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ABSTRACT

Disease-causing pathogens such as viruses introduce their proteins into the host cells in
which they interact with the host’s proteins, enabling the virus to replicate inside the host.
These interactions between pathogen and host proteins are key to understanding infectious
diseases. Often multiple diseases involve phylogenetically related or biologically similar
pathogens. Here we present a multitask learning method to jointly model interactions be-
tween human proteins and three different but related viruses: Hepatitis C, Ebola virus, and
Influenza A. Our multitask matrix completion-based model uses a shared low-rank structure
in addition to a task-specific sparse structure to incorporate the various interactions. We
obtain between 7 and 39 percentage points improvement in predictive performance over
prior state-of-the-art models. We show how our model’s parameters can be interpreted to
reveal both general and specific interaction-relevant characteristics of the viruses. Our code
is available online.*

Keywords: host–pathogen protein–protein interaction, matrix completion, multitask learning,

protein interaction prediction, viruses.

1. INTRODUCTION

Infectious diseases such as H1N1 influenza, the recent Ebola outbreak, and bacterial infections such as

the recurrent Salmonella and Escherichia coli outbreaks are a major health concern worldwide, causing

millions of illnesses and many deaths each year. Key to the infection process are host–pathogen interactions

at the molecular level, in which pathogen proteins physically bind to human proteins to manipulate important

biological processes in the host cell, to evade the host’s immune response, and to multiply within the host.

Very little is known about these protein–protein interactions (PPIs) between pathogen and host proteins for

any individual disease. However, such PPI data are widely available across several diseases, and the central

question in this article is: Can we model host–pathogen PPIs better by leveraging data across multiple

diseases? This is of particular interest for lesser known or recently evolved diseases, in which the data are

particularly scarce. Furthermore, it allows us to learn models that generalize better across diseases by

modeling global phenomena related to infection.
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An elegant way to formulate the interaction prediction problem is through a graph completion-based

framework, in which we have several bipartite graphs over multiple hosts and pathogens. Nodes in the

graphs represent host proteins (circles) and pathogen proteins (triangles), with edges between them re-

presenting interactions (host protein interacts pathogen protein). Given some observed edges (interactions

obtained from laboratory-based experiments), we wish to predict the other edges in the graphs. Such

bipartite graphs arise in a plethora of problems, including recommendation systems (user prefers movie),

citation networks (author cites article), and disease–gene networks (gene influences disease). In our problem,

each bipartite graph G can be represented using a matrix M, in which the rows correspond to pathogen

proteins and columns correspond to host proteins. The matrix entry Mij encodes the edge between

pathogen protein i and host protein j from the graph, with Mij = 1 for the observed interactions. Thus, the

graph completion problem can be mathematically modeled as a matrix completion problem (Candes and

Recht, 2009).

Most of the prior work on host–pathogen PPI prediction has modeled each bipartite graph separately, and

hence cannot exploit the similarities in the edges across the various graphs. Here we present a multitask

matrix completion method that jointly models several bipartite graphs by sharing information across them.

From the multitask perspective, a task is the graph between one host and one pathogen (can also be seen as

interactions relevant to one disease). We focus on the setting in which we have a single host species

(human) and several related viruses, in which we hope to gain from the fact that similar viruses will have

similar strategies to infect and hijack biological processes in the human body. Such opportunities for

sharing arise in other applications as well: for instance, predicting user preferences in movies may inform

preferences in selection of books, or vice versa, as movies and books are semantically related. Multitask

learning-based models that incorporate and exploit these correlations should benefit from the additional

information.

Our multitask matrix completion-based model is motivated by the following biological intuition gov-

erning protein interactions across diseases.

1. An interaction depends on the structural properties of the proteins, which are conserved across similar

viruses as they have evolved from common ancestors. Our model thus needs a component to capture

these latent similarities, which is shared across tasks.

2. In addition to the shared properties already discussed, each pathogen has also evolved specialized

mechanisms to target host proteins. These are unique to the pathogen and can be expressed using a

task-specific parameter in the model.

This leads us to the following model that incorporates the mentioned ideas. The interactions matrix Mt of

task t can be written as Mt = lt� (shared component) + (1 - lt)� (specific component) with hyperparameter

lt, allowing each task to customize its amount of shared and specific components.

To incorporate the mentioned ideas, we assume that the interactions matrix M is generated from two

components. The first component has low-rank latent factors over the human and virus proteins, with these

latent factors jointly learned over all tasks. The second component involves a task-specific parameter, on

which we additionally impose a sparsity constraint as we do not want this parameter to overfit the data.

