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Abstract
Coreference resolution seeks to find the mentions in text
that refer to the same real-world entity. This task has
been well-studied in NLP, but until recent years, empiri-
cal results have been disappointing. Recent research has
greatly improved the state-of-the-art. In this review, we
focus on five papers that represent the current state-of-
the-art and discuss how they relate to each other and how
these advances will influence future work in this area.
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1 Introduction

Coreference resolution is the process in which we identify the noun phrases that are referring
to a same real-world entity (Ng, 2008). In this context, such noun phrases are called
mentions, or just anaphoric noun phrases. Mentions can be either named, nominal or
pronominal (Luo, 2007). For example, table 1 illustrates an example of mentions of the
entity “Joe Smith” (Lin, 2008).

Table 1: (Source: ACE Annotation Guidelines for Entities). Example of mentions of the
real-world entity “Joe Smith”

Name Mention: Joe Smith, Mr. Smith
Nominal Mention: the guy wearing a blue shirt
Pronoun Mentions: he, him

Until recently, statistical approaches treated coreference resolution as a binary classifi-
cation problem, in which the probability of two mentions from the text i and j having a
coreferential outcome can be calculated from data by estimating the probability of Denis
and Baldridge (2007):

PC(COREF |〈i, j〉) (1)

If 〈i, j〉 is interpreted as an ordered pair, then we are enforcing an asymmetric inter-
pretation (Nguyen and Kim, 2008), where i is an antecedent preceding in the text the
anaphora j. This interpretation of coreference resolution is very similar to anaphora res-
olution, where we try to find the antecedent i of a pronominal j. Similarly, if 〈i, j〉 is
interpreted as an unordered pair in which i and j are simply coreference, but no particular
direction of anaphora is specified, then we have a symmetric interpretation.
It is straightforward to calculate PC in equation 1 using feature functions using nothing

more than the pair 〈i, j〉. However, pairwise formulations like this imply a strong in-
dependence assumption that makes impossible to represent features on the entire cluster
of mentions that refer to a same entity (Denis and Baldridge, 2007; Culotta et al., 2007).
Cluster-based features are desired to enforce characteristics of the entity, for instance avoid-
ing having an entity described with only pronominal mentions. It is still an active area of
research how to convert the set of classifications of pairwise models into clusters of mentions
where each cluster refers to the same entity(Culotta et al., 2007).
Another problem on this formulation is that the identification of anaphoric noun phrases

is done as part of the coreference resolution process, and it is possible that an anaphor that
is not coreferential with any other mention in the text might be assigned one by the model
(Denis and Baldridge, 2007; Luo, 2007).
In this review, we give a detailed discussion of five recent papers that represent recent

trends in coreference resolution to address the problems discussed above. We begin by
describing the basic techniques employed by each of the papers in Section 2. We discuss
the linguistic considerations involved in designing features in Section 3. We then discuss
how to train a model that can learn from annotated corpora in Section 4, we particularly
focus on how to sample training instances. Having shown how a model can be trained, we
present inference mechanisms for coreference with an emphasis on the more difficult case of

3



unsupervised systems in Section 5. Finally, we offer a few conclusions based on the successes
and failures of these systems.

2 Summary of Reviewed Papers

In this review, we focus on several recent works that represent the state of the art in coref-
erence resolution. During these past two years, the performance of state-of-the-art systems
has increased dramatically, as shown in the 10 point F1 gain in (Culotta et al., 2007) over
the previous system on the same data set1 (Ng, 2005). A few themes that run through this
literature are:

1. Models that allow the representation of more complex features, such as cluster-based
features and apposition

2. An interest in resolving anaphoricity jointly with coreference

3. Unsupervised methods

These themes will be discussed in their own right in later sections, but first we briefly
summarize individually the papers that we will review in this paper.

2.1 First-Order Probabilistic Models for Coreference Resolution

Culotta et al. (2007) makes the key observation that traditional noun phrase coreference
solution systems represent features only of pairs of noun phrases as shown in their baseline
pairwise model: Given a pair of noun phrases xij = {xi, xj}, let the binary random variable
yij = 1 indicate that xi and xj are coreferent. Let F = fk(xij, y) be a set of features, each
with an associated parameter λk. Let Zxij

be a normalizer that sums over the two values of
yij. Then Culotta’s pairwise model is:

p(yij|xij) =
1

Zxij

exp
∑
k

λkfk(xij, yij) (2)

The paper then goes on to describe a model that softens this independence assumption
by allowing features based on first-order logic. The major change in this model is that we
are now given a set of noun phrases xj = {xi}. Let yj be true when ∀i : xi ∈ xj. Zxj is a
normalizer that sums over the two values of yj. Then Culotta’s first-order model is:

p(yj|xj) =
1

Zxj

exp
∑
k

λkfk(x
j, yj) (3)

By creating a model over clusters instead of over pairs, the number of y variables grow
exponentially in the number of noun phrase of the documents. To overcome this difficulty,
they propose sampling methods at training time and do inference using greedy clustering at
testing, by incrementally instantiating y variables as needed during prediction.
Training is performed by sampling uniformly from positive and negative examples and

using the Margin Infused Relaxed Algorithm (MIRA) to give positive examples a higher
1Culotta et al. (2007) do note that the test-train splits may differ slightly
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rank than the negative examples so that true coreferent mentions within bad clusters are
not unjustly penalized. This rank-based method is used in combination with an error-driven
training technique that targets only the negative cluster examples that would have otherwise
been created by their clustering procedure.
By using first-order features, Culotta et al allows to model constraints like “do not prefer

entities whose only mentions are pronouns”. Incidentally, this gives them the power of
Markov Logic Networks, which are discussed later in Section 2.4. Culotta also introduces an
error-driven, rank-based training technique that targets carefully chosen negative examples
when moving the decision boundary to classify positive examples.

