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Abstract

Cross-lingual entity linking maps an entity mention in a
source language to its corresponding entry in a structured
knowledge base that is in a different (target) language. While
previous work relies heavily on bilingual lexical resources
to bridge the gap between the source and the target lan-
guages, these resources are scarce or unavailable for many
low-resource languages. To address this problem, we inves-
tigate zero-shot cross-lingual entity linking, in which we as-
sume no bilingual lexical resources are available in the source
low-resource language. Specifically, we propose pivot-based
entity linking, which leverages information from a high-
resource “pivot” language to train character-level neural en-
tity linking models that are transferred to the source low-
resource language in a zero-shot manner. With experiments
on 9 low-resource languages and transfer through a total of
54 languages, we show that our proposed pivot-based frame-
work improves entity linking accuracy 17% (absolute) on av-
erage over the baseline systems, for the zero-shot scenario.1

Further, we also investigate the use of language-universal
phonological representations which improves average accu-
racy (absolute) by 36% when transferring between languages
that use different scripts.

Introduction
Entity linking (EL) is the task of associating an entity men-
tion with its corresponding entry in a structured knowledge
base (such as Wikipedia or Freebase), with several down-
stream applications including document understanding, en-
tity and event coreference, text mining and information re-
trieval (Mihalcea and Csomai 2007; Han and Sun 2012). In
this work, we focus on cross-lingual EL (McNamee et al.
2011), where the given entity mention is in a (source) lan-
guage different from the (target) language of the knowledge
base. In Figure 1, for example, the input entity in Marathi
(‘Poland’) is linked to the appropriate entry in an English
knowledge base (KB).

In monolingual EL, simple methods like string similarity
and Wikipedia anchor-text can be used effectively to identify
candidate KB entries for each entity mention (Ji and Grish-
man 2011; Sil et al. 2017). However, such methods often fail
in the case of cross-lingual EL, because entity mentions in

1All data, resources and code will be made available as a new
benchmark for zero-shot cross-lingual entity linking.
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[पोलंड] हा मध्य युरोपातील एक देश आहे
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Figure 1: Cross-lingual EL of an entity mention in a Marathi
sentence to an English KB: (1) direct Marathi–English link-
ing. (2) Pivoting Marathi through Hindi for linking. (3) Us-
ing IPA for pivoting. The arrows represent entity linking and
the solid blue lines represent parallel data from bilingual lex-
icons, used for pivoting.

the source language and KB entries in the target language
are frequently dissimilar. Existing work uses bilingual re-
sources to bridge this gap, including lexicons and Wikipedia
inter-language links (Tsai and Roth 2016; Pan et al. 2017;
Tsai and Roth 2018). However, the vast majority of the
world’s ≈ 7, 000 living languages are low-resourced, and
have extremely limited or zero bilingual resources. Even
within the 300 languages available on Wikipedia, some have
an extremely small number of articles (for example, Oromo
and Tigrinya have only 773 and 168 Wikipedia pages respec-
tively, while English has over 5 million). In order to enable
cross-lingual EL for such low-resource languages (LRLs), it
is imperative to design methods that do not rely heavily on
lexicons or other resources in the LRLs.

In this work, we take this to the extreme: we perform
the first study on zero-shot cross-lingual entity linking, de-
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vising methods that require no bilingual resources in the
source language (i.e., the language that the input entity men-
tion is sourced from). We propose pivot-based entity link-
ing, or PBEL, which is based on the intuition that despite
the fact that many languages have very few resources, it is
common that these languages have closely-related higher-
resource languages (HRLs) that we can leverage. For ex-
ample, the relatively low-resourced languages of Marathi
and Lao are from the same language family as the high-
resourced Hindi and Thai respectively. We exploit bilingual
lexicons and structured information available in these HRLs
to improve EL for languages where no such resources are
available. The specific contributions of this paper are