Section 3 discusses our model in detail. We trade-off the relative importance of the two components using

task-specific hyperparameters. Our model can thus learn what is conserved and what is different across

pathogens, rather than having to specify it manually.

The key challenges in inducing such a model are as follows. (1) In addition to the interactions from

each graph, it should exploit information available in the form of features. (2) Exploiting features is

particularly crucial because the graph G is often extremely sparse, that is, there are a large number of nodes

and very few edges are observed. There will be proteins (i.e., nodes) that are not involved in any known

interactions—called the cold start problem in the recommendation systems community. The model should

be able to predict the existence of links (or their absence) between such prior ‘‘unseen’’ node pairs. This is

of particular significance in graphs that capture biological phenomena. For instance, the host–pathogen PPI

network of human Ebola virus (column 3, Table 2) has �90 observed edges (equivalent to 0.06% of the

possible edges), which involve only 2 distinct virus proteins. (3) A side effect of having scarce data is the

availability of a large number of unlabeled examples, that is, pairs of nodes with no edge between them.

These unlabeled examples can contain information about the graph as a whole, and a good model should be

able to use them.
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The main contributions of this work are as follows.

� We extend a prior matrix completion model (Abernethy et al., 2009) to the multitask setting. This

extension is new.
� Unlike most prior approaches, our model exploits node-based features, which allows us to deal with

the ‘‘cold start’’ problem (generating predictions on unseen nodes).
� We apply the model to an important, real-world problem—prediction of interactions in disease-

relevant host–pathogen protein networks, for multiple related diseases. We demonstrate the superior

performance of our model over prior state-of-the-art multitask models.
� We use unlabeled data to initialize the parameters of our model, which serves as a prior. This gives us

a modest boost in prediction performance.

1.1. Background: Host–pathogen PPIs

The experimental discovery of host–pathogen protein–protein interactions (HP PPIs) involves bio-

chemical and biophysical methods such as coimmunoprecipitation, yeast two-hybrid assays, and cocrys-

talization. The HP PPIs from several small-scale and high-throughput experiments are aggregated by

databases such as MINT (Chatraryamontri et al., 2009), HPIDB (Kumar and Nanduri, 2010), and PHISTO

(Tekir et al., 2012) by literature curation. These databases are valuable sources of information to bioin-

formaticians for developing models.

1.1.1. Prediction of host–pathogen PPIs. The most reliable experimental methods for studying

PPIs are often very time consuming and expensive, making it hard to investigate the prohibitively large set

of possible host–pathogen interactions—for example, the bacterium Bacillus anthracis that causes anthrax

has about 2321 proteins, which when coupled with the 100,000 or so human proteins gives �232 million

protein pairs to test experimentally. Computational techniques complement laboratory-based methods by

predicting highly probable PPIs. These techniques use the known interactions data from previous experi-

ments and predict the most plausible new interactions. In particular, supervised machine learning-based

methods use the few known interactions as training data and formulate the interaction prediction problem in

a classification setting, with target classes ‘‘interacting’’ or ‘‘noninteracting.’’ Features are derived using

various attributes of the two proteins such as protein sequences from UniProt (UniProt Consortium, 2011),

protein structure from PDB, and gene ontology (GO) from GO database (Ashburner et al., 2000).

1.2. Prior work

Most of the prior work in PPI prediction has focused on building models separately for individual

organisms (Chen and Liu, 2005; Qi et al., 2006; Singh et al., 2006; Wu et al., 2006) or on building a model

specific to a disease in the case of HP PPI prediction (Dyer et al., 2007; Qi et al., 2009; Tastan et al., 2009;

Kshirsagar et al., 2012). There has been little work on combining PPI data sets with the goal of improving

prediction performance for multiple organisms. Qi et al. (2010) proposed a semisupervised multitask

framework to predict PPIs from partially labeled reference sets. Kshirsagar et al. (2013) developed a task

regularization-based framework called multitask pathway-based learning (MTPL) that incorporates the

similarity in biological pathways targeted by various diseases to couple multiple tasks together. Matrix

factorization-based PPI prediction has seen very little work, mainly because of the extremely sparse nature

of these data sets that makes it very difficult to get reliable predictors. Xu et al. (2010) used a CMF-based

approach in a multitask learning setting for within-species PPI prediction. The methods used in all prior

work on PPI prediction do not explicitly model the features of the proteins and cannot be applied on

proteins that have no known interactions available. Our work addresses both these issues.