2.2 Unsupervised Coreference Resolution in a Nonparametric Bayesian Model

Haghighi and Klein (2007) proposed a hierarchical Dirichlet Process to find the referents of
mentions within a document. They extend their solution to find coreferents across documents
with the entities being shared across the corpus. The number of clusters are determined by
the inference (see discussion on inference in section 5.2.3). Their work was the first unsu-
pervised approach to report performance “in the same range” of fully supervised approaches
for coreference resolution.

Figure 1: Taken from Haghighi et al: (a) A Haghighi and Klein entity and its features. (b)
Graphical model representation of their infinite mixture model. The shaded nodes
indicate observed variables.

Figure 1 uses random variable Z to refer to the random variable that takes the value of
the the index of an entity. Let X be the collection of variables associated with a mention in
the model (namely entity type T , numberN , gender G, head H, mention M).

2.3 Unsupervised Models for Coreference Resolution

Ng (2008) conceptualizes the coreference resolution problem as inducing coreference parti-
tions on unlabeled documents, rather than classifying whether mention pairs are coreferent.
For this they modify the Expectation-Maximization (EM) algorithm, so that the number of
clusters does not have to be predetermined. Instead of initializing the model with a uniform
distribution over clusters, the model is initialized with a small amount of labeled data for
the first iteration of EM. The E-step is approximated by computing only the conditional
probabilities that correspond to the N most likely clusterings2, where N is a parameter

2In this context, a clustering is a different way of partitioning of the mentions.
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to the algorithm. More precisely, given a document D, a clustering C, let θ be the model
parameters. The following EM algorithm is used:
E-step: Compute the posterior probabilities of the clusterings, P (C|D, θ) based on the

current θ.
M-step: Using the value of P (C|D, θ) computed in the E-step, find the θ′ that maximizes

the expected log-likelihood:
∑

C P (C|D, θ)logP (D,C|θ′).
2.4 Joint Unsupervised Coreference Resolution with Markov Logic

Poon and Domingos (2008) present an unsupervised model using Markov Logic Network
(MLN). MLN is a first-order knowledge base with a weight attached to each formula; if
the weight is infinite, then the MLN behaves exactly as first-order logic does. With finite
weights when a world violates a formula in a MLN, the world becomes less probable, but
not impossible (Richardson and Domingos, 2006). The basic idea in a MLN is to soften the
constraints imposed by a set of first-order logic formulas.
Under the hood, MLNs use first-order logic as a language to define a template that will be

extended as a Markov network. The Markov network is created with one node per ground
atom and one feature per ground clause. This combines first-order logic and probabilistic
graphical models into a single representation. For example, table 2 shows a sample MLN
(the weights are not shown). Its corresponding graphical model representation is shown in
Figure 2.

Table 2: (Source: Richardson and Domingos (2006) ) Example of a MLN
Smoking causes cancer: ¬Sm(x) ∨ Ca(x)
If two people are friends, either both smoke
or neither does:

¬Fr(x, y)∨ Sm(x)∨¬Sm(y),¬Fr(x, y)∨
¬Sm(x) ∨ Sm(y)

8 Richardson and Domingos

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Figure 1. Ground Markov network obtained by applying the last two formulas in Table I to
the constants Anna(A) and Bob(B).

ASSUMPTION 1. Unique names. Different constants refer to different ob-
jects (Genesereth & Nilsson, 1987).

ASSUMPTION 2. Domain closure. The only objects in the domain are
those representable using the constant and function symbols in (L,C) (Gene-
sereth & Nilsson, 1987).

ASSUMPTION 3. Known functions. For each function appearing in L, the
value of that function applied to every possible tuple of arguments is known,
and is an element of C .

