis
or Cancer

XRay Result

Fig. 20. The Chest-clinic network.

Table 9
Results on 1000 cases of Chest-clinic data
Node Results Time
ordering M.A. E.A. M.O. W.O. (seconds)
Yes 1 0 N/A N/A 1
No 1 0 2 0 1

Our results are summarized in Table 9.

The node ordering we use is [Visit to Asia, Tuberculosis, Smoking, Lung Cancer,
Tuberculosis or Cancer, X-ray results, Bronchitis, Dyspned]. In both experiments, the
system could not find the arc from ‘Visit to Asid to ‘Tuberculosis', as that dependency
is extremely weak; I (MsitToAsia, Tuberculosis) = 6.05E-5. There are also two edges
(Smoking — Lung Cancer and Smoking — Bronchitis) that TPDA cannot orient.

6.4. Smulation tests using random DAGs

Our TPDA and TPDA-IT attempt to gain efficiency by minimizing the number of Cl tests
used. When the node ordering is given, TPDA-IT also minimizesthe complexity of each Cl
test by using a small cut-set, so that the Cl tests are reliable even when the sample sizeis
small. However, when node ordering is not given, TPDA may use more complex Cl tests.
For example, when compared to the PC algorithm (which also uses dependency analysis
to learn Bayesian net structures; [48], see Section 7), we found that TPDA typically uses
fewer ClI tests than PC uses, but these tests are often more complex.

To investigate the reliability issue of TPDA when the data sets are noisy, we use
simulation tests to compare the TPDA agorithm and the PC agorithm. The overall setting
of this experiment is very similar to the one described in [50]. We randomly generated 10
DAGs with 10 nodes and 10 arcs, and another 10 DAGs with 10 nodes and 15 arcs. For
each of the 20 DAGs, we randomly generated a single parameterization, using the Tetrad
system [44]. From each of these 20 Bayesian networks, we created three data sets, of size
300, 1000 and 3000 respectively. This produced 60 data setsin total. As Spirtes and Meek
[50] did in their experiment, before measuring the performance, we aso used preliminary

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 7

Table 10
Simulation test results
Algorithm # of edges Size Missing Extra Missing Wrong
intrue DAG edges % edges % orientation % orientation %
PC 10 300 39.0 2.0 42.0 7.0
TPDA 10 300 32.0 27.0 33.0 7.0
PC 10 1000 27.0 10 39.0 10.0
TPDA 10 1000 23.0 9.0 36.0 5.0
PC 10 3000 18.0 0.0 34.0 9.0
TPDA 10 3000 23.0 1.0 37.0 8.0
PC 15 300 50.0 6.0 21.33 12.67
TPDA 15 300 38.0 12.67 15.33 16.0
PC 15 1000 30.67 2.67 26.0 15.33
TPDA 15 1000 25.33 6.67 10.67 19.33
PC 15 3000 19.33 4.0 14.67 20.67
TPDA 15 3000 24.0 4.0 9.33 19.33

tests to determine a reasonabl e threshold value for these artificial data sets. Here, we found
¢ ~ 0.0025 worked best.

Theresults appear in Table 10. We can see that the error rates here are higher than those
in the experiments on benchmark data sets, shown in previous sessions. This is because
there is more noise in these data sets, which make the learning task more difficult. The
performances of the two algorithms on these data sets are quite similar. TPDA generates
structures with more extra edges than PC especially when the sample size is small, which
shows that minimizing the complexity of Cl tests when data sets are small and noisy is
agood strategy. It aso seemsthat TPDA performsalittle better than PC on orienting edges.
Both algorithmsare very efficient—it took less than aminuteto learn all 60 structuresfrom
the data sets on our computer.

6.5. How TPDA's heuristics improve its efficiency

As noted above, TPDA differs from SLA by incorporating several heuristics, such
as starting with a quickly-computed draft, and using the faster (but less accurate)
EdgeNeeded H before EdgeNeeded. While these heuristics are intuitive, they still do not
have to work. To find out, we run some tests on ALARM data and HailFinder data using
10,000 data points, to see how S_A really compareswith TPDA. We found that, in general,
TPDA and SLA return the same answers, but SLA is about 2.5 times slower. SLA aso
requires 65% more ClI tests, and many of the CI tests are of high order.

7. Related work

In recent years, graphical probabilistic models, including Bayesian networks and
Markov networks, have become very popular. Learning such graphical model has become
avery active research topic and many algorithms have been developed for it. For survey pa-
persand introductory papers on probabilistic network learning, pleaserefer to[7,16,28,33].

78 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Asnoted above, we divide learning a BN into two subtasks. first |earn the structure, and
then find the parameters (read “ CPtables’) for that structure. We continue to focus on the
first subtask. There are two ways to view a BN, each suggesting a particular approach to
the structure learning. (1) A BN structure encodes the joint distribution of the attributes.
This suggests that the best BN is the one that best fits the data, and leads to the scoring-
based learning algorithms, which each seek a structure that maximizesthe Bayesian, MDL
or Kullback—Leibler (KL) entropy scoring function [17,28]. (2) Each arcin a BN structure
specifies adependency between the two associated nodes. This suggests learning structures
that captures these dependencies; and more importantly, leaving unconnected nodes that
are independent of each other. This leads to the “dependency based” methods—which
include the TPDA and TPDA-IT agorithms presented here.