A majority of the prior work in the relevant areas of collaborative filtering and link prediction includes

single relation models that use neighborhood-based prediction (Sarwar et al., 2001), matrix factorization-

based approaches (Koren et al., 2009; Menon and Elkan, 2011), and Bayesian approaches using graphical

models ( Jin et al., 2002; Phung et al., 2009). There have also been multitask approaches on link prediction

(Singh and Gordon, 2008; Li et al., 2009; Cao et al., 2010; Zhang et al., 2012); however, many of those

models do not incorporate features of the nodes in the graph. Menon and Elkan (2011) combine linear and

bilinear features, latent parameters on the nodes, and several other parameters into a function that mini-

mizes a ranking loss for link prediction in a single graph. Abernethy et al. (2009) cast the problem of matrix
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completion in terms of the abstract problem of learning linear operators. Their framework allows the

incorporation of features and kernels. We extend their bilinear model for the multitask setting. There has

been a lot of work on other low-rank models for multitask learning (Ando and Zhang, 2005; Ji and Ye,

2009; Chen et al., 2012, 2013). Another related line of work is coembedding, in which the goal is to embed

different types of objects in the same shared lower dimensional space (Mirzazadeh et al., 2015).

2. BILINEAR LOW-RANK MATRIX DECOMPOSITION

In this section, we present the matrix decomposition model that we extend for the multitask scenario. In

the context of our problem, at a high level, this model states that protein interactions can be expressed as

dot products of features in a lower dimensional subspace.

Let Gt be a bipartite graph connecting nodes of type t with nodes of type 1. Let there be mt nodes of type

t and nt nodes of type 1. We denote by M 2 Rmt · nt the matrix representing the edges in Gt. Let the set of

observed edges be O. Let X and Y be the feature spaces for the node types t and 1, respectively. For the

sake of notational convenience, we assume that the two feature spaces have the same dimension dt
1. Let

xi 2 X denote the feature vector for a node i of type t and yj 2 Y be the feature vector for node j of type 1.

The goal of the general matrix completion problem is to learn a function f : X ·Y ! R that also explains

the observed entries in the matrix M. We assume that the function f is bilinear on X ·Y. This bilinear form

was first introduced by Abernethy et al. (2009) and takes the following form:

f (xi‚ yj) = xT
i Hyj = xT

i UVTyj: (1)

The factor H 2 Rdt · dt maps the two feature spaces X and Y. This model assumes that H has a low-rank

factorization given by H = UVT, where U 2 Rdt · k and V 2 Rdt · k. The factors U and V project the two

feature spaces to a common lower dimensional subspace of dimension k. Although the dimensionality of

the feature spaces X and Y may be very large, the latent lower dimensional subspace is sufficient to capture

all the information pertinent to interactions. To predict whether two new nodes (i.e., nodes with no

observed edges) with features pi and qj interact, we simply need to compute the product: piUVTqj. This

enables the model to avoid the cold start problem that many prior models suffer from. The objective

function to learn the parameters of this model has two main terms: (1) a data-fitting term, which imposes a

penalty for deviating from the observed entries in O and (2) a low-rank enforcing term on the matrix H.

The first term can be any loss function such as squared error, logistic loss, and hinge loss. We tried both

squared error and logistic loss and found the performance to be similar. The squared error function has the

advantage of being amenable to adaptive step-size-based optimization, which results in a much faster

convergence. The low-rank constraint on H (mentioned in (2)) is NP-hard to solve and it is standard

practice to replace it with either the trace norm or the nuclear norm. Minimizing the trace norm (i.e., sum of

singular values) of H = UVT is equivalent to minimizing kU k2
F + kV k2

F . This choice makes the overall

function easier to optimize:

L(U‚ V) =
X

(i‚ j)2O
Cij ‘(Mij‚ xT

i UVTyj) + k(kU k2
F + kV k2

F )

where ‘(a‚ b) = (a - b)2

: (2)

The constant cij is the weight/cost associated with the edge (i‚ j), which allows us to penalize the error on

individual instances independently. The parameter k controls the trade-off between the loss term and the

regularizer.