This last assumption allows us to replace functions by their values when
grounding formulas. Thus the only ground atoms that need to be considered
are those having constants as arguments. The infinite number of terms con-
structible from all functions and constants in (L,C) (the “Herbrand universe”
of (L,C)) can be ignored, because each of those terms corresponds to a
known constant in C , and atoms involving them are already represented as
the atoms involving the corresponding constants. The possible groundings
of a predicate in Definition 4.1 are thus obtained simply by replacing each
variable in the predicate with each constant in C , and replacing each function
term in the predicate by the corresponding constant. Table II shows how
the groundings of a formula are obtained given Assumptions 1–3. If a for-
mula contains more than one clause, its weight is divided equally among the
clauses, and a clause’s weight is assigned to each of its groundings.
Assumption 1 (unique names) can be removed by introducing the equality

predicate (Equals(x, y), or x = y for short) and adding the necessary axioms
to the MLN: equality is reflexive, symmetric and transitive; for each unary
predicate P, ∀x∀y x = y ⇒ (P(x) ⇔ P(y)); and similarly for higher-order
predicates and functions (Genesereth & Nilsson, 1987). The resulting MLN
will have a node for each pair of constants, whose value is 1 if the constants
represent the same object and 0 otherwise; these nodes will be connected to

mln.tex; 26/01/2006; 19:24; p.8

Figure 2: (Source: Richardson and Domingos (2006) )Ground Markov network obtained by
applying the formulas in Table 2 to the constants Anna(A) and Bob(B).

As Ng (2008)’s formulation, the MLN approach works unsupervised, and performs com-
paratively better than Haghighi and Klein’s model. It is unfortunate that there is no direct
comparison between the Ng (2008) and Poon and Domingos (2008) models. Their improved
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performance is achieved because their models allow them to represent more expressive fea-
tures (such as apposition). see Section 3 for a more thorough discussion on features. Culotta
et al claim that their supervised system achieves the representational power of MLN’s by
defining the features in their log-linear model to be scoped over sets of mentions (Culotta et
al., 2007).

2.5 Joint Determination of Anaphoricity and Coreference Resolution using
Integer Programming

Integer Linear Programming (ILP), though typically regarded as an optimization
method, has been used as a means of joining together multiple classifiers in coreference
(e.g. both a coreference identifier and an anaphoricity identifier) (Denis and Baldridge,
2007). However, ILP can be used to produce a global assignment that maximally agrees
with the decisions made a classifier (Denis and Baldridge, 2007):

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + c̄C〈i,j〉 · (1− x〈i,j〉)x〈i,j〉 ∈ {0, 1},∀〈i, j〉 ∈ P (4)

where the cost for committing to each coreference link cC〈i,j〉 = − log(PC(COREF|i, j)) and
c̄C〈i,j〉 = − log(1 − PC(COREF|i, j)) and the x〈i,j〉 indicate whether or not the link is selected
(Denis and Baldridge, 2007). However, by itself, this simply results in choosing exactly the
links with a probability greater than 0.5, making it clear why this method is desirable only
when we wish to combine multiple classifiers jointly. It should be noted that this procedure
used by Denis et al. becomes intractable unless we use a pairwise independence assumption
(Section 3), rendering this technique unable to interface with modern cluster-based classifiers.
More attention is given to ILP as a method for joint anaphoricity-coreference resolution in
Section 5.1.2.
In this section, we have provided a brief overview of the papers that will be our focus

for the remainder of this paper. With these details in mind, we will now discuss the more
general themes that run through these papers.

3 Features
Many of the recent advances in state-of-the-art coreference resolution systems have come
from improvements in the underlying models, that allow to represent linguistically more
robust features. As we have described in Section 1, it is possible to categorize coreference
models into two categories: (i) pairwise models, which are myopic in that they can only
examine pairs of mentions at once, and (ii) cluster-based models, which have access to entire
clusters of mentions at once, but present a difficult inference problem. This section will
address each of these types of models in turn and will discuss common features used in each
of these paradigms.
For a comprehensive study on features commonly used in many coreference resolution

systems see Ng and Cardie (2002). We present a summary of their features in Appendix A.

3.1 Pairwise Features

In the pairwise formulation of coreference, mentions are represented by the vertices in a
graph while the edges are weighted by the probability that the two nouns are coreferent
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(Figure 3). While this figure indicates entity clusters with dotted circles, these clusters were
formed by a greedy graph partitioning algorithm, which has access only to pairs of mentions.
That is, even though the result is a partition in which each cluster represents an entity, the
features used to create this partition are myopic at the level of mention pairs.

Figure 3: An example noun coreference graph from Culotta et al. (2007) in which vertices
are noun phrases and edge weights are proportional to the probability that the two
nouns are coreferent. Partitioning such a graph into disjoint clusters corresponds
to performing pairwise coreference resolution.

Though these models are attractive due to their low computational cost, they fail to
account for several phenomena important to coreference resolution. Primarily, pairwise
models cannot enforce the transitive closure of a cluster, the property that if a is coreferent
with b and b is coreferent with c, then a is also coreferent with c. Further, pairwise models
also have an issue with creating entity clusters consisting solely of pronouns since there is
very little evidence to show that they would disagree with each other yet the model provides
no way of expressing “entities should not consist of only pronouns.”
Another feature that has been shown to be important in coreference is apposition. This

feature accounts for the observation that mentions in appositives typically refer to the same
entity as the mention that the appositive modifies. For example, in “Bill Gates, generous
donor to CMU,” both “Bill Gates” and “generous donor to CMU” refer to the same entity.
According to Poon and Domingos (2008), this feature made a difference of 3.2 MUC F1 on
the MUC-6 data set. Ng (2008) also used this feature and reported good results in his overall
system.
Salience has also gained popularity as a feature in coreference systems. Salience is the

standing out of some mentions relative to other neighboring mentions. Haghighi and Klein
(2007) model this by incrementing an activity score by 1 each time a mention is found. This
activity score decays by a factor of 0.5 each time a new mention is generated. Poon and
Domingos (2008) models salience only only pronoun salience, since the saliencies of proper
nouns and nominals have only marginal influence. They do this by imposing a prior over
distances between mentions rather than the more complicated notion of activation used by
Haghighi. Notably, modeling salience is difficult in some formulations of learning algorithms,
as is it is the case in Dirichlet Processes.

