
Clustering via Determinantal Point Processes

Paul Vernaza, Jiaji Zhou, Kris Kitani, J.Andrew Bagnell

January 11, 2014

1 Recap on DPPs
Determinantal Point Processes (DPPs)[1] is a probability measure on all subsets of a
ground discrete set G = {1, ..., N}. Suppose we draw a random subset Y, then we have
for every A ⊆ G, the probablity of A is contained in Y is equal to the determinant of
the submatrix indexed by the marginal kernel matrix K:

P(A ⊆ Y) = det(KA) (1)

Note that the eigenvalues of K must be nonnegative and bounded by one so as to
specify the inclusion probablities. It is convenient, however, to directly assign atomic
probability up to proportionality. Given an L-ensemble, whose element measures the
pairwise similarity between item feature vectors, we have:

PL(Y = Y) ∝ det(LY) (2)

The normalization constant and log partition would be:

Z =
∑

Y⊆V

det(LY) = det(L+ I) (3)

log(Z) = log(det(L+ I)) (4)

The benefit of using L-ensemble L instead of marginal kernel K is that it only needs
to be positive semidefinite with no restriction that the eigen values have to be bounded
by one. Therefore, given item feature vectors φi, we can use various kernel similarity
matrix for L. Note than L+ I is also a valid kernel matrix.

L =

 k(φ1, φ1) k(φ1, φ2) · · ·
k(φ2, φ1) k(φ2, φ2) · · ·

...
... . . .



1

1.1 Eigen Decomposition for Feature Representation

Given a kernel matrix for L-ensemble L, since L is positive semi-definite, we can apply
eigen decomposition on L to get low dimensional feature embedding in the kernel space:

L = QΛQT = QΛ1/2Λ1/2T
QT = V TV (5)

, where each column vi of V corresponds to feature vector that lies in a low dimensional
embedding. Note that the linear inner product between these feature vectors is equal to
the kernel product of orginal feature vectors. Lij = k(φi, φj) = vT

i vj .

2 Submodularity of Log Determinant
Determinants also have a nice geometrical interpretation. Let L = V TV and denote
columns of V by vi, then:

det(LY) = Vol2({vi}i∈Y) (6)

, where Vol2 denotes the squared volumn of the parallelpiped spanned by the input
feature vectors. We now show that log det is submodular: The function log det(·) is
submodular iff.

log det(v1, . . . , vk, x)− log det(v1, . . . , vk)
≥ log det(v1, . . . , vk, vk+1, x)− log det(v1, . . . , vk, vk+1), (7)

for all vi ∈
⋃

j{φj}, which holds iff.

Vol(v1, . . . , vk, vk+1, x)
Vol(v1, . . . , vk, vk+1) ≤

Vol(v1, . . . , vk, x)
Vol(v1, . . . , vk) . (8)

Consider writing vk+1 = v⊥k+1 +v
‖
k+1, where v⊥k+1 ⊥ span{v1, . . . , vk, x} and v⊥k+1 ⊥ v

‖
k+1.

Note that (8) holds with equality if vk+1 = v⊥k+1/‖v⊥k+1‖, since parallelpiped volume is
invariant with respect to unit extrusion in an orthogonal direction. Together with the
multilinearity of determinants, we can therefore write the LHS of (8) as

‖v⊥k+1‖Vol(v1, . . . , vk,
v⊥

k+1
‖v⊥

k+1‖
, x) + Vol(v1, . . . , vk, v

‖
k+1, x)

‖v⊥k+1‖Vol(v1, . . . , vk,
v⊥

k+1
‖v⊥

k+1‖
) + Vol(v1, . . . , vk, v

‖
k+1)

. (9)

2

Since v‖k+1 ∈ span{v1, . . . , vk, x}, Vol(v1, . . . , vk, v
‖
k+1, x) = 0. We therefore have

Vol(v1, . . . , vk, vk+1, x)
Vol(v1, . . . , vk, vk+1) =

Vol(v1, . . . , vk,
v⊥

k+1
‖v⊥

k+1‖
, x)

Vol(v1, . . . , vk,
v⊥

k+1
‖v⊥

k+1‖
) + 1

‖v⊥
k+1‖

Vol(v1, . . . , vk, v
‖
k+1)

= Vol(v1, . . . , vk, x)
Vol(v1, . . . , vk) + 1

‖v⊥
k+1‖

Vol(v1, . . . , vk, v
‖
k+1)

≤ Vol(v1, . . . , vk, x)
Vol(v1, . . . , vk) .

