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ABSTRACT 

A number of ongoing research efforts focus on protecting mobile users’ privacy and security, 

using software analysis techniques or security extensions with app-specific privacy controls. 

These proposed extensions might overwhelm users with unnecessary and difficult to understand 

details.  Unfortunately, there has been little work done to understand users’ privacy preferences 

regarding mobile apps.  A key question is whether it is possible to identify how apps' privacy-

related behaviors impact users' privacy preferences in order to simplify the decisions users have 

to make without reducing their level of control over the decisions they really care about.  

The proposed dissertation work aims to help answer this question. Specifically, we propose to 

use crowdsourcing and user-oriented machine learning techniques to capture and quantitatively 

model users' privacy preferences regarding mobile apps. We will perform detailed static analysis 

on a representative set of apps on the Android platform to understand their private resource 

usages. We will also use crowdsourcing to collect users' perceptions of these apps, including 

their expectations and levels of comfort in using these apps. The idea is to identify a relatively 

small number of sensitive data usage scenarios that most significantly impact users’ privacy 

decisions when using a particular mobile app. By performing clustering, we expect to isolate 

different classes of mobile apps that elicit common privacy concerns and different groups of 

users with distinct privacy preferences. Based on these clusters, we want to see if we can 

identify a small number of user-understandable privacy profiles (or “personas”) that can be used 

to simplify the privacy settings users could be exposed to.  

The findings of this thesis can offer insight into improving current mobile privacy interfaces and 

settings. As a by-product, our resulting models and findings could also help mobile app 

developers estimate the user acceptance of their apps from a privacy perspective.   
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1 INTRODUCTION 
Smartphone ownership has grown rapidly over the last few years. In 2012, global smartphone 

shipments are expected to reach 614 million units [27]. Nearly half of cell phone owners carry 

smartphone nowadays. The explosion in smartphone ownership has been accompanied by the 

emergence of App Stores that enable users to download a growing number of applications onto 

their devices.  As of June 2012, the Google Play Store1 offered more than 600,000 apps, with 

more than 20 billion downloads since its inception; the Apple App store offered more than 

650,000 apps with more than 30 billion downloads since its launch.  Mobile apps can make use 

of numerous capabilities of a smartphone, such as a user’s current location and call logs, 

providing users with pertinent services and attractive features.  

Inevitably, access to these capabilities opens the door to new types of security and privacy 

intrusions.  Malware is an obvious problem [18, 36]; another serious problem is that mobile 

users, in general, are neither fully aware of nor have full control over how mobile apps access 

and transmit personal information. For example, the Pandora music app is under federal 

investigation for gathering location data, gender, year of birth, and unique device ID from 

mobile users and sharing this information with advertisers [19].  Social network applications, 

such as Facebook and Path, were found uploading entire contact lists onto their servers, which 

greatly surprised users and made them feel very uncomfortable [44, 76]. In fact, studies [38, 57, 

59] have shown that users have a poor understanding of these sensitive resource usages, and 

existing interfaces fall short in terms of providing  users with the information necessary to make 

informed decisions. 

A number of ongoing research efforts focus on protecting mobile users’ privacy and security 

using software analysis techniques or security extensions with app-specific privacy controls. 

(e.g., [15, 49, 87]). However, these proposed privacy controls were not grounded in user 

research. Asking users to systematically configure all these settings is unrealistic as it can 

overwhelm users with details they struggle to understand and may ultimately not care about. To 

date, not much work has been done to understand people’s privacy preferences in using mobile 

apps and see to what extent a better understanding of these preferences could inform the 

design of interfaces that empower users to better manage their privacy. 

The fundamental goal of this thesis is to complement existing mobile privacy research by 

providing important knowledge on the end-users' side. A key research question we aim to solve 

in this thesis is whether it is possible to simplify decisions users have to make without reducing 

their level of control over the decisions they really care about. Specifically, we propose to use 

crowdsourcing and user-oriented machine learning techniques to see whether it is possible to 

reduce and simplify the number of privacy decisions exposed to users without negatively 

impacting their sense of control. The idea is to identify a relatively small number of sensitive 

data usage scenarios that most significantly impact users’ privacy concerns when using a 

particular mobile app. By performing clustering, we expect to isolate different classes of mobile 

                                                           
1
 Previously called “the Android Market.” 
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Figure 1. This figure illustrate where this thesis posit in the mobile privacy research. My proposed 

work complements existing mobile privacy research by providing important knowledge on the user 

side. My past work and the formative study are also marked in this figure, which will also be 

covered in this proposal.  

apps and different groups of users with distinct characteristics. A small number of user-

understandable privacy profiles (or “personas”) will be learned based on the clusters of users 

with similar preferences. 

Our previous work used location-sharing services as a prominent example to investigate users’ 

privacy preferences in context sharing. We found that even when considering only this type of 

private resource, users' privacy preferences were complex and varied regarding a number of 

factors, which ranged from motivation and context to cultural influences. Yet, by leveraging 

machine learning techniques, we were able to identify certain patterns in users’ privacy 

preferences and to some extent predict users’ sharing behaviors under different context. This 

thesis will extend the discussion to general mobile apps other than context sharing services, in 

which users' personal information is not only shared with the members of their social network 

but also with app developers or 3rd parties. We foresee that this discussion will involve a 

significantly more complex problem space. Figure 1 shows where this thesis fits into the domain 

of mobile privacy research.  We will conduct in-depth quantitative analysis on users' mobile app 

privacy preferences, especially how users' levels of comfort vary with different private resource 

usages.  

More specially, my thesis will attempt to answer the following questions: 

1. How can we capture users’ mobile app privacy preferences in a scalable manner? 

2. What are the key factors that affect users’ privacy concerns about mobile apps? 
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3. To what extent can we identify meaningful collections of mobile apps that elicit similar 

privacy preferences among users? 

4. To what extent can we identify groups of users who share similar privacy preferences 

for different collections of apps?   

Given that there are more than half a million mobile apps in more than thirty categories, dozens 

of different private resources and presumably diverse privacy attitudes of users, conventional 

user study methods are not feasible for data collection due to their limited scalability and high 

management and time cost. Our initial results showed that crowdsourcing can scale up the data 

collection (i.e., capturing users' privacy preferences) in an efficient way [59]. Furthermore, initial 

results also suggested that despite the variety of sensitive data and functionality accessed by 

apps, users’ privacy decisions are influenced by their expectations of these apps and the 

purposes of the resource usages.  As part of this thesis, we propose to explore the validity and 

ramifications of these observations and leverage machine learning techniques to perform more 

in-depth analysis on both mobile apps’ privacy-related behaviors and users’ privacy preferences. 

We seek to determine to what extent different usage practices and groups of users could be 

identified to simplify the design of privacy control settings.  

The central thesis aims at providing quantitative foundations and user perspectives to mobile 

privacy research, which can be summarized as: 

By using crowdsourcing and user-oriented machine learning techniques, we can 

build accurate and understandable models of mobile apps and users’ privacy 

preferences to inform the design of mobile privacy interfaces and settings, and to 

help developers build more privacy preserving apps.  

This thesis will contribute to mobile app privacy research in several ways including: 

• We will compile a valuable dataset that includes attributes to describe privacy-related 

behaviors of mobile apps as well as how users feel about them though automated static 

analysis and crowdsourcing.  This dataset will be an important foundation for all 

quantitative analyses in my thesis. It can also be used for other research purposes.  

• We will develop detailed regression models of users' privacy preferences along with 

identified features that most critically impact users' comfort in using these apps. 

• We will cluster apps based on their sensitive resource usage patterns and the resulting 

level of comfort expressed by users, and will present the predictive model generalized 

from these app clusters that could be used to estimate user acceptance of other apps.  

• We will identify a set of default privacy settings by clustering users based on their 

preferences of different clusters of apps.  Users can choose from these default settings 

when configuring their mobile app privacy settings. These default settings can greatly 

reduce user burden compared to other privacy settings that require users to specify 

their preferences for individual apps. 
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Collectively, these contributions should provide a scientific basis for starting to reconcile mobile 

privacy and usability and, in particular, helping inform the design of more usable privacy 

settings.  

