Rewind to Track: Parallelized Apprenticeship Learning with Backward Tracklets

Jiang Liu1,2, Jia Chen2, De Cheng2, Chenqiang Gao1, Alexander G. Hauptmann2

1Chongqing University of Posts and Telecommunications
2Carnegie Mellon University
Background

Task of multiple object tracking: given a video sequence and corresponding object detections in key frames, the algorithm needs to associate detections among different frames into trajectories.

Background

Core problem of multiple object tracking based on “tracking-by-detection”:
How to determine the relationship among object detections in different frames? (Data association)

An illustration of the data association process in the “tracking-by-detection” framework.

Background

Online style data association:
• Handle tracking targets frame-by-frame;
• Only associate object detections in present frame with previous generated trajectories;
• Capable of handling online and real-time video data;
• Usually based on efficient probabilistic/deterministic optimization models;
• Tracklet drifting and ID-switching may occur when handing long-term video data.

Multiple object tracking based on online data association.

\[
\text{sim}(o_i^t, d_k^t) = w^T \Phi(o_i^t, d_k^t) + b
\]

Background

Offline style data association:
- Handle object detections from all frames in a batch manner;
- Trajectories are more robust with the observations from future frames;
- Only capable of handling offline video data;
- Usually formulated as min-cost or max-flow problem in graph;
- Seeking hierarchy solution for long-term videos: the error may also accumulated.

Multiple object tracking based on offline data association.

Background

Intuition: Could we adapt an efficient online mode tracker to handle offline video data, while still preserving the tracking accuracy?

Offline style data association:
- Handle object detections from all frames in a batch manner;
- Trajectories are more robust with the observations from future frames;
- Only capable of handling offline video data;
- Usually formulated as min-cost or max-flow problem in graph;
- Seeking hierarchy solution for long-term videos: the error may also accumulated.

Multiple object tracking based on offline data association.

Proposed methodology

Mixed style data association:
- The “Rewind to track” strategy: proposed to generate backward multiple object tracklets;
- The “similar offline observation group” (dotted line), outputted by the “Rewind to track”, is employed for robust similarity measurement;
- The final trajectories are still formulated in an online manner to preserve the efficiency;
- Only associate detections in present frame: error will not be accumulated.

Similarity between object detection and tracklet: \[\text{sim}(o_i^t, d_k^r) = \sum_{q=0}^{t'} w^T \Phi(o_i^t, d_{k,q}^t) + b, \]
Proposed methodology

Multiple object tracking based on Markov Decision Process (MDP). The agent’s state transition map of a tracking object.

Proposed methodology

An agent’s of a particular tracking object could be represented with a tuple \((s, a, \pi, R(s, a))\).

- \(s \in S\) : state, an object’s status in a particular frame, generated according to tracklets;
- \(a \in A\) : action, transit an object from one state to another;
- \(\pi(s)\) : policy function, determine a mapping from the state space \(S\) to the action space \(A\): \(\pi(s) \to a\), via maximizing the reward function;
- \(R(s, a)\) : real-valued reward function \(R(s, a) : S \times A \to R\), define a reward value by executing action \(a\) in state \(s\).
Proposed methodology

States description:
- **Active**: any newly appeared object detection is initialized with this state;
- **Tracked**: the agent will be kept in this state, if and only if it historical tracklets could be extended to present frame (based on TLD tracking assumption);
- **Lost**: object is disappeared or occluded. Next state may be: (1) back to Tracked state; (2) keep Lost state; (3) transfer to Inactive state (equivalent to solving the data association problem);
- **Inactive**: represents invalid object detections or permanent lost objects.

The agent’s state transition map of a tracking object.
Proposed methodology

• Given the agent feature $\Phi(s)$ in state s, the reward function could be represented by a linear mapping from the feature:

$$R(s, a) = w \cdot \Phi(s)$$

• at frame t_0, the tracker adapts policy $\pi(s_{t_0}) \rightarrow a_{t_0}$. The corresponding value expectation $E[V^\pi(s_{t_0})]$ (the afterwards reward by adapting a_{t_0}) is:

$$E[V^\pi(s_{t_0})] = w \cdot \mu(\pi),$$

where as $\mu(\pi) = E[\sum_{t=t_0}^\infty \gamma^t \Phi(s) | \pi]$, which is the feature expectation of the agent (γ is the decay factor, $0 \leq \gamma \leq 1$).
Proposed methodology

