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Abstract

Translingual information retrieval (TLIR) consists of providing a query in one language and
searching document collections in one or more different languages. This paper introduces new
TLIR methods and reports on comparative TLIR experiments with these new methods and
with previously reported ones in a realistic setting. Methods fall into two categories: query
translation and statistical-IR approaches establishing translingual associations. The results
show that using bilingual corpora for automated extraction of term equivalences in context
outperforms dictionary-based methods. Translingual versions of the Generalized Vector Space
Model (GVSM) and Latent Semantic Indexing (LSI) also perform well, as does translingual
pseudo relevance feedback (PRF) and Example-Based Term-in-context Translation (EBT). All
showed relatively small performance loss between monolingual and translingual versions, rang-
ing between 87% to 101% of monolingual IR performance. Query translation based on a general
machine-readable bilingual dictionary — heretofore the most popular method — did not match
the performance of other, more sophisticated methods. Also, the previous very high LSI results
in the literature based on “mate-finding” were superseded by more realistic relevance-based eval-
uations; LSI performance proved comparable to that of other statistical corpus-based methods.
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1 Introduction

Translingual information retrieval (TLIR) has begun to receive considerable attention in recent years with
the increased accessibility of ever-more-diverse on-line international text collections, including centrally
the World Wide Web. In spite of recent TLIR work [20, 12, 16, 23, 1, 24, 9], evaluations of different
TLIR techniques on realistic retrieval tasks are rare. This paper reports our evaluation of the results of
both newly developed TLIR techniques and re-implementations of previously reported techniques.

Translingual information retrieval (aka “multilingual” or “cross-lingual” TR) consists of providing a
query in one language and searching document collections in one or more different languages. One can
envision many ways to bridge the language barrier between query and collection. In this paper, we focus
on query translation and methods based on automatically establishing translingual associations between
queries and documents without the need to translate either.

2 MT-Based Methods for TLIR

The machine translation methods for TLIR require that either the query be translated into the target
language, and the translation be used to search the target-language collection, or the collection be
translated into the source language, and the original query be used to search. Let us consider the pros
and cons of each approach:

e Translation Accuracy — Both human and machine translation [6, 19] require context to achieve
accuracy. Translating isolated words in a query is unreliable, largely due to unresolved lexical
ambiguity. Translating documents should yield greater accuracy.

e Retrieval Accuracy — Since documents contain far more information than queries, random translation
errors should cause less degradation for the IR task in documents than in queries. Hence for both
this reason and the above, document translation is preferable in principle. In fact, preliminary
findings by Dumais et al [12] support this line of reasoning.

e Practicality — Many document collections are very large. Most are searched remotely. Some are
proprietary; individual documents may be read or down-loaded, but the entire collection may not
be copied or translated. FEven if these problems were surmount-able, translating the collection
may require inordinately long computation and massive storage, not to mention re-indexing the
translated collection.

Because translating document collections 1s less practical, we report only on translating the query
for TLIR. If the query were formulated as phrases, a full sentence, or a paragraph, we could apply MT
systems far more reliably. However, experience shows that users typically prefer to give isolated words,
or at best, short phrases to an IR system.! The question is how to best translate a set of isolated words,
since full fledged MT is not applicable. We investigated three approaches:

1. Dictionary-based Term Translation — Look up each query term in a general-purpose bilingual dic-
tionary, and use all its possible translations. This is a form of query expansion upon translation.
Other forms of dictionary-based query translation methods have been reported before [8, 16, 1], and
our results reported in section 5 are consistent with the dictionary-translation literature.

2. Corpus-based Term Translation — Use a sentence-aligned bilingual training corpus to find the terms
that co-occur in context across languages, thus creating a corpus-based term-equivalence matrix.
This is a new approach, where terms are translated based on co-occurrence frequency in the con-
text(s) defined by the document collection. Tts results reported in section 5 prove superior to the
dictionary-based approach.

'LYCOS reports that their typical user queries for general web search are only one to three words long,
although they are occasionally reformulated into longer queries.



3. Corpus-based Term-to-Sentence — Use the same type of aligned bilingual training corpus to extract
full sentences that co-occur in the target language with query terms in the source language. This
is a translingual adaptation of local context query enhancement. Term-to-sentence expansion may
enhance recall, but at a cost in precision.

Since Term-to-Sentence performed very poorly in initial experiments, it will not be described further.
Only general-purpose dictionary translation (called DICT or GLOSS below) and corpus-based term
translation (called EBT below, for Erample-Based Term translation) are further described.

