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Abstract
Construction of machine translation systems has evolved into a multi-stage workflow in-

volving many complicated dependencies. Many decoder distributions have addressed this by
including monolithic training scripts – train-factored-model.pl for Moses and mr_runmer.pl
for SAMT. However, such scripts can be tricky to modify for novel experiments and typically
have limited support for the variety of job schedulers found on academic and commercial com-
puter clusters. Further complicating these systems are hyperparameters, which often cannot
be directly optimized by conventional methods requiring users to determine which combina-
tion of values is best via trial and error. The recently-released LoonyBin open-source workflow
management tool addresses these issues by providing: 1) a visual interface for the user to
create and modify workflows; 2) a well-defined logging mechanism; 3) a script generator that
compiles visual workflows into shell scripts, and 4) the concept of Hyperworkflows, which
intuitively and succinctly encodes small experimental variations within a larger workflow.
In this paper, we describe the Machine Translation Toolpack for LoonyBin, which exposes
state-of-the-art machine translation tools as drag-and-drop components within LoonyBin.

1. LoonyBin Background

Empirical research in machine translation has become a complex multi-stage pro-
cess with many stages being run under multiple experimental conditions (i.e. with
different corpora and different sets of hyperparameters). The management of such
workflows presents a real challenge in terms of keeping results organized, analyzing
results at every stage, and automating the workflow.

For example, in syntactic statistical machine translation, a typical experiment con-
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sists of over 20 tools with a complex network of dependencies spanning multiple ma-
chines or even clusters of machines. Parsing and phrase extraction might be run on a
large cluster of hundreds of low-memory machines, preprocessing and word alignment
might be run on a local server, while tuning and decoding might be done on a small
cluster of large-memory machines. Further, this system might be run for two language
pairs and using 10 sets of features in the translation model to verify some experimental
hypothesis.

With these needs in mind, LoonyBin (Clark and Lavie, 2010) accommodates work-
flows that:
• span various machines, clusters, and schedulers
• involve many separate tools, which can be invoked by arbitrary UNIX commands
• have components that are run multiple times under multiple conditions
• evolve quickly with tools frequently being added, removed, and swapped
LoonyBin accomplishes this by providing the following advantages over current

common practices:
• associating sanity checks and logging directly with tools, separating these from
ad hoc wrappers and automation scripts
• maintaining a cleanly organized directory structure for each step and each con-
dition under which a step is run
• providing a resume-on-failure mechanism for every stage in the pipeline
• making it easy for those without a detailed knowledge of each tool’s internals to
run the system by providing textual descriptions of each parameter, input file,
and output file in a graphical workflow designer
• automatically copying required files between machines/clusters via SSH
• compiling workflows into shell scripts, a medium already in widespread use by
NLP researchers

1.1. Workflow Semantics

We now discuss the representation of workflows in LoonyBin. In their most basic
form, LoonyBin represents workflows as Directed Acyclic Graphs (DAGs). In this
form, each vertex represents a tool, which produces output files given input files
and parameters, and directed edges indicate relative temporal ordering of tools and
information flow (files or parameters) by mapping the output of one tool to the inputs
of the next. A tool descriptor defines the commands necessary to run a tool given
inputs, outputs, and parameters. Custom tool descriptors can be implemented via
simple user-defined Python scripts that generate shell commands. These tool descrip-
tors contain pre-analyzers to check the sanity of the inputs and log information
and post-analyzers to check the sanity of the output files, log information about
the outputs, and extract log data from any third-party log file formats.
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Figure 1. A simplified version of the CMU StatXfer system HyperWorkflow for the GALE
Phase 4 Machine Translation Evaluation showing the multiple experiments that were run

1.2. HyperWorkflow Semantics

LoonyBin also represents the running of workflows under multiple experimental
conditions (i.e. with different input files or parameters). We call this a Hyper-
Workflow. A HyperWorkflow contains realization variables, which introduce
variations into a shared workflow. Each realization variable can take on a realization
value, which is a set of files and parameters. For instance the realization variable
“language model file and order” could take on the realization value {english.txt, 4}.
Finally, a realization instance is a regular workflow unpacked from a hyperwork-
flow; it is a configuration of a hyperworkflow such that all realization variables have
been assigned a particular realization value. Hyperworkflows are useful for performing
exploration of hyperparameters, ablation studies, variation of input corpora, etc.