• Given the agent feature $\Phi(s)$ in state s, the reward function could be represented by a linear mapping from the feature:
 $$R(s) = a \cdot \Phi(s)$$

• at frame t_0, the tracker adapts policy $\pi(s_{t_0}) \rightarrow a_{t_0}$. The corresponding value expectation $E[V_\pi(s_{t_0})]$ (the afterwards reward by adapting a_{t_0}) is:
 $$E[V_\pi(s_{t_0})] = w \cdot \mu(\pi) ,$$
 where as $\mu(\pi) = E[\sum_{t=t_0}^{\infty} \gamma^t \Phi(s)|\pi]$, which is the feature expectation of the agent (γ is the decay factor, $0 \leq \gamma \leq 1$).
Proposed methodology

• Unknown: both the reward function and the policy function

• Known: labelled groundtruth objects’ trajectories on the training set, i.e., the expert’s state-action sequences:

\[D = \{s_{t_1}, a_{t_1}, s_{t_2}, a_{t_2}, \ldots, s_{t_n}, a_{t_n}\} \]

• Objective: minimizing difference between expert’s and algorithm’s reward expectation:

\[\min \| E^* [V^\pi(s_{t_i})] - \hat{E}[V^\pi(s_{t_i})]\| \]

• solve the optimal policy function parameter: \(\tilde{\pi} \) (Reinforcement Learning)
• solve the optimal reward function parameter: \(\tilde{R}(s,a) \) (Inverse Reinforcement Learning)

*Apprenticeship Learning: Reinforcement Learning + Inverse Reinforcement Learning

Proposed methodology

Q: How to train multiple agents in a particular training video?
A1: Sequentially (polling variant of AL); A2: Parallelly (parallel variant of AL)
Proposed methodology

Q: How to train multiple agents in a particular training video?
A1: Sequentially (polling variant of AL); A2: Parallelly (parallel variant of AL)

- RL phase, parallelly learning the reward function:
 \[w(p) = \arg \max_w \sum_{j=1}^{N} w^T (\mu_j(\pi^{(p-1)}) - \mu_{E,j}(\pi^{(p-1)})) , \]

- IRL phase, parallelly updating policy function parameters:
 \[\pi(p) = \arg \max_{\pi} \sum_{j=1}^{N} E[V_j(\pi(s))] |_{R(p)(s,a) = w(p) \cdot \phi(s)} , \]

- Multiple agents feature updating:
 \[\forall j, \mu_j(p) = \mu_j(\pi(p)) . \]

Algorithm 1: Parallelized apprenticeship learning for lost state with backward tracklets utilization.

Input: Video sequences \(V = \{ v_i \}_{i=1}^{N} \), ground truth trajectories \(O_t = \{ o_{i,j} \}_{j=1}^{N} \) and object detections \(D_t = \{ d_{i,j}^{(t)} \}_{j=1}^{N} \);

Output: reward function parameters \((w_{\text{lost}, b_{\text{lost}}}) \) for lost status data association;

1: Initialization of reward function: \(w_{\text{lost}}^0 \leftarrow w_0, b_{\text{lost}}^0 \leftarrow b_0, S \leftarrow \emptyset \);
2: Initialization for each target \(o_{i,j} \) in each \(v_i \); set MDP of \(o_{i,j} \) in tracked after \(t_{\text{start}}(i,j) \) \(\leftarrow \) index of the first frame where \(o_{i,j} \) correctly detected;
3: \(p \leftarrow 0 \);
4: repeat
5: \(p \leftarrow p + 1 \);
6: for each video \(v_i \) in \(V \) do
7: \(t \leftarrow 1 \);
8: while \(t \leq \) last frame of \(v_i \) do
9: for target \(o_{i,j} \) in \(v_i \) which \(t_{\text{start}}(i,j) \geq t \) do
10: Follow policy \(\pi^{(p-1)} \), compute \(\mu_{t,q}^{(p)} \) as Eq.6, choose action \(a \);
11: Compute ground truth action \(o_{qt} \);
12: if state is lost and \(a \neq o_{qt} \) then
13: \(S \leftarrow S \cup \{ (o_{i,j}', d_{i,j}'^{(t')}; y_{i,j}), 1 \leq q \leq t' \} \);
14: else
15: Save failure position: \(t_{\text{start}}(i,j) \leftarrow t \);
17: State transfer: Execute action \(a \);
18: end if
19: end if
20: end for
21: end while
22: end for
23: Obtain new reward function parameters \((w_{\text{lost}, b_{\text{lost}}}) \); solve Eq.4 with \(S \);
24: Obtain new policy \(\pi^{(p)} \); solve Eq.5 with \((w_{\text{lost}, b_{\text{lost}}}) \);
25: until all targets are successfully tracked.
Q: How to training multiple agents in a particular training video?
A1: Sequentially (polling variant of AL); A2: Parallelly (parallel variant of AL)

