
Inductive Detection of Language Features via Clustering Minimal Pairs:
Toward Feature-Rich Grammars in Machine Translation

Abstract

Syntax-based Machine Translation systems
have recently become a focus of research
with much hope that they will outperform
traditional Phrase-Based Statistical Machine
Translation (PBSMT). Toward this goal, we
present a method for analyzing the mor-
phosyntactic content of language from an
Elicitation Corpus such as the one available
in the LDC’s LCTL language packs. The
presented method discovers a mapping be-
tween morphemes and linguistically relevant
features. By providing this tool with which
structure-based models of MT can be aug-
mented with these rich features, we believe the
discriminative power of current models can be
improved. We conclude by outlining how the
resulting output can then be used in induc-
ing a morphosyntactically feature-rich gram-
mar for AVENUE, a modern syntax-based MT
system.

1 Introduction

Recent trends in Machine Translation have begun
moving toward the incorporation of syntax and
structure in translation models in hopes of gaining
better translation quality. In fact, some structure-
based systems have already shown that they can out-
perform phrase-based SMT systems (Chiang, 2005).
Still, even the best systems do not make use of
deeper linguistic features including morphosyntax.

Certainly, many have brought linguistically moti-
vated features into their models in the past. Huang
and Knight (2006) explored relabeling of non-
terminal symbols to embed more information di-

rectly into the backbone of the grammar. Bonneau-
Maynard et al. (2007) argue that incorporation of
morphosyntax in the form of a part of speech (POS)
language model can improve translation. While
these approaches do make use of various linguis-
tic features, we have only begun to scratch the sur-
face of what actually occurrs in the languages of the
world. We wish to address such issues as case mark-
ing, subject-verb agreement, and numeral-classifier
agreement by providing models with information
about which morphemes correspond to which gram-
matical meanings. But where can we get training
data that enables us to model these features?

2 Task Overview

Feature Detection is the process of determining from
a corpus annotated with feature structures (Figure 2)
which feature values (Figure 1) have a distinct repre-
sentation in a target language in terms of morphemes
(Figure 3). By leveraging knowledge from the field
of language typology, we know what types of phe-
nomena are possible accross languages and, thus,
which features to include in our feature specifica-
tion. However, we also know that not every lan-
guage will display each of these phenomena.

We wish to determine which feature values (e.g.
singular, dual, plural) have a distinct encoding in a
given target language. Viewed differently, we can
ask which feature values can be clustered by similar-
ity. For instance, in Chinese, we would expect singu-
lar, plural and dual to be members of the same clus-
ter while for Arabic we should place each of these
into separate clusters to indicate they are each gram-
maticalized differently. Similarly, English would

Feature Name Feature Value Comment
np-gen m ,f, n Biological Gender
np-def +, - Definiteness
np-num sg, dl, pl Number
c-ten past, pres, fut Tense
np-function act, und Actor and undergoer participant roles
c-function main, rel Main and relative clause roles

Figure 1: An example feature specification.

ID Source Language Target Language Lexical Cluster Feature Structure
s1 He loves her. El ama a ella. `1 ((act (np-gen m) (np-num sg) (np-def +))

(und (np-gen f) (np-num sg) (np-def +)) (c-ten pres))
s2 She loves her. Ella ama a ella. `1 ((act (np-gen f) (np-num sg) (np-def +))

(und (np-gen f) (np-num sg) (np-def +)) (c-ten pres))
s3 He loved her. El *ama a ella. `1 ((act (np-gen m) (np-num sg) (np-def +))

(und (np-gen f) (np-num sg) (np-def +)) (c-ten past))
s4 The boy eats. El niño come. `2 ((act (np-gen m) (np-num sg) (np-def +)) (c-ten pres))
s5 The girl eats. La niña come. `2 ((act (np-gen f) (np-num sg) (np-def +)) (c-ten pres))
s6 A girl eats. Una niña come. `2 ((act (np-gen f) (np-num sg) (np-def -)) (c-ten pres))
s7 The girls eat. Las niñas comen. `2 ((act (np-gen f) (np-num pl) (np-def +)) (c-ten pres))
s8 The girls eat. Las niñas comen. `2 ((act (np-gen f) (np-num dl) (np-def +)) (c-ten pres))
s9 Girls eat. Unas niñas comen. `2 ((act (np-gen f) (np-num pl) (np-def -)) (c-ten pres))

Figure 2: An example of sentences that might be found in an elicitation corpus. Notice that each sentence differs from
some other sentence in the corpus by exactly one feature value. This enables us to see how the written form of the
language changes (or does not change) when the grammatical meaning changes.

have two clusters for the feature number: (singular)
and (dual, plural). Further, we would like to deter-
mine which morphemes express each of these values
(or value clusters). For example, English expresses
negation with the morphemes no and not, whereas
questions are expressed by reordering of the auxil-
iary verb or the addition of a wh-word.