3.2 Cluster-based Features

Given the limitations of pairwise models, recent research has made significant progress by
adopting first-order logic features, that allow to enforce the transitive closure for each cluster.
By moving out of the pairwise paradigm, we can imagine designing cluster-based features
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that allow modeling the properties of several or all of the mentions within an entity cluster
at once. For example, Table 3 shows some of the cluster-based features that Culotta et al.
implemented.
Cluster-based models typically usually include most of the same features as would be seen

in a pairwise model while simply adding features that leverage the stronger representational
power of first-order logic. Cluster-based features allow to leverage information about all the
mentions in an entity cluster (Poon and Domingos, 2008).

Table 3: (Source: Culotta et al. (2007) ) Example of cluster-based features
All-X True iff all pairs share a feature X
Most-True-X True iff the majority of pairs share a feature X
All-True True all mention pairs are predicted to be coreferent
Most-True True iff most mention pairs are predicted to be coreferent
Phrase count A count of how many phrases in the cluster are of each mention type.

By using this in combination with All-True and Most-True, this feature
can capture the soft constraint that no cluster consists of only pronouns

It is important to note that not only the choice of features that leads to improvements
in system quality, the way in which those features are implemented can also make a big
difference. For instance, Poon and Domingos (2008) showed that by simply using the head
percolation rules from the Stanford parser instead of crudely choosing the right-most token
in a constituent as in Haghighi and Klein (2007), a performance boost of 3.5 MUC F1 on
the MUC-6 data set.

3.3 Generative models and their effect on features

In a statistical context, generative models define a joint distribution over features by using
a series of conditional distributions that tell a “generative story” of how observables came
into being. Many of the papers in this review cast their features in a generative model that
conditions on clusters. These papers include Haghighi and Klein (2007), Poon and Domingos
(2008), and Ng (2008). Such generative models can alter the way in which distributions over
these features would normally behave if they were in a discriminative framework since a
distribution over these features is created for each cluster and each of these distributions
may become peaked around the gender, type, or number that bets fits in each cluster.
In Figure 4 we present an analysis of a few important features of our focus papers. We did

not include features from Denis and Baldridge (2007) since they limit the description of their
features as “similar to that used by Ng and Cardie (2002)”. C indicates that the feature has
access to a whole entity cluster at once whereas P indicates that the feature has access to
only a single pair of mentions at a time. G indicates that the feature is inherently pairwise
while its inclusion in a generative model allows it to capture some degree of dependence with
the clusters that generate the feature.
In this section, we have given an overview of the standard pairwise coreference features

that have become the standard for the last several years and discussed cluster-based features
that are present in more recent models. While the choice of features and the care with
which they are implemented continues to play an important role in the quality of coreference
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Culotta et
al. (2007)

Haghighi
and Klein
(2007)

Ng (2008) Poon and
Domingos
(2008)

Salience G P
Apposition P G P
Entity Type Agr. P, C G C
Number Agr. P, C G G C
Gender Agr. P, C G G C
Head word P, C G C

Figure 4: Selected features used in our focus papers

systems, recent advances in the state-of-the-art have come primarily from advancements in
the underlying models. However, these more complex models present difficulties both in
training and inference.

4 Parameter Estimation

In any supervised method (and some “unsupervised” methods), one usually obtain estimates
of the free parameters of a model before performing inference. The mechanics of parameter
optimization follow fairly standard practice. The procedure is left rather vague or men-
tioned uneventfully simply stating that the maximum entropy principle was employed via
some method such as the limited memory variable metric algorithm (L-BGFS) (Denis and
Baldridge, 2007). However, as we will see in this section, other training-time considerations
such as the way in which training examples are constructed can have a strong impact on the
quality of the resulting model.