Heckerman et al. [29] compare these two general approaches for learning BNs, and
show that the scoring-based methods often have certain advantages over the dependency
analysis based methods.!! Recently, Cowell [18] proves that for every scoring-based
agorithm, there is an equivalent dependency based a gorithm and vice versa. So the major
difference between the two approaches is actually not the different measures used, but
whether or not an algorithm utilizes the d-separation concept to constrain the model space.
When the number of variables are large, the constraint based methods are usually much
more efficient. However, when the sample size is small and the data is noisy, the scoring-
based algorithms can often give more accurate results since they (potentially) search the
whole model space to find the optimal model.

This section provides a synopsis of afew relevant BN-learning systems, providing any
details only about the systems that are related to our TPDA system. Sections 7.1 and 7.2
introduce some representative al gorithms of each group, and Section 7.3 briefly introduces
other related learning algorithms.

7.1. Search & scoring based methods

Table 11 summarizes the representative search-&-scoring algorithms. The algorithm
most related to our TPDA algorithm is presented below.

7.1.1. Chow-Liu tree construction algorithm

We say a network is “tree structured” if it is connected and each node has at most one
parent. Chow and Liu [15] devel oped an algorithm for learning the optimal tree-structured
BN; this system has had a far-reaching influence throughout the area of graphical model
learning. It takes asinput a probability distribution P (x) over N variables (which of course
could be an empirical distribution), and returns as output a tree-structured BN, P*, and
does o in only O(N?) time. The authors prove that the resulting tree-shaped distribution
P* isthe best tree-structured approximation of P, in that it has minimum KL-divergence
[34], over al possible tree-structured distributions. This means, in particular, that when
the underlying structure of distribution P is actually atree, thisagorithm is guaranteed to
recover the true model.

11 Here we consider only the task of modeling a distribution. See Friedman et a. [23], Cheng and Greiner
[11,12] and Greiner et a. [26] for adiscussion of learning Bayesian-net based classifiers.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 79

Table 11
Summary of the search-&-scoring algorithms
Algorithm Resulting models Node Scoring Main features
ordering method
required
Chow—Liu [15] Trees (aspecial kind No Entropy only needs O(N 2 pair-wise depen-
of Markov network) dency calculations
Rebane—Pear| [43] Polytrees (a specid No Entropy only needs O(N 2 pair-wise depen-
kind of Bayesian dency calculations; can orient edges
network)
K2[17] General Bayesian Yes Bayesian Efficient, uses heuristic search
nets
HGC[29] General Bayesian No Bayesian Uses prior net as domain knowl-
nets (requires edge
prior net)
Kutato [31] General Bayesian Yes Entropy Uses CI tests to speed up entropy
nets calculations
Wong—Xiang [58] General Markov No Entropy Theresults are I-maps of the under-
nets lying models
BENEDICT [2] General Bayesian Yes Entropy Heuristic search; uses the concept
nets of d-separation
CB [46] Genera Bayesian No Bayesian Combines PC (see Section 2.2.2)
nets and K2; can orient edges
Suzuki [53] General Bayesian Yes MDL Can learn the optimal structure but
nets inefficient
Lam-Bacchus [35] General Bayesian No MDL Can orient edges using a pure
nets search & scoring method
Friedman— General Bayesian No MDL or Can orient edges using a pure
Goldszmidt [24] nets Bayesian search & scoring method

This agorithm has characteristics of both learning approaches presented earlier:
Although the genera idea behind this algorithm is to find a structure with the best
score (Kullback—Leibler [34] cross-entropy), it does this by analyzing the pair-wise
dependencies, which is the method used in the dependency analysis approach.

This algorithm requires only O(N?) pair-wise dependency calculations and each cal-
culation uses only second-order statistics. Unfortunately, an equally efficient dependency-
analysis algorithm is not possible for constructing multiply connected graphs, since larger
condition-sets are required, which means higher order statistics must be used.

7.2. Dependency analysis based methods

See Table 12 for asummary.

7.3. Other algorithms

Several researchers use model averaging techniques, which we view as avariant of the
search & scoring based approach. They argue that sometimes the data does not identify the

80 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Table 12

Summary of the dependency analysis based algorithms

Algorithm Resulting Node Number of Main features
models ordering Cl tests

required?

Wermuth-Lauritzen General Yes O(N?) Only needs O(N2) Cl tests but

[57] Bayesian nets highly impracticable

Boundary DAG [40] General Yes Exponential A simple agorithm
Bayesian nets

SRA [52] Genera Partial or- Exponential Extension of Boundary DAG; only
Bayesian nets dering needs partial ordering; uses heuris-

tic search

Constructor [25] General No Exponential Uses cross-validation technique to
Markov nets avoid over-fitting

SGS|[47] Genera No Exponential Can orient edges
Bayesian nets

Verma—Pear| [56] General No Exponential A varigtion of SGS; can orient
Bayesian nets edges and detect conflicts in the

edge orientations

PC [48] General No O(N*+2) K is the maximum degree of any

Bayesian nets node in the true structure; Can ori-

ent edges; enhanced from SGS al-
gorithm; efficient

underlying model of a data set. Therefore, instead of searching for a single best solution,
their algorithms[6,36,37] return several networks and use the ‘ average’ of these networks
to perform belief propagation.