Though many modern corpora contain feature-
annotated utterances, these corpora are often not
suitable for feature detection. For this purpose, we
use an Elicitation Corpus (see Figure 2), a corpus
that has been carefully constructed to provide a large
number of minimal pairs of sentences such as He
sings and She sings so that only a single feature (e.g.
gender) differs between the two sentences. Also, no-
tice that the feature structures are sometimes more
detailed than the source language sentence. For ex-
ample, English does not express dual number, but
we might want to include this feature in our Elicita-
tion Corpus (especially for a language such as Ara-
bic). For these cases, we include a context field for
the translator with an instruction such as “Translate

this sentence as if there are two girls.”

In the past, we proposed deductive (rule-based)
methods for feature detection. In this paper, we pro-
pose the use of inductive feature detection, which
operates directly on the feature set that the cor-
pus has been annotated with, removing the need for
manually written rules. We define inductive feature
detection as a recall-oriented task since its output is
intended to be analyzed by a Morphosyntactic Lexi-
con Generator, which will address the issue of preci-
sion. This, in turn, allows us to inform a rule learner
about which language features can be clustered and
handled by a single set of rules and which must be
given special attention. However, due to the com-
plexity of this component, describing it is beyond
the scope of this paper. We also note that future work
will include the integration of a morphology analy-
sis system such as ParaMor (Monson et al., 2007) so
that we can extract and annotate the valuable mor-
phosyntactic information of inflected languages. An
example of this processing pipeline is given in Fig-
ure 4.

Feature Value Candidate Morphemes
np-gen m el, niño
np-gen f ella, niña
np-gen n *unobserved*
np-def + el, la, las
np-def - una, unas
np-num sg el, ella, la, una, come, niño, niña
np-num dl-pl las, unas, comen, niñas
c-ten past-pres –
c-ten fut *unobserved*

Figure 3: An example of the output of our system for the above corpus: a list of feature-morpheme pairings.

Elicitation

Corpus

Inductive

Feature

Detection

Morphosyntactic

Lexicon

Generator

Unsupervised

Morphology

Induction

Grammar

Rule

Learner

Decoder

Figure 4: An outline of the steps from an input Elicitation Corpus to the application of a morphosyntactially feature
rich grammar in a MT decoder. This paper discusses the highlighted inductive feature detection component. Note that
this is just one possible configuration for integrating inductive feature detection into system training.

3 The Need to Observe Real Data

One might argue that such information could be ob-
tained from a grammatical sketch of a language.
However, these sketches often focus on the “inter-
esting” features of a language, rather than those that
are most important for machine translation. Fur-
ther, not all grammatical functions are encoded in
the elements that most grammatical sketches focus
on. According to Construction Grammar, such in-
formation is also commonly found in constructions
(Kay, 2002). For example, future tense is not gram-
maticalized in Japanese according to most reference
sources, yet it may be expressed with a construction
such as watashi wa gakoo ni iku yode desu (lit. “I
have a plan to go to school.”) for I will go to school.
Feature detection informs us of such constructional-
ized encodings of language features for use in im-
proving machine translation models.

Recognizing the need for this type of data,
the LDC has included an Elicitation Corpus in
their Less Commonly Taught Languages (LCTL)
language packs. Already, these language packs
are available translated into Thai, Bengali, Urdu,
Hungarian, Punjabi, Tamil, and Yoruba (See

http://projects.ldc.upenn.edu/LCTL/). With struc-
tured elicitation corpora already available on a wide
scale, there exists plenty of data that can be exploited
via feature detection.