All three MT-based methods used variations of the Pangloss Example-Based Machine Translation
engine (PanEBMT) [3]. In general, EBMT systems [3, 18] use a large corpus of example pairs of previ-
ously translated sentences in order to find close matches and translations of words and phrases in context.
The PanEBMT parallel corpus was derived primarily from the Spanish and English portions of the UN
Multilingual Corpus [14], with an admixture of texts from the Pan-American Health Organization and
ARPA MT evaluations. The total corpus contains some 685,000 sentence pairs — about 250 megabytes
— after duplicated Spanish sentences have been removed. PanEBMT translates by finding the set of
matches to a new text string (word, phrase or sentence) in the indexed bilingual corpus. Then, the
translations corresponding to these matches are combined into candidate translations of the new text.
Because queries contain more isolated terms than phrases or sentences, our query-translation experiment
1s unable to exploit the power of EBMT. Instead, we developed the term-in-corpus-context translation
method.

2.1 Example-based Term Translation (EBT)

In order to create domain-specific or corpus-specific bilingual dictionaries automatically, we start from
a large sentence-aligned bilingual corpus and generate a large thresholded term co-occurrence table[4].
The result was used as the dictionary for corpus-based (example-based) term substitution.

Co-occurrence dictionary generation is performed in two phases: First the co-occurrence matrix
(indexed by source-language words on one axis and target-language words on the other) is generated.
Each cell in the matrix represents the number of times the source-language word occurred in the same
sentence pair as the target-language word. Given this matrix, we compute the conditional probability
that if the term occurs in one language its counterpart (i.e. its candidate translation) also occurs in
the other language within the same sentence pair, and vice-versa. If this probability is above a pre-set
threshold in both directions, then the term translation is added into the dictionary. Should a term
in one language co-occur with several terms in the other language with sufficient frequency to pass
the conditional probability threshold, all are stored as candidate translations. The corpus-based term
translation techniques are discussed in greater detail in [4, 3].

This method has the nice property that adjusting the filtering thresholds allows us to tune a trade-
off: stricter thresholds prevent spurious translations, but significantly reduce the possible translations;
more lenient thresholds produce better yields, at the cost of allowing more spurious translations.

A thesaurus which has been generated as described above can be further refined, increasing vo-
cabulary size and reducing spurious translations, using an iterative process that applies a portion of
the EBMT subsentential alignment algorithm to constrain which co-occurrences are added to the co-
occurrence matrix. Although beneficial for dictionaries which are to be used directly for translation,
refining the thesaurus in this manner proved to be slightly detrimental to performance on the translin-
gual retrieval task for all but the smallest of training corpora — the refinement process removes much of
the useful query expansion provided by collocations in the original statistically-derived dictionary.

Three separate training corpora were used to generate corpus-based thesauri: the full 250 megabytes
of aligned Spanish-English text available to PanEBMT (consisting almost entirely of text from the UN
Multilingual Corpus [14]), a 33-megabyte contiguous subset thereof, and a 12-megabyte corpus consisting
of the training texts from our experimental corpus (described in Section 4) and the non-UN portions of
the PanEBMT corpus. After tuning the thresholds, the best dictionaries extracted from the two larger



corpora reached identical translingual performance; despite its much smaller size, the narrower focus of
the 12-megabyte corpus permitted its best dictionary to outperform all others.

2.2 Dictionary-Based Term Translation (DICT)

For English-Spanish term translation we used a version of the machine-readable Collins Spanish-English
Dictionary. Its performance should not be taken as the maximum achievable by this technique, since we
had to invert the dictionary, which substantially reduces the vocabulary (from 51,500 to 27,200 words),
in order to translate in the English-to-Spanish direction. It remains to be seen if a larger dictionary
would improve performance, as rare words tend to have a rather small effect on overall performance in
related tasks [30] (corroborated by our own experience with corpus-derived dictionaries on this task).

Due to the way in which our Spanish-English dictionary was built, inverting it provides the benefit
of additional query expansion in some cases. This dictionary was originally built (for use by PanEBMT
in word alignment within sentence pairs in the corpus) by looking up each unique word in the UN
corpus in the Collins machine-readable dictionary. For words which were not found, a Spanish stemmer
was applied and the resulting word root looked up. Thus, the Spanish-English dictionary contains the
root forms of English words for many inflected Spanish words. After inverting the dictionary, the root
forms of English words typically generate a multitude of inflected Spanish forms. The down side of the
dictionary inversion is that most inflected English words are not found in the dictionary at all.