• PBEL, a novel method for cross-lingual EL, that uses no
bilingual resources in the source language. This consists
of two components:
Zero-shot transfer of neural entity linking models: Us-
ing a bilingual lexicon between an HRL and English, we
train a character-level neural model for linking entities in
the HRL to an English KB. The model can be transferred
to perform EL for a source LRL, without any language-
specific fine-tuning. For example, we train a model to
link Hindi (HRL) to English and transfer the model to
link Marathi (LRL) to English. Such transfer learning
schemes have been successful for other tasks, such as
morphological tagging and machine translation, when
used between closely-related languages (Zoph et al. 2016;
Cotterell and Heigold 2017).
Pivoting: Rather than attempting to directly link an LRL
entity to English, we link the entity to a closely-related
HRL. We then use bilingual lexicons, readily available
in the HRL, to obtain the corresponding English entity
link. We are, therefore, using the HRL as an intermedi-
ate pivot between the source LRL and English. Our ex-
periments demonstrate that this significantly improves EL
accuracy over directly linking to English, as named enti-
ties are likely similar in related languages (Tsvetkov and
Dyer 2016). In Figure 1, the orthographic pivoting exam-
ple shows that ‘Poland’ in Marathi and Hindi are written
similarly and can be linked with our neural EL model.
Since we have extensive Hindi-English lexicons, we can
obtain the English KB entry quite simply from the Hindi
name (shown with a solid blue line in the figure).

• The use of phonological representations for cross-lingual
EL. Transfer of character-level models is bound to fail
when the HRL and LRL do not use the same writing sys-
tem. We propose using International Phonetic Alphabet
(IPA) to bridge the gap between different scripts. Fig-
ure 1 shows an example of pivoting in the phonological
space. We see that the pronunciation (IPA representation)
of ‘Poland’ is highly similar in Marathi and Hindi because
they are closely-related languages.

• Experiments with 9 test languages from various language
families and 54 transfer languages that analyze the perfor-
mance of current state-of-the-art cross-lingual entity link-
ing methods in truly zero-shot settings, in order to demon-
strate the effectiveness of the proposed PBEL method.

Problem Setting
Cross-lingual EL is the task of linking an entity mention
m in a source language to a structured KB K in a target
language. In our work, we study the case when the source
language is some low-resource language (LRL), and fol-
low most previous work by using an English KB as the tar-
get (Pan et al. 2017; Tsai and Roth 2018). The task involves
identifying the appropriate entry een ∈ K that corresponds
to the entity mention m. Our EL model predicts an entity
link by maximizing a score function between m and een.

êen = argmax
een∈K

score(m, een)

In addition, consider an HRL that is closely-related (via
language family, script, similar phonology etc.) to the source
LRL, for which bilingual resources with links to the En-
glish KB are available. These are easily obtainable from
inter-language links in massive multilingual resources like
Wikipedia, DBPedia (Auer et al. 2007) and BabelNet (Nav-
igli and Ponzetto 2012). For each entry een ∈ K, let the
parallel entity in the HRL be eHRL. Note that it is possible
that eHRL = ∅ for some een, as not all English entities are
language-linked to the HRL. These HRL parallel entities are
the only cross-lingual resources we have access to in this
work. They are used for training the EL model as well as for
pivoting, as described in the following section. We do not
use any parallel entities in the LRL.

Model
The basic component of our entity linking system consists of
two neural encoders, one for the HRL and one for English,
which convert named entities (character sequences) into vec-
tor representations. The two encoders are trained such that
the vector representations of two parallel entities eHRL and
een are similar. We use the two encoders to calculate two
sets of scores between an LRL entity mention m and a KB
entry een through the following methods, leveraging the fact
that the LRL and HRL are closely-related:

• Zero-shot Transfer We apply the HRL encoder directly
on m and the English encoder on een, and calculate a
score based on the similarity of the vector representations.

• Pivoting We apply the HRL encoder on both the LRL en-
tity mention m and the parallel entry eHRL, and calculate a
score based on the similarity of the vector representations.

Then, we take the maximum out of these two scores as the
score between m and een.

In the following sections, we describe each part of the
model in more detail, and discuss using phonological rep-
resentations. For simplicity, we introduce the system with a
single HRL, and discuss transfer from multiple HRLs later.