All of the above algorithms assume that the data sets are causally sufficient—i.e., all
the variables in the underlying models appear in the data sets. Sometimes, the values of
some variables are never in the data sets, we call them hidden variables or latent variables.
There has been alot of progressin learning Bayesian networks with hidden variables; see
[49,51,55].

There are also algorithms that can handle data sets with missing values—that is, some
values of some variables are excluded—see Bound and Collapse [22,41,42,45].

8. Futurework and conclusion

8.1. Futurework

We plan to work in the following directions.

(1) Each of thetwo genera approachesto Bayesian network learning (i.e., based on score-
&-search and on dependency-analysis) has its own advantages. We plan to explore
ways to combine the two approaches, especially for the task of learning models from
data with hidden variables.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 81

(2) TPDA iscorrect for monotone DAG-faithful models. We conjecture that the monotone
DAG-faithful assumption is only dightly stronger than DAG-faithfulness, and that
most DAG-faithful models are also monotone DAG-faithful. We plan to explore the
properties of monotone DAG-faithful models and compare them with those of DAG-
faithful models.

(3) We noted that TDPA spends most of its running time performing Cl tests, and that most
running time of these Cl testsis in turn consumed by database queries. This suggests
that we can improve the efficiency of our algorithms by improving the efficiency of
database queries. One method is to move the data set to a high performance database
server. We believe thiswill speed up the Bayesian network |earning by alarge factor—
perhaps even several hundred times, depending on the speed of the database server.
Another method isto use database enginesthat are specially designed for such queries,
i.e., capable of quickly counting the number of recordsthat satisfy certain criteria

(4) We are adready beginning to explore the use of these constraint-based techniques in
the context of learning classifiers—that is, performance systems that assign labels to
(unlabeled) instances [11]. Here the goal is a Bayesian net that produces the correct
label as often as possible; a goal that differs from finding the best “model” of the
underlying distribution. We plan to continue seeking ways to modify our basic TPDA
algorithm for this specialized task.

8.2. Conclusion

This paper addresses the task of |earning Bayesian networks from data. We devel op two
related information theoretic algorithms. TPDA, which learns Bayesian networks when
node ordering is not given, and TPDA-IT, which deal s with the special case where the node
orderingis given. These two algorithms have been implemented within ageneral Bayesian
network learning system—BN Power Constructor. Using the PowerConstructor system,
we have empirically evaluated our algorithms using two moderately complex real-world
examples and a class of simpler synthetic ones. These results show that our algorithms are
accurate and efficient.

Our algorithms improve on the other dependency-analysis based algorithms by using
guantitative information from CI tests to avoid the need to perform an exponential number
of such ClI tests; n.b., our algorithms are still guaranteed to recover the correct distribution
when the underlying model of the data set is monotone DAG-faithful (given enough data
and other simple assumptions). When the correct node ordering is available, our TPDA-
IT algorithm requires only standard DAG-faithfulness, and uses only O(N?) Cl test to
learn an N-node BN, asit needs to perform only O(1) Cl test to decide whether to include
each of the O(N?) possible arcs. Moreover, thanks to its three-phase mechanism, which
allows some wrong decisions to be made in first two phases, this overall algorithm is even
more efficient in practice. (By contrast, most other dependency-analysis based learning
agorithms require an exponential number of Cl tests for each decision.)

When node ordering is not given, it is impossible to make each “is an edge needed?’
decision using only one CI test. However, by using quantitative Cl tests, which tells us not
only whether a pair of nodes are dependent or not but also how close their relationship is,

82 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

TPDA need to use only O(N?) Cl tests for each decision. We prove that TPDA is correct
when the underlying model is monotone DAG-faithful.

Experimental results show that our agorithms are capable of handling large real-world
data sets since the running time is linear in the number of records in the data set and
polynomial in the number N of attributes in the data set—empirically O(N?) for sparse
networks. The results also show that our algorithms are quite reliable since the accuracy of
the result does not deteriorate very fast when the sample size decreases.

Acknowledgements

We gratefully acknowledge the financial support of NSERC, PIMS, and Siemens
Corporate Research, for helping to sponsor this work. The first author would aso like
to thank Thomas Richardson of the University of Washington, for his valuable comments,
which helped to improvethe TPDA agorithm; to Clark Glymour, Peter Spirtesand Richard
Scheines of Carnegie Mellon University, for their encouragement and comments.

Appendix A. Proofs
A.l. Correctness proof of SLA (and TPDA)

Theorem 3. Given a “ sufficiently large” database of complete instances that are drawn,
iid, from a monotone DAG-faithful probability model, the SLA algorithm will recover
the correct underlying essential network. Moreover, this algorithm requires only O(N#)
conditional independencetests.

We use the following propositions to prove that SLA is correct (i.e., the first part of
Theorem 3). Throughout we will assume the assumptions stated in the theorem, and also
that M isthe true model of the distribution.