3. THE BILINEAR SPARSE LOW-RANK MULTITASK LEARNING MODEL

In the previous section, we described the bilinear low-rank model for matrix completion. Note that to capture

linear functions over the features, we introduce a constant feature for every protein (i.e., [xi1]). We now discuss

1The dimensions being different do not influence the method or the optimization in any way.
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the multitask extensions that we propose. Let fGtg, where t = 1 . . . T be the set of T bipartite graphs and the

corresponding matrices be fMtg. Eachmatrix Mt has rows corresponding to node type tt and columns corre-

sponding to the node type 1t. The feature vectors for individual nodes of the two types be represented by xti and

ytj, respectively. LetOt be the set of observed links (and nonlinks) in the graphGt. Our goal is to learn individual

link prediction functions ft for each graph. To exploit the relatedness of the T bipartite graphs, we make some

assumptions on how they share information. We assume that each matrix Mt has a low-rank decomposition that

is shared across all graphs and a sparse component that is specific to the task t. That is,

ft(xti‚ ytj) = xT
tiHtytj‚ where Ht = ltUVT + (1 - lt)St: (3)

As before, the shared factors U and V are both Rdt · k (where the common dimensionality dt of the two

node types is assumed for convenience). The matrix St 2 Rdt · dt is a sparse matrix. The objective function

for the multitask model is given by

L(U‚ V‚ fStg) =
1

N

XT

t = 1

X

(i‚ j)2Ot

ct
ij‘(Mtij ‚ xT

tiHtytj) +

k(kU k2
F + kV k2

F ) +
XT

t = 1

rt kStk1:

(4)

Here N =
P

t jOtj is the total number of training examples (links and nonlinks included) from all tasks.

To enforce the sparsity of St, we apply an ‘1 norm. In our experiments, we tried both ‘1 and ‘2 norms and

found that the ‘1 norm works better.

Optimization: The function L(U‚ V‚ fStg) is nonconvex. However, it is convex in every one of the

parameters (i.e., when the other parameters are fixed), and a block coordinate descent method called

alternating least squares (ALSs) is commonly used to optimize such functions. To speed up convergence,

we use an adaptive step size. The detailed optimization procedure is shown in the Supplementary Data.

Convergence: The ALSs algorithm is guaranteed to converge only to a local minimum. There is work showing

convergence guarantees to global optima for related simpler problems; however, the assumptions on the matrix

and the parameter structure are not very practical and it is difficult to verify whether they hold for our setting.

Initialization of U and V: We tried random initialization (in which we randomly set the values to lie

in the range [0 to 1]), and also the following strategies that initialize U0) top-k left singular vectors and

V0) top-k right singular vectors from the singular value decomposition (SVD) of
P

(i‚ j)2G
mijxiy

T
j . We set G

to (a) training examples from all tasks or (b) a random sample of 10,000 unlabeled data from all tasks. We

found that using the unlabeled data for initialization gives us a better performance.

3.1. Handling the ‘‘curse of missing negatives’’

For the matrix completion (MC) algorithm to work in practice, the matrix entries Mij should represent

interaction scores (range [0 to 1]) or take binary values (1 second for positives and 0 second for negatives). Our

experiments with PPI probabilities (obtained using the MINT-scoring algorithm) gave bad models. The binary

matrix setting requires some observed 0 second. However, noninteractions are not available as they cannot be

verified experimentally for various reasons. Hence we derived a set of ‘‘probable negatives’’ using a heuristic

often used in PPI prediction work (Qi et al., 2006; 2009; Dyer et al., 2011; Kshirsagar et al., 2013). We pair up

all virus proteins with all human proteins and sample a random set to be negatives. This heuristic works in

practice as the interaction ratio (i.e., number of positives in a large random set of protein pairs) is expected to be

very low: �1/100 to 1/500. That is, the probability that our negatives contain true positives is negligible.

High class imbalance: we incorporate the prior on the interaction ratio by setting the size of our randomly

sampled negatives set equal to 100 times the number of gold standard positives.

4. DATA SET

We use three human virus PPI data sets from the PHISTO (Tekir et al., 2012) database (version from

2014), the characteristics of which are summarized in Table 1. The Influenza A task includes various strains
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of flu such as H1N1 (Puerto Rico, Texas strains, etc.), H3 N2 (England strain, etc.), H5 N1, and H7 N3. The

Hepatitis task has several subtypes (1a and 1b), isolates such as H77 and HC-J6, and Ebola has the Zaire

Ebola virus strain Mayinga and strain 1995. All three are single-strand RNA viruses, with Hepatitis being a

positive-strand ssRNA, whereas Influenza and Ebola are negative-strand viruses. The density of the known

interactions is quite small when considering the entire proteome (i.e., all known proteins) of the host and

pathogen species (last row in Table 1).