- RL phase, parallelly learning the reward function:
 \[w(p) = \arg \max \min \sum_{j=1}^{N} w^T (\mu_j (\pi^{(p-1)}) - \mu_{E,j} (\pi^{(p-1)})), \]
- IRL phase, parallelly updating policy function parameters:
 \[\pi(p) = \arg \max_{\pi} \sum_{j=1}^{N} E[\pi_j (s_t)] | \tilde{r}(p)(s,a) = w(p) \phi(s)] \]
- Multiple agents feature updating:
 \[\forall j, \mu_j^{(p)} = \mu_j (\pi(p)) \]

Parallelized apprenticeship learning strategy:
- Simultaneously maintaining the statuses of all tracking objects on the training set;
- Updating the reward function parameters with all the objects on the training video, so that the convergence speed is faster;
- Resuming the training from the last failure point for an agent.
O(n) training time complexity for a video with n frames and k objects (polling variant of AL: O(n*k)).
Experiment evaluation

- 22 video sequences (11 for training and 11 for testing);
- overall contains 61440 object detections generated by the ACF detector;
- over 10 minutes tracking data annotations;
- having lots of variations in camera perspective, shaking and weather conditions, etc.;
- The evaluation results on test set must be obtained via the official evaluation server.

The MOT Challenge 2015 Multiple object tracking benchmark*

https://motchallenge.net/
Experiment evaluation

- The CLEAR metric for multiple object tracking evaluation:
 - Multiple Object Tracking Accuracy (MOTA, the higher the better)
 \[MOTA = 1 - \frac{\sum_t (FN_t + FP_t + IDS_t)}{\sum_t GT_t}. \]
 - Multiple Object Tracking Precision (MOTP, evaluating object detector performance, the higher the better)
 \[MOTP = \frac{\sum_t d_{t,i}}{\sum_t c_t}. \]
 - Mostly Tracked trajectories (MT, the higher the better)
 - Partially Tracked trajectories (PT)
 - Mostly Lost trajectories (ML, the lower the better)
 - Tracklet ID Switches (IDS, the lower the better)
Experiment evaluation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>MOTA</th>
<th>MOTP</th>
<th>MT</th>
<th>PT</th>
<th>ML</th>
<th>IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUD-Campus</td>
<td>Online MDP</td>
<td>51.53</td>
<td>72.02</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>32.00</td>
<td>72.50</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>54.92</td>
<td>72.68</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>55.71</td>
<td>72.36</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>57.61</td>
<td>71.55</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>ETH-Sunnyday</td>
<td>Online MDP</td>
<td>35.79</td>
<td>77.38</td>
<td>5</td>
<td>13</td>
<td>12</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>32.10</td>
<td>77.00</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>47.69</td>
<td>76.67</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>49.09</td>
<td>76.34</td>
<td>5</td>
<td>13</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>51.08</td>
<td>76.67</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>ETH-Pedcross2</td>
<td>Online MDP</td>
<td>9.13</td>
<td>71.98</td>
<td>2</td>
<td>24</td>
<td>107</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>4.40</td>
<td>72.80</td>
<td>0</td>
<td>16</td>
<td>117</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>12.22</td>
<td>71.52</td>
<td>3</td>
<td>23</td>
<td>107</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>11.34</td>
<td>71.26</td>
<td>4</td>
<td>31</td>
<td>98</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>13.40</td>
<td>72.51</td>
<td>5</td>
<td>30</td>
<td>97</td>
<td>64</td>
</tr>
<tr>
<td>ADL-Rundle-8</td>
<td>Online MDP</td>
<td>19.49</td>
<td>72.74</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>1.80</td>
<td>73.10</td>
<td>2</td>
<td>17</td>
<td>9</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>14.82</td>
<td>72.58</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>15.28</td>
<td>72.08</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>16.03</td>
<td>72.75</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>42</td>
</tr>
<tr>
<td>Venice-2</td>
<td>Online MDP</td>
<td>32.21</td>
<td>74.15</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>4.30</td>
<td>74.20</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>31.71</td>
<td>74.59</td>
<td>4</td>
<td>17</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>33.19</td>
<td>74.06</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>34.90</td>
<td>74.39</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>KITTI-17</td>
<td>Online MDP</td>
<td>62.23</td>
<td>72.00</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LP2D</td>
<td>33.10</td>
<td>73.20</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>AL-poll-ReID</td>
<td>62.87</td>
<td>71.67</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-online</td>
<td>62.91</td>
<td>71.78</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AL-parallel-mixed</td>
<td>63.91</td>
<td>72.78</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **OnlineMDP**: The original online MDP-based multiple object tracking algorithm. Reward function and policy function is learned via polling variant of AL;
- **LP2D**: The baseline method provided by the MOT Challenge 2015;
- **AL-poll-ReID**: Add person ReID module on the OnlineMDP;
- **AL-parallel-online**: Parallelized apprenticeship learning process over the AL-poll-ReID;
- **AL-parallel-mixed**: Add mixed style data association strategy on the basis of AL-Parallel-online.
Experiment evaluation