We should note that, in most existing work, the EL pro-
cess is a two-step pipeline – candidate retrieval and context-
based disambiguation (Hachey et al. 2013). Candidate re-
trieval reduces the search space for EL by selecting a small
number of candidates for more precise linking. This is re-
quired because precise linking algorithms are often pro-
hibitively expensive to use on the entire KB. Our proposed
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Figure 2: Entity similarity model trained on parallel entities
between an HRL and English. An example entity (‘Poland’)
with Hindi as the HRL is shown here.

method is context-insensitive, much like traditional candi-
date retrieval models. Although we present our method as
an end-to-end EL system by simply picking the top-scoring
KB entry as the entity link, we also discuss how it can be
used to retrieve a larger number of candidates in next sec-
tion.

Entity Similarity Encoder
The entity similarity model is shown in Figure 2. We use
character-level Bidirectional-LSTMs (Bi-LSTM) to encode
entities into a continuous vector space. The model is trained
to maximize the cosine similarity between the vector rep-
resentations of an entity in an HRL and its equivalent (i.e.,
parallel) entity in English, much like recent work in neural
information retrieval (Mitra and Craswell 2017).

Consider an entity eHRL and its parallel entity in En-
glish een. Each entity is a sequence of characters; eHRL =
〈c1, c2 . . . cM 〉 and een = 〈k1, k2 . . . kN 〉. For each charac-
ter, we obtain a fixed-size character embedding. The embed-
dings are used as input to the Bi-LSTM and the final states
(concatenation of the last states from the forward and back-
ward LSTMs) form the encoded entity vectors vHRL and ven.

vHRL = HRL-Bi-LSTM(〈c1, c2 . . . cM 〉)
ven = English-Bi-LSTM(〈k1, k2 . . . kN 〉)

The similarity score is computed as,

sim(eHRL, een) = cosine(vHRL,ven)

Since we want to efficiently train a model that can rank
KB entries for a given mention, we follow existing work and
use negative sampling with a max-margin loss for training
the encoder (Collobert et al. 2011). The loss function is

L = max(0, sim(eHRL, een)− sim(eHRL, e
∗
en) + λ)

English
Bi-LSTM

HRL
Bi-LSTM

HRL
Bi-LSTM

sim(een, m)
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max
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Figure 3: Architecture to compute score(m, een) with piv-
oting through a high-resource language entity eHRL. An ex-
ample entity (‘Poland’) is shown here, with Marathi as the
source LRL and Hindi as the pivot HRL.

where λ is the margin and e∗en is a negative KB example such
that e 6= e∗.2

Zero-shot Transfer to LRL
If we train the model using an HRL that is sufficiently simi-
lar to the source LRL, the entity encoder can effectively pre-
dict similarity between an entity mention m and the English
KB entries. We use the learned HRL-Bi-LSTM to encode
m and the English-Bi-LSTM to encode an English KB
entry een ∈ K. The score for een is the cosine similarity
between these encodings:

sim(m, een) = cosine(vm,ven)

where vm = HRL-Bi-LSTM(m), and m is a sequence of
characters.

Pivoting
By transferring the entity encoder (as discussed above), we
can compute similarity between an LRL mention and the
English KB entries. In addition, we propose pivoting, which
uses an HRL as an intermediate pivot between the LRL and
English. Specifically, instead of considering the English en-
tity een, we consider its parallel entity eHRL in the HRL. We
use the learned HRL-Bi-LSTM to encode both m and eHRL,
and calculate a similarity score between the encodings:

sim(m, eHRL) = cosine(vm,vHRL)

Note that this score is used for een, as een and eHRL refer to
the same entity (in English and the pivot HRL respectively).

Calculate EL score
Using the two methods described above, we have two sets of
scores between m and een, and we take the maximum out of
the two as our final score (Figure 3):

score(m, een) = max(sim(m, een), sim(m, eHRL)) (1)

2For each mini-batch of training data consisting of paired HRL-
English entities, we use the correct KB entry as the positive sample,
and all other KB entries in the mini-batch as negative samples.



The score function for EL is modified to consider both the
similarity between m and een and the similarity between m
and eHRL. The final score for een ∈ K takes the maximum
of the two scores because our objective is to maximize the
similarity. Since not all the entries in K have a parallel en-
tity in HRL, it is non-trivial to use another combination of
the scores (instead of max). If there is no parallel entity, we
consider sim(m, eHRL) = −∞.