4.1. Addressing the homologs in PHISTO

The interactions data reported in PHISTO database is aggregated from several host-pathogen inter-

actions data sources such as MINT, IntAct, DIP, etc. We found that many of the interactions (within a

task) involve homologous PPI—virus protein homologs from two strains interacting with either the same

human protein or with homologous human proteins. Such PPIs usually come from different publications/

studies, but they introduce a lot of redundancy in the data set. Removing such PPIs is challenging as there

are several criteria to consider, the most important being what threshold of sequence similarity consti-

tutes a homolog? The very existence of sequence similarity between proteins is what makes it possible

for biologists to predict unknown interactions and most computational methods rely on it for PPI

prediction.

In row 2 of Table 1, we give a conservative estimate of the number of nonhomologous PPIs. For this,

we identify homologous PPI and retain only one of them in the data set. Homologs were obtained using

BLAST sequence alignment (blastp) using an e-value cutoff threshold of 1e - 5. This is a relaxed cutoff

because there are cases in which two functionally different proteins (either virus–virus or human–human)

with low query coverage and low identity end up as ‘‘homologs’’. For example, human proteins

Q8WV28 (gene BLNK, B cell linker protein) and O00459 (gene PIK3R2, phosphatidylinositol 3-kinase)

are considered homologs by this cutoff. The number of nonhomologous PPIs should, therefore, be

considered a lower limit.

In our experiments section, we thus evaluate our models in two settings—(1) on the original data set (2)

by creating partitions: the first without any homologous PPI and the other with only the homologous PPI.

4.2. Features

As the sequence of a protein determines its structure and consequently its function, it may be possible to

predict PPIs using the amino acid sequence of a protein pair. Shen et al. (2007) introduced the ‘‘conjoint

triad model’’ for predicting PPIs using only amino acid sequences. They partitioned the 20 amino acids into

Table 1. Tasks and Their Sizes (a Column Corresponds to One Bipartite Graph

Between Human Proteins and the Virus Indicated in the Column Header)

Task !
Influenza A

(28 strains)

Hepatitis C (5 strains,

many isolates)

Ebola

(3 strains)

No. of HP PPIs (positives) 848 981 90

No. of nonhomologous PPIs 274 270 75

No. of unique virus proteins in data set 54 151 2

No. of unique human proteins in data set 362 385 88

Total No. of virus proteins in

UniProtKB across strainsa
542 163 38

No. of negatives 84800 98100 9000

Density of observed graphb (as %) 0.15 0.60 0.20

More importantly, each task represents several strains of one virus species. We pool together PPI from all strains as the number of

interactions per strain is very small and not representative. PPI data from different strains often involve homologous proteins (virus

proteins or/and human proteins) as these were curated from different publications/studies involving the virus. The second row gives a

conservative estimate of the number of nonhomologous PPIs. These were obtained by computing BLAST sequence similarity (see

Section 4.1 for details). All pathogens are single-stranded RNA viruses. The last row shows that each of our graphs is extremely sparse.
aThis is the number of ‘‘reviewed’’ proteins on UniProtKB from all strains in our data.
bDensity = (No. of positives + No. of negatives)/total number of possible edges. The denominator was computed considering all

proteins from all strains of the virus and �100,000 human proteins.

HP PPIs, host–pathogen protein–protein interactions; PPI, protein–protein interaction.
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7 classes based on their electrostatic and water affinities.2 A protein’s amino acid sequence is first transformed

to a class sequence (by replacing each amino acid by its class). For k = 3, they count the number of times each

distinct tri-mer (set of three consecutive amino acids) occurred in the sequence. As there are 343 (73) possible tri-

mers (with an alphabet of size 7), the feature vector containing the tri-mer frequency counts will have 343

elements. To account for protein size, they normalized the counts by linearly transforming them to lie between 0

and 1. Thus the value of each feature in the feature vector is the normalized count for each of the possible amino

acid tri-mers. We use di-, tri-, and four-mers thus leading to a total of 2793 features (72 + 73 + 74). Such features

have been successfully applied in prior work (Dyer et al., 2007; Kshirsagar et al., 2013).

5. EXPERIMENTAL SETUP

5.1. Comparison with other machine learning approaches

Our baselines include recent low-rank and sparse models, conventional multitask methods, and prior

work on HP PPI prediction. For a uniform comparison, we used least squared loss in all the methods. The

MALSAR (Zhou et al., 2011) package was used to implement some of the models. For the baselines

wherever appropriate, we concatenated the features of the two node types into a single feature vector. Let

W 2 RT · dt be the matrix with the task-specific weight vectors wt.

Single task learning: We used ridge regression with ‘2 regularization (which performed better than ‘1).

MMTL: The mean regularized multitask learning model from Evgeniou and Pontil (2004).

Sparse + low-rank (Chen et al., 2012): W is assumed to have the decomposition: W = P + Q, where P is

sparse and Q has a low-rank structure.