2.3 Manual Glossary (GLOSS)

In addition to the Spanish-English Collins dictionary, we also had hand-built glossaries from the PAN-
GLOSS project available [13]. As with the Collins dictionary, these were created for Spanish-to-English
translation, so we inverted the glossaries and extracted the single-word English entries. The extracted
entries were then added to the inverted Collins dictionary to form the translation dictionary used as the

basis of the GLOSS method.

Unlike Collins, the Pangloss glossaries provide not only properly inflected English translations, but
also target the highest-frequency Spanish words specifically to ensure correct translations. As a result,
although the combination of Collins and Pangloss glossaries increases the total vocabulary by less than
2000 words, the additional vocabulary consists primarily of inflected forms of the most frequent words.

3 IR-based Methods for TLIR

We extended three monolingual retrieval methods to translingual retrieval: Pseudo-Relevance Feedback
(PRF)[5], the Generalized Vector Space Model (GVSM)[27], and the Latent Semantic Indexing (LSI)
approach[10]. In each case, a translingual semantic correspondence between queries and documents is es-
tablished based on a document-aligned bilingual training corpus, without requiring bilingual dictionaries
or machine translation.

All these methods, PRF, GVSM and LSI, are variants of the vector space model (VSM) which was
initially developed by Salton and is a fundamental paradigm in monolingual text retrieval[21]. To allow
clear theoretical comparison of these IR-based methods, let us define the notation for VSM. Both queries
and documents are represented using vectors of term weights in this model:

q_’: (Q1aQ2a"'aqm)t
d=(dy,ds, ... dy)
= = 1 gid
sim(q, d) = cos(q, d) Liz14

VIt iVt 4
where ¢'1s the query vector, d is the vector of a document in a corpus, m is the number of unique terms
(words or phrases) in the corpus after stop-word elimination and stemming, and ¢; and d; are the term



weights in the query and the document, respectively. A term is typically weighted by TF « IDF | i.e.,
the product of within-document term frequency (TF) and the Inverted Document Frequency (IDF) of
the term[21].

3.1 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) (aka “local feedback”) is a variation of the classic relevance feedback
(RF)[22]. Relevance feedback is a query expansion technique which adds terms in the relevant documents
found in a initial retrieval to the query, and uses the expanded query for further retrieval. It typically
improves performance in monolingual retrieval compared to not using it. PRF differs from the true
relevance feedback by assuming the top-ranking documents retrieved are all relevant. It is simpler
because no user relevance judgments are required; it is not always as effective as RF because the top-
ranking documents often include some irrelevant documents that may be misleading. Both positive and
negative evidence was found in empirical studies with respect to the effect of PRF on retrieval accuracy
[15, 25] As discussed 1n section 5, we also found PRF cuts both ways, depending somewhat on how the
queries were formulated orlgmally

Our primary interest in PRF is to effectively cross the language barrier in translingual retrieval.
Adapting PRF (and RF) to translingual retrieval is natural if a bilingual corpus is available[7, 1]. That
is, once the top-ranking documents are retrieved for a query in the source language, their translation
mates (the corresponding documents in the target language) can be used to form the query in the target
language. Figure 1 illustrates the data flow for translingual RF and PRF. The retrieval criterion in PRF
for monolingual retrieval is defined to be:

/=q+ Z{d |d; € KNN(Q)}

stm({, cf) = cos(q_7, cf)

where ¢'is the original query, q_7 is the query after the expansion, kNN(§) is the set of & Nearest Neighbors
(most highly-ranked documents) retrieved using ¢, and k is a pre-determined parameter whose value is
empirically chosen.

Correspondingly, the retrieval criterion in PRF for translingual retrieval is defined to be:

gi =y _{gild; € kNN(g:)}

stm(qz, CZ;) = cos(qi, CZ;)

where ¢ is the query vector in the source language, d; is the document vector in the source language and
gi 1s the document vector of its translation; ¢; is the constructed query vector in the target language,
and d; is the target document in the search space. The length of each vector is m, the size of the term

vocabulary after stemming and stop-word removal. Each element in the query and document vectors is
weighted by TF « IDF.