The remainder of this thesis proposal is organized as follows. In the next section, I will 

summarize my previous work in location sharing as an initial exploration of users’ privacy 

preferences with a focus on how it links to the proposed thesis. Section 3 reviews current 

mobile app privacy research and how our work differs from it.  Section 4 provides the 

preliminary results obtained from a formative study. Section 5 details the proposed work in 

terms of the steps involved to conduct data collection and analysis in investigating users’ mobile 

app privacy preferences. In the remaining sections, I clarify the scope of this thesis and present a 

proposed schedule for completing the thesis work. 

2 EXPLORING USERS’ PRIVACY PREFERENCES IN LOCATION 

SHARING  
Our initial exploration in users’ mobile privacy preferences started with location sharing, 

focusing on how to understand and resolve users' privacy concerns in using location sharing 

applications (LSAs). These types of applications facilitate and encourage users to convey their 

location information to others in users' communications, which have recently attracted interest 

from both industry and academia [2-8, 17, 50, 51, 71, 84].  With the proliferation of smartphone 

ownership, most location-sharing services are available on mobile platforms (e.g., Google 

Latitude [5], Foursquare [4], Facebook Places [3]). As a special subset of mobile apps, where the 

users' location information is majorly consumed by people in their social networks,2 studying the 

privacy issues in LSAs could provide important lessons from both methodological perspective 

and knowledge perspective.     

Some of my past work falls into this line of research [60, 61, 75].  Our findings indicated that 

even only considering one type of sensitive resource, users' privacy preferences could be very 

complex and influenced by different factors. Our past work in location privacy provided us a 

sound foundation to extend the discussion to mobile apps in general, helping us proceed to a 

presumably more complex area. In this section, I briefly discuss three studies I conducted in this 

domain, and show how this line of research links to the current thesis. 

2.1 Modeling People’s Place Naming Preferences in Location Sharing 

[61]  

In this work, we explored how users modulate their location information to cope with privacy 

concerns by analyzing the place names they used to convey location within a location sharing 

system. Specifically, we wanted to identify the general patterns of users’ location naming 

preferences in different contexts and determine to what extent preferences were predictable. 

                                                           
2
 Though some location-sharing mobile apps also transmit users' location information to ad networks for 

advertising purposes. 
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To achieve this goal, we conducted a user study with 26 participants and captured their location 

traces and per-location sharing preferences by using the Day Reconstruction Method (DRM).  

Based on the data we collected, we proposed a taxonomy based on the underlying information 

users want to convey to organize the place labels that we collected in a two-week user study in 

two cities.  We observed that participants generally used two major techniques to tailor their 

location information. The first was to choose the perspective from which people address the 

places (i.e., semantic, e.g., "work"; geographic, e.g., "5000 Forbes ave.";  or hybrid, e.g., 

"Starbucks on Craig st").  The second was to tune the granularity of the disclosure (i.e., the 

precision of a disclosure, from address level, e.g. "417 S. Craig st", to state level, e.g., "PA"). On 

average, we saw 2.78 place names per physical location (SD = 0.89, Med = 3, max = 7, min = 1).  

Participants considered multiple factors when they decided on what information to disclose, 

including their relationship with the recipients, their perceived levels of comfort in sharing 

specific locations, the recipients' familiarity with the places, and place entropy.3 The latter two 

factors had not been examined previously.   

Given the proposed taxonomy and these identified influencing factors, we demonstrated the 

feasibility of applying machine learning techniques to predict the way people manipulate their 

location information in various situations. In our experiments, we leveraged the J48 decision 

tree algorithm to predict the types of place naming methods people will use in different 

situations and validated prediction accuracies through a fivefold cross validation.  The prediction 

of the top-level class (semantic, geographic, hybrid) yielded an average accuracy of 85.5%; 

granularity prediction yielded an average accuracy of 71.25%. 

Along a similar direction, in collaborative work with Tang [75], we used the same taxonomy to 

analyze the location labels users selected in different scenarios and reframed the location-

sharing applications (LSA) into two categories, based on the users' intention of sharing, namely  

purpose-driven LSAs  and social-driven LSAs. Our findings indicated that people have distinct 

sharing preferences in using these two categories of LSAs in terms of (1) the types of location 

information they chose to share, (2) the different privacy concerns people had and strategies 

used to cope with these concerns, and (3) how privacy-preserving these location disclosures 

were.  These results suggested that LSAs should consider which type of location sharing they 

primarily support in order to select the most appropriate data type and visualizations. Another 

important finding concerns the factors involved in users’ location sharing decisions. In socially-

driven sharing, users attempt a balance between maximizing their social capital and protecting 

their own privacy. Social-driven LSAs can leverage this information by playing to these factors to 

encourage users to share their location.   

2.2 A Comparative Study of Location-Sharing Privacy Preferences in 

U.S. and China [60]  

                                                           
3
 Place entropy characterizes the diversity of users seen in a particular place. See [25]J. Cranshaw, E. Toch, J. Hong, A. 

Kittur, and N. Sadeh, "Bridging the gap between physical location and online social networks," In Proc. UbiComp, 

2010. 
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While prior studies had provided us with an initial understanding of people’s location-sharing 

privacy preferences, they had been limited to Western countries and did not investigate the 

impact of the granularity of location disclosures on people’s privacy preferences. In this study, 

we reported findings of a three-week comparative study collecting location traces and location-

sharing preferences from two groups of university students in the U.S. and China with similar 

demographics. More specifically, we asked participants to specify their per-location privacy 

preferences in two conditions with four recipient types (i.e., close friends and family, friends on 

Social Networking Sites, university community, and advertisers). In the all-or-none condition, 

participants had to share an exact location or disclose no location at all. In the granularity 

condition, participants could choose to manipulate the level of granularity at which their 

location was disclosed. 

On average, Chinese participants were more conservative about sharing their location, 

especially when sharing with their close friends and family and their friends on Social 

Networking Sites or when they were at work, compared to their U.S. counterparts.  We also 

noticed that Chinese participants' privacy preferences were more differentiated during working 

and nonworking hours.  

Another major finding was that these two groups of participants used granularity control 

differently. On average, U.S. participants shared less detailed location than their Chinese 

counterparts when the granularity control was given. The two groups used the granularity 

control with different intentions. Chinese participants leveraged the granularity control to open 

up more sharing opportunities where they refused to share in the all-or-none condition. 

However, U.S. participants harnessed granularity control to further limit location details in 

sharing. This finding suggests that, in the absence of granularity settings, U.S. participants are 

more willing than Chinese participants to relax their preferences and share their finest location 

details even when doing so is not their optimal choice, whereas Chinese participants are more 

likely to do the opposite. A significant implication of this finding is that granularity settings are 

likely to be more important for the adoption of location sharing among Chinese users than 

among American users. 

Other findings we observed included the mobility differences and the subtle gender differences 

between the two groups. Our study was the first exploration into the differences of location-

sharing preferences between participants of two countries, yielding several design implications 

for future location-sharing applications (LSA). First, LSAs should consider providing different 

levels of privacy assurance to users with different cultural backgrounds. Second, different 

cultures may have different control requirements for sharing their location data. For example, 

we observed that Chinese participants needed specific control over the time when their 

locations were shared, while data from U.S. participants suggest that the type of place they visit 

might be enough. Third, we found that participants’ sharing preferences were dramatically 

different when given additional control (e.g., granularity control) over the detail of their shared 

location information. This finding suggests that introducing a more complex control mechanism 
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could increase users’ comfort levels; however, it also might encourage or discourage users to 

share more information.  

2.3 Summary and Lessons Learned 

Previous research (including my own work) has provided important knowledge in understanding 

users privacy concerns and needs in mobile context-sharing. Although, location-sharing 

applications only take up a small portion of the spectrum in mobile services, lessons learned 

from this domain could still be inspiring and extended to mobile app privacy, in general and 

from multiple perspectives.  

First, considering methodology, multiple user studies [14, 61, 79] have shown that remote 

auditing-based study methods (i.e., participants provide their responses remotely through web 

service) and the Day Reconstruction Method could provide equivalent data quality and are 

easier to manage compared to lab studies, interviews and the Experience Sampling Method in 

collecting participants’ subjective feedback.  However, we are fully aware of the limited 

scalability of the study methods we used in the past work given the number of mobile apps we 

want to investigate. Therefore, to tackle this challenge, we propose that mobile privacy user 

studies should take advantage of crowdsourcing to harvest user data with regard to privacy 

preferences. By carefully designing human intelligent tasks (HITs), a crowdsourcing platform 

(e.g., Amazon Mechanical Turk) could provide an efficient way to collect subjective feedback on 

mobile apps from a diverse population of users in a relatively short amount of time. 