IMC (Jain and Dhillon, 2013; Natarajan and Dhillon, 2014): This is the link-prediction model from

Section 2, in which data from all tasks are combined without incorporating any task relationships. U

and V are shared by all tasks. We use the same initialization for this method as we do for our model. A

comparison with this model tells us how much we gain from the task-specific sparsity component St.

MTPL (Kshirsagar et al., 2013): A biologically inspired regularizer is used to capture task similarity.

BSL-MTL: Bilinear sparse low-rank multitask learning, the method developed in this article.

5.2. Comparison with a homolog baseline

In addition to the machine learning methods presented in Section 5.1, we also tried a simple homology-

based approach. As per this method, a virus protein v will interact with a human protein h if it interacts with

any other human protein h0 similar to h. The converse holds too. Such homology-motivated heuristic ap-

proaches have been traditionally popular in the interorganism PPI prediction literature (Matthews et al., 2001;

Walhout and Vidal, 2001). Mika and Rost (2006) offer a commentary on the success of such approaches in

prediction PPI within an organism and the transferability across organisms. Modifications of such approaches

have been published recently (Chen et al., 2009; Lin et al., 2013; Murakami and Mizuguchi, 2014).

The virus–virus and human–human protein similarity graphs used in this baseline were computed using

protein sequence similarity. We ran BLAST sequence alignment (blastp) with an e-value cutoff of 0.1, and

the negative logarithm of the e-value was used as a measure of similarity (we use a somewhat relaxed

cutoff as we are comparing across organisms). We use the entire human–virus interactome from PHISTO as

input to this method. Given a human protein h, we rank all virus proteins v based on the following simple

scheme. Let V(h) be a set of all virus proteins interacting with the human protein h and let H(v) be all

human proteins interacting with the virus protein v. We score each pair (h‚ v) from the bipartite graph as

follows: max{max similarity between h and all human proteins in H(v); max similarity between v and all

virus proteins in V(h)}. This baseline is shown in the first row as Homolog in Table 2.

5.3. Evaluation setup

We compare all the methods in two settings, in which a small proportion of the available labeled data are

randomly sampled and used to train a model, which is then evaluated on the remaining data. For the first

2For details of these classes, please refer to the supplementary or the original article.
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setting, we randomly split the labeled data from each task into 10% training and 90% test, such that the

class-skew of 1:100 is maintained in both splits (i.e., stratified splits). The second setting uses a 30%

training, 70% test split. In each setting, we generate 10 random splits and average the performance over the

10 runs (parameter tuning details are given in the Supplementary Data).

We report the area under the precision-recall curve (AUC-PR) along with the standard deviation. AUC-PR

has been shown to give a more informative picture of an algorithm’s performance than receiver operating

characteristic (ROC) curves in high-class imbalance data sets (Davis and Goadrich, 2006) such as ours.

6. RESULTS

The PPI data we obtain from PHISTO have homologous PPI within a task. Note that the presence of

sequence similarity across virus proteins is a strong criterion for computational methods to work; however,

orthologs or paralogs of proteins within a task lead to redundancy in the data, and some readers may find it

harder to judge the contribution of the methods. We, therefore, present results on three sets:

1. The original PPIs from PHISTO. AUC-PR is shown in Table 2.

2. Nonhomologous partition: after removal of all homologous PPIs from the test data. Here we ensure

that the test data do not contain homologs of PPI observed in the training data (this ensures there are

Table 2. Area Under the Precision-Recall Curve on the PHISTO Data Set

10% training, 90% test 30% training, 70% test

Ebola Hep-C Influenza Ebola Hep-C Influenza

Homolog 0.230 – 0.06 0.178 – 0.01 0.158 – 0.01 00.311 – .03 0.180 – 0.01 0.198 – 0.01

STL (Ridge Reg.) 0.189 – 0.09 0.702 – 0.08 0.286 – 0.02 00.130 – .03 0.802 – 0.03 0.428 – 0.03

MMTL 0.113 – 0.04 0.767 – 0.03 0.321 – 0.02 00.129 – .02 0.802 – 0.04 0.430 – 0.03

Sparse + low-rank 0.144 – 0.07 0.767 – 0.02 0.318 – 0.02 00.153 – .02 0.814 – 0.01 0.414 – 0.03