3.2 Generalized Vector Space Model

A criticism of conventional VSM is that it uses terms as an orthogonal basis of the vector space, but terms
are often not semantically independent. Wong et al proposed an alternative, namely the “generalized
vector space model” (GVSM) [27], also referred to as “the dual space” [23] which uses word combinations
(or individual documents) to form the basis instead of individual terms. Empirical studies showed
somewhat better performance of GVSM over conventional VSM when usmg bmary term weighting (a

value of one for terms present, and zero for terms absent), while the comparison is inconclusive if more
advanced term weighting was used in VSM[26]. Comparison of GVSM with PRF and LST has not been
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Figure 1: Data flow for translingual relevance feedback and pseudo-relevance feedback

carried out previously either in the monolingual retrieval literature or in the new TLIR literature. Our
major focus here is a novel adaptation of GVSM to translingual retrieval. In order to thoroughly examine
its properties, we will investigate its performance in both MLIR and TLIR, and compare GVSM with
other methods including VSM, PRF and LSI.

The concept of the dual space can be explained using a term-document matrix. Given a document
collection, one can represent this corpus using a matrix, A,,x,, where the rows are unique terms in the
document vocabulary, the columns are unique documents in the corpus, m is the vocabulary size, and
n is the corpus size (number of unique documents). The elements in this matrix are within-document
term weights, which can be binary-valued, or real-valued to combine within-document term frequency
(TF) and corpus statistics, e.g., the Inverted Document Frequency or IDF of a term. One can view this
matrix as a way to represent documents (the columns) using terms, and to represent terms (the rows)
using documents. The former view corresponds to the conventional vector space model, and the latter
view corresponds to GVSM in the dual space. The most interesting part of GVSM 1s the way a term is
represented, i.e., each row vector of matrix A reflects the pattern of a term distributed over documents.
Here lies the implicit assumption of this model: two words are semantically similar or highly relevant to
each other if and only if they have a similar distribution over documents. This assumption is of course
arguable given that “document” is often an arbitrary choice (it could be an abstract, an paragraph, a
full article, a chapter, or a book). However, it provides a way to use corpus statistics to measure the
closeness between terms, which is not directly offered by the conventional VSM.

It should be clarified that in the original GVSM model by Wong et al., unique word combinations
are used as orthogonal dimensions, which is not equivalent to using unique documents. If two documents
contain exactly the same set of unique words (although the term frequencies in these documents may be
different), then these documents will have the same vector representation in the original GVSM. In this
study, we made a simplification by directly using documents as dimensions in the dual space, assuming
that different documents very rarely share identical vocabulary, and even if such cases do happen, their
effect on the representation power of this model and its retrieval effectiveness may be negligible. This
does not exclude possible applications that might benefit from using the original version, of course. We



use GVSM to refer to our simplified version, with the assumption that our conclusions would apply to
the original version of GVSM as well.

The monolingual version of this method (ML-GVSM) consists of query transformation, document
transformation, and similarity comparison between the transformed query and documents. The retrieval
criterion is defined to be: . .

sim(q, d) = cos(A'q, A'd).
The query transformation, q_7 = A'q, is equivalent to weighting the distribution pattern of each term (the
row vector in A) using its weight in the original query, and summing up the weighted patterns to obtain

a new representation of the query. The document transformation is similar: d = Atciweights and sums
up the the distribution patterns for the terms contained in the documents. The resulting vectors, ¢’ and
d’, have n dimensions, corresponding to the n documents in matrix A. The document collection used in

matrix A is usually called the training set, and the transformation of the query or a document is called
the fold-in process. In general, the document to be transformed is not a member of the training set.

Our novel extension of the monolingual GVSM for translingual retrieval uses a bilingual corpus
for training. Let us define two matrices, A and B, where A is a term-document matrix for the training
documents in the source language (also the language of the queries), B is a term-document matrix for the
training documents in the target language, and the corresponding columns of A and B are the matching
pairs of documents in the bilingual corpus. These matrices are illustrated below (we use binary-valued
elements here for simplicity):

Dy Dy Ds Dy Ds Ds Dy D,_1 D,
cat 0 1 0 1 1 0 0 0 0
dog 0 1 1 1 0 1 0 0 0
A | enter 0 0 0 0 0 1 1 1 0
: 0 0 0 0 0 0 0 0 0
lock 1 0 0 1 0 0 0 1 0
cerrar | 1 0 0 1 0 0 1 1 0
finca | 0 0 0 0 0 1 1 0 0
B | lave 1 0 0 1 1 0 0 1 0
: 0 0 0 0 0 0 0 0 0
perro | 0 1 1 1 0 1 0 0 0

where D; is the ¢th pair of corresponding English and Spanish documents. A given source word, such as
dog, 1s represented by its distribution in the source-language document set, while a given target word,
such as perro, is represented by its distribution in the target-language document set. Words that are
translations of each other often exhibit identical or very similar rows, as do dog and perro. Not all
words have a one-to-one translation, and not all corresponding words have exactly the same occurrence
pattern. For instance, the verb to lock is typically translated as cerrar con llave, accounting for their
very similar occurrence patterns.