Second, we learned that users’ privacy preferences are dynamic and complex. Considering 

location-sharing as an example, users typically consider multiple factors when they make 

decisions on whether and what to share. Factors that influence users’ mental models range 

from type of requester, temporal or special context, current activity, motivation of sharing, 

cultural influence, etc. We believe that the complexity of the problem space addressed in this 

proposed thesis could be even higher given that more facets (e.g., app functionalities, different 

types of private resources) are involved. Previous research has suggested that users need 

multidimensional controls to manage sharing preferences [14, 22, 80, 81], which also might be 

true for mobile app privacy preferences. To make these controls really usable without 

overwhelming users, this thesis aims to identify the sensitive data usage scenarios that most 

significantly impact users' privacy concerns, in order to simplify the decisions users have to 

make. 

Finally, several studies [23, 24, 61] have shown that user privacy preferences, though complex, 

are still predictable to some extent. This important lesson greatly inspired our proposed work. 

As such, in part of the proposed work, we want to determine to what extent machine learning 

techniques could help in modeling users’ mobile app privacy preferences. As part of this study, 

we will explore the use of clustering techniques and investigate to what extent clusters of apps 

and users can be identified and generalized to inform the design of streamlined mobile privacy 

interfaces.     
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3 Related Work of Mobile App Privacy 
For the purpose of my thesis, the related work of mobile app privacy falls into four major 

themes. First, I provide a brief overview of the permission framework used in the Android 

system4.  Then, I survey existing research on mobile app analysis and security extensions. Finally, 

I briefly discuss relevant research in crowdsourcing and understandable machine learning.  

3.1 Android Permissions  

The Android permission framework is intended to serve two purposes to protect users: (1) limit 

the access of mobile apps to sensitive resources and (2) assist users in making trust decisions 

before installing apps. The latest Android 4.3 platform defines 11 permission groups with more 

than 130 permissions [43]. Android apps can only access sensitive resources if they declare 

permissions in the manifest files and obtain approval from users at installation. At the official 

Google Play Store, before installing an app, users are shown a permission screen that lists 

resources an app will access. It is this information that users must use to decide whether to trust 

the app (see Figure 2). In order to proceed to installation, users need to accept all the 

permissions. Once granted, permissions cannot be revoked unless the user uninstalls the app.  

Several user studies have examined usability issues of permission systems in warning users 

before downloading apps. Kelley et al. [57] conducted semi-structured interviews with Android 

users and found that users paid limited attention to permission screens and had poor 

                                                           
4
 Throughout this thesis, all the studies and analysis are conducted on Android platform. We choose 

Android system due to its openness and its more outstanding privacy problems compared to other 

platforms. 

  
Figure 2: Example permission screen in Google Play Store (left). When a user clicks on an entry from 

the permission list, more explanation will be shown (right). Previous research showed that most 

users click through the permission screen without carefully examining this list.    
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understanding of what the permissions implied. Specifically, permission screens generally lack 

adequate explanation and definitions. Felt et al. [38] found similar results from Internet surveys 

and lab studies that current Android permission warnings do not help most users make correct 

security decisions.  Later Felt et al. [35] also surveyed more than three thousand smartphone 

users about 99 risks associated with 54 permissions without considering specific apps.  Their 

survey focused more on security risks that malicious apps can exploit rather than the potential 

privacy concerns caused by normal mobile apps.  Similarly, an interview study by Chin et al. [21] 

probed smartphone users' concerns and fears with regard to privacy and security and offered 

several recommendations that could mitigate these threats.  

Different from their work, my thesis will leverage crowdsourcing to evaluate individual mobile 

apps within their specific context (e.g., an app's functionality), resulting in a more in-depth 

probing of users' mobile app privacy preferences.  

3.2 Mobile Application Privacy Analysis  

To handle the increasing rate of malware in the Android market, in Feb 2012, Google announced 

their "Bouncer" service that scans apps for malware, spyware, Trojans, and other suspicious 

behaviors [88]. Though its technical details are not publically available, Bouncer was developed 

to detect malicious apps rather than privacy intrusive apps.   

Researchers have also developed many useful techniques and tools to detect sensitive 

information leakage in mobile apps [10, 13, 15, 20, 30-34, 37, 39, 49, 77, 82, 87].  Three 

methods are usually used in app analysis, namely permission analysis, static code analysis, and 

dynamic flow analysis. Permissions describe what an application can do once installed. Table 1 

categorizes previous research and studies based on methods used and highlights the pros and 

cons of each method.   

By analyzing the permission lists declared by app developers, potentially risky functionalities can 

be identified.  This line of research has focused on how different permissions are used [13, 34, 

39, 82] and highlights common usage patterns [13], misuses [37, 82], and potential implications 

to Android security and privacy [34, 37, 39]. Enck et al. [33] were the first to conduct permission 

analysis on the Android system. Among the 311 apps they examined, 10 apps were flagged with 

questionable private resource usage. Barrera et al. [13] performed permission analysis of 1,100 

free applications in the Android Market and identified the exponential decay distribution in the 

number of applications that requested individual permissions (i.e., most applications require 

only a small number of permissions).  Felt et al. [37] studied the effectiveness of Android's 

install-time permission. Specifically, Felt et al. found that developers sometimes made mistakes 

in declaring permissions requests (e.g., requesting unnecessary permission, non-existing 

permission, etc.). Hence, in follow-up work [34], Felt et al. proposed the Stowaway tool, which 

performs static analysis to detect over-privileged applications. Similarly, an Android SDK 

extension was developed by Vidas et al. [82], which assisted Android developers in including the 

minimum set of permissions required by their app's functionality. Permissions are valuable for 

performance efficient security analysis; however, permission lists could not provide detailed 
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information concerning what purpose private resources would be used, but rather could only 

capture limited security and privacy risks.  

Static program analysis can be conducted with or without source code. To date, most mobile 

app static analyses rely on decompilers to recover source codes of targeted apps (e.g., [9, 70] ). 

Egele et al. [29] proposed PiOS to perform static taint analysis on iOS application binaries to 

identify potential privacy violations. Among the 1,400 apps studied, more than half leaked the 

privacy sensitive device ID without the users' knowledge. Chin et al. [20] proposed ComDroid, 

which operates on used disassembled DEX bytecode. Specifically, ComDroid identifies 

vulnerabilities in intent communications between applications, such as broadcast theft, service 

hijacking, malicious service launch, etc. Among 100 apps analyzed, Chin et al. found 34 

exploitable vulnerabilities. App Profiles [10] developed by the RubustNet research group at the 

University of Michigan analyzed mobile applications offline to detect privacy-related actions 

written into the application source code. While static analysis provides a complete and 

automated scan of mobile apps, its accuracy might highly depend on the performance of the 

decompiler used or the code style of the developer. Another challenge for privacy research 

involving static analysis is that this method cannot automatically determine whether privacy-

related behavior is desired.  

Dynamic analysis can help resolve ambiguity in permission granularity as well as provide an 

intuitive way to monitor how applications run. The Wall Street Journal reported the results of 

101 popular smartphone apps for iPhone and Android devices that were examined by 

monitoring network analyses [77]. Results showed that 56 apps transmitted the phone's unique 

ID to third party servers without user consent, and 47 apps transmitted the phone's location and 

other personal information such as age, gender, etc. TaintDroid [31] performed a thorough 

 Permission Analysis  Static Analysis  Dynamic Analysis  

Examples  Enck’09 [33] 

Barrera’10 [13] 

Felt &Greenwood’11 [37] 

Felt&Chin’11 [34] 

Vidas’11 [82]  

Egele’11 [29] 

Chin’11 [20] 

Felt&Wang’11 [39] 

Enck’11 [32, 38] 

App Profiles [10]  

Thurm’11[29, 77]  

Enck’10(TaintDroid) [31]  

Beresford’11 [15] 

Zhou’11 [87] 

Hornyack’11 [49]  

Pros  Simple and efficient  Easy to automate, 

cover all possible 

execution patterns  

Capture what actually 

happened, easy to 

interpret 

Cons  Only high-level analysis 

cannot tell the whole 

story  

Dead code problem; 

Depend on the 

performance of 

decompiler  

Require human 

intervention, hard to 

automate  

Table 1 : Categorization of existing work in mobile app analysis based on methodologies.  The pros 

and cons of each method are highlighted. All methods assessed mobile apps’ behaviors from 

traditional security perspectives that cannot infer users’ perceptions of mobile privacy.  Our 

proposed work makes use of the app analysis tool to obtain ground truth of mobile apps, aiming at 

bridging the gap between app analysis and users’ privacy preferences learning. 
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dynamic flow analysis to capture information leakage on Android devices in real time.  The 

authors modified the Android's Dalvik VM to perform instruction-level taint tracking that 

captures how private information flows from its source to its destination (i.e., network 

interface). Other work has built on TaintDroid to provide more pertinent privacy analyses or 

controls [15, 49].  Dynamic analysis identifies what actually happens when an application is 

running.  One drawback of dynamic analysis is that it is limited by scalability because human 

interventions (interactions with mobile apps) are needed to trigger certain behaviors of the apps 

in the process of analysis.  