4 Applications

4.1 Induction of Feature-Rich Grammars

Given these outputs, a synchronous grammar in-
duction system can then use these feature-annotated
morphemes and the knowledge of which features are
expressed to create a feature rich grammar. Consider
the example in Figure 5, which shows Urdu subject-
verb agreement taking place while being separated
by 12 words. Traditional n-gram Language Mod-
els (LM’s) would not be able to detect any disagree-
ments more than n words away, which is the nor-
mal case for a trigram LM. Even most syntax-based
systems would not be able to detect this problem
without using a huge number of non-terminals, each
marked for all possible agreements. A syntax-based
system might be able to check this sort of agree-
ment if it produced a target-side dependency tree as
in Ding and Palmer (2005). However, we are not
aware of any systems that attempt this. Therefore,

ek talb alm arshad jo mchhlyoN ke liye pani maiN aata phink raha tha . . .
a.SG student named Irshad who fish for water in flour throw PROG.SG.M be.PAST.SG.M

“A student named Irshad who was throwing flour in the water for the fish . . . ”

Figure 5: A glossed e from parallel text in LDC’s Urdu-English LCTL language pack showing subject-verb agreement
being separated by 12 words.

the correct hypotheses, which have correct agree-
ment, will likely be produces as hypotheses of tra-
ditional beam-search MT systems, but their features
might not be able to discern the correct hypothe-
sis, allowing it to fall below the 1-best or out of the
beam entirely. By constructing a feature-rich gram-
mar in a framework that allows unification-based
feature constraints such as AVENUE (Carbonell et
al., 2002), we can prune these bad hypotheses hav-
ing disagreement from the search space.

Returning to the example of subject-verb agree-
ment, consider the following Urdu sentences taken
from the Urdu-English Elicitation Corpus in LDC’s
LCTL language pack:

Danish ne Amna ko sza di
Danish ERG Amna DAT punish give.PERF

“Danish punished Amna.”
Danish Amna ko sza dita hai
Danish Amna DAT punish give.HAB be.PRES

“Danish punishes Amna.”

These examples show the split-ergativity of Urdu
in which the ergative marker ne is used only for the
subject of transitive, perfect aspect verbs. In partic-
ular, since these sentences have the perfect aspect
marked on the light verb di, a closed class (Poorn-
ima and Koenig, 2008), feature detection will allow
the induction of a grammar that percolates a feature
up from the VP containing di indicating that its as-
pect is perfect. Likewise, the NP containing Danish
ne will percolate a feature up indicating that the use
of ne requires perfect aspect. If, during translation,
a hypothesis is proposed that does not meet either
of these conditions, unification will fail and the hy-
pothesis will be pruned 1.

Certainly, unification-based grammars are not the
only way in which this rich source of linguistic infor-
mation could be used to augment a structure-based
translation system. One could also imagine a system

1If the reader is not familiar with Unification Grammars, we
recommend Kaplan (1995)

in which the feature annotations are simply used to
improve the discriminative power of a model. For
example, factored translation models (Koehn and
Hoang, 2007) retain the simplicity of phrase-based
SMT while adding the ability to incorporate addi-
tional features. Similarly, there exists a continuum
of degrees to which this linguistic information can
be used in current syntax-based MT systems. As
modern systems move toward integrating many fea-
tures (Liang et al., 2006), resources such as this will
become increasingly important in improving trans-
lation quality.

5 System Description

In the following sections, we will describe the pro-
cess of inductive feature detection by way of a run-
ning example.

5.1 Feature Specification

The first input to our system is a feature specifica-
tion (Figure 1). The feature specifiction used for
this experiment was written by an expert in language
typology and is stored in a human-readable XML
format. It is intended to cover a large number of
phenomena that are possible in the languages of the
world. Note that features beginning with np- are
participant (noun) features while features beginning
with c- are clause features. The feature specifica-
tion allows us to know which values are unobserved
from the Elicitation Corpus. The definitions of the
first four features and their values are used so we
still know about values that might not have been
observed. The last two function features and their
values tell us what possible roles participants and
clauses can take in sentences.

5.2 Elicitation Corpus

As previously stated, feature detection uses an Elic-
itation Corpus (see Figure 2), a corpus that has been
carefully constructed to provide a large number of

minimal pairs of sentences such as He sings and She
sings so that only a single feature (e.g. gender) dif-
fers between the two sentences. If two features had
varied at once (e.g. It sang) or lexical choice var-
ied (e.g. She reads), then making assertations about
which features the language does and does not ex-
press becomes much more difficult. Though any
feature-annotated corpus can be used in feature de-
tection, the amount of useful information extracted
from the corpus is directly dependent on how many
minimal pairs can be formed from the corpus.