Proposition 3.1. The graph generated after step 2, G2, containsall the edges of M.

Proof. This step considers all the edges between any two nodes that are not independent.
Anedgeisnot added only if the two nodes are separated by a set of other nodes. Hence, any
two nodes that are not directly connected in G2 are conditionally independent in M. O

Lemma 3.1. As EdgeNeeded starts with the initial condition-set Sx U Sx-, it can close all
the paths of the underlying model M between nodes X and Y except the paths connecting
X and Y by one collider.

Proof. By using, say, Sx U Sx+ as the condition-set, we instantiate the nodes in Sx (the
neighbors of X on the paths between X and Y) and Sy (the neighbors of nodes of Sy that

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 83

are on the paths between X and Y).12 Therefore, we can instantiate at | east two consecutive
nodes of any path that has length equal to or larger than three. Because two consecutive
nodes of a path cannot both be colliders in the path, and al the paths of the underlying
model M arein the current graph, we can close al the pathsin M between X and Y that
have length equal to or larger than three. Hence, the only paths that could remain open are
those connecting X and Y by onecollider. O

Lemma 3.2. EdgeNeeded does not open any previously closed XY path by removing
a node from condition-set C.

Proof. Given monotone DAG-faithfulness, EdgeNeeded will not remove a node that only
opens some paths, as such a removal would necessarily increase the mutual information.
We therefore need only prove that removing a node from C cannot simultaneously open
some paths and close others. From Lemma 3.1 we know that initially the only open paths
are those connecting X and Y by one collider. Now consider each node v in C. If v is not
achild-node of both X and Y or a descendent of such a child-node, removing it may open
some paths but cannot close the paths connecting X and Y by a collider. So suppose that
v isachild-node of both X and Y or a descendent of such a child-node. Now if one of v’s
descendentsis in C, then removing v cannot close the path connecting X and Y by the
child-node. If none of v's descendentsisin C, removing v may close the path connecting
X and Y by the child-node but cannot open a path because the woul d-be opened path must
go through a collider that is a descendent of v. Since none of v's descendentsisin C, such
apath cannot beopened. O

Lemma 3.3. EdgeNeeded can remove all the descendents of both X and Y from condition-
st C.

Proof. Toward acontradiction, suppose S isthe subset of set C containing the descendents
of both X and Y that cannot be removed. Then there must be anode v € S that is not an
ancestor of any other nodes in S. The only reason we would not consider removing v
isif removing it increases mutual information. From the assumption of monotone DAG-
faithfulness and Lemma 3.2, we know that removing v will open at least one path.
Therefore, node v is not a collider in such a path and so this path must go through at
|east one descendent of v. Because a descendent of v is also adescendent of both X and Y,
there must exist at least one descendent of v which isacollider in such open path. To make
such path open, this collider hasto be in S. This contradicts our assumption that v is not
an ancestor of any other nodesin S. O

Proposition 3.2. Given that graph G contains all the edges of a probabilistic model M, if
two nodes X and Y areindependent in M, EdgeNeeded can always separate themin G.

Proof. From Lemma 3.1 we know that initially the only open paths are those connecting
node X and Y by onecollider. From Lemmas 3.2 and 3.3, we know that the procedure does

12 The same claim holds for Sy U Sy

84 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

not open any path when removing nodes from the condition-set C and that it removes all
the descendents of both X and Y that arein C. Therefore, if nodes X and Y areindependent
in M, EdgeNeeded can separate them by closing al the open paths. O

Proposition 3.3. The graph generated after step 3, G3, contains the exact same edges as
those of M.

Proof. Since G2 contains al the edges of M, and an edge is removed in step 3 only if
the pair of nodesis conditionally independent in M, G3 also contains al the edges of M.
From Proposition 2, we also know that if two nodes are independent in M, our algorithm
can always separate them in G3. Hence, G3 contains exactly the same edges as those
of M. O

Proposition 3.4. Given that graph G contains the exact same edges as those of the
underlying model M, all the colliders that can be identified by OrientEdges(G) are the
real colliders of M.

Proof. For any structure X-Y—Z where X and Z are not directly connected, Orient-
Edges(G) uses step 1 to check if Y is a collider on the path X—Y—Z. From Lemma 3.3
we know that the final cut-set between X and Z will never include Y if Y is a collider.
So step 1 can identify a collider correctly. Since there are no extra-edgesin G, step 2 of
this procedure can never orient an edge wrongly. It is also easy to see that the inference of
step 3 of the procedureis correct. O

A.2. Complexity analysisfor SLA (and for TPDA)

Thisappendix providesthe worst-case time complexity of TPDA in terms of the number
of Cl tests. Please note that each CI test can require alarge number of basic calculations—
in fact, anumber exponential in the size of the condition-set. However, the number of basic
calculationsis not a good index for comparing different algorithms because all algorithms
are exponentia in this sense. In practice, most of the running time of our agorithms is
consumed in data queries from databases, which we have found often takes more than
95% of running time (see Section 6). Because the number of Cl testsis directly related to
the number of database queries, it is arelatively good criterion for judging an algorithm’'s
performance. In fact, the number of CI testsisawidely used index for comparing different
agorithmsthat are based on dependency analysis[40,49].