Phonological Representation
Since the entity similarity model is a character-level neural
network, cross-lingual transfer is bound to fail if the LRL
uses a different script than the HRL used for training the
encoder. To overcome this problem, we propose training the
encoder in the language-universal phonological space. We
experiment with two representations:
Phoneme embeddings: We convert all parallel training data
between the HRL and English into IPA using Epitran, a
grapheme-to-phoneme system that supports over 55 lan-
guages (Mortensen, Dalmia, and Littell 2018). The encoder
model itself is agnostic to the characters used to represent
the entities and can be trained with the IPA parallel data in
the same manner as described above.
Articulatory feature embeddings: We transform our par-
allel IPA training data into articulatory feature sets using
PanPhon (Mortensen et al. 2016). Articulatory features can
potentially capture important characteristics of the pronun-
ciation that may not be apparent from the IPA, as indi-
cated by improved low-resource Named Entity Recognition
by (Mortensen et al. 2016). PanPhon converts each IPA seg-
ment into 21 features, which represent phonological aspects
of the input (including voice, nasal, strident etc.) Since each
word is a sequence of IPA segments, we obtain a sequence
of feature vectors from PanPhon. These features are linearly
transformed into an embedding (which replaces the charac-
ter embedding in Figure 2) using a weight matrix and bias
vector, both of which are trained with the encoder model.

Phylogenetic Weighting
So far, we have discussed transferring to the LRL from a sin-
gle HRL. However, we can easily train multiple encoders on
different HRLs. In order to leverage these models, we use a
simple weighting mechanism, whereby the similarity scores
from each HRL model is weighted by the phylogenetic dis-
tance between the HRL and the source LRL. The KB entry
with the maximum score after weighting is selected as the
predicted entity link. Phylogenetic distance, obtained from
the URIEL Database (Littell et al. 2017), represents the rel-
ative distance between two languages in the Glottolog hy-
pothesized tree of language (Hammarström et al. 2018). This
essentially implies languages that have similar origin will be
closer in distance, which is intuitively useful for identifying
appropriate pivot HRLs for a specific LRL.

Experiments
In this section, we discuss our experimental setting, base-
lines and results on several low-resource languages. We at-
tempt to answer the following research questions: (1) “Does

the proposed PBEL method outperform methods that do not
perform pivoting?” (2) “What is the interplay of the ortho-
graphic or phonological input representation with the fea-
tures of the high-resource transfer language and the low-
resource test language?” (3) “What is the potential of using
pivoting for candidate retrieval in 2-step EL systems?” (4)
“How much does a small amount of lexical data in the LRL
improve PBEL?”

Experimental Settings
In order to comprehensively, yet realistically, examine per-
formance on a wide variety of low-resource language pairs,
we perform experimental validation on two varieties of the
task. For both, we measure the performance of the baselines
and our system with linking accuracy – i.e. the fraction of
instances when the system-predicted link was the “true” KB
entry for the given input.

Cross-lingual KB Title Linking Our test set is con-
structed from Wikipedia parallel titles between the LRL and
English. That is, the ‘gold-standard’ link for an article title in
the LRL is the corresponding English Wikipedia entry. Note
that these parallel titles are used only for testing.

In contrast to the traditional EL task of linking tex-
tual entity mentions to KB entries, this experimental set-
ting is similar to “Cross-lingual Article Linking” (Wang,
Wu, and Tsai 2014), where we link Wikipedia article ti-
tles in the LRL to English KB entries. We focus on articles
about named entities (locations, persons and organizations).
Most work (Sorg and Cimiano 2008; Wang et al. 2012;
Wang, Wu, and Tsai 2014) in cross-lingual article linking
assumes the availability of a KB in the source LRL. This is
unrealistic for our zero-shot scenario and hence, we compare
with existing methods that do not rely on this assumption.

We test on nine relatively low-resource languages from
various language families: Tigrinya (ti), Lao (lo), Uyghur
(ug), Telugu (te), Punjabi (pa), Javanese (jv), Marathi (mr),
Bengali (bn) and Ukrainian (uk). We have 2000 titles in the
test set for each language, apart from ti, lo and ug, for which
we have 90, 579 and 1297 instances respectively3. The target
KB is English Wikipedia, which contains 2.1 million titles.
We use a total of 54 HRLs as potential transfer languages,
details of which are in the supplementary material.