Also, notice that each input sentence has been
tagged with an identifier for a lexical cluster as a
pre-processing step. Specifying lexical clusters en-
sures that we don’t compare sentences with different
content just because their feature structures match.
For example, we would not want to compare The
car raced the train and The train raced the car nor
The student snored and The professor snored.

5.3 Minimal Pair Clustering

Minimal pair clustering is the process of grouping
all possible sets of minimal pairs, those pairs of
sentences that have exactly one difference between
their feature structures. We use wildcard feature
strucutres to represent each minimal pair cluster. We
define a wildcard feature as any feature whose value
is *, which denotes that the value matches another *
rather than its original feature value. Similarly, we
define the feature context of the wildcard feature be
the enclosing participant and clause type for a np-
feature or the enclosing clause for a c- type fea-
ture. Then, for each sentence s in the corpus, we
substitute a wildcard feature for each of the values v
in its feature structure, and we append s to the list
of sentences associated with this wildcard feature
structure. A sample of some of the minimal pairs
for our running example are shown in Figure 6.

Here, we show minimal pairs for just one wild-
card, though multiple wildcards may be created if
one wishes to examine how features interact with
one another. This could be useful in cases such as
Hindi where the perfective verb aspect interacts with
the past verb tense and the actor NP function to add
the case marker ne (for split ergativity of Urdu, see
Section 4.1). That said, a downstream component
such as a Morphosyntatic Lexicon Generator would
perhaps be better suited for the analysis of feature

interactions. Also, note that the feature context is
not used when there is only one wildcard feature.
The feature context becomes useful when multiple
wilcards are added in that it may also act as a wild-
card feature.

The next step is to organize the example sentences
into a table that helps us decide which examples can
be compared and stores information that will inform
our comparison. Briefly, any two sentences belong-
ing to the same minimal pair cluster and lexical clus-
ter will eventually get compared. As specified in Al-
gorithm 1, we create a table like that in Figure 7.
Having collected this information, we are now ready
to begin clustering feature values.

Algorithm 1 Organize()
Require: Minimal pairs, lexical clusters, and the

feature specification.
Ensure: A table T of comparable examples.

for all pair m ∈ minimalPairs do
for all sentence s ∈ m do

f← wildcardFeature(s, m)
v← featureValue(s, f)
c← featureContext(m)
`← lexCluster(s)
T[f,m, c, `, v]← T[f,m, c, `, v]∪ s

return T

5.4 Feature Value Clustering

During the process of feature value clustering, we
collapse feature values that do not have a distinct
encoding in the target language into a single group.
This is helpful both as information to components
using the output of inductive feature detection and
later as a method of reducing data sparseness when
creating morpheme-feature pairings. We represent
the relationship between the examples we have gath-
ered for each feature as a feature expression graph.
We define a feature expression graph (FEG) for a
feature f be a graph on |v| vertices where v is the
number of possible values of f (though for most
non-trivial cases, it is more conveniently represented
as a triangular matrix).

Each vertex of the FEG corresponds to a feature
value (e.g. singular, dual) while each arc contains
the list of examples that are comparable according
to the table from the previous step. The examples at

ID Set Members Feature Feature Context Feature Structure
m1 {s1, s2} np-gen ((act)) ((act (np-gen *) (np-num sg) (np-def +))

(und (np-gen f) (np-num sg) (np-def +)) (c-ten pres))
m2 {s1, s3} np-ten () ((act (np-gen m) (np-num sg) (np-def +))

(und (np-gen f) (np-num sg) (np-def +)) (c-ten *))
m3 {s4, s5, s7, s8} np-gen ((act)) ((act (np-gen *) (np-num sg) (np-def +)) (c-ten pres))
m4 {s5, s7, s8} np-num ((act)) ((act (np-gen f) (np-num *) (np-def +)) (c-ten pres))
m5 {s6, s9} np-num ((act)) ((act (np-gen f) (np-num *) (np-def -)) (c-ten pres))
m6 {s5, s6} np-def ((act)) ((act (np-gen f) (np-num sg) (np-def *)) (c-ten pres))
m7 {s7, s9} np-def ((act)) ((act (np-gen f) (np-num pl) (np-def *)) (c-ten pres))

etc.

Figure 6: An example subset of minimal pairs that can be formed from the corpus in Figure 2.