To provethat TPDA-IT requires O(N#) Cl tests: Observefirst that EdgeNeeded requires
O(N?) Cl tests, as it must, in the worst case, successively consider the one conditioning
set of size N — 2, thenthe N — 2 possible subsets of this set of size N — 3, thenthe N — 3
size-N — 4 subsets, and so forth, until considering 2 sets of size 1. This would require
> ico n_2i = O(N?) Cl tests. Next note that step 1 can call EdgeNeeded on at most
every pair of nodes, as can step 2; hence these steps require O(N2 x N?2) Cl tests. Hence
the final step requires O(N? x N2) = O(N*) ClI tests, which is high-water complexity of
this algorithm.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 85

A.3. Correctness proofs of SLA-IT (and TPDA-IT)

Theorem 2. Given a “ sufficiently large” database of complete instances that are drawn,
iid, from a DAG-faithful probability model, together with a correct node ordering, then the
SLA-IT algorithm will recover the correct underlying network. Moreover, this algorithm
will require only O(N?) Cl tests.

We use the following claims:
Proposition 2.1. The graph generated after step 2, G2, isan |-map of M.

Proof. As the first part of SLA-IT considers every pair of nodes that are not pair-wise
independent, the only way that an arc can be excluded from the graph is if the two nodes
of the arc are independent conditional on some appropriate condition-set. Hence, any two
disconnected nodesin G2 are conditionally independentin M. O

Proposition 2.2. The graph generated after step 3, G3, is a perfect map of M.

Proof. Because G2 is an |-map of M, and an arc is removed in step 3 only if the pair of
nodesis conditionally independent, it is easy to see that G3 and all the intermediate graphs
of step 3arel-mapsof M. Now, we will provethat G3 is also a D-map of M. Suppose G3
is not a D-map, then there must exist an arc {(a, b) which isin G3 and for which the two
nodes a and b are actually independent in the underlying model M. Therefore, a and b
can be d-separated by blocking all the real open paths Pr in M. In SLA-IT, the nodes a
and b are connected in G3 only if a and b are till dependent after blocking all the open
paths P in G3. Since all the intermediate graphs of step 3 are I-maps of M, P includes Pr
and possibly some pseudo-paths. So blocking all the open pathsin P will block all the real
open pathsin Pr. Because information cannot pass along the pseudo-paths, the only reason
for a and b to be dependent in G3 is that information can go through the pathsin Pr. This
contradicts our assumption that @ and b are d-separated by blocking all the open paths of
Pr in M. Thus, G3isboth aD-map and I-map and henceisaperfectmapof M. 0O

The above propositions ensure that our algorithm can construct the perfect map of the
underlying dependency model, i.e., theinduced Bayesian networks are exactly the same as
the real underlying probabilistic models of the data sets.

A.4. Complexity analysisfor SLA-IT

Since step 1 computes mutual information between any two nodes, it needs O(N?)
mutual information computations. In step 2, the algorithm checks if it should add arcs
to the graph. Each such decision requires one Cl test. Therefore, Phase |1 needs at most
O(N?) Cl tests. In step 3, the algorithm sees if it can remove the arcs from the graph.
Again, each such decision requires one Cl test and so at most O(N?) Cl tests are needed.
Hence, the overall algorithm requires O(N?2) Cl testsin the worst case.

86 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Appendix B. Monotone DAG-faithfulness

In real world situations most DAG-faithful models are also monotone DAG-faithful.
We conjecture that the violations of monotone DAG-faithfulness only happen when the
probability distributions are ‘near’ the violations of DAG-faithfulness. In such situations,
other algorithms also have difficulties in generating the true underlying model.

While TPDA-IT and other dependency analysis based algorithmsrequire the assumption
of DAG-faithfulnessfor its correctness proof, TPDA isonly guaranteed to work correctly if
the underlying probabilistic model of a data set is monotone DAG-faithful—which means
it requires a stronger assumption.

From the definition of monotone DAG-faithful models we know that these modelsform
a subset of DAG-faithful models. We have found that some models are DAG-faithful but
not monotone DAG-faithful. To illustrate this, consider the probabilistic model shown in
Fig. B.1.

If the model was monotone-DAG-faithful, we expect 1 (B, C | D) to be greater than
I(B,C | A, D). However, we find I(B,C | A, D) =0.018 and I(B, C | D) = 0: when
using {A, D} asthe condition-set, there is one open path B—D—C and when using { D} as
the condition-set, there are two open paths, B—D—C and B—A—C. Note that this model
is not even DAG-faithful since the independence between B and C given {D} cannot be
expressed by the DAG structure. However, if we change the parameters of the network
alittle, for instance, changing the CPtable of node C to the same as that of node B, we can
make I (B, C | D) greater than O but still smallerthan 1 (B, C | A, D). Now, we get amodel
that is DAG-faithful since B and C are not independent given { D}, but not monotone DAG-
faithful.