For HyperWorkflows, we use a HyperDAG, the hypergraph formulation of a DAG.
shown in Figure 1. In LoonyBin, a hyperedge is an edge originating from a packing
node (displayed as a triangle in Figure 1) , which is used to introduce a realization
variable. These packing nodes act like a switch to select one of its input edges so
that each edge feeding a packing node can create a new realization variable in the
workflow. These realization variables are then propagated through the remainder
of the workflow. Where multiple realization variables meet, LoonyBin produces the
cross-product of their realization values. A HyperDAG is a packed representation of
multiple workflow DAGs and a realization instance is a particular unpacked instance
of a workflow. For instance, in Figure 1 edges st and ch enter a packing node and
then propagate realization values st and ch. By representing workflows in this way,
we avoid rerunning steps having the same experimental conditions.
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1.3. Standardized Logging and Organized Directory Structure

While being able to automatically execute and reproduce workflows is good, sim-
ply completing the job is not enough. We also want to know where the output files
came from and some aggregate facts about them. LoonyBin provides a framework for
automatically calculating such information and storing it in a uniform format: tab-
delimited key-value pairs form a single record, and each record is newline-delimited,
making it easy to process these log files using standard command-line tools or scripts.
Finally, the log files for all antecedent steps of the same realization instance are con-
catenated together so that all information from all steps run under a single experi-
mental condition is collected in one place.

Since the user might want to run further analysis later, it is important to be able
to easily find the data itself. To accommodate this, LoonyBin maintains a highly
organized directory structure for each workflow. Under a master directory, LoonyBin
creates a directory with the name of each vertex in the hyperworkflow with subdirec-
tories for each realization. If steps were run on remote machines, pointers to those
machines and the relevant output files are stored on a central machine.

1.4. Designing and Deploying a Workflow

LoonyBin provides a graphical tool, which lists all tools in browsable tree. Tools
can simply be dragged and dropped into the workflow as vertices and edges can be
drawn by dragging arrows between these vertices.

Once a workflow has been designed, LoonyBin can then compile it into an exe-
cutable shell script. Thus, the only requirement on the machine that executes the
workflow is Bash. Before any tools are ever executed, the generated script checks that
all input files and all directories containing required tools exist. Because LoonyBin
handles all filenames other than the initial inputs, this eliminates the common issue
of pipelines crashing due to typos in file and directory names. The generated script
will log into remote machines, copying files and executing processes as necessary.

2. A Machine Translation Toolpack

While LoonyBin provides a mechanism for combining tools into workflows, it does
not in itself enable the use of tools. For this, we need tool descriptors, which give
LoonyBin 1) what inputs, outputs, and parameters a tool requires 2) analyzers that
extract aggregate information from output files and perform sanity checks and 3)
documentation on the tool that is shown to the user in the graphic interface. The
primary purpose of the MT Toolpack is to provide these descriptors, their analyzers,
and common workflows that put the tools together.
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2.1. Installation and Configuration

First, we will set up the design machine where the visual workflow designer will be
used to compile workflows into scripts (e.g. a personal laptop). The only dependency
on this machine is Java since the Python tool descriptors are executed via Jython.
On this machine, download the latest version of LoonyBin and the MT toolpack1 and
extract the tarballs in the same location. You should now have a LoonyBin directory
that contains a tool-packs directory.

Next, we will set up the execution machines where the compiled workflow script
will be run (e.g. head nodes of various clusters). There, download the MT toolpack and
extract the tarball, but also execute the installer script install-dependencies.py.
This will install only the tool binaries, not their dependencies. Other dependencies
that must already be installed on the machine include: Python (for the installer), Perl
(various), Ruby (Multi-Metric Scorer, MEMT), Java (various), Hadoop (SAMT and
Chaksi), Boost (MEMT), and Boost Jam (MEMT). The installer will install these
binaries in the user-specified directory and also create a Paths Directory, which
tells LoonyBin where to find the tool binaries on each execution machine. You can
prevent a given tool X from being installed by using the –without-X switch.

LoonyBin can be launched on most platforms by double-clicking the LoonyBin.jar
file. Alternatively, it can be invoked with java -jar LoonyBin.jar.

2.2. Creating a Workflow

In this section, we describe the creation of an example workflow. This is done on
the design machine, which need not have any network connection to the machines on
which the workflow will run. In “editing” mouse mode, select the “manual filesystem”
tool from the panel on the left and then click in the center window to create a vertex
in the workflow. Use the panel on the right to give the vertex the name 100-files
(the number in the name is just to help us remember what order the steps were
run when looking at the names of vertex subdirectories on the file system) and set
the fileNames parameter to example1.txt. Next, add the Head tool from the left
toolbox into the workflow and name it 200-take-head. Create an edge between the
vertices by dragging and, in the Add Edge Dialog that appears, connect example1.txt
to corpusIn.

While we could generate a working script from the workflow created so far, we will
continue on and create a HyperWorkflow that demonstrates how to “experiment” with
the effect head on 2 different files.