Feature Min. Pair Feat. Context Lex. Cluster Feat. Value. Sentence
np-gen m1 ((act)) `1 m s1
np-gen m1 ((act)) `1 f s2
np-ten m2 () `1 pres s1
np-ten m2 () `1 past s3
np-num m4 ((act)) `2 sg s5
np-num m4 ((act)) `2 pl s7
np-num m4 ((act)) `2 dl s8
np-num m5 ((act)) `2 sg s6
np-num m5 ((act)) `2 pl s9

etc.

Figure 7: An example subset of the organized items that can be formed from the minimal pairs in Figure 6. Each of
these items that has a matching minimal pair ID, feature context, and lexical cluster ID can be compared during feature
detection.

each arc are organized into those that had the same
target language string, indicating that the feature val-
ues are not distinctly expressed, and those that had
a different target language string, indicating that the
change in grammatical meaning represented in the
feature structure has a distinct encoding in the target
language. Algorithm 2 more formally specifies the
creation of a FEG. The FEG’s for our running exam-
ple are shown in Figure 8. From these statistics, we
then estimate the maximum likelihood probability of
each feature value pair being distinctly encoded as
shown in Figure 9.

Algorithm 2 Collecting statistics for each FEG.
Require: The table T from the previous step.
Ensure: A complete graph as an arc list with the

observed similarities and differences for each fea-
ture value.
for all si, sj ∈ T s.t. (mi, ci, `i) = (mj , cj , `j)
do

(vi, vj)← (featureValue(si), featureValue(sj))
if tgt(si) = tgt(sj) then

arcs[vi, vj]← arcs[vi, vj] ∪ (si, sj ,m,EQ)
else

arcs[vi, vj]← arcs[vi, vj] ∪ (si, sj ,m,NEQ)
return arcs

Finally, we cluster by randomly selecting a start-
ing vertex for a new cluster and adding vertices to
that cluster, following arcs out from the cluster that
have a weight lower than some threshold θ. When
no more arcs may be followed, a new start vertex is
selected and another cluster is formed. This is re-
peated until all feature values have been assigned to
a cluster. For our running example, we use θ = 0.6,
which results in the following clusters being formed:

np-gen: m, f
np-num: s, pl/dl
np-def: +, -
c-ten: past, pres

5.5 Morpheme-Feature Pairing
Finally, using the information from above about
which values should be examined as a group and
which sentence pairs exemplify an orthographic dif-
ference, we examine each pair of target language
sentences to determine which words changed to re-
flect the change in grammatical meaning. This pro-

cess is outlined in Algorithm 3. The general idea is
that for each arc going out of a feature value vertex
we examine all of the target language sentence pairs
that expressed a difference. We then take the words
that were in the vocabulary of the target sentence
for the current feature value, but not in the sentence
it was being compared to and add them to the list
of words that could be used to express this feature
value.

Algorithm 3 Determine which morphemes are as-
sociated with which feature values.
Require: List of clusters C and list of FEGs F
Ensure: A list of morphemes associated with each

feature value
for all feature ∈ F do

for all vertex ∈ feature do
for all arc ∈ vertex do

for all (s1, s2,m,NEQ) ∈ arc do
v1 ← featureValue(s1,m)
v2 ← featureValue(s2,m)
if v1 6= v then (s1, v1)↔ (s2, v2)
w1 ← vocabulary(s1)
w2 ← vocabulary(s2)
δ ←W1 −W2

for all w ∈ freq do
freq[w]++

for all w ∈ freq do
p = freq[w] / Σw freq[w]
if p ≥ θ′ then

morphemes[v]← morphemes[v]∪ w
return morphemes

6 Evaluation and Results

We evaluated the output of feature detection with
one wildcard feature as applied to the Elicitation
Corpus from the LDC’s Urdu-English LCTL lan-
guage pack. Threshold parameters were manually
chosen to be small values (θ = 0.05). Note that
an increase in precision might be possible by tun-
ing this value; however, as stated, we are most con-
cerned with recall.