This proves that log det is submodular.

3 DPPs for clustering
DPPs model the diversity of subsets. For clustering, we want the opposite, i.e., points
that belong to the same cluster should be concentrated. One good measurement of
dispersity for a cluster is the log partition value.

Therefore we seek to minimize the sum of log determinant of each submatrix that
corresponds to partitions of data into clusters. Suppose we want to partition the data
into k clusters, the optimization objective would be:

min
S1,...,Sk

f(S) =
k∑

i=1
g(Si) =

k∑
i=1

log det(LSi)

∩k
i=1Si = ∅, ∪k

i=1Si = G (10)

Note that g(·) = log det(·) is submodular. The greedy splitting algorithm[3] is gu-
ranteed an upper bound of (2− 2

k) ∗OPT .

3.1 Queyranne’s algorithm for 2-way Partition

If we let k = 2 in (10), which is to partition the data into 2 clusters, we can rewrite the
problem as

min
S⊂G

f(S) = g(S) + g(G/S)

0 < |S| < |G| (11)

The objective is symmetric and submodular, and note if we do not add the cardinality
constraint, the empty set or the full ground set will be returned as the trival solutions.
Queyranne’s algorithm[2] can be used to find an non-trival optimal solution in O(JN3),
where J is the cost expended per evaluation of the submodular function (in this case,
log det(·)). A naive implementation of log det yields J = O(N3), resulting in a total

3

worst-case runtime of O(N6). However, this can be reduced to O(N4) via the method
described here.

First, we review Queyranne’s algorithm. The algorithm conceptually proceeds as
follows.

1. Choose a pair of elements (s, t) ∈ V × V

2. Find the optimal partition of V separating s and t

3. Find the optimal partition of V not separating s and t

4. Return the better of these two partitions

Step 3 may be performed recursively by applying the algorithm to a new set where s
and t are merged into a single element, defining a new objective function in the natural
way. The algorithm terminates in |V | = N recursive calls. The difficult part of the
above is finding a pair of elements such that we can efficiently find the optimal partition
separating them. Queyranne’s algorithm accomplishes this by finding a pendent pair:
(s, t) is called a pendent pair iff. the optimal partition separating (s, t), isolates t. Such
a pair can be found using O(N2) calls to the submodular function, yielding a net O(N3)
runtime, neglecting the cost of calling the submodular function.

The pendent pair algorithm orders the input set in such a way that the penultimate
element is s and the last element is t in a pendent pair (s, t). The algorithm proceeds
as follows

1. Input: a set of ordered elements W and a set of yet-unordered elements Q

2. Sort the elements of q ∈ Q by the value of the function key(q) = log det(q
⋃
W)−

log det q

3. Append to W and delete from Q the least element determined in this way

4. Recurse

The ordering is given by the order in whichW was costructed. The algorithm terminates
in a number of recursive calls equal to the size of the input set K. Each recursive call
performs O(K) calls to log vol. Since K ≤ N , the pendent pair algorithm calls log vol a
number of times bounded by O(N2).