We use A for query transformation and B target-language document transformation. The retrieval
criterion is defined to be: . .
sim(q,d) = cos(A'§, B'd)
Since matrices A and B share the same dual space, the transformations A*¢ and Btcfgive the query and
the document a common basis (the distribution patterns of terms over documents) on which they can
be compared. This is how the translingual correspondence is established.

The computation in GVSM consists of the transformation (A’q and Btcf) and the cosine computa-
tion. The time complexity of the first part is similar to the computation in VSM. It is proportional to the
number of non-zero elements in a query or document vector, i.e., O(kn), where k is the average number
of unique terms per query or document, and n is the number of document pairs in the bilingual training
corpus. The time and memory complexity in the second part, is O(n) per document, or O(nl) for a



test corpus of [ documents. This can be expensive for very large applications. Fortunately, we found it
possible to significantly reduce this complexity by aggressively removing non-influential elements from
the transformed document vectors without sacrificing retrieval performance, as shown in our previous
work[28] and in the empirical results of this study (Section 5.4).

3.3 Latent Semantic Indexing

Latent Semantic Indexing[10] (LSI) is a one-step extension of GVSM. The claim is that neither terms
nor documents are the optimal choice for the orthogonal basis of a semantic space, and that a reduced
vector space consisting of the most meaningful linear combinations of the original dimensions would be
a better representative basis for the content of documents.

In monolingual retrieval, LST uses the term-document matrix (A) for training, the same as in GVSM.
It computes the orthogonal dimensions (“the latent semantic structures”) in matrix A, and selects the
largest principal dimensions as the new basis for a reduced vector space. The monolingual LSI retrieval
criterion is defined to be:

A=UxV?
stm({, cf) = cos(U'q, Utcf)
where matrices U and V contain a set of p orthogonal singular vectors each (one for the representation of
terms, and another for the representation of documents). Matrix X is p-diagonal, containing the singular
values indicating the importance of the corresponding singular vectors in matrices U and V. Matrix U
can be viewed as a reduced version of matrix A in the sense that both A and U use their row vectors to

represent terms, but the term vectors in U are much shorter than the term vectors in A. The dimensions
in U are linear combinations of documents, while the dimensions in A are individual documents.

The translingual LST model [12] is similar to the model for monolingual LSI, except that a bilingual
document corpus is needed for training instead of a monolingual corpus. Let ¢ be a query in the source

language, d be a document in the target language, and [ g ] be the matrix of bilingual document pairs

where A and B are the same as defined in GVSM. Then the translingual LSI retrieval criterion is defined
to be:

A
[ 3 ] = Us%, V3

stm({, cf) = cos(Usq, Uztcf)
where Us, V5 and Yo are the matrices computed using the singular value decomposition of the bilingual
input matrix .

LST has a quadratic time complexity of O(n’p) where n’ = max{m, n} is the larger number between
the size (m) of the joint vocabulary of both languages and the number (n) of document pairs in the
bilingual training corpus; and p is the number of orthogonal dimensions (singular vectors) computed in
the singular value decomposition. Thus, the scalability of this method to a large corpus would be much
more limited than the VSM or GVSM approach if a large number of singular vectors is necessary for
good retrieval performance.

3.4 The Scientific Challenge

The similarities and differences between the three models mentioned above can be seen in their retrieval
criteria:



In theory, the fundamental difference between these methods is the choice of the basis for the similar-
ity comparison between queries and documents. VSM (including PRF) assumes semantic independence
of terms in its basis. GVSM uses documents instead, assuming documents are semantically independent.
LSI computes the orthogonal dimensions in a training corpus, and chooses the principal dimensions as
the basis of a reduced vector space. GVSM and LSI are close variants in the sense that both exploit
the dual space. The only difference between these two is the choice of the original dimensions (terms in
documents) or the reduced dimensions (the orthogonal singular vectors) as the basis for the vector space.
Which model best represents the semantic space of documents and queries is a scientifically challenging
question.

Given these methods, empirical validation is important. For monolingual retrieval, performance
improvement of GVSM over VSM was observed on small collections [27]; sometimes, improvement of
LST over VSM was observed, but not always [10]. Until the work described in this paper and its previous
version[7], a comparison between GVSM and LSI in either monolingual or translingual retrieval has not
been made.