4.1 Supervised Parameter Estimation

Often, the estimation of parameters for supervised log-linear models in coreference papers
is left rather vague or mentioned uneventfully simply stating that the maximum entropy
principle was employed via some method such as the limited memory variable metric algo-
rithm (L-BGFS) (Denis and Baldridge, 2007). Here, we focus on those parameter estimation
methods which deviate from this pattern.
Culotta casts optimization as a ranking problem (as opposed to a classification prob-

lem) and proposed the use of theMargin Infused Relaxed Algorithm (MIRA) due to the
move to a cluster-based framework (Culotta et al., 2007). First, consider that a classification-
based trainer might unjustly “penalize” all features associated with each incorrect cluster,
even though there may be subsets of the cluster that are coreferent. This is then combined
with an error-based sampling method (Section 4.2) that calculates the difference between
the current weight vector and an improved weight vector via a “nearby” positive example,
rather than a random or optimal positive example. This update is then accomplished via
MIRA; the update then has two constraints: (i) the positive example must have a higher
score by a given margin and (ii) the change to Λ should be minimal.
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4.2 Sampling the corpus

In pairwise models, sampling is needed to reduce the number of pairs artificially constructed
from the annotated corpus. For instance, in training these pairwise models, one could imagine
generating training instances by enumerating all pairs 〈xij, yij〉 where yij is true iff xi and
xj are coreferent. However, this would result in a very unbalanced training set having many
more negative than positive examples (Culotta et al., 2007). This imbalance is an inherent
flaw of pairwise models of coreference.
A canonical way of resolving this issue is Soon’s method (Soon and Ng, 2006): Scan the

document from left to right for a noun phrase xi. Upon finding an xi, comparing each noun
phrase xi to each noun phrase xj where j < i. For each pair scanned, create a training
instance 〈xij, yij〉 where yij is true iff xi and xj are coreferent. The search for a matching xj
terminates when a positive example is found, or the beginning of the document is reached.
The result is that distant NP’s are pruned from the training sample. This method is still
commonly used (Culotta et al., 2007; Denis and Baldridge, 2007).
It is important to note that this sampling method should complement the clustering

method being used. Therefore, the pairwise sampling strategy described above is typically
used in combination with greedy clustering in a partitioning scheme that is guided by the
word order of the document in the same fashion as the sampling strategy (Soon and Ng,
2006). This also holds true for modern cluster-based methods, as we will discuss below.
For cluster-based models, let us first consider the very simple method of uniform sam-

pling that Culotta et al. call First-Order Uniform. This method generates training examples
by sampling positive and negative examples uniformly at random from the training set. Pos-
itive examples are generated by first sampling a gold entity cluster, then sampling a subset
of mentions from that cluster. Negative examples are generated by sampling two correct
entities and merging them into one entity cluster (Culotta et al., 2007).
Culotta then goes a step further to propose an error-driven sampling method for online

training that produces training examples on-the-fly, based on the mistakes that the model
makes. It works by performing greedy agglomerative clustering on a training document
i given initial parameters Λ until an incorrect cluster is formed. The parameter vector
according to this mistake, then repeat for some fixed number of iterations (Culotta et al.,
2007).
In this section, we have discussed the ways in which training examples are constructed for

coreference systems. As for training methods, we have seen as early as Section 2 that recent
cluster-based models use their own custom training procedures, tailored to meet the needs
of the expanded model. Being that these models are so novel, no standard train This has
a strong impact on both the quality and tractability of the system. Having discussed the
training of models, we will next examine how inference can be performed with them.

5 Inference

Until recently, inference in coreference resolution has involved a relatively straightforward
application of some standard inference mechanism for a well-known model such as a log-linear
model. However, the advent of cluster-based and unsupervised models has added a degree
of difficulty to this task. In this section, we describe some issues and possible solutions that
have come about with these new models.
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5.1 Supervised methods

5.1.1 Cluster-based inference
When creating a partition over the set of mentions in a document, one typical method

that has been used in pairwise models is graph partitioning (McCallum and Wellner, 2005).
However, when cluster-based features are applied, it becomes desirable to form clusters at
an earlier stage in the inference process. Culotta et al. (2007) performs greedy agglomerative
clustering, where the decision of merging is proportional to the probability of the new clus-
tering according to the log-linear model of equation 3. Clustering terminates when there is
no additional merge that improves the likelihood of the clustering. Certainly, one could con-
sider other methods of performing clustering, however, if such methods are explored in the
future, they will have to address the issue of finding a training procedure that complements
the desired method of clustering.
This approach makes exact locally-optimal decisions. However, in the case of the the

unsupervised methods that we will discuss make, we will also see that it is possible to make
globally-optimal decisions if an approximation is acceptable (though this need not correlate
with the method being supervised or unsupervised in general).

5.1.2 Joint inference of anaphoricity and coreference vs pipelining
Many systems view the task of coreference as a pipeline in which noun phrases are

identified and then determined to be anaphoric mentions as a separate pre-processing step.
However, as discussed in Denis and Baldridge (2007), this requires a classification threshold
to be carefully set and any error introduced in this anaphora resolution step is irrecover-
ably propagated. For this reason, many modern systems including Denis and Baldridge
(2007) and Poon and Domingos (2008) have abandoned this pipeline model in favor of joint
determination of anaphoricity and coreference in a single step.
Let us consider three strategies of considering anaphoricity in a coreference resolution

model:

1. Ignore anaphoricity. This design decision is the simplest, and doesn’t consider the
anaphoricity of pronouns. It is possible that the model will resolve antecedents to non-
referential pronouns.

2. Sequential determination of anaphoricity and coreference. The system works with two
classifiers in cascade. It is not clear how the threshold of the anaphoricity classifier
should be tuned so it doesn’t prune too much of the pronouns.