Right-click on the edge from 100-files to 200-take-head and select remove
vertex. Next, add another manual filesystem vertex just as above except with the
filenames as example2.txt and call it 110-different-files. Create an OR ver-
tex using the OR tool and give the vertex a unique name. Create a hyperedge from

1LoonyBin and the MT Toolpack are available at http://www.cs.cmu.edu/~jhclark/loonybin/

5



PBML ??? DECEMBER 2009

100-files to the OR vertex by dragging and, in the Add Edge Dialog that appears,
connect example1.txt to OR and press OK. Similarly, connect 110-different-files
to the OR vertex, and in the dialog connect example2.txt to example1.txt to in-
dicate that these 2 files will be fulfilling the same role in subsequent steps. Now, in
“selecting” mouse mode, click on each of the hyperedges and, using the right panel,
name them one and two, respectively. Finally, draw an edge between the OR vertex
and 200-take-head and connect example1.txt as the input of corpusIn. You will
notice that all of the realization names now appear under the new tool vertex. The
tool will be run once for each realization using the inputs from each realization edge.

If you wish multiple tools to feed into the same realization variable, you can give
the same name to multiple hyperedges feeding into a single packing vertex. Much like
each realization instance had different input files above, you can conduct parameter
sweeps using multiple Parameter Boxes from the tool tree on the left; each of the
parameter boxes can specify a different set of parameter values to be passed to a tool.

2.3. Generating and Running Workflow Script

LoonyBin allows you to design your pipeline on one machine (the design machine)
and then execute the generated bash script on another machine such as a server
– hereafter the home machine. The home machine will use passwordless SSH to
contact any other remote execution machines (see Section 2.1).

The “Generate bash script” dialog will ask you for this path of the LoonyBin
scripts on the home machine. Also, you need to tell LoonyBin a base directory on the
home machine where log data and pointers to output data generated during workflow
execution will be placed (see Section 1.3). You should also specify the path and name
of the bash script that will be generated. We recommend a .work extension. Finally,
you can give LoonyBin a space-separated list of email addresses to notify when the
pipeline either fails or succeeds. Now just copy the bash generated bash script to the
home machine you specified and execute it by passing the -run flag. All required
input files for each step will automatically be transferred to the proper machine before
the tool is executed.

3. Included Tools

We now turn to describing the tools that are included in this MT Toolpack. Since
LoonyBin provides documentation within the visual workflow designer for each param-
eter and file of each tool, we will not focus on the low-level details of the tools here.
Instead, we discuss the high-level models they implement and what design decisions
were made to incorporate each tool into LoonyBin. In general, the style of LoonyBin is
to split tasks into as many LoonyBin tools. This allows easy embedding of novel tools,
resumption on failure, analysis of intermediate results, and sharing partial results in
a dynamic programming fashion when later models are run with different parameters.
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3.1. MGIZA and Chaksi

MGIZA is a multi-threaded word alignment tool based on GIZA++ (Och and Ney,
2003) that utilizes multiple threads to speed up the time-consuming word alignment
process. It also supports forced alignment (the process of aligning an unseen test
set given trained models) and incremental training with existing models. It can be
distributed over a cluster via its integration with Chaksi, a Hadoop MapReduce train-
ing framework for phrase-based machine translation. In addition to word alignment,
Chaski supports training of Moses-compatible phrase tables and lexicalized reordering
models. In our experience, Chaksi has reduced the time to produce a translation model
from parallel data from 4 to 5 days to 9-10 hours. For the initial release of LoonyBin
we include tools for generating word classes, both Chaksi and MGIZA versions of the
most used word alignment models 1/HMM/3/4, and a phrase table builder. Each of
these alignment models is exposed as a separate tool to provide the benefits described
above in Section 3.

In building LoonyBin MT tools, we aim to encourage best practice. For instance,
MGIZA uses the expectation maximization (EM) algorithm to train word alignment
models. In every iteration, the sentences are first aligned using the model parameters
from previous step, and then the posteriors are collected and re-normalized to generate
models for next step. Therefore, the final alignment output is aligned using the model
from second-to-last step instead of the final model. Thus, neither concatenating the
sets nor force-aligning using the final model is a good comparison for the way the final
model was actually aligned. To encourage proper evaluation of word alignments (by
using the second-to-last set of EM parameters), we clearly label the output files that
should be used for forced alignment in each tool.

3.2. Berkeley Aligner

The Berkeley Aligner provides an implementation for joint or independent training
of IBM Model 1, the HMM alignment model, a syntactic variant of HMM, and a novel
symmetrization technique called competitive thresholding (DeNero and Klein, 2007).
The aligner provides a supervised inverse transduction grammar (ITG) alignment
model (Haghighi et al., 2009). While LoonyBin aims to expose subcomponents as
much as possible so that it is easier to combine tools in novel ways, the initial release
of the MT toolpack contains only 2 tools for the Berkeley aligner corresponding to the
supervised and unsupervised models. In the future, we may attempt to expose each
direction, model, and symmetrization heuristic employed in the unsupervised model.