- Obtains the state-of-the-art performance on MOT Challenge 2015 using public person detection.

<table>
<thead>
<tr>
<th>Method</th>
<th>MOTA</th>
<th>MOTP</th>
<th>MT(%)</th>
<th>PT(%)</th>
<th>ML(%)</th>
<th>IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2D[1]</td>
<td>19.80</td>
<td>71.20</td>
<td>6.70%</td>
<td>52.10%</td>
<td>41.20%</td>
<td>1649</td>
</tr>
<tr>
<td>MotiCon[20]</td>
<td>23.10</td>
<td>70.90</td>
<td>10.40%</td>
<td>48.30%</td>
<td>41.30%</td>
<td>1018</td>
</tr>
<tr>
<td>LINF1[2]</td>
<td>24.50</td>
<td>71.30</td>
<td>5.50%</td>
<td>29.90%</td>
<td>64.60%</td>
<td>744</td>
</tr>
<tr>
<td>LP_SSVM[3]</td>
<td>25.20</td>
<td>71.70</td>
<td>5.80%</td>
<td>41.20%</td>
<td>53.00%</td>
<td>646</td>
</tr>
<tr>
<td>SCEA[4]</td>
<td>29.10</td>
<td>71.10</td>
<td>8.90%</td>
<td>43.80%</td>
<td>47.30%</td>
<td>604</td>
</tr>
<tr>
<td>OnlineMDP[15]</td>
<td>30.30</td>
<td>71.50</td>
<td>13.00%</td>
<td>48.60%</td>
<td>38.40%</td>
<td>690</td>
</tr>
<tr>
<td>Ours(AL-parallel-mixed)</td>
<td>32.60</td>
<td>71.30</td>
<td>16.00%</td>
<td>49.60%</td>
<td>34.40%</td>
<td>580</td>
</tr>
</tbody>
</table>

MOTA: multi-object tracking accuracy; MOTP: multi-object tracking precision; MT: mostly tracked; PT: partially tracked; ML: mostly lost; IDS: ID switches
Experiment evaluation

Ratio of successfully tracked targets in each iteration (polling variant of AL vs. parallel variant of AL)

*Evaluated on the ADL-Rundle-8 dataset
Experiment evaluation

Interactive dataset annotation tool

The variation between training videos in MOT Challenge 2015 dataset and CMU Human Rights dataset.
Interactive dataset annotation tool

A new video sequence

pre-trained tracker

Iterative apprenticeship learning

Iteratively obtained tracklets

Human annotation

Annotation Samples

Video data annotation

Final trajectories
Interactive dataset annotation tool

- Enable user to visualize tracking results;
- Easy to tune, merge, split existing trajectories or even add new bounding boxes and object trajectories;
- The users modifications are recorded and serve as training data for the new MDP based tracker

Combine with apprenticeship learning

https://github.com/grantlj/CMU_MDP_Interactive
3D event reconstruction demo

Boston Marathon 2013: event reconstruction based on large scale video data.

Blind men and an elephant: the metaphor for event reconstruction.
The application of multiple object tracking in event reconstruction: exhibiting person trajectories in 3D point clouds.

3D event reconstruction demo
Thank you!

Q&A