From the above example, we can draw two conclusions. First, there are some models
that are DAG-faithful but not monotone DAG-faithful. Secondly, the distinction between
DAG-faithful models and non-DAG-faithful models is not black and white. In the above
example, if the small value I (B, C | D) happens to be larger than the threshold used to
separate’ dependent’ and ‘independent’, then the model is DAG-faithful; otherwise, it isnot
DAG-faithful. This showsthat thereisa‘gray’ area of the area of DAG-faithful models, in
whichthemodelsare’ close’ to being non-DAG-faithful. Although we do not have aformal
proof, we conjecture that the non-monotone DAG-faithful models are al in the ‘gray’

P(b0la0)=0.7
P(b0la1)=0.3
P(b1120)=0.3
P(a0)=0.5 P(b1la1)=0.7 P(d0Ib0,c0)=0.9
P(a1)=0.5 P(d0Ib0,c1)=0.1
P(d0lb1,c0)=0.5
P(dOlb1,c1)=0.5
P(d11b0,c0)=0.5
P(d11b0,c1)=0.5
P(d1Ib1,c0)=0.1
P(c0la0)=0.8 P(d1lb1.c1)=0.9
P(cOla1)=0.2
P(c1la0)=0.2
P(c1la1)=0.8

Fig. B.1. Simple Bayesian network.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 87

area. In other words, if a model violates the monotone DAG-faithfulness assumption, we
conjecture that it is also close to the violation of DAG-faithfulness. If so, then any such
model may also be problematic for other learning algorithms.

Given the fact that qualitative Cl test based learning methods, like TPDA-I1, require
the qualitative DAG-faithfulness assumption for their correctness proof, it is reasonable
to think that our quantitative Cl test based method requires a quantitative assumption. We
view the monotone DAG-faithfulness assumption used in TPDA as the quantitative coun-
terpart of the DAG-faithfulness assumption. We believe that most real-world probabilistic
models are actually monotone DAG-faithful.

Even when the underlying probability distribution is DAG-faithful but not monotone
DAG-faithful, our algorithm may still be able to learn the correct graph. In fact, this
agorithm may not be able to separate two d-separated nodes only when thereis at least one
path that connectsthe two nodes by asingle collider and removing anode in the condition-
set causes the violation of the monotone DAG-faithful assumption. However, since this
will only cause one edge to be wrongly added to the current graph, the correctness of other
edgesin the graph will not be affected and the resulting graph can still be very closeto the
real model.

Appendix C. Introduction to BN Power Soft Package

There are several commercia systems and research prototypes for learning Bayesian
networks from data, including TETRAD 11 [44], Bayesian Knowledge Discoverer [42],
CoCo [4], BUGS[54], BIFROST [32] and MIM [21]. (See aso http://http.cs.berkeley.edu/
~murphyk/Bayes/bnsoft.html.) However, as far as we know, only TETRAD Il can handle
adataset at the size of the ALARM network datawe used, which contains 37 variables and
10,000 records. Considering that real-world data sets often contain hundreds of variables
and millions of records, the size of the ALARM network data is actually quite moderate.
Thelack of practicable, easy-to-use learning systems that scale well hindersthe real use of
Bayesian networksin industry. As aresult, most industry users are unaware of the current
progressinthisarea. Thisis, at least partially, the reason that the Bayesian network method
isnot as popular as other methods, like neural networks and decision trees, in current data
mining systemsin industry.

To promote the real use of Bayesian networks and facilitate researchers in related
fields, we implemented our algorithms into a Bayesian network learning system, named
“Bayesian network PowerConstructor” . This system implementstwo learners (correspond-
ing to TPDA and TPDA-IT). Since October 1997, over 4000 people have visited our web
sites and over 2000 people have downloaded our system. We are also very glad to know
that some users have used it successfully on real-world problems. In May 2000, we also ex-
tended the PowerConstructor system to afull-fledged data mining system—BN PowerPre-
dictor, which has most of the features of PowerConstructor and additional featuresfor data
mining applications. In addition, our software package also includes a data pre-processing
tool for dataimporting and data discretization. Both systemsrun under 32-bit windows sys-
tems (i.e., Windows 95, Windows 98, Windows NT and Windows 2000) on PCs. They are
available for download from our web site (http://www.cs.ual berta.ca/~ cheng/bnsoft.htm).

88 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

Using this package, we obtained very encouraging results on a set of standard
classification problems [11,12]. We also won the ACM KDD Cup 2001 data mining
competition “Task 1: prediction of molecular bioactivity for drug design”, by learning,
from training data, the classifier (here a Bayesian network) with the best prediction
accuracy. There were 114 groups who participated in this task, using various data mining
techniques[39].

C.1. summary of BN Power Soft package

This software package includes BN PowerConstructor, BN PowerPredictor and a data
pre-processor. Besides its efficiency and scalability, our systems have the following
features.

e User-friendly interface with online help.

e Accessibility. The system supports most of the popular desktop database and
spreadsheet formats, including Ms-Access, dBase, Foxpro, Paradox, Excel and text
file formats. It also supports remote database servers like Oracle, SQL-server through
ODBC.

e Reusability. The engine is an ActiveX DLL, so it can be easily integrated into
other Bayesian network, data mining or knowledge base systems for Windows
95/98/N'T/2000.

e Supporting domain knowledge. Complete ordering, partial ordering and causes and
effects can be used to constrain the search space and therefore speed up the
construction process.

e Automatic feature subset selection and model selection in PowerPredictor by using
awrapper approach.

e Supporting misclassification cost function definition in PowerPredictor.