An initial attempt was made to create a gold stan-
dard against which recall could be directly calcu-
lated. However, the construction of this gold stan-
dard was both noisier and more time consuming
than expected. That is, even though this task is

fm

n

{(s1, s2, NEQ), (s4, s5, NEQ),
(s4, s7, NEQ), (s4, s8, NEQ)}

np-gen
pls

dl

{(s5,s7, NEQ), (s6, s9, NEQ)}

{(s5, s8, NEQ)} {(s7, s8, EQ)}

np-num

-+

{(s5, s6, NEQ),
(s7, s9, NEQ))}

np-def

prespast

fut

{(s1, s2, NEQ)}

c-ten

Figure 8: An example subset of the Feature Expression Graphs that are formed from the minimal pairs in Figure 7.

fm

n

|similarities[m,f]|
|similarities[m,f]| + |differences[m,f]|

|similarities[m,n]|
|similarities[m,n]| + |differences[m,n]|

|similarities[f,n]|
|similarities[f,n]| + |differences[f,n]|

Figure 9: An example of how probabilities are calculated for each feature value pair in a Feature Expression Graph
for the feature np-gender.

based on how a linguistic field worker might collect
data, this task was much more difficult for a human
than originally anticipated. Therefore, we instead
produced a list of hypothesized morpheme-feature
pairs and then had a human trained in linguistics
who was also bilingual in Hindi/Urdu-English mark
each pair as “Correct,” “Incorrect,” or “Ambigu-
ous.” The results of this evaluation are summa-
rized in Figure 10. Though a fair number of in-
correct hypotheses were produced, we were encour-
aged by the number of correct hypotheses in the out-
put. We also note that the words being identified are
largely function words and multi-morpheme tokens
from which closed-class functional morphemes will
be extracted. One might think the counts extracted
seem low when compared to the typical MT vocab-
ulary size, but these function words that we extract
cover a much larger probability mass of the language
than content words.

We are confident that the Morphosyntactic Lex-
icon Generator designed to operate directly down-
stream from this process will be sufficiently discrim-
inant to use these morpheme-feature pairings to cre-
ate a high precision lexicon. However, since this
component is, in itself, highly complex, its specifics
are beyond the scope of this paper and so we leave it

Judgement Morpheme-Feature Pairings
Correct 68

Ambiguous 29
Incorrect 109
TOTAL 206

Figure 10: The results of feature detection. Being a
recall-oriented approach, inductive feature detection is
geared toward overproduction of morpheme-feature pair-
ings as shown in the number of ambiguous and incorrect
pairings.

to be discussed in future work.

7 Conclusion

We have presented a method for inductive feature
detection of an annotated corpus, which determines
which feature values have a distinct representation
in a target language and what morphemes can be
used to express these grammatical meanings. This
method exploits the unique properties of an Elici-
tation Corpus, a resource which is now becoming
widely available from the LDC. Finally, we have ar-
gued that the output of feature detection is useful for
exploiting these linguistic features via a feature-rich
grammar for a machine translation system.

References
H. Bonneau-Maynard, A. Allauzen, D. Déchelotte, and

H. Schwenk. 2007. Combining morphosyntactic en-
riched representation with n-best reranking in statis-
tical translation. In Proceedings of the Workshop on
Structure and Syntax in Statistical Translation (SSST)
at NAACL-HLT.

Jaime Carbonell, Kathrina Probst, Erik Peterson, Chris-
tian Monson, Alon Lavie, Ralf Brown, and Lori Levin.
2002. Automatic rule learning for resource limited
MT. In Association for Machine Translation in the
Americas (AMTA), October.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Association for
Computational Linguistics (ACL).

Yuan Ding and Martha Palmer. 2005. Machine trans-
lation using probabilistic synchronous dependency in-
sertion grammars. In Proceedings of the 43rd Meeting
of the Association for Computational Linguistics ACL.

Bryant Huang and Kevin Knight. 2006. Relabeling syn-
tax trees to improve syntax-based machine translation
quality. In Proceedings of (NAACL-HLT).

Ronald Kaplan. 1995. The formal architecture of lexi-
cal functional grammar. In Mary Dalrymple, Ronald
Kaplan, J. Maxwell, and A. Zaenen, editors, Formal
Issues in Lexical Functional Grammar. CSLI Publica-
tions.

Paul Kay. 2002. An informal sketch of a formal archi-
tecture for construction grammar. In Grammars.

Phillipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Percy Liang, Alexandre Bouchard-Cote, Dan Klein, and
Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. In Proceedings of the
44th Annual Meeting of the Association for Computa-
tional Linguistics, Sydney.

Christian Monson, Jaime Carbonell, Alon Lavie, and Lori
Levin. 2007. Paramor: Minimally supervised induc-
tion of paradigm structure and morphological analysis.
In Proceedings of the 9th ACL SIGMORPH.

Shakthi Poornima and Jean-Pierre Koenig. 2008. Re-
verse complex predicates in Hindi. In Proceedings of
the 24th Northwest Linguistic Conference.