Though app analysis provides us with a better understanding of apps’ behaviors, it cannot infer 

people’s perceptions of privacy or distinguish between behaviors which are necessary for an 

app’s functionality versus behaviors which are privacy-intrusive. Our work complements this 

past work by suggesting an alternative way of looking at mobile privacy from the users’ 

perspective by leveraging crowdsourcing to bridge the gap between app analysis and resolving 

users’ privacy concerns.  To achieve this goal, we opt to use static analysis to capture the ground 

truth of apps with regard to type and purpose of information disclosed because of the scalability 

issue. 

3.3 Security and Privacy Extensions  

Many security extensions have been developed to harden privacy and security. MockDroid [15] 

and TISSA [87] substituted fake information into API calls made by apps, such that apps could 

still function, but with zero disclosure of users' private information. In addition to faking 

information, AppFence [49], a subsequent project of TaintDroid, allowed users to specify which 

resources should only be used locally. It also hashed the phone identifiers in a way that it no 

longer could be linked to users, while still being useful for application developers to track 

application usage.  

Nauman et al. [69] proposed Apex, which provides fine-grained control over resource usage 

based on context and runtime constraints such as the location of the device or the number of 

times a resource has been used. They implemented an extended package installer named Poly 

that allows users to specify their policy at time of install. To enable wide deployment, Jeon et al. 

proposed an alternative solution that rewrote the bytecode of mobile apps instead of modifying 

the Android system [54]. When accessing sensitive resources, the modified apps talk to a privacy 

proxy layer instead of directly talking to Android APIs. Nauman et al. also proposed fine-grained 

permissions that could further control resource access. 

These proposed privacy extensions aimed to provide users more control over apps and assumed 

that users are able to configure these settings perfectly. However, this assumption was not 

grounded by user studies. Dumping these settings on users and relying on them to specify their 

privacy preferences without adequate information could be questionable or even 

counterproductive. 

3.4 Crowdsourcing and Human Computation 
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Crowdsourcing and human computation has gained attention as both a topic of and tool for 

research. Several methodological papers have addressed how to more effectively utilize 

crowdsourcing to yield better results [28, 52, 65, 66, 72]. Amazon’s Mechanical Turk (AMT)[1] is 

currently the most popular crowdsourcing platform and the one used in this work.  With AMT, 

requesters can publish Human Intelligence Tasks (HITs) for workers. A number of projects have 

successfully used AMT and have ranged from human assisted online tasks (such as image 

labeling) to surveys and user studies [16, 40, 48, 62, 63, 85]. 

Our work makes use of many findings and methodologies mentioned above and builds on past 

work by extending the application of crowdsourcing to a mobile privacy study. In so doing, we 

demonstrate the feasibility and potentials of crowdsourcing as a scalable tool for privacy 

studies.  

3.5 Understandable Machine Learning 

Most traditional learning problems are solved by a black box approach in terms of model 

selection and/or parameter estimation, aiming at optimizing the mapping between the input 

and output of the given data.  The resulting models of these approaches are by and large 

obscure and not understandable by humans, which makes the knowledge discovery difficult.  As 

suggested in [56], the interpretability of machine learning models depends strongly on the 

complexity of the model, and in general, the lower the complexity, the easier it is to understand. 

Furthermore, by constraining the complexity of resulting models, such as by penalizing the 

model complexity in the objective function, models’ generalizability could be potentially 

improved [41, 55, 86].    

Sadeh et al. first introduced the notion of understandable learning into privacy research [23, 

68]. They used two types of user-oriented machine learning techniques, namely default 

personas and incremental suggestions, to identify users’ privacy rules, resulting in a significant 

reduction of user burden. By restricting the level of control the user has over the policy model, 

their algorithm produced accurate and understandable learning results.       

Our work inherits the rationals of their work, aiming at extracting logic and knowledge from 

users’ mobile app privacy preferences.  Hence, we take interpretability and generalizability as 

two of the crucial criteria in modeling users’ preferences.  

3.6 Distinction from Prior Work 

Before moving on to the details of this thesis, a few high-level distinctions between my 

proposed thesis work and past related work are worth mentioning. From a technology 

standpoint, this thesis does not aim to produce new tools or techniques to analyze mobile apps’ 

privacy related behaviors, rather it aims to link users’ subjective feedback to various private 

resource usage patterns as identified through app analyses.  Meanwhile, the security extensions 

mentioned above do provide users with more control over private data; however, these designs 

are not grounded in adequate user studies. Further, it is unclear if these are the settings users 

need and if lay users can correctly configure these settings to reflect their desired preferences. 
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My thesis will complement this past work by assessing mobile app privacy from the user 

perspective. We expect to identify a relatively small number of sensitive data usage scenarios 

that most significantly impact users’ privacy concerns when using a particular mobile app. 

From an HCI standpoint, this thesis probes much deeper in the users’ privacy decision processes 

compared to previous permission usability studies [38, 57] or privacy surveys and interviews [21, 

35]. By performing clustering, we expect to isolate different classes of mobile apps and different 

groups of users with distinct characteristics. A small number of user-understandable privacy 

profiles (or “personas”) will be learned based on the clusters of users with similar preferences. 

These expected findings can provide practical suggestions to inform the design of simpler, 

easier-to-use interfaces and privacy control mechanisms that matter to users. 

4 Preliminary Results: A Formative Study of Understanding 

Users’ Mental Models of Mobile App Privacy [59] 
Smartphone security research has produced many useful tools to analyze privacy-related 

behaviors of mobile apps. However, these automated tools cannot assess user perceptions of 

whether a given action is legitimate, or how that action makes them feel with respect to privacy. 

For example, is the use of a given app concerning one’s location appropriate? The answer 

depends on the context5: for a blackjack game, probably not, but for a map application, very 

likely so. However, currently, end-users have very little support in making good trust decisions 

regarding what apps to install. The major goal of this formative study is to understand the 

design space and feasibility of our ideas.  

More specifically, with this study we aimed to achieve the following four objectives. First, we 

investigated users’ mental models in terms of their expectations about what an app does and 

does not do with a focus on where an app breaks people’s expectations. We argue that by 

allowing the user to see the most common misconceptions about an app, we can rectify mental 

models and help users make better trust decisions regarding that app. Second, we 

demonstrated an efficient way to capture users’ privacy preferences with a crowdsourcing 

platform (e.g., AMT), which produces results with similar quality as lab studies. Third, we 

identified two key factors that affect people’s mental models of a mobile app, namely 

expectation and purpose and demonstrate how they influence users’ subjective feelings. Finally, 

we evaluate a preliminary design of a new privacy summary that features expectations and 

purpose, which significantly increases users’ privacy awareness and is easier to comprehend 

than Android’s current permission interface.  

4.1 Crowdsourcing Users’ Mental Models 

                                                           
5
 Obviously the fact that an app requires access to one’s sensitive resources does not guarantee that this information is used solely 

for the purpose of supporting its core functionality. 
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Figure 3: Sample questions to capture users’ mental models.  Participants were randomly assigned to one 

of the conditions. In the expectation condition, participants’ were asked to specify their expectations and 

speculate about the purpose for this resource access. In the purpose condition, the purpose of resource 

access was given. In both conditions, participants were asked to rate how comfortable they felt having the 

targeted app access their resources.  