3.3. Joshua

Joshua (Li et al., 2009) is an open-source MT toolkit for synchronous context-
free grammar models such as Chiang (2005). It includes suffix array extraction of
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these grammars from an aligned parallel corpus. The toolkit also includes a built-in
subsampler for training on large corpora and an implementation of minimum error-
rate training. Each step in the training pipeline is exposed as a separate tool in the
LoonyBin MT Toolpack.

3.4. Syntax-Augmented Machine Translation (SAMT)

The SAMT model (Zollmann and Venugopal, 2006) is a synchronous context-free
grammar based approach to translation that extends the hierarchical phrase based MT
model of (Chiang, 2005) to learn grammars with multiple nonterminals. Grammar
rules are extracted from a training sentence pair based on a lattice of its contained
eligible phrase pairs and a phrase-structure parse tree of the target sentence, yielding
rules such as

NP+SBAR → NP , die meine NN zuletzt VBD | NP who last VBD my NN
for a German-to-English translation task, expressing the reordering of the verb trig-
gered by a relative clause. The current release of SAMT uses the open-source Hadoop
MapReduce framework to distribute its expensive computations (Venugopal and Zoll-
mann, 2009). Each step in the SAMT training and evaluation pipeline has been
wrapped as a separate tool in the LoonyBin MT Toolpack.

3.5. Moses

We replace the train-phrase-model.perl from Moses (Koehn et al., 2007) with
tools that encapsulates each step such as “build lexical translation table,” “construct
lexicalized reordering model,” and “Run Minimum Error Rate Training” rather than
wrapping the entire pipeline. Steps that use GIZA++ are not included in the MT
Toolpack since with the release of MGIZA++ and Chaksi, there is little motivation to
use GIZA++. For the initial release of the MT toolpack, we do not support factored
models.

3.6. Common Evaluation Metrics

We provide a tool that runs some of the most common translation metrics in par-
allel while transparently handling formatting issues: BLEU (Papineni et al., 2001)
as implemented by mteval-13a.pl (Peterson, Przybocki, and Bronsart, 2009), NIST
(Doddington, 2002), TER 0.7.25 (Snover et al., 2006), Meteor 1.0 (Banerjee and Lavie,
2005), unigram precision and recall, and length ratio. It accepts a simple input for-
mat: flat files with one line per segment, or consecutive lines for multiple references.
Aside from translation metrics, we also include alignment error rate (AER) (Och and
Ney, 2003), despite its imperfect correlation with translation quality. In addition to
providing the files generated by each metric as output, the LoonyBin tool descriptor
places all of these scores in the LoonyBin log giving the benefit of standard formatting.
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3.7. Multi-Engine Machine Translation (MEMT)

Multi-engine machine translation (Heafield, Hanneman, and Lavie, 2009) combines
one-best outputs from different translation systems. Translations are aligned using
METEOR (Banerjee and Lavie, 2005) and navigated using these alignments. System-
specific weights are learned via tuning with MERT; a separate tuning set works best.
Typical gains range from one to five BLEU points above the best system, depending
on system diversity and score distribution. MEMT is presented as three tools in
LoonyBin: The Meteor aligner, MEMT Tuning, and MEMT Decoding.

3.8. Additional NLP Tools

Since modern MT systems often depend on more basic NLP tools, we have also
included a few of these tools in the MT Toolpack. For creating language models, we
include SRILM and for creating parse trees, we include the Stanford English parser.

4. Recommendations During Tool Development

LoonyBin aims to make it easy to reproduce results. Well-behaved tool descriptors
should write the software version to the log files so that the user knows not only what
files were used as input and what tools processed that data, but also what version of
the tools were used.

However, research often involves iteratively coding and experimentation. For this,
we recommend creating a custom tool descriptor that checks out your branch of a
source code management system (e.g. subversion), logs the revision number, compiles
the code, and then runs the tool. By doing this, researchers can ensure that results are
reproducible2. Step-by-step instructions on how to create tool descriptors are included
as part of LoonyBin’s documentation, but are beyond the scope of this paper.

5. Conclusion

We have presented an open-source Machine Translation Toolpack for LoonyBin. We
hope that by releasing this tool pack more research effort may be placed on modeling
rather engineering, automation, and logging. Further, we hope that this toolpack
encourages future research to include the multiple baseline systems and enables more
systematic comparisons between them.
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