3. Joint determination of anaphoricity and coreference. The decision of whether a mention
is coreferent is done simultaneously as resolving its (possible) antecedent.

Denis and Baldridge (2007) proposes the user of joint inference with two classifiers using
Integer Linear Programming. The four reported advantages of this method, is that (i) ILP
allows to perform global inference based on two classifiers, instead of having to come up
with a new procedure, (ii) ILP allows inference over multiple classifiers without having to
set a threshold, (iii) it is more efficient than than a global Conditional Random Field (CRF)
and finally, (iv), it is straightforward to create global constraints on the parameters. Denis
and Baldridge (2007)’s ILP objective function incorporates the probabilities produced by an
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anaphoricity classifier and a coreference (pairwise) classifier as weights. Poon and Domingos
(2008) also manage to perform joint inference by means of first-order logic clauses that
serve as predictors for anaphoricity. By incorporating this decision directly into coreference
systems, the error propagation that would have been incurred in a pipeline approach can be
avoided.

5.2 Unsupervised methods

There has been increasing attention in the coreference community for methods that work
with little or no labeled training data (Ng, 2008). Corpora annotated with coreferences are
very expensive to create. Even in English language, where there are the most number of
resources available, most of them belong to the news domain. It is not straightforward to
adapt the supervised algorithms described above to work on different domains or in different
languages when there is not enough labeled data. In this subsection we describe three
approaches to do inference when little or no training data is available.
A cluster-based approach allows leveraging “easy” decisions to help deciding “hard” using

joint inference (Poon and Domingos, 2008). As usual, the main challenge in applying joint
inference methods is managing its computational complexity. In this section we explore
different models and approximate inference algorithms to resolve coreference.
Our discussion of unsupervised inference is arranged into three parts. First, we present

two approaches for automatically selecting the number of clusters in sections 5.2.1 and 5.2.2.
Later, in section 5.2.3, we present some issues on approximate inference algorithms that deal
with the complexity of unsupervised learning.

5.2.1 N-best clustering
One of the challenges of clustering algorithms is to determine the number of clusters in

the final output. This is a hard problem because the number of clusterings is exponential in
the number of mentions in the documents (Ng, 2008). To learn the number of clusters, two
strategies are usually used: (i)use N -best clustering and (ii) impose a prior on the number
of clusters.
For consistency,in the context of this paper, we define a clustering as in Ng (2008): a

clustering of n mentions is a n x n boolean matrix C, where an entry (i, j) is 1 if and only if
mentions mi and mj are coreferent. In this way a clustering is a different way of partitioning
the mentions.
Ng (2008) uses N -best clustering to estimate the number of clusters using the Expectation-

Maximization (EM) algorithm. In this way, the algorithm receives as an argument the
number N of clusterings to evaluate, instead of the number of clusters. In this context, a
clustering is a partition into entity clusters over the set of all mentions in a document.
Although typically the EM algorithm is used in a parametric setting in which the number of

clusters is fixed, it is modified so it can handle an indeterminate (infinite) number of mixtures.
This is achieved by redefining the E-step to calculate the N most probable coreference
partitions using a Bell tree. By doing this, it is possible to define linguistically more robust
features. This is in contract to the Haghighi model in which features such as salience and
apposition can force the use of additional sampling or even prevent the use sampling.
Algorithm 1 shows Ng (2008)’s implementation of the Bell tree beam-search algorithm.

The algorithm takes as input a set of n probabilities of mentions in the text, and returns the
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N most probable partitions of the mentions, where the constant δ is the penalty of starting a
new cluster, S is a data structure that stores intermediate scores, Hi stores the most probable
ith-order partial partitions. Note that Hi has a maximum size of 2N , defining the size of the
beam, that is used to store for the most likely partitions given the value of the parameters
in the current iteration of EM.

Algorithm 1 Ng’s implementation of Bell Trees
Require: M = {m1, ...,mn}: mentions, N : no. of best partitions
Ensure: Output: N-best partitions

//initialize the data structures that store partial partitions
H1 := {PP := {[m1]}}, S(PP ) = 1
H2, ..., Hn = ∅
for i = 2 to n do

//process each partial partition
for all PP ∈ Hi−1 do

//process each cluster in PP
for all C ∈ PP do
Extend PP to PP ′ by linking mi to C
Compute S(PP ′)
Hi := Hi ∪ {PP ′}

end for
end for
Hi := Hi ∪ {PP ′}
Extend PP to PP δ by putting mi into a new cluster
Compute S(PP δ)
Hi := Hi ∪ {PP δ}

end for
return N most probable partitions in Hn

5.2.2 Imposing a prior on the number of clusters
An alternate method to select the number of clusters is by imposing a prior on the number

of clusters. This is the approach taken in a Dirichlet process(Haghighi and Klein, 2007) or
a Markov-logic based model (Poon and Domingos, 2008).
A Dirichlet Process is often explained using a Chinese Restaurant Process: Suppose a