4 Corpus and Query Preparations

In order to conduct an empirical evaluation, our first task was to prepare a bilingual corpus for translin-
gual experimentation. The large UN Multilingual Corpus (about 500 megabytes of data per language)
[14] from the Linguistic Data Consortium was available to us, but the original UN corpus is a hetero-
geneous mixture of many types of documents. Using formatting codes and alignment methods, we then
extracted and segmented a subset of the data, consisting of 2255 document pairs pertaining to UNICEF
reports and deliberations. We randomly selected 1134 document pairs for training, and set the remaining
1121 pairs aside for testing. Of these 550 documents were used as the validation set to test each method
with different parameter settings, and 571 were used for the final blind testing reported in our results
below. Altogether, the training and test sets in both languages consist of almost 2 million words of text,
equivalent to about 22 megabytes of data. Each document has approximately 6 paragraphs; there are
about 5 sentences per paragraph on average.

The second task was to develop queries and human relevance judgments for the evaluation of retrieval
methods. We created 30 queries in English, germane to the UNICEF sub-collection. We then contracted
externally for human relevance judgements on the cross product of the 30 queries and 1121 test documents
(33,630 judgments in all), which are used as the gold standard for evaluation. This test set was further
divided into a 550-document validation set (for experiments to optimize parameters for each method)
and a b71-document blind test set for the final reported results. The query length varies from 6 to 36
words, with an average of 14 words per query. The number of relevant documents for a query varies
from zero to 70 (one of these queries has no relevant documents), with an average of 16. For the blind
test set of 571 documents, seven queries have no relevant documents.

To explore the effect of the granularity of corpus alignment on the performance of retrieval methods
which are trained using the bilingual corpus, we further developed two additional versions of the training
corpus: a paragraph-level alignment (7227 paragraph pairs) and a sentence-level alignment (21,591
sentence pairs)?.

To further investigate the effectiveness of our methods, we also used a classic document collection,
MEDLARS, commonly used in monolingual retrieval evaluation prior to the Text Retrieval Conference
(TREC)[11]. MEDLARS contains 1033 documents and 30 queries, and provides human relevance judg-
ments. The query lengths range from 2 words to 62 words, with an average 20 words per query. The
number of relevant documents given a query is between 9 and 39, with an average of 23.

2The aligned parallel corpus, including training and testing partitions are made available by Carnegie Mellon
University (CMU) to LDC members — email: yiming@cs.cmu.edu.



5 Empirical Evaluation

We conducted a comparative evaluation of our translingual IR, methods on the UNICEF test set, includ-
ing DICT, EBT, PRF, GVSM and LSI. The experiments were carried out as follows:

First, we trained each corpus-based method that requires off-line training, in order to find translin-
gual equivalences using paired documents, without queries; hence no relevance judgements were required
for training. Second, we tuned parameters for both the monolingual and translingual versions of our
methods on the validation test set. Third, we measured the effectiveness of each method on the blind
test set. Fourth, we evaluated the results by comparing the retrieval degradation when moving from
monolingual to translingual IR for all the methods on the blind-test set. Fifth, we repeated the above
experiments using paragraph-level alignment and sentence-level alignment instead of document-level
alignment, and compared the behavior of the TLIR methods. Sixth, we tested LSI and GVSM in mate
finding (described later), to see how difficult or how easy a task it is compared to realistic retrieval. Sev-
enth, we tested our MLIR methods on the MEDLARS corpus and contrasted them with our observations
on UNICEF, in order to compare the relative difficulty of retrieval in different document collections, with
different queries.

5.1 Off-line training

The training phase differs by method. In fact, only EBT and LSI require off-line training. In EBT
(example-based term substitution), training means extracting highly correlated English-Spanish term
pairs in context from the bilingual corpus; these pairs are used later for term substitution in each query
for translingual retrieval. In LSI, training means finding the principal orthogonal vectors by applying
singular value decomposition (SVD) to matrix A; these orthogonal vectors are used for query and
document transformation in the document indexing phase (called the fold-in phase). GVSM does not
have a true training phase like LSI does because it directly uses the column vectors in the term-document
matrix A as the basis for the dual space. PRF also does not have off-line training because its query
formulation is based on on-line retrieval of documents given a query. DICT (query translation using
a machine-readable dictionary) does not make any use of the bilingual corpus and therefore does not
require a training phase (although there is still preparation involved prior to use).