We primarily use Wikipedia links as a test bed because
of the availability of data in many LRLs, not found in tra-
ditional EL datasets. We note that although the title link-
ing task is not identical to entity mention linking, it main-
tains much of the difficulty associated with cross-lingual EL,
particularly with respect to how state-of-the-art translation-
based techniques perform poorly in the zero-resource set-
ting. However, the challenge of linking ambiguous mentions
is eliminated in this task, which is why we also test our
method on a full cross-lingual EL dataset, described below.

Full Cross-lingual Entity Linking We also test our pro-
posed PBEL method on the standard cross-lingual EL set-
ting of linking textual mentions to KB entries. For the
test set, we use annotated documents from the DARPA

3Due to the small size of Wikipedia in these languages.



Model bn jv lo mr pa te ti uk ug Avg.

EXACT .00 .63 .02 .00 .00 .00 .02 .02 .03 .08
TRANS .00 .63 .02 .17 .00 .00 .46 .02 .03 .15

ENCODE
MANUAL .36 (hi) .70 (id) .07 (th) .46 (hi) .31 (hi) .20 (ta) .44 (am) .25 (ru) .16 (tr) .33
BEST-53 .38 (ms) .70 (id) .07 (th) .46 (hi) .36 (te) .36 (pa) .44 (am) .41 (kk) .16 (tr) .37

PBEL
MANUAL .48 (hi) .86 (id) .28 (th) .62 (hi) .49 (hi) .33 (ta) .69 (am) .50 (ru) .32 (tr) .51
BEST-53 .48 (hi) .86 (id) .28 (th) .62 (hi) .49 (hi) .47 (hi) .69 (am) .54 (kk) .32 (tr) .53
MULTI .53 .87 .28 .62 .48 .46 .69 .56 .40 .54

Table 1: Accuracy for cross-lingual Wikipedia title linking, with the transfer HRL shown in parentheses. The best accuracy
among input representations with graphemes, phonemes or articulatory features for ENCODE and PBEL is presented here.
Complete results for each representation are in the supplementary material.

LORELEI program4, in two extremely low-resource lan-
guages – Tigrinya and Oromo. These are news articles, blogs
and social media posts about disasters and humanitarian
crises (floods, famine, political unrest etc.). The data con-
tains named entity mentions extracted from the texts, anno-
tated with their respective KB links. The English KB pro-
vided with the dataset contains over 11M entries. This KB
is much larger than English Wikipedia and includes entities
from, among other sources, GeoNames and the CIA World
Factbook.

Entity Similarity Scoring Models
We consider three models for scoring KB entries for cross-
lingual EL. Two are based on existing literature on state-
of-the-art monolingual or cross-lingual EL methods (Ji and
Grishman 2011; Pan et al. 2017; Sil et al. 2017), which have
been shown to work in the supervised setting where an en-
tity lexicon for the LRL is available, but are intuitively less
suited for our zero-shot setting. The third is the character-
level neural decoder described in the previous section, which
we posit is more appropriate for zero-shot transfer, and for
use with our proposed pivoting method.

• EXACT: Exact match to the KB is used in state-of-the-art
monolingual EL systems (Sil et al. 2017).5 The predicted
entity link, if found, is the KB entry that is an exact string
match with the mention m.

• TRANS: This baseline is a candidate retrieval tech-
nique used in the state-of-the-art low-resource EL system
by Pan et al. (2017), which attempts to translate the men-
tion m into English in order to predict the entity link.
We generate a bilingual lexicon with word alignments
on parallel Wikipedia titles using fast align (Dyer,
Chahuneau, and Smith 2013). Each word in the input en-
tity m is translated to English using the lexicon. The pre-

4https://www.darpa.mil/program/
low-resource-languages-for-emergent-incidents

5Monolingual EL also often uses Wikipedia anchor text for
matching, which is infeasible in the LRL scenario.

dicted entity link is the exact match of the obtained trans-
lation, if found, in K. We experiment with two varieties
of lexicon creation with different resource requirements:
Supervised. The lexicon is created from a small num-
ber of parallel entities between the LRL and English.
Zero-shot. The lexicon is created from parallel entities
between a closely-related HRL and English.