3.1.1 Optimizing pendent-pair-finding

We can optimize pendent-pair-finding for the log vol objective by incrementally comput-
ing the required determinants. Note that pendent-pair in our case is called with a set of
parallelepipeds. The algorithm works by storing along with each parallelepiped a cor-
responding “projected” parallelepiped. The algorithm maintains the invariant that the
projected parallelepipeds in Q stay orthogonal to all of the parallelepipeds in W . Given
this invariant, the quantity log vol(q

⋃
W) in key(q) is equal to log vol q′ + log volW ,

4

where q′ is the current projected version of q. Since log volW is a constant wrt. q in
key(q), it need not be computed, and we need only to compute the volume of the usu-
ally smaller parallelepiped q′. The log vol q component of key(q) may be computed and
cached at the point in the outer loop of Queyranne’s algorithm at which q is created by
merging smaller parallelepipeds.

3.1.2 Worst-case complexity analysis

First, note that the log vol q factor may be computed at a cost of O(N3) in the outer
loop of Queyranne’s algorithm. The complexity of pendent-pair is determined by the
cost of maintaining the loop (orthogonality) invariant and the cost of computing the
determinants of the projected parallelepipeds.

Suppose pendent-pair is called with a set of K parallelepipeds. Denote by si the
number of vectors in the ith such parallelepiped. The orthogonality invariant is main-
tained by, upon choosing a new element q of W from Q, making all elements of Q
orthogonal to q. The total cost of doing so is therefore bounded by the cost of making
every parallelepiped orthogonal to every other parallelepiped (and itself), which is equal
to

∑K
i,j=1Nsisj (making i orthogonal to j involves sisj projections costing O(N) each).

The cost of computing the determinant of the projected parallelepiped q′i is bounded
by the cost of computing s2

i projections, each at a cost of N . The total cost over
all K recursive calls of pendent-pair is therefore bounded by K

∑K
i=1Ns

2
i . Summing

this with the projection cost, we obtain the total worst-case running time bound of
K

∑
iNs

2
i +

∑
i,j Nsisj for pendent-pair.

We can therefore bound the total worst-case running time of pendent-pair by solv-
ing a quadratic optimization problem over vectors of possible parallelpiped sizes s ∈
{0, . . . , N}K . By writing Q = 11T +KI, the optimization problem can be written as

max
s
NsTQs subject to 1T s = N. (12)

By relaxing the integrality constraint entirely, we can exactly compute an upper bound
on this quantity. Relaxing and solving the QP yields a bound of

N3

1TQ−11 . (13)

The denominator can be obtained by observing that 1 is an eigenvector ofQ and therefore
of Q−1 as well. The corresponding eigenvalue of Q is equal to 2K, which is transformed
to (2K)−1 in Q−1. The denominator is therefore equal to 1

2 , yielding a final bound of
2N3 for the complexity of pendent-pair.

3.2 Greedy Splitting for k-way Partition

Greedy Splitting algorithm[3] works by recursively spliting one of the clusters into two
clusters. Note that each round, by a heap structure for caching, one only have to consider
the newly splitted two clusters.

5

1. Find the optimal 2-way split (AG, G\A) for ground setG, yG = min∅⊂AG⊂G(f(AG)+
f(G \AG)− f(G)); initialize the min-heap with (G,AG, yG); initialize the solution
set S = {G}

2. Let (C,AG, yG) = min-heap.pop(); eliminate C from S and add AG and C \ AG

into S.

3. Split C1 and C2 into two clusters and record the value keys yC1 = min∅⊂AC1⊂C1(f(AC1)+
f(C1 \ AC1) − f(C1)), yC2 = min∅⊂AC2⊂C2(f(AC2) + f(C2 \ AC2) − f(C2)); push
(C1, AC1 , yC1) and (C2, AC2 , yC2) into the min-heap;

4. Jump to step 2 if |S| < k, else output S.

The total number of 2-way splitting would be 2k − 3, so the computational complexity
is O(kN4).

4 Preliminary Experimental Result

References
[1] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning.

arXiv preprint arXiv:1207.6083, 2012.

[2] Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical
Programming, 82(1-2):3–12, 1998.

[3] Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. Greedy splitting algo-
rithms for approximating multiway partition problems. Mathematical Programming,
102(1):167–183, 2005.

6