5.2 MLIR experiments and parameter optimization

We measured retrieval performance using the conventional 11-point average precision metric. For a
retrieval system that produces a ranked list of documents given a query, the performance is typically
measured using the average precision over different recall levels. Recall is the ratio of retrieved relevant
documents over the total relevant documents in the collection; precision is the ratio of retrieved relevant
documents over the total retrieved documents. The 11-point average precision is the interpolated average
of precision values when thresholding at recall levels of 0%, 10%, ..., 100%. For further details of the
interpolated averaging method, refer to [21]. For brevity we refer simply to “average precision” or AVGP.

In the monolingual retrieval experiments, we optimized each method with respect to its performance
on the UNICEF corpus using the human relevance judgements on the 30 queries and the 550 validation
documents. Optimizations include:

e Determining the best term weighting scheme (using a combination of TF and IDF, for example) for
cosine-similarity scoring. This optimization is applied in all the methods. We found the SMART
ntc.nte term weighting optimal for all the methods on UNICEF, meaning that both document and
query terms are weighted linearly by TF*IDF with cosine normalization.

e Rank-based thresholding on the retrieved documents in pseudo-relevance feedback, i.e., labeling the
top k documents to use as relevant for query expansion. We found k=10 optimal for UNICEF. The
second parameter, SP (for sparsification), optimized in PRF is the number of most influential terms
retained in the query after PRF expansion. We found SP=70 optimal for PRF.

10



Method ML. TL TL/ML  Corpus align
Dict] (0.4884) 03901 80%  N/A
GLOSSY (0.4884) 0.4064 83%  N/A

EBTY (0.4884) 0.4918 101% sentence
PRF (SP=70, K=10) 0.4255 0.4203 99% paragraph
GVSM (SP=200) 0.5035 0.4585 91% paragraph
LST (SV=200) 0.4884 0.4234 87% document

1 The result of SMART .basic is used as the performance baseline.

Table 1: CMU results in monolingual and translingual retrieval on UNICEF

Site Method ML TL TL/ML
UMASS  correlated phrases .20 1358 68%
ETH Similarity thesaurus .527 .212-.278 40-53%
XEROX  Dict 393 235 60%
NMSU  Dict ? ? 73.5%

Table 2: Published results in ML and TL retrieval on other corpora

e Determining the GVSM sparsification (SP) parameter corresponding to the number of most influ-
ential terms per vector retained after query or document transformation. All other terms are zeroed

out. We found SP=200 optimal for GVSM.

e Determining the optimal number of singular values (SVs) to compute in LSI, meaning the number of
most influential orthogonal dimensions used. We found that SV=200 reaches a performance plateau
for LSI in UNICEF, which is exceeded only as SV approximates 1000. However, at that level the
number of retained dimensions is approximately equal to the number of original dimensions, and
LSI provides no dimensionality-reduction benefit. Moreover, the SVD step is computationally very
expensive for large SV, and convergence of the sparse SVD algorithm is particularly slow as SV
approximates the original dimensionality. Therefore, since the marginal improvement of SV=1000
over SV=200 comes at a very steep price, we select 200 as the more reasonable SV value.

The parameter values for each method which produced optimal performance in monolingual retrieval
were also found optimal or nearly optimal in our translingual experiments (Sectionb.4).

We implemented all the monolingual and translingual methods using components of the publicly-
available SMART retrieval engine [21], including indexing, stemming, TF*IDF-based word weighting
and stop-word elimination in both languages®. This common infrastructure enabled us to factor out
extraneous variables from our experiments. For the monolingual VSM baseline, we ran SMART without

relevance feedback (SMART.basic).

5.3 Primary results

Figure 2 presents the recall/precision curves for the MLIR methods on UNICEF, and Figure 3 the
recall/precision curves for TLIR methods. The 11-point average precision values of these methods are
summarized in in Table 1. We also conducted a different evaluation without using human relevance
Jjudgments of the same methods, instead relying on the degree of overlap between documents retrieved
monolingually and their translation-mates retrieved translingually. Such an evaluation, as reported in
our previous paper[7], may not be as informative, but is helpful when human relevance judgements are
not available.

We expanded the SMART Spanish stop word list so that its coverage is equivalent to the English one,
resulting in a somewhat longer list because of irregular inflections for Spanish auxiliary verbs.
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Recall-Precision performance of MLIR methods on UNICEF
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Figure 2: Recall-Precision performance of MLIR methods on UNICEF

Recall-Precision performance of TLIR methods on UNICEF
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Figure 3: Recall-Precision performance of TLIR methods on UNICEF

For MLIR in the UNICEF corpus, we found that basic VSM, GVSM and LSI perform comparably
best with an 11-point average precision (AVGP) of 0.49 to 0.50, whereas PRF performed worse with
AVGP of 0.43 (This is not necessarily true for other corpora — see the results below on MEDLARS,
where PRF outperforms VSM). We use the MLIR baseline (column 2 of table 1) to compare with TLIR
performance in column 3 and to compute the AVGP ratio TLIR/MLIR as a percentage in column 4.