References

[1] S. Acid, L.M. Campos, An agorithm for finding minimum d-separating sets in belief networks, in: Proc.
12th Conference of Uncertainty in Artificia Intelligence, Portland, OR, 1996.

[2] S. Acid, L.M. Campos, BENEDICT: An agorithm for learning probabilistic belief networks, in: Proc. 6th
International Conference IPMU’ 96, Granada, Spain, 1996.

[3] A. Agresti, Categorical Data Analysis, Wiley, New York, 1990.

[4] J. Badsberg, Model search in contingency tables in CoCo, in: Y. Dodge, J. Wittaker (Eds.), Computational
Statistics, Physica Verlag, Heidelberg, 1992, pp. 251-256.

[5] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system: A case study
with two probabilistic inference techniques for belief networks, in: Proc. 2nd European Conference on
Artificia Intelligence in Medicine, London, 1989, pp. 247—-256.

[6] W. Buntine, Operations for learning with graphical models, J. Artificia Intelligence Res. 2 (1994) 159-225.

[7] W. Buntine, A guide to the literature on learning probabilistic networks from data, |EEE Trans. Knowledge
Data Engrg. 8 (2) (1996) 195-210.

[8] J. Cheng, D.A. Bell, W. Liu, An agorithm for Bayesian belief network construction from data, in: Proc. Al
& STAT'97, Ft. Lauderdale, FL, 1997, pp. 83-90.

J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90 89

[9] J. Cheng, D.A. Bell, W. Liu, Learning belief networks from data: An information theory based approach,
in: Proc. 6th ACM International Conference on Information and Knowledge Management (CIKM-97), Las
Vegas, NV, 1997.

[10] J. Cheng, Learning Bayesian networks from data: An information theory based approach, Doctoral
Dissertation, Faculty of Informatics, University of Ulster, UK, 1998.

[12] J. Cheng, R. Greiner, Comparing Bayesian Network Classifiers, in: Proc. 15th International Conference on
Uncertainty in Artificial Intelligence, Stockholm, Sweden, 1999.

[12] J. Cheng, R. Greiner, Learning Bayesian belief network classifiers: Algorithms and system, in: Proc. 14th
Biennial Conference of the Canadian Society for Computational Studies of Intelligence, Ottawa, ON, 2001.

[13] D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is NP-hard, Technical Report
MSR-TR-94-17, Microsoft Research, Microsoft Corporation, 1994.

[14] D.M. Chickering, Learning equivalence classes of Bayesian network structures, in: Proc. 12th Conference
on Uncertainty in Artificial Intelligence, Portland, OR, 1996.

[15] C.K. Chow, C.N. Liu, Approximating discrete probability distributions with dependence trees, |IEEE Trans.
Inform. Theory 14 (1968) 462—467.

[16] L. Chrisman, A roadmap to research on Bayesian networks and other decomposable probabilistic models,
Technical Report, School of Computer Science, CMU, Pittsburgh, PA, 1996.

[17] G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data,
Machine Learning 9 (1992) 309-347.

[18] R.G. Cowell, When learning Bayesian networks from data, using conditional independence tests is
equivalent to a local scoring metric, in: Proc. 17th International Conference on Uncertainty in Artificia
Intelligence, Sesattle, WA, 2001.

[19] C. Darken, Personal communication.

[20] D. Dash, M. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data,
in: Proc. 15th International Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, 1999.

[21] D. Edwards, Introduction to Graphical Modelling, Springer, New York, 1995.

[22] N. Friedman, The Bayesian structural EM agorithm, in: Proc. 14th International Conference on Uncertainty
in Artificial Intelligence, Madison, W1, 1998.

[23] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine Learning 29 (1997) 131
161.

[24] N. Friedman, M. Goldszmidt, Learning Bayesian networks with local structure, in: Proc. 12th International
Conference on Uncertainty in Artificia Intelligence, Portland, OR, 1996.

[25] R.M. Fung, S.L. Crawford, Constructor: A system for the induction of probabilistic models, in: Proc. AAAI-
90, Boston, MA, 1990.

[26] R. Greiner, A. Grove, D. Schuurmans, Learning Bayesian Netsthat perform well, in: Proc. 13th International
Conference on Uncertainty in Artificia Intelligence, Portland, OR, 1996, pp. 198-207.

[27] R. Greiner, C. Darken, N.l. Santoso, Efficient reasoning, Comput. Surveys 33 (1) (2001) 1-30.

[28] D. Heckerman, A tutorial on learning Bayesian networks, Technical Report MSR-TR-95-06, Microsoft
Research, 1995.

[29] D. Heckerman, D. Geiger, D.M. Chickering, Learning Bayesian networks: The combination of knowledge
and statistical data, Machine Learning 20 (3) (1995) 197-243.

[30] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in: Uncertainty
in Artificial Intelligence, Vol. 2, North-Holland, Amsterdam, 1988, pp. 149-163.