MTPL 0.217 – 0.08 0.695 – 0.02 0.345 – 0.02 00.260 – .05 0.713 – 0.01 0.496 – 0.03

IMC 0.087 – 0.04 0.779 – 0.02 0.362 – 0.01 00.122 – .02 0.801 – 0.01 0.410 – 0.03

BSL-MTL 0.233 – 0.10 0.807 – 0.02 0.486 – 0.02 00.361 – .03 0.842 – 0.01 0.560 – 0.02

The column header ‘‘X% training’’ indicates the fraction of the labeled data used for training and tuning the model with the rest

(100 - X)% used as test data. We report the average AUC-PR over 10 random train–test splits (stratified splits that maintain the class-

skew of 1:100). The standard deviation is also shown. The performance of the best baseline and the overall best method (BSL-MTL) is

highlighted in bold. The Homolog baseline performs comparably to our BSL-MTL method on the Ebola task. This is explained by the

virus–human PPI graph, from several other viruses, that the Homolog baseline has access to.

AUC-PR, area under the precision-recall curve; BSL-MTL, bilinear sparse low-rank multitask learning; MTPL, multitask pathway-

based learning; STL, single task learning.

Table 3. Area Under the Precision-Recall Curve

on the Nonhomologous Protein–Protein Interaction

within Each Task, in the 10% Setting

10% training, 90% test on nonhomologous PPI

Ebola Hep-C Influenza

Homolog 0.207 – 0.07 0.113 – 0.01 0.109 – 0.01

STL 0.210 – 0.14 0.474 – 0.06 0.302 – 0.03

Sparse+LR 0.216 – 0.13 0.482 – 0.05 0.312 – 0.04

BSL-MTL 0.295 – 0.10 0.544 – 0.06 0.505 – 0.05

To get an estimate of the relative size of the nonhomologous partition for each task, see

Table 1. Only the most representative baselines are retained for this experiment. Our model

performs better than the others on the nonhomologous part of the test data, as it captures

nonlinear similarities among the interactions within a task and across tasks very well.

Highest AUC is highlighted in bold.

508 KSHIRSAGAR ET AL.

D
ow

nl
oa

de
d 

by
 C

A
R

N
E

G
IE

-M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

7/
25

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



no redundant examples). Furthermore, every set of homologous PPIs in the test data is replaced with a

single PPI. A BLAST sequence similarity cutoff of 1e - 5 was used to find homologs. The results are

given in Table 3.

3. Homologous PPI partition: only homologous PPI part of the test data. This is essentially the set of PPI

removed in the set-(b). Table 4 shows these results.

Note that the partitions in (b) and (c) together comprise our test data. Also, the negatives in the test data

are randomly split into the ‘‘no-homolog’’ and ‘‘homolog’’ partitions while maintaining the number of

negatives in each partition to be 100 times the number of positives.

Overall performance: For reference, the AUC-PR of a random classifier model is �0:01 because of the

class imbalanced nature of the data. In general, we notice that multitask learning benefits all tasks. The

first three columns show the results in the 10% setting. Our model (last row) has large gains for influenza

(1.4 times better than the next best) and modest improvements for the other tasks. The variance in the

AUC is high for the Ebola task (column 1) owing to the small number of positives in the training splits.

The most benefits for our model are seen in the 30% setting for all tasks. Notably, Homolog performs

comparably to our model. In addition to the training data seen by all other methods, this baseline also

uses additional data in the form of the virus–virus, human–human sequence similarities and a virus–

human interactome from several other viruses (besides the three tasks). Results on the partitions shed

further light on this.

Performance on the nonhomologous PPI partition: Table 3 shows these results. Overall, our method

performs best on this partition over all tasks. Comparison with the AUC in Table 2 shows that AUC for the

Ebola task is higher on all baselines, except Homolog, indicating that a bigger fraction of the overall

performance comes from the nonhomologous partition (this is also marginally the case for Influenza). This

effect is the most pronounced for our method (BSL-MTL) and demonstrates that we are able to predict

such PPI by sharing information with other tasks. There are thus two components to the prediction

performance—(1) the presence of sequence-similar proteins within a task and (2) nonlinear similarities

between the interactions within a task and across tasks. We are able to capture the latter well through the

shared subspace structure of our model.

Performance on the homologous PPI partition (Table 4): Except the Ebola task, BSL-MTL has

the highest AUC. The Homolog baseline best captures the homologous PPI in Ebola (with an AUC

twice the next best). However, as there are far fewer homologous PPI in Ebola than in the other

tasks (row 2 of Table 1), this contributes less to the overall performance of the Homolog baseline.

Hepatitis-C has the highest fraction of homologous PPI and BSL-MTL does significantly better on

these than the other baselines, which also leads to a higher overall AUC. The same can be said of the

Influenza task.