Please read the application description carefully and answer the questions below.

App Name: Toss it

Toss a ball of crumpled paper into a waste bin. Surprisingly addictive! Join the 

MILLIONS of Android gamers already playing Toss It, the most addictive casual game 

on the market -- FREE!

- Simple yet challenging game play: toss paper balls into a trash can, but don't forget to 

account for the wind! 

- Challenge your friends to a multiplayer game with Scoreloop

- Toss that paper through 9 unique levels -- you can even throw an iPhone! – Glob

And if you like Toss It, check out these other free games from myYearbook: - Tic Tac 

Toe LIVE! - aiMinesweeper (Minesweeper) - Line of 4 (multiplayer game like Connect 

Four)

 1. Have you used this app before? (required)

Yes No

2. What category do you think this mobile app should belong to? 

(required)

Game Application Book, music or video

3. Suppose you have installed Toss it on your Android device, 

would you expect it to access your precise location? (required)

Yes No

4. Could you think of any reason(s) why this app would need 

to access this information? (required)

Toss it does access users’ precise location information.

precise location is necessary for this app to serve its 

major functionality.

precise location is used for target advertisement or 

market analysis.

precise location is used to tag photos or other data 

generated by this app.

precise location is used to share among your friends or 

people in your social network.

other reason(s), please specify 

I cannot think of any reason.

5. Do you feel comfortable letting this app access your precise 

location? (required)

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

Please provide any comments of this app you may have below.

Based on our analysis, Toss it  accesses user's precise 

location information for targeted advertising .
3. Suppose you have installed Toss it on your Android device, 

do you feel comfortable letting it access your precise location? 

(required)
The Expectation Condition The Purpose Condition

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

OR

Taking a step back, there are four reasons why crowdsourcing is a compelling technique for 

examining privacy. Past work has shown that few people read End-User License Agreements 

(EULAs) [42] or web privacy policies [53] because (a) there is an overriding desire to install the 

app or use the web site, (b) reading these policies is not part of the user’s main task (which is to 

use the app or web site), (c) the complexity of reading these policies, and (d) there is a clear cost 

(i.e., time) with unclear benefit. Crowdsourcing nicely addresses these problems because it 

dissociates the act of examining permissions from the act of installing apps. By paying 

participants, we make reading these policies part of the main task and offer a clear monetary 

benefit. Lastly, we can reduce the complexity of reading Android permissions by having 

participants examine just one private resource at a time, rather than all the permissions, and by 

offering clearer explanations of what the permission means. 

We recruited participants using Amazon’s Mechanical Turk (AMT). We designed each Human 

Intelligence Task (HIT) as a short set of questions about a specific Android app and resource pair 

(see Figure 3). Participants were shown one of two sets of follow-up questions. One condition 

(referred to as the expectation condition) was designed to capture users' perceptions of whether 

they expected a given app to access a sensitive resource and why they thought the app used this 

resource. Participants were also asked to specify how comfortable they felt allowing this app to 

access the resource using a Likert scale that ranged from very comfortable (+2) to very 
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MSE  Network Loc  GPS loc  Contact List  Unique ID 

expectation [0,1]  0.0354 0.0303  0.0353 0.0363 

comfort level [-2,+2]  0.7081  0.8136  0.6749 0.3067 

Table 2: Crowd workers and experts have similar expectations toward targeted mobiles. In general, 

experts were slightly more skeptical about these privacy-related behaviors. Numbers in this table 

indicate the differences between the rating we obtained from the crowd workers and the experts, 

measured by the Mean Square Error. 

uncomfortable (-2). In the other condition (referred to as the purpose condition), we wanted to 

see how people felt when offered more fine-grained information. Participants were told that a 

certain resource would be accessed by this app and were given specific reasons for the access. 

We manually identified these reasons by examining TaintDroid logs and using knowledge about 

ad networks. Participants were then asked to provide their comfort ratings as in the expectation 

condition. Finally, participants from both conditions were encouraged to provide optional 

comments on the apps in general. The separation of the two conditions allowed us to compare 

users’ perceptions and subjective feelings when different information was provided. 

We focused our data collection on four types of sensitive resources (as suggested by AppFence 

[49]): unique device ID, contact list, network location, and GPS location. We also restricted the 

pool of apps to the Top 100 most downloaded mobile apps on the Android market. We limited 

our participants to Android users and ensured a between-subjects design through a qualification 

test. This study included 179 verified Android users with an average lifetime approval rate of 

97% (SD = 8.79%). The distribution of Android versions that our participants used was very close 

to Google’s official numbers [83]. On average, participants spent about one minute per HIT (M = 

61.27, SD = 29.03) and were paid at the rate of $0.12 USD per HIT. 

4.2 Major Findings 

4.2.1 Feasibility of Using Crowdsourcing to Study Privacy 

Though we already adopted quality control questions and qualification tests to ensure the 

validity of the data collected, we want to prove quantitatively that the crowdsourcing approach 

would not bias the results in gathering users’ subjective feedback. To this end, we recruited five 

Android experts6 to come to our lab; then we presented them with the same questions in the 

expectation condition and asked them to complete the questions for every resource and app 

pair (i.e., 134 sets of questions in total). We used the Mean Square Errors (MSE) to measure the 

differences between the subjective feedback collected from crowd workers and experts (see 

Table 2). In general, crowd workers had a similar level of expectations as experts (i.e., MSE < 

0.05). Experts on average appeared to be more skeptical about privacy-related behaviors of 

apps, which attributed to the slightly higher MSEs seen in the second row. Given the comfort 

level scaling from -2 to +2, these MSE were still considered acceptable.  In other words, these 

results demonstrate the validity and feasibility of crowdsourcing as a method to collect users’ 

subjective feedback to study privacy.  

                                                           
6
 Someone with security background and has development experience in Android OS.  
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Resource 

Type 

comfort 

rating  

w/ 

purpose 

comfort 

rating w/o 

purpose df T p 

Device ID 0.47(0.30) -0.10(0.41) 55 7.42 0.0001 

Contact 

List 0.66(0.22) 0.16(0.54) 24 4.47 

  

0.0002 

Network 

Location 0.90(0.53) 0.65(0.55) 28 3.14   0.004 

GPS 

Location 0.72(0.62) 0.35(0.73) 23 3.60   0.001 

Table 3 Comparison of comfort ratings between the 

expectation condition (2nd column) and the purpose 

condition (3rd column). Standard deviations are shown 

between parentheses. When participants were informed 

of the purpose of resource access, they generally felt 

more comfortable. The differences were statistically 

significant for all four types of resources. The comfort 

ratings were ranging from -2.0 (very uncomfortable to 

+2.0 (very comfortable). 

4.2.2 Expectation, Purpose, and 

Comfort Level 

When participants were surprised by 

access to a sensitive resource, they also 

found it difficult to explain why the 

resource was needed. Note, in the 

expectation condition, participants were 

only informed about which resources 

were accessed without information on 

the purpose of access. This is similar to 

what the existing Android permission list 

conveys to users. In this condition, we 

observed a very strong correlation (r = 

0.91) between the percentage of 

expectations and average comfort ratings. 

In other words, the perceived necessity 

of resource access was directly linked to users’ subjective feelings, which guided the way users 

made trust decisions on mobile apps. 

We also found that, even if users were fully aware of which resources were used, they still had a 

difficult time understanding why the resources were needed. We compared the reasons our 

participants provided in the expectation condition against the ground truth from our app 

analysis. In most cases, the majority of participants could not correctly state why a given app 

requested access to a given resource. When resources were accessed for functionality purposes, 

participants generally had better answers; however, accuracy never exceeded 80%. When 

sensitive resources were used for multiple purposes, the accuracy of answers tended to be 

much lower. Note that these results are for a situation in which participants were paid to read 

the description carefully. Many of them had even used some of these apps in the past. We 

believe for general Android users, their ability to guess answers would have been even worse.   