Chinese Restaurant has an infinite number of tables, each of which can seat an infinite
number of people. Each customer n + 1 is seated at one of m + 1 places (m ≤ n): either
at one of the m already-occupied tables or at a new unoccupied table. Such a process is
of clear benefit when we must define a clustering in which we do not know the number of
desired clusters. These models also have the distinct advantage that their parameters can be
analytically integrated out if all of our features conform to the structure of this model (see
below for caveats). By moving to a Hierarchical Dirichlet Process (Teh et al., 2006) (said
to be more like a Chinese Restaurant Franchise), Haghighi and Klein are able to perform
cross-document coreference resolution (Haghighi and Klein, 2007).
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Figure 1 shows a graphical representation of the generative model used in (Haghighi and
Klein, 2007) without the salience lists used for mention type distributions. The performance
of this approach is arguably comparable with supervised methods. However, the introduc-
tion of the saliency feature requires expensive Gibbs sampling over both assignments and
parameters.
Another deficiency of Haghighi’s approach is that it is not clear how to use Gibbs sampling

when using linguistic features that have deterministic dependencies (Poon and Domingos,
2008). For instance, an example described in (Poon and Domingos, 2008) is that a sentence
with two mentions “Bill Gates, the chairman of Microsoft” would break the Gibbs sampling
if the apposition feature is used, because at a particular iteration, only one mention can be
moved from one cluster to another.
These issues brings up the concern of extensibility; often, complicated generative mod-

els such as Dirichlet processes offer no clear way to add new features (a frequent task for
researchers) as evidenced by the breakdown of analytic integration when adding the salience
feature and the inability to add an apposition feature via any straightforward method to
Haghighi’s base model.
An alternative approach to the Haghighi and Klein (2007) model, is to use Markov Logic

Networks (MLN) (Poon and Domingos, 2008) to extend the model to allow apposition and
predicate nominal features. The advantage of using a MLN is that inference can be performed
efficiently using the MC-SAT sampling technique (discussed below). Instead of modeling pro-
noun saliency as described by Haghighi, Poon and Domingos (2008) impose an exponential
prior on the distance (number of mentions) between a pronoun and its antecedent. Poon
and Domingos (2008) claim that the unsupervised Markov Logic Network’s performance is
better than supervised methods.

5.2.3 Sampling prediction instances
To overcome the problem of the large event space in unsupervised cluster-based models,

Markov Logic Networks and Dirichlet Processes employ sampling of prediction instances.
Usually the sampling methods employed for prediction instances are variations of Markov
Chain Monte Carlo (MCMC) methods in which random samples are taken from a pool to
produce an aggregate result from these individual samples.
Poon and Domingos are very thorough in addressing this issue for their unsupervised

model. They use Lazy-MC-SAT, a “slice sampling” MCMC algorithm that exploits the
fact that features are represented in logical form, allowing them to use a satisfiability solver
to improve on efficiency. Though they used Dirichlet Processes, Haghighi and Klein also
have to deal with the sampling of prediction instances. They employ the costly procedure
of Gibbs sampling (a type of MCMC) (Haghighi and Klein, 2007; Poon and Domingos,
2008) .

5.3 Rule-based methods

Poon and Domingos (2008) proposed a rule-based system as a baseline. The system has four
rules coded as a Markov Logic Network:

• Three rules to enforce agreement in terms of (i) type (person, organization, location,
miscellaneous), (ii) number (singular, plural) and (iii) gender (male, female).
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• A rule to enforce that non-pronouns are clustered by their head. This is given by the
first order logic clause:

¬IsPrn(m1) ∧ ¬IsPrn(m2)

∧Head(m1, h1) ∧Head(m2, h2)

InClust(m1, c1) ∧ InClust(m2, c2)

⇒ (c1 = c2)⇔ h1 = h2).

The agreement rules are given infinite weights, so the formulation of the MLN is equivalent
to first order logic. However, Poon and Domingos (2008) explains that by using a large,
but not infinite weight (for example 100) for the head rule, the MLN will cluster non-
pronouns by their heads, except when it violates the agreement. It is interesting to note
that this rule-based MLN can be extended to encode apposition. As in the unsupervised
case, an exponential prior on the number of non-empty clusters and on the distance between a
pronoun and its antecedent is imposed. Poon and Domingos (2008) reports that these simple
MLN formulations achieve a F1 of 70.3, in comparison to the F1 of 63.9 of the Haghighi and
Klein (2007) model trained on 60 documents.

6 Conclusion

We have presented a set of papers representative of modern trends in coreference resolution.
Table 5 provides a summary of various aspects of the focus papers discussed throughout this
review. First, we note that one’s choice of model can be a limiting factor in what features
can be used. By choosing models that are easily extensible, the field is likely to see quicker
progress. Second, we recommend that future work in this area uses a more standard set of
the standard corpora already available for coreference; in this way, results such as those of
Poon will be comparable with those of Culotta. Because of this, there is no clear winner for
the state-of-the-art.
Although unsupervised methods for coreference resolution are improving rapidly, we still

cannot expect to gain domain adaption for free. Since most work has focused on coreference
resolution in news corpora, it is unclear how the performance of these systems would be-
have in other real-world domains. For instance features such as entity type, which describe
whether a mention is a person, a location or an organization, would not be appropriate in a
domain such as medical journals. Likewise, it would be interesting to see how these modern
methods perform on different languages, though a lack of annotated corpora currently hinder
research in this area.
The use of first-order cluster-based features has given the field of coreference resolution

a much-needed push, and will likely remain a staple of future state-of-the-art coreference
systems. Also, the surprising result that unsupervised methods are rivaling supervised ap-
proaches, will likely generate much more research in this area. With the advances that have
been made in the recent past, the field of coreference resolution has made great progress
since the disappointing results of just a few years ago.
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Figure 5: A summary of the properties of the systems reviewed in this paper.
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Appendix A: Features used by Ng and Cardie (2002)