Disadvantages of the Homolog method: In Figure 3, we show for two tasks the protein interactions in the

test data (for one train–test split) that were not found by the Homolog model that relies purely on

homology-based sequence similarity.

Table 4. Area Under the Precision-Recall Curve

on the Homologous Protein–Protein Interaction

Within Each Task, in the 10% Setting

10% training, test only homologous PPI

Ebola Hep-C Influenza

Homolog 0.399 – 0.07 0.161 – 0.01 0.180 – 0.01

STL 0.192 – 0.15 0.504 – 0.10 0.305 – 0.03

Sparse + LR 0.184 – 0.13 0.512 – 0.10 0.315 – 0.04

BSL-MTL 0.130 – 0.10 0.815 – 0.02 0.475 – 0.02

The Homolog baseline outperforms all on the Ebola task and BSL-MTL beats all other

methods on the other tasks. The Homolog method has access to a wider virus–human PPI

graph involving several other viruses and is able to infer homologous PPI for Ebola better

(note that some of the homologous PPIs are not redundant examples but involve proteins

with very small regions of sequence similarity.

Highest AUC is highlighted in bold.
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6.1. Biological significance of the model

The model parameters U, V, and S are a source of rich information that can be used to further understand

host–pathogen interactions. Note that our features are derived from the amino acid sequences of the

proteins that provide opportunities to interpret the parameters.

1. Clustering proteins based on interaction propensities: We analyze the proteins by projecting them

using the model parameters U and V into a lower dimensional subspace (i.e., computing XUT and YVT

to get projections of the virus and human proteins, respectively). The principal component analysis

(PCA) of this lower dimensional representation is compared with PCA in the original feature space

(protein sequence features) in Figures 1 and 2. First, the projected data have a much better separation

than the original data. Second, Figure 2 shows that Hepatitis-C and Influenza have many proteins with

similar binding tendencies, and that these behave differently than most Ebola virus proteins. This

observation is not obvious in the PCA of the original feature space (Fig. 1), in which proteins with

similar sequences group together. We analyze the projected data further by looking at the clusters of
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FIG. 1. Principal component analysis (PCA) of

virus proteins in the original feature space. The

first two principal components are shown. Shape

and color of the points indicate which virus that

protein comes from.
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FIG. 2. PCA of virus proteins in the projected subspace. The first two principal components are shown. Shape of the

points indicates which virus that protein comes from. We have highlighted three clusters for which we show gene

ontology term enrichment analysis results in Table 5.
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Hepatitis−C
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Influenza
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Host Pathogen
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b

FIG. 3. PPIs from each task that are found by our method but are missed by the homolog method. These are those for

which sequence-similar proteins were not found. (a) Hepatitis-C–human PPI and (b) Influenza–human PPI. PPI,

protein–protein interaction.
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proteins for enrichment of GO3 (Ashburner et al., 2000) annotations (proteins were first clustered in

this lower dimensional space using k-means and setting the number of clusters to 6). Of particular

interest are the highlighted three clusters that contain either proteins projected far from others (such as

cluster 1) or proteins from different viruses projected close together (cluster 2 and cluster 3). For

enrichment analysis, we use the FuncAssociate 3.04 (Berriz et al., 2003) tool and GO annotations for

the three viruses from UniProtKB.

2. Novel interactions with Ebola proteins: The top four Ebola–human PPIs are all predictions for the

Ebola envelope glycoprotein (GP) with four different human proteins (Note: GP is not in the gold

standard PPIs). There is abundant evidence in the published literature (Nanbo et al., 2010) for the

critical role played by GP in virus docking and fusion with the host cell.

3. Sequence motifs from virus proteins: We analyze sequence motifs derived from the top k-mers that

contribute to interactions. The significant entries of the model parameters U, V, and fStg were used to

compute these motifs. The top positive-valued entries from the product UVT indicate which pairs of

features ((fv‚ fh): virus protein feature, human protein feature) are important for interactions across all

the virus–human PPI tasks. Analogously, the entries from St give us pairs of features important to a

particular virus–human task ‘‘t’’. These results are given in the Supplementary Data.

7. CONCLUSIONS AND FUTURE EXTENSIONS

This work developed and tested a new multitask learning method for HP PPI prediction based on low-

rank matrix completion for sharing information across tasks. Our method, BSL-MTL, exhibited large

increases in prediction accuracy compared with a variety of baselines. The model parameters provide

several avenues for further studying HP PPI that can lead to interesting observations and insights. Finally,

the model we present is general enough to be applicable on other problems such as gene–disease relevance

prediction across organisms or disease conditions.
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