Given the lack of clarity of why resources are accessed, users must deal with significant 

uncertainties when making trust decisions regarding installing and using a given mobile app. We 

observed that, for the four types of sensitive resources (i.e., device ID, contact list, network 

location, and GPS location), participants, in general, felt more comfortable when they were 

informed of the purposes of a resource access (see Table 3). The differences between the 

comfort ratings were statistically significant in paired t-tests. For example, concerning accessing 

the device ID, the average comfort rating in the purpose condition was 0.3 higher than in the 

expectation condition (t(55) = 7.42, p < 0.0001). This finding suggests that providing users with 

reasons why their resources are used not only gives them more information to make better 

trust decisions, but can also ease concerns caused by uncertainties. Note that informing users 

about the “purpose” for collecting their information is a common expectation in many legal and 

regulatory privacy frameworks. Our results confirm the importance of this information. This 
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Figure 4: A mockup interface of our newly proposed 

privacy summary screen, taking the Brightest FlashLight 

and the Dictionary app as examples. The new interface 

provides extra information of why certain sensitive 

resources are needed and how other users feel about

the resource usages. Warning sign will appear if more 

than half of the previous users were surprised about this 

resource access. 

finding also provides us with a strong 

rationale to include the purpose(s) of 

resource access in our new design of 

privacy summary interface.  

4.2.3 Impact of Previously Using an 

App 

We also compared the responses 

between participants who had and had 

not used the app prior to this study. To 

make the comparison fair, we only 

examined apps that had at least five 

responses in both the used and not used 

categories. 

According to our results, the differences 

between participants who had and had 

not used the apps were not statistically 

significant with respect to their 

expectation of sensitive resource access. 

Regarding their comfort level, the only 

significant difference we observed was the average comfort ratings for accessing the contact 

list. Participants who has used an app felt more comfortable allowing the app to access their 

contact list (t(20) = 2.68, p = 0.015). For the other three types of resources, the experiences with 

apps do not significantly impact participants' subjective feelings.  

This finding suggests that people who use an app do not necessarily have a better 

understanding of what the app is actually doing in terms of accessing their sensitive resources. 

This finding also suggests that if we use crowdsourcing to capture users’ mental models of 

certain apps, we do not have to restrict participants to people who are already familiar with the 

apps, which would allow us access to a larger crowd.  

4.3 Preliminary Design and Evaluation of a New Privacy Summary 

Interface 

We argue that our findings in exploring users’ mental models can provide direct implications for 

the design of a future mobile privacy framework. To demonstrate this point, we drafted an 

initial design of a new privacy summary interface that features two crucial attributes identified 

in our formative study, namely expectation and purpose.  In our new design, we directly 

leverage other users’ mental models and highlight their surprises. By presenting the most 

common misconceptions about an app, we can rectify people’s mental models and help them 

make better trust decisions. We also provide the purposes of resource access to give users more 

explanations in our new summary interface. Further, we use simpler terms to describe relevant 

resources, apply appropriate highlights, and prioritize the resource list based on the surprising 
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levels.  Figure 4 shows two examples of our new privacy summary interface. To make the 

comparison more symmetric, our design uses the same background colors and patterns that are 

used in the current Android permission screen. In this study, we used the data collected in our 

previously described crowdsourcing study to mock up the privacy summary interfaces for five 

mobile apps, namely Brightest Flashlight Free, Dictionary, Horoscope, Pandora, and Toss it.  

We used AMT to conduct a between-subjects user study to evaluate our new privacy summary 

interface. Participants were randomly assigned to one of two conditions.  In one condition, 

participants were shown the original permission screen that the current Google Play Store uses.  

In the other condition, participants were shown our new interfaces. We evaluated the new 

privacy summary interface from three perspectives. The first was privacy awareness (i.e., 

whether users were more aware of the privacy implications). This was measured by counting the 

number of participants who mentioned privacy concerns when justifying their recommendation 

decisions. The second was comprehensibility (i.e., how well users understood the privacy 

summary). This was measured by the accuracy in answering questions about app behavior. The 

third was efficiency (i.e., how long it took participants to understand the privacy summary), 

which was measured by the number of seconds participants spent reading the privacy summary 

screens. 

Generally speaking, participants in the new interface condition weighted their privacy more 

when they made decisions about whether the app was worth recommending. More people in 

this condition mentioned privacy-related concerns when they justified their choices. When we 

asked participants in both conditions to specify the resources used by the target apps, those in 

the new interface condition demonstrated a significantly higher accuracy compared to their 

counterparts. Furthermore, except for the Pandora app, participants in the new interface 

condition, on average, spent less time reading the privacy summaries; however, the time 

difference was not always statistically significant. This finding suggests that we can provide more 

useful information without requiring users to spend more time to understand it. 

4.4 Discussion and Connections to Proposed Work 

The findings of this formative study provided several important implications for mobile privacy 

analysis. A major take-home of our work is that informing users of reasons why their sensitive 

resources are needed is crucial for users’ decision making. In fact, users generally feel more 

comfortable when they were informed of these reasons. Our results quantitatively showed that 

properly informing users of the purposes of resource usage could actually ease their worries. In 

other words, it would potentially benefit all parties, including app developers, market owners, 

and advertisers to include such reasons. In our proposed work, we will continue to identify other 

factors that could potentially influence users’ subjective feelings toward mobile apps. 

Secondly, we observed that mobile advertising services were a consistent privacy concern for 

most participants. For all four types of resources, users felt the least comfortable when these 

resources were used for advertising or market analysis. We understand that many developers 

rely on ads for income; therefore, blindly blocking advertising APIs from accessing users’ 
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resources is not practical and not healthy for the mobile app market ecosystem. In our proposed 

work, we will further study sensitive usage patterns of third party APIs and how these patterns 

affects users' privacy concerns, based on which we will identify collections of mobile apps that 

elicit different privacy concerns. We hope these identified clusters could help future developers 

to estimate major adopter and user acceptance of their apps and nudge them to develop more 

privacy preserving apps.    

Thirdly, an important contribution of this work was to demonstrate the feasibility of using 

crowdsourcing to capture users' perceptions and identify the strengths and weaknesses of the 

crowd in evaluating privacy. Based on our experiment, users were not very good at speculating 

the purpose of resource access, which is not surprising and might be compensated by leveraging 

existing mobile app analysis techniques. However, specifying subjective feedback is a relatively 

easy job for most people. In the proposed work, we continue to use crowdsourcing as a major 

tool to collect users' subjective feedback. We envision that if market runners (e.g., Google Play, 

Amazon App Store, etc.) could crowdsource similar user feedback from real users by 

incorporating behavior review into app rating and commenting mechanism, generating the 

proposed permission screens could be easily scaled up to the whole app market.   

As a formative study, we only captured users’ perceptions of a small number (Top 100) of 

mobile apps with limited types of sensitive resources. In the proposed work, we plan to extend 

the application pool to around 400 mobile apps with a more representative distribution of both 

free and paid apps across all 30 categories.  In addition, to make our findings more 

generalizable, we will leverage user-oriented machine learning techniques to discover 

interpretable models of both mobile apps and users' privacy preferences, through which we can 

obtain practical insights to inform the design of mobile privacy interfaces and settings. 

5 Proposed Work: Mobile App Clustering and Users' Mobile App 

Privacy Preference Learning 

5.1 Objectives and Challenges  

To recap, the fundamental goal of this thesis is to complement existing mobile privacy research 

by providing important knowledge on the end-users’ side.  Although previous system-oriented 

research contributed valuable tools in analyzing mobile apps, their proposed privacy controls 

were primarily not grounded by adequate user studies. As such, dumping these settings on users 

and relying on them to specify their privacy preferences without adequate information could be 

questionable or error-prone.  Given the complex problem space, challenges exist in data 

collection, analysis, and interpretation. More specifically, this thesis attempts to answer the 

following challenging questions: 

• Scalable --- How can we effectively capture users’ privacy preferences of individual 

mobile apps in a scalable and efficient way?  Scalability is crucial as traditional user 

study methods fall short given the number of apps and resources we want to cover in 
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this research. It is also an important criteria of making the data collection process 

extendable and repeatable.  

• Concise --- How can we simplify the data model by reducing the dimensions of the 

variables?  The conciseness makes sure our resulting models don't overfit data by 

constraints on the complexity of the model. It can also promote knowledge discovery as 

suggested by [56].  

• Interpretable --- How can we extract human-understandable interpretations from 

potentially complex quantitative models? The major objective of my proposed work is 

to complement user research in the mobile app privacy domain, as which a black-box 

type of quantitative model is not our ultimate goal. Instead, the underlying knowledge 

and rationales are what we are aiming for. 