For TLIR, the performance of bilingual-dictionary term translation (DICT) was worst but still
respectable at AVGP=0.39, corresponding to 80% of ML-VSM performance, and dictionary translation
augmented with a large number of glossary entries (GLOSS) from the Pangloss MT project improved on
DICT slightly yielding AVGP=0.41 (83%). EBT, in contrast, performed much better at AVGP=0.49,
slightly better than ML-VSM. The two major reasons for the improvement of EBT over DICT and
GLOSS are term frequency information and context-specific term translation (including an inherent
query expansion described further in [2]), both derived automatically from the bilingual corpus. The
query-expansion nature of the EBT should account for the surprise improvement over monolingual VSM,
although this hypothesis requires testing by implementing an equivalent “back-translation”-based VSM
query expansion and see if it produces a comparable improvement in ML-VSM.
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All of the remaining translingual methods surpassed DICT, but none matched EBT’s performance
either in terms of absolute AVGP or in their ratio from monolingual performance, although they came
close. GVSM exhibited better result in absolute performance (AVGP=0.46) than LSI (AVGP=.42) and
PRF (AVGP=.42); PRF exhibited little degradation with a TL/ML ratio of 99%.

Different source-target text alignments were tested on the validation set for each corpus-based TLIR
method except EBT (which always used sentence alignment), and sentence alignment proved best for
PRF, while paragraph alignment proved best for GVSM and document alignment was optimal for LSI.
Although TL-PRF performs at 99% of ML-PRF, its performance is quite sensitive to the value of K (the
number of top-ranking documents for query expansion), as shown in Figure 4. If the user were willing to
provide true relevance judgements, full relevance feedback should exhibit higher absolute performance,
both for monolingual and translingual retrieval.

The early experiments reported in [7, 29] used the entire test set of 1121 documents, rather than di-
viding into validation and blind-test subsets reported in Table 1 and described in the previous paragraph.
The results of the earlier experiments were similar, but slightly lower overall. In part, the improvements
reported here are due to improved versions of all the methods (except PRF, which did not change).

For comparison, we also include translingual results reported by other researchers in Table 2. Be-
cause the methods have been run on different corpora with different queries, direct comparisons on
absolute AVGP are not meaningful. However, the ratio of TLIR over MLIR results may be more in-
dicative of the relative power of each TLIR method. The TLIR/MLIR degradation factors reported
in the literature (primarily dictionary-based approaches) are comparable, though somewhat lower than
our DICT and GLOSS methods: 40% to 73.5% versus our results of 80% to 83%. More interestingly,
no previous results come close to the 87% to 101% TLIR/MLIR range exhibited by our corpus-based
methods. We encourage direct comparisons on the same corpora in the future.

5.4 Effects of corpus alignment and parameter tuning in TLIR methods

We investigated different parameter values and different granularity alignments between the source and
target language corpora, specifically at the document, paragraph and sentence levels.

For all of our TLIR methods, we used the ntc term weighting scheme (T'F x IDF with vector
normalization) which appeared to be optimal on the UNICEF corpus.

For PRF, we first measured the effect of varying K (number of top-ranked documents used in query
expansion) with different alignments. As shown in Figure 4, optimal performance for TL-PRF is at
K=5 for document alignment and at K=10 for paragraph and sentence alignment, when tested on the
validation set. (There are about 6 paragraphs per document and about 5 sentences per paragraph.)
Therefore, we selected K=10 and paragraph alignment for our reported results on the test set. PRF
performance is rather sensitive to K at the document-level alignment, but less sensitive (more robust) at
the finer-grain alignments, hence the latter are preferable for stability as well as absolute performance
reasons.

With K fixed at its optimal value for PRF, we tested how performance varies with changes in
SP values (i.e., the number of TF*IDF top-ranking terms retained after query expansion). As shown
in Figure 5, performance is rather stable and insensitive to SP larger than 30 on the validation set.
Therefore, selected 70 as the SP value for our test. This modest expanded query size permits fast on-line
performance.

GVSM has only one tunable parameter, i.e., the same SP as in PRF, but applied to both query