• ENCODE: We train a similarity encoder, as seen in Fig-
ure 2, using parallel Wikipedia titles between English and
an HRL. We transfer the trained HRL-Bi-LSTM, with-
out fine-tuning, to encode the mention m. The ENCODE
model does not make use of “pivoting” and directly com-
pare m with the English KB entries. These models are
trained in either orthographic or phonological space.
The entity similarity encoder model is implemented in
DyNet (Neubig et al. 2017), with a character embedding
size of 64 and LSTM hidden layer size of 512.

Results: Cross-lingual KB Title Linking
As described above, we test on nine LRLs. We experiment
with variants of the models that differ in terms of selecting
an appropriate HRL for transfer:

• MANUAL: We manually choose an HRL a priori, which
is closely related (from the same language family) to the
source LRL. The HRLs we select are (for the respec-
tive LRLs) – Amharic (Tigrinya), Thai (Lao), Turkish
(Uyghur), Tamil (Telugu), Hindi (Punjabi, Marathi, Ben-
gali), Indonesian (Javenese) and Russian (Ukrainian). The
HRLs selected are of different script than the LRL for
some languages (Lao-Thai, Bengali-Hindi etc.), in order
to test the utility of phonological transfer.

• BEST-53: We attempt to transfer similarity encoders
trained on 53 potential HRLs and present the HRL that
obtained the highest accuracy for each of the nine test
languages. The 53 are all the languages supported by Epi-
tran (Mortensen, Dalmia, and Littell 2018), apart from the
source LRL itself.

https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents


• MULTI: In this setting, we use multiple pivot languages
for a single source LRL. We use all 53 languages together,
and experiment with both unweighted and phylogenetic-
distance-weighted combination, as described in the previ-
ous section.

We use the above methods with the ENCODE model as
well as our proposed PBEL method. For ENCODE, we use
the HRL only for training the encoder. For PBEL, we addi-
tionally use the HRL for pivoting, i.e., to score KB entries as
described in Equation 1. We also compare with EXACT and
TRANS (Zero-shot). The supervised TRANS uses a lexicon
built from Wikipedia parallel titles in the LRL, which we
also use to construct the test set, leading to an unfair com-
parison for the cross-lingual title linking task.

The entity linking accuracy on the Wikipedia test set are
summarized in Table 1. On average, our proposed PBEL
method performs significantly better than the baselines, with
significant accuracy gains in all nine test languages.

The EXACT baseline, which is most often used for mono-
lingual EL (Sil et al. 2017), performs reasonably only when
the test language is in the same script as English (i.e., Ja-
vanese). Similarly TRANS, the current state-of-the-art re-
trieval method in cross-lingual EL (Pan et al. 2017), fails
when zero data is available in the test language, unless the
HRL is very closely-related to the LRL (as with jv, mr and
am). On the other hand, ENCODE presents relatively strong
zero-shot transfer results.

PBEL offers stronger performance than ENCODE because
it considers similarity of the LRL mention with both the
HRL and English. As seen in the BEST-53 results, the HRL
that performs best is closely-related to the respective test
LRL (language family, shared writing system or geographic
proximity). Since PBEL leverages this similarity, it becomes
easier to predict the correct link. We also observe that using
multiple pivot HRLs leads to better average accuracy, with
considerable improvement for some languages.

In most cases, the MANUAL HRL is also the best perform-
ing in BEST-53. However, we see that the Dravidian Tel-
ugu (te) seems to obtain higher accuracy with Indo-Aryan
HRLs – Punjabi (pa) or Hindi (hi). This could be because
Tamil (ta) uses a different script and is relatively distant
from Telugu in the Dravidian family (Rama and Kolachina
2013). We also see that the Ukrainian (uk) test set has better
performance with another Cyrillic script language, Kazakh
(kk), rather than Russian (ru). We attribute this to the fact
that, on Wikipedia, person names in Russian are written
last-name,first-name, but first-name,last-name in Ukrainian,
which reduces the success of zero-shot transfer.