• Generalizable --- How can we generalize findings to a larger mobile app pool and larger 

population, given that there are more than half million mobile apps and diverse user 

populations? Our dataset only covers 0.1% of the apps in the market. It is crucial to test 

if the knowledge obtained from the 0.1% could be applied to the remaining apps. 

These four challenges pose specific design criteria throughout each step of the proposed work.  

To address these challenges and achieve our objectives, we will take four major steps: 

Step 1: Using application analysis and crowdsourcing, we will compile datasets that capture 

privacy-related characteristics from representative samples of mobile apps as well as 

information on how users feel about these apps.  

Step 2: We will perform regression and feature selection on the produced datasets to identify 

attributes that most significantly affect users’ level of comfort. This step is expected to 

reduce the dimensionality of our dataset and identify how different attributes affect 

users' decision making processes.  

Step 3: We will cluster mobile apps based on mobile apps' sensitive data usage patterns based 

on the ground truth we captured through static code analysis, which also could be 

extended to a predictive model that could estimate user acceptance of an app.  

Step 4: We will learn individual participant’s privacy preferences over different types of apps in 

the form of rule-based models. Based on the data we crowdsourced in the step one, we 

will produce clusters of participants by grouping participants with similar privacy rules. 

These clusters could be used to generate a small number of user-understandable 

privacy profiles (or "personas").  The objective will be to determine the extent to which 

these personas could be used as default settings to simplify the number of privacy 

decisions exposed to users without negatively impacting their sense of control.  

In the following subsections, I will discuss each step in detail.  

5.2 Step One: Data Collection 

Here, I present the data collection procedures in detail, including how we select a representative 

sample of mobile apps and how we gather the attributes of each app from multiple sources.  

5.2.1 Selection of Apps  

For the purpose of this thesis, we plan to cover a representative sample of mobile apps in our 

datasets.  In the formative study, we chose the Top 100 most popular free apps in the Google 

Play Store; therefore, we achieved better user coverage because participants in the formative 
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Category % in 

market 
Paid 

ratio 

#paid  #free  Category % in 

market 
Paid 

ration 

#paid  #free  

Android Application Sports 3.2% 24% 3 9 

Books & 

Reference 

7.4% 47% 13 15 Tools 7.4% 23% 6 22 

Business 3.5% 9% 1 12 Transportation 1.0% 17% 0 3 

Comics 1.0% 43% 1 2 Travel & Local 4.3% 33% 5 11 

Communication 2.2% 19% 1 7 Weather 0.4% 17% 0 1 

Education 5.6% 30% 6 15 Libraries & 

Demo 

0.6% 10% 0 2 

Entertainment 12.0% 20% 9 38 Total 

applications 

86.8%  89 235 

Finance 1.9% 15% 1 6  

Health & 

Fitness 

2.2% 32% 2 5 

Lifestyle 6.3% 27% 6 18 Android Games 

Media & Video 1.8% 21% 1 5 Arcade & 

Action 

3.3% 25% 3 9 

Medical 1.0% 40% 1 2 Brain & Puzzle 5.0% 21% 4 15 

Music & Audio 3.9% 13% 2 13 Cards & Casino 0.9% 27% 0 2 

News & 

Magazines 

2.9% 9% 1 10 Casual 3.2% 24% 3 9 

Personalization 10.6% 60% 25 16 Sports Games 0.7% 26% 0 2 

Photography 1.3% 25% 1 3 Racing 0.4% 15% 0 1 

Productivity 2.9% 27% 3 8 Total games 13.4%  10 38 

Shopping 1.2% 9% 0 4  

Social 2.3% 11% 1 8 

Table 4: Mobile apps covered in our dataset have a similar distribution as the official Google Play 

Store in terms of percentage of apps in each category and free vs. paid ratio.  The first column 

shows the categories available in the Google Play Store, the second column is the percentage of 

apps that belong to each category, the third column shows the ratio of paid apps within each 

category, the fourth column is the number of paid apps that are selected in our datasets, and the 

last column shows the number of free apps selected. For example, there are 7.4% of total mobile 

apps belongs to the Book & Reference category; within this category, 47% are paid apps. Based on 

these ratios, we plan to select 13 paid apps and 15 apps in this category.  

study were more likely to have experience with the target apps. However, this selection method 

is potentially biased toward apps with better quality and higher popularity.  In the proposed 

work, we plan to extend the selection to around 400 apps, including both free and paid apps 

randomly selected from each category within the Google Play Store. The selection will also be 

based on the percentage each category takes within the whole market and the ratio between 

free and paid apps within each category.  Table 4 summarizes the number of paid and free apps 

in our dataset selected from each category. The statistic of the official Google Play Store is 

obtained from Appbrain [12]. Within each category, apps will be randomly selected. 

5.2.2 Dataset Construction 

After determining the set of apps that will be covered in our dataset, we will collect the 

attributes of each app from the following three perspectives.  
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Figure 5: The dataset includes attributed of apps from three sources: (1) Meta data directly obtained 

from the official Google Play Store, such as app rating, number of downloads, category, etc., (2) 

behavior data obtained through static app analysis, such as sensitive resource usage, 3
rd

 party API 

used, where data sent to, etc. and (3) users’ subjective feedback captured through crowdsourcing, 

including whether they used these apps before and their perceived level of comfort in using these 

apps.  

(1) App Meta data. These attributes include the name, description, rating, number of 

downloads, type of developer (developer badge), screen shots, etc. that can be easily 

obtained by crawling the relevant Google Play Store web pages.  

(2) App behavior data. This data is obtained by conducting a detailed app analysis. It 

includes the type of sensitive resources an app consumes, for what purpose, the 

destination where an app sends users’ sensitive data to, and the types of 3rd party APIs 

an app invokes. We will use static code analysis to scan the decompiled source codes of 

each target app and identify the function calls relevant to sensitive resource usages.  We 

choose static analysis over dynamic analysis in this step because it is easier to automate. 

We will then examine the logs of static analysis and encode the results accordingly. For 

the purpose of this thesis, we will focus data collection on the Top 10 most sensitive 

resources, namely unique phone ID, external storage, coarse location, fine location, 

contact list, account info, call logs, SMS, audio recording, and camera.  

(3) Users’ subjective feedback of the target app. This data is obtained through 

crowdsourcing. Similar to our formative study, we will present crowd workers with apps' 

Meta data and behavior data and ask them to examine the sensitive resource usage of 
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the apps one-by-one by specifying how comfortable they feel about these usages. 

Participants will also be asked to specify their overall comfort level with the targeted 

app. For each app, approximately 20 unique responses are needed. To guarantee the 

quality of the crowdsourced data, crowd workers must be smartphone users to 

participate. 

Figure 5 illustrates the data collection procedures. All attributes will be ultimately organized into 

a table, each line of which will describe one mobile app and how a particular participant feels 

about the app. This table may be sparse given that most apps access only a small number of 

sensitive resources.  

5.3 Step Two: Preliminary Analysis  

Following data collection, we will perform a preliminary analysis on the raw data. More 

specifically, we want to study the distributions of users’ comfort levels of allowing mobile apps 

to access different types of sensitive resources. This analysis will greatly help us gain insights 

into users’ privacy concerns and assist interpretations for further analysis.  We will also perform 

linear regressions on overall user acceptance of a mobile app with comfort ratings of individual 

resources as independent variables to determine how different types of sensitive resources 

weigh in users’ mental models. 

After the preliminary probing, we will aggregate the data relevant to each app by averaging 

users' overall comfort levels. The resulting datasets will consist of two parts: (1) a matrix X, each 

row of which will describe app Meta data and attributes that describe privacy-related behaviors, 

(2) a vector Y, each entry of which will represent the average users’ comfort level of the 

corresponding mobile app. Feature selection will be performed based on how each feature 

contributes to the predictability of the whole model and the degree of redundancy between 

these features. We will start with the simple correlation-based feature selection algorithm (such 

as [46]) and will also try other state-of-the-art feature selection algorithms such as [26, 45, 58, 

67, 73, 78]. We opt not to use Principal Component Analysis (PCA) because this algorithm 

transforms existing features into another feature space, which will significantly increase the 

difficulty in interpreting the resulting model.  

By performing feature selection, two objectives can be achieved. Feature selection can greatly 

reduce the complexity of our data model by eliminating redundant attributes and mitigating the 

risk of overfitting in the later analysis. On the other hand, as a by-product, feature select results 

can identify important factors that impact users’ comfort level of an app, hence helping us 

better understand users’ decision making processes. 