L PRO STR* C if both NPs are pronominal and are the same string; else I.
e PN STR* C if both NPs are proper names and are the same string; else I.
x WORDS STR C if both NPs are non-pronominal and are the same string; else I.
i
c

SOON STR NONPRO* C if both NPs are non-pronominal and the string of NP matches that of NP ; else I.

a
l

WORD OVERLAP C if the intersection between the content words in NP and NP is not empty; else I.

MODIFIER C if the prenominal modifiers of one NP are a subset of the prenominal modifiers of the
other; else I.

PN SUBSTR C if both NPs are proper names and one NP is a proper substring (w.r.t. content words
only) of the other; else I.

WORDS SUBSTR C if both NPs are non-pronominal and one NP is a proper substring (w.r.t. content words
only) of the other; else I.

G NP BOTH DEFINITES C if both NPs start with “the;” I if neither start with “the;” else NA.
r
a

type BOTH EMBEDDED C if both NPs are prenominal modifiers ; I if neither are prenominal modifiers; else NA.

m
m

BOTH IN QUOTES C if both NPs are part of a quoted string; I if neither are part of a quoted string; else NA.

a BOTH PRONOUNS* C if both NPs are pronouns; I if neither are pronouns, else NA.
t role BOTH SUBJECTS C if both NPs are grammatical subjects; I if neither are subjects; else NA.
i SUBJECT 1* Y if NP is a subject; else N.
c SUBJECT 2 Y if NP is a subject; else N.
a
l

lin-
gui-

AGREEMENT* C if the NPs agree in both gender and number; I if they disagree in both gender and
number; else NA.

stic ANIMACY* C if the NPs match in animacy; else I.
MAXIMALNP* I if both NPs have the same maximal NP projection; else C.

con- PREDNOM* C if the NPs form a predicate nominal construction; else I.
stra- SPAN* I if one NP spans the other; else C.
ints BINDING* I if the NPs violate conditions B or C of the Binding Theory; else C.

CONTRAINDICES* I if the NPs cannot be co-indexed based on simple heuristics; else C. For instance, two
non-pronominal NPs separated by a preposition cannot be co-indexed.

SYNTAX* I if the NPs have incompatible values for the BINDING, CONTRAINDICES, SPAN or
MAXIMALNP constraints; else C.

ling. INDEFINITE* I if NP is an indefinite and not appositive; else C.
prefs PRONOUN I if NP is a pronoun and NP is not; else C.
heur-
istics

CONSTRAINTS* C if the NPs agree in GENDER and NUMBER and do not have incompatible values for
CONTRAINDICES, SPAN, ANIMACY, PRONOUN, and CONTAINS PN; I if the NPs have
incompatible values for any of the above features; else NA.

CONTAINS PN I if both NPs are not proper names but contain proper names that mismatch on every
word; else C.

DEFINITE 1 Y if NP starts with “the;” else N.
EMBEDDED 1* Y if NP is an embedded noun; else N.
EMBEDDED 2 Y if NP is an embedded noun; else N.
IN QUOTE 1 Y if NP is part of a quoted string; else N.
IN QUOTE 2 Y if NP is part of a quoted string; else N.
PROPER NOUN I if both NPs are proper names, but mismatch on every word; else C.

TITLE* I if one or both of the NPs is a title; else C.
S
e

CLOSEST COMP C if NP is the closest NP preceding NP that has the same semantic class as NP and the
two NPs do not violate any of the linguistic constraints; else I.

m
a

SUBCLASS C if the NPs have different head nouns but have an ancestor-descendent relationship in
WordNet; else I.

n
t
i

WNDIST Distance between NP and NP in WordNet (using the first sense only) when they have
an ancestor-descendent relationship but have different heads; else infinity.

c WNSENSE Sense number in WordNet for which there exists an ancestor-descendent relationship
between the two NPs when they have different heads; else infinity.

P
os

PARANUM Distance between the NPs in terms of the number of paragraphs.

O
t

PRO RESOLVE* C if NP is a pronoun and NP is its antecedent according to a naive pronoun resolution
algorithm; else I.

h
er

RULE RESOLVE C if the NPs are coreferent according to a rule-based coreference resolution algorithm;
else I.

Table 3: Additional features for NP coreference. As before, *’d features are in the hand-selected feature set for at least

one classifier/data set combination.

Figure 6: The features used by Ng and Cardie (2002) in their influential 2002 paper, grouped
by type.
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