Results: Full Cross-lingual Entity Linking
We select appropriate HRLs a priori for training ENCODE
and PBEL – Amharic for Tigrinya and Somali for Oromo.
We compare with the EXACT, supervised and unsupervised
TRANS and ENCODE scoring models. The training data for
the encoders is Wikipedia parallel entities between the HRL
and English, as in the previous section.

Entity linking accuracies on the LORELEI dataset are
shown in Table 2. PBEL has considerably higher accu-

Lang. Tigrinya Oromo

EXACT 0.00 0.01
TRANS Supervised 0.21 0.05
TRANS Unsupervised 0.21 0.01
ENCODE 0.16 0.10
PBEL 0.33 0.11

Table 2: Entity linking accuracy on non-Wikipedia data

racy than the other methods. However, we see relatively
lower improvement in accuracy with Somali-Oromo than
Amharic-Tigrinya. This is because Somali and Oromo, de-
spite both being Afro-Asiatic languages, are from different
sub-language-family branches and are not similar enough
for strong transfer performance6 (Banti 1988). The avail-
ability of a closely-related HRL is essential to the success
of PBEL.

Surprisingly, the supervised TRANS model, which uses
Wikipedia parallel data in the LRL itself as a lexicon, does
not perform better than the zero-shot PBEL. We primarily
attribute this to the extremely small size of Wikipedia in
these languages (90 Tigrinya and 295 Oromo parallel links
with English). We also note that TRANS relies solely on
lexicon string lookup. This is particularly disadvantageous
for Oromo, where there are several accepted spelling vari-
ants of the same word and the Wikipedia lexicon contains
just one of these (for example ‘Ethiopia’ can be written
as ‘Itiyoophiyaa’, ‘Itoophiyaa’, ‘Itoopiyaa’, ‘Toophiyaa’ or
‘Itophiyaa’). The character-level LSTM we use is likely able
to normalize across some of these variations (Lample et al.
2016; Luong and Manning 2016). Overall, our proposed
PBEL method counters several of the limitations of using
bilingual lexicons, which strongly affects the performance
on such extremely low-resource EL datasets.

Analysis
Character Representation We look at the use of dif-
ferent character representations: orthographic (graphemes),
IPA (phonemes) and articulatory features. The PBEL model
results for our test set with each input representation are pre-
sented in Table 3. The HRLs used are the same as MANUAL.

We see that using phonological representations
(phonemes and articulatory features) offers the ability
to map between languages that use different orthographies,
explaining the convincing improvement over graphemes
for HRL-LRL pairs that are written in different scripts (Ta-
ble 3). With graphemes, the experiments on these languages
achieve ≈ 0 accuracy because the character vocabulary of
the HRL encoder simply does not contain the low-resource
test language characters. This is the case with Lao-Thai
(lo-th), Telugu-Tamil (te-ta) and Bengali-Hindi (bn-hi).
In contrast, we observe that the grapheme representation
offers strong transfer performance when the LRL and HRL
share orthography, notably Javanese-Indonesian (jv-id),
Marathi-Hindi (mr-hi) and Ukrainian-Russian (uk-ru).

6We used Somali because it is the closest language to Oromo
that is available on both Wikipedia and Epitran.



Input *bn (hi) jv (id) *lo (th) mr (hi) *pa (hi) *te (ta) ti (am) *uk (ru) *ug (tr)

Grapheme .00 .86 .02 .62 .00 .00 .61 .50 .08
Phoneme .48 .84 .20 .58 .18 .10 .69 .23 .21
Articulatory .45 .82 .28 .56 .49 .33 .63 .42 .32

Table 3: Entity linking accuracy with PBEL, using Graphemes, Phonemes or Articulatory features as input. The HRL used for
training and pivoting is shown in parentheses in the first row. The pairs with the different scripts are marked with a “*”.
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Figure 4: Recall @k for nine test languages

Pivoting for Candidate Generation Up to this point, we
have demonstrated that our pivoting method can be used for
end-to-end EL. However, as mentioned in the previous sec-
tion, it is common in standard EL systems to use candidate
retrieval methods that feed into a more sophisticated down-
stream disambiguation model. In this case, it is of interest
how good the entity linking algorithm is at generating lists
of k-best candidates. Figure 4 examines this by showing the
‘Recall @k’ – the fraction of instances when the correct
entity link is present in the top-k entities as scored by our
system (Tsai and Roth 2018). We observe that for systems
with high entity linking accuracy (recall @1) like Javanese-
Indonesian (jv-id) and Tigrinya-Amharic (ti-am), recall at
higher k values offer diminishing returns. However, other
languages show considerable gain in recall even at k = 5
and up to k = 100.