[31] E. Herskovits, G. Cooper, Kutato: An entropy-driven system for construction of probabilistic expert systems
from databases, in: Proc. 6th International Conference on Uncertainty in Artificial Intelligence, Cambridge,
MA, 1990.

[32] S. Hojsgaard, F. Skjoth, B. Thiesson, User's guide to BIOFROST, Technica Report, Department of
Mathematics and Computer Science, Aaborg, Denmark, 1994.

[33] P. Krause, Learning probabilistic networks, Technical Report, Philips Research Laboratories, UK, 1996.

[34] S. Kullback, R. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951) 76-86.

[35] W. Lam, F. Bacchus, Learning Bayesian belief networks: An approach based on the MDL principle, Comput.
Intelligence 10 (4) (1994) 269-293.

[36] D. Madigan, A.E. Raftery, Model selection and accounting for model uncertainty in graphical models using
Occam’s window, J. Amer. Statist. Assoc. 89 (1994) 1535-1546.

90 J. Cheng et al. / Artificial Intelligence 137 (2002) 43-90

[37] D. Madigan, A.E. Raftery, J.C. York, J.M. Bradshaw, G. Almond, Strategies for graphical model selection,
in: P. Cheeseman, R.W. Oldford (Eds.), Selecting Models from Data: Artificial Intelligence and Statistics,
Vol. 1V, Springer, Berlin, 1994.

[38] C. Meek, Strong completeness and faithfulness in Bayesian networks, in: Proc. 11th Internationa
Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec, 1995.

[39] D. Page, C. Hatzis, ACM SIGKDD Cup 2001, http://www.cs.wisc.edu/~dpage/kddcup2001/, 2001.

[40] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan
Kaufmann, San Mateo, CA, 1988.

[41] M. Ramoni, P. Sebastiani, Robust learing with missing data, Technica Report, KMI-TR-28, The Open
University, UK, 1996.

[42] M. Ramoni, P. Sebastiani, Discovering Bayesian networks in incomplete databases, Technical Report KMI-
TR-46, Knowledge Media Institute, The Open University, UK, 1997.

[43] G. Rebane, J. Pearl, The recovery of causal poly-tree from statistical data, in: Proceedings of 3rd Conference
on Uncertainty in Artificial Intelligence, Seattle, WA, 1987.

[44] R. Scheines, P. Spirtes, C. Glymour, C. Meek, TETRAD II: Tools for Discovery, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1994.

[45] M. Singh, Learning Bayesian networks from incomplete data, Proc. AAAI-97, Providence, RI, 1997.

[46] M. Singh, M. Vadltorta, Construction of Bayesian network structures from data: A brief survey and an efficient
agorithm, Internat. J. Approx. Reason. 12 (1995) 111-131.

[47] P. Spirtes, C. Glymour, R. Scheines, Causality from probability, Proceedings of Advanced Computing for
the Social Sciences, Williamsburgh, VA, 1990.

[48] P. Spirtes, C. Glymour, R. Scheines, An algorithm for fast recovery of sparse causal graphs, Social Science
Computer Review 9 (1991) 62—-72.

[49] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, Lecture Notesin Statistics, Springer,
Berlin, 1993.

[50] P. Spirtes, C. Meek, Learning Bayesian networks with discrete variables from data, in: Proc. 1st International
Conference on Knowledge Discovery and Data Mining (KDD-95), Montreal, Quebec, 1995.

[51] P. Spirtes, T. Richardson, C. Meek, Heuristic greedy search agorithms for latent variable models, in: Proc.
Al & STAT' 97, Ft. Lauderdale, FL, 1997, pp. 481-488.

[52] S. Srinivas, S. Russell, A. Agogino, Automated construction of sparse Bayesian networks from unstructured
probabilistic models and domain information, in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer
(Eds.), Uncertainty in Artificia Intelligence, Vol. 5, North-Holland, Amsterdam, 1990.

[53] J. Suzuki, Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the
branch and bound technique, in: Proc. International Conference on Machine Learning, Bari, Italy, 1996.

[54] A. Thomas, D.J. Spiegelhalter, W.R. Gilks, BUGS: A program to perform Bayesian inference using Gibbs
sampling, in: JM. Bernardo, J.O. Berger, A.P. Dawid, A.F. Smith (Eds.), Bayesian Statistics, Vol. 4,
University Press, Oxford, 1992, pp. 837-842.

[55] T.S. Verma, J. Pearl, Equivalence and synthesis of causal models, in: Proc. 6th International Conference on
Uncertainty in Artificial Intelligence, Cambridge, MA, 1990.

[56] T.S. Verma, J. Pearl, An algorithm for deciding if aset of observed independencies has acausal explanation,
in: Proc. 8th International Conference on Uncertainty in Artificial Intelligence, Stanford, CA, 1992.

[57] N. Wermuth, S. Lauritzen, Graphical and recursive models for contingency tables, Biometrika 72 (1983)
537-552.

[58] S.K.M. Wong, Y. Xiang, Construction of a Markov network from data for probabilistic inference, in: Proc.
Third International Workshop on Rough Sets and Soft Computing, San Jose, CA, 1994, pp. 562-569.