5.4 Step Three: Mobile App Clustering 

The purpose of performing clustering on mobile apps is two-fold. First, by categorizing mobile 

apps based on privacy-related resource usages, we can identify a set of common practices of 

how mobile apps consume users’ sensitive data. These practices potentially differentiate users' 

privacy concerns and their acceptance in terms of how comfortable users feel about these 
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information disclosures. Second, the set of clusters we identify could be extended to a 

predictive model to estimate user acceptance of apps. It could also demonstrate that the 

models we built on a small set of sample apps could be generalized to most mobile apps on the 

market. One thing we must keep in mind is that we are not aiming for a complicated model that 

will fit the model perfectly, rather we aim to develop a simplified version that can be interpreted 

and provide meaningful insights into the design space. 

To cluster mobile apps, we need a clustering algorithm and a distance function. Because we are 

trying to identify clusters of apps that have different privacy implications (i.e., users’ perceived 

level of comfort), we also need an objective function to guide the selection of clustering. This 

objective function measures the goodness of fit of the resulting clusters in estimating user 

acceptance and penalizes the complexity of the resulting models to prevent overfitting (e.g., AIC 

[11], TIC [74] measures). We will start with the simple K-mean clustering algorithm [64] with 

Hamming distance and explore other state-of-the-art clustering algorithms [47]. We opt to use 

Hamming distance as the distance function due to its simplicity and its semantic meaning.  

The resulting clusters will be evaluated against the pre-defined objective function in cross-

validation. The set of clusters with the highest predictability of user acceptance will be reported. 

We will also dissect the clustering models and try to explain why certain apps are grouped 

together. The resulting interpretation will provide us a better understanding of how users make 

privacy-related decisions over mobile apps.  

5.5 Step Four: User Personas Generation 

In brief, we will generate default personas using a three-step approach similar to [24] that 

involving the learning of individual users' policy and the clustering of all learnt policies.    

Learning a Policy for Each User. Different from the approach used by Cranshaw et al. [24], we 

learn the policy of each user as follows. Suppose, in the previous step, we identified a set of 

meaningful clusters of mobile apps. We can use the resulting clusters to rearrange users’ per-

app preferences into a rule-based policy. In other words, a user’s privacy policy of mobile apps is 

a set of rules with regard to each cluster of apps. These rules can be encoded into a vector, each 

entry of which represents the privacy preferences of a user with regard to one app cluster. To 

learn a user’s privacy policy, we need to aggregate his or her comfort ratings of mobile apps in 

each cluster and organize the averaged comfort ratings into a feature vector.   

A major challenge here is handling missing values. Because, in the crowdsourcing step, we 

cannot enforce a single crowd worker to express his or her feedback over all types of apps, for 

individual users and certain clusters of apps, it is very likely that there are no data to learn users’ 

preferences.  When this situation occurs, we propose two strategies. First, if the missing data 

situation is rare (e.g., occurs with fewer than 10% of the participants), we could potentially 

discard this portion of data and focus on learning policies from the participants with complete 

feature vectors. Alternatively, if the missing data situation is relevantly common, we could use 

the grand average of all users to substitute the missing data.  
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Clustering Policies into K Clusters Given that the policy vector of each user consists of 

continuous values in each entry, we choose to use the Euclidean distance as the distance 

function because of its simplicity. Additionally, we opt to use K-mean clustering and hierarchical 

clustering algorithms in this step because the resulting clusters are easier to interpret compared 

to other clustering algorithms. To restrict the K value to a small number, we can optimize model 

selection by penalizing the model complexity and the resulting number of clusters in the 

objective function.  The clustering process is expected to identify groups of users with similar 

privacy preferences over different mobile app clusters.  

Learning a Default Persona for Each Cluster. To generate a set of representative default 

personas, we need to aggregate policies within each cluster. In our model, we choose to 

compute the center of each cluster as a default persona.  The center can be found easily by 

averaging the policy vectors in each cluster.  

After we obtain the set of default persona, we will try to interpret the mathematical models into 

a set of human readable default settings. For example, a default persona might read, “I am 

willing to disclose (1) my location to mobile apps for the functionality purpose. I am NOT willing 

to disclose (1) my location for the advertising services or (2) my unique phone ID and call log to 

any service.”  We foresee that these default settings could dramatically reduce the user’s 

burden in configuring his or her privacy preferences compared to specifying preferences for 

each individual app or each type of sensitive resource.  

To evaluate how these generated personas match users' actually preferences, we will use the 

crowdsourcing methods described in 5.2.2 to capture the preferences of a group of new 

participants and to see whether their preferences could be covered by these personas. If time 

allows, a small scale lab studies with off-line participants can also be done by gathering their 

feedback of the apps actually running on their smartphones.     

6 Scope 
The proposed work can be extended in several directions that may NOT be included as part of 

this thesis but are worth pursuing as future work. These potential extensions include: 

• Performing app analysis on a larger pool of mobile apps 

Extending the dataset to cover more mobile apps may improve the accuracy of resulting 

models. However, in the interest of time, the contribution of extending data collection 

might be marginal for the purposes of this work. 

• Conducting a series of user studies to probe users' preferences in context-dependent 

scenarios 

My thesis focuses on investigating context-independent usage information of mobile apps. 

In reality, users' preferences may also vary in different context-dependent scenarios. For 

example, users might be OK disclosing most of their location to advertisers through mobile 

apps, but not some sensitive ones, such as clinic, rehab center.  A series of user studies can 
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be designed to cover these context-dependent cases. However, due to the time and the 

complexity of the study design, this thesis will not include these user studies.   

• Investigating additional types of sensitive information  

The focus of this thesis is on the top ten sensitive data most frequently used by mobile apps.  

Other information, such as accelerometer readings, gyroscope readings and other derived 

information could be sensitive as well.  Future work should take these types of information 

in consideration if more apps start to use them. 

• Design and evaluate new privacy summary interfaces 

Although the finding of this work will provide valuable guidelines to inform the design of 

new privacy interfaces, this thesis may not include the actual design and evaluation of the 

interface as part of the deliverables.   

7 Schedule 
The proposed timeline for this thesis is shown in Figure 6. The data collection step is intended to 

be completed during the remainder of this summer and the early part of the Fall 2012 semester. 

I will then begin a preliminary analysis on the collected data and identify the most important 

attributes that affect users’ privacy concerns by conducting feature selections.  Starting in 

January 2013, I will focus on clustering and categorizing mobile apps based on their private 

resource usage. The goal is to have the clustering results ready for a Ubicomp 2013 submission.  

The remaining time will be spent on generating user personas, thesis writing, and defense 

preparation.  I plan to graduate by Aug  2013.  

8 Summary 

The main propose of this thesis work is to complement existing mobile privacy research by 

providing important knowledge on the end-user's side given the lack of knowledge from the 

users’ perspectives with regard to smartphone privacy. My previous work in location privacy 

revealed that people’s privacy preferences are complex and varied, yet predictable to some 

extent by leveraging machine learning techniques. The proposed thesis extends this discussion 

to mobile app privacy, in general, and focuses on building better models of user privacy in the 

Figure 6: Proposed timeline for completing thesis work, ending in Aug 2013 
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mobile context as well as using these models to inform the design of simpler, easier-to-use 

interfaces and privacy control mechanisms that matter to users.  

The final deliverable of my thesis work will consist of (1) a valuable dataset that captures 

privacy-related characteristics of representative samples of mobile apps as well as information 

on how users feel about these apps; (2) a set of attributes that significantly impact users’ privacy 

concerns of mobile apps; (3) collections of mobile apps obtained through clustering that elicit 

distinct privacy concerns; and (4) a set of default personas that users can select to configure 

their privacy preferences of mobile apps. 

The findings of this thesis may provide important implications to improve current privacy 

frameworks. By identifying the attributes that influence users’ level of comfort, my thesis will 

provide grounded suggestions concerning facts that should be presented to users before they 

install each app. The resulting clusters of apps could also help app developers understand how 

users make privacy-related judgments on mobile apps, thus nudging them to build more 

privacy-preserving mobile apps. Further, the generated personas will provide a more effective 

way for users to configure their mobile privacy settings and could potentially be refined and 

adopted in the design of future privacy frameworks.    
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