Joint Training with the Source Language Although our
main focus is an entity linking method that uses zero re-
sources in the source language, we also analyze how the per-
formance of our model improves when jointly trained with
a small amount of data in the source LRL. Figure 5 shows
the variation of EL accuracy with different amounts, rang-
ing from 10 to 2,500, of LRL samples added to the HRL
(MANUAL setting) data for training the entity similarity en-
coder. For language pairs that are very closely-related and
share the same scripts, such as jv-id and mr-hi, there is only
a small increase in accuracy even with thousands of source
language training samples. In contrast, there is considerable
performance improvement for bn-hi and te-ta, both of which

Figure 5: Entity linking accuracy on joint training with dif-
ferent amounts of LRL data (x-axis is not to scale).

use phonological transfer since the writing systems are dif-
ferent. We also note that several of our test languages (ti,
lo, ug) are so poorly resourced, even on Wikipedia, that
there was not enough data for this joint training experiment
(shown in Figure 5).

Related Work
We briefly discuss previous work related to various facets of
our proposed method.
Cross-lingual EL. The TAC-KBP shared task on en-
tity linking has featured Chinese/Spanish to English EL
since 2011 (Ji, Grishman, and Dang 2011; Ji, Nothman,
and Hachey 2014; Ji et al. 2017). Around the same time,
McNamee et al. (2011) introduced cross-lingual EL as
a new task and designed a candidate retrieval technique
based on Wikipedia language-links. More recently, Tsai
and Roth (2016) used word embeddings for EL in 12 lan-
guages, Pan et al. (2017) use word-for-word translation for
in a massive multilingual effort for EL in 282 language pairs
and Tsai and Roth (2018) develop better name translation for
improving the performance of existing translation-based EL
techniques. The neural model proposed by Sil et al. (2017)
based on multilingual word embeddings and Wikipedia links
achieves state-of-the-art results on the TAC2015 dataset.

Cross-lingual transfer learning. Zeman and
Resnik (2008) perform transfer to adapt parsers to
low-resource languages and Hwa et al. (2005) project
parsers from English to other languages that have no



syntactic annotation, using parallel texts. Neural mod-
els for transfer from high-resource to low-resource are
used for several tasks including POS tagging, machine
translation, and morphological analysis (Zoph et al. 2016;
Fang and Cohn 2017; Cotterell and Heigold 2017). Unlike
our work, these methods jointly train with a small amount
of data in the low-resource language.

Phonological representation. IPA representations of lan-
guage have been used to identify borrowed words across
unrelated languages (Tsvetkov, Ammar, and Dyer 2015;
Tsvetkov and Dyer 2016). Perhaps most similar to our work
is Bharadwaj et al. (2016), which uses IPA in transferring
learned models for named entity recognition to low-resource
languages.

Conclusion
We present PBEL, a method for cross-lingual entity linking
that uses zero parallel resources in the language of the input
mention. With extensive experiments on nine test languages,
we demonstrate its potential for low-resource entity linking
across several language families. Our model uses zero-shot
transfer from closely-related high-resource languages and
improves accuracy by 17% on average over baseline sys-
tems. We also show its ability to transfer across orthogra-
phies through phonological representations.

An immediate future focus for our work could be training
a model that predicts the ‘best’ pivot language for a given
named entity mention, which can replace the language-
specific phylogenetic-distance-based weights used in this
work. Further, we currently train individual encoders for
each language. Universal multilingual encoders have had
success in tasks like translation (Johnson et al. 2016; Ha,
Niehues, and Waibel 2016) and can potentially ease the scal-
ing up of our model to a large number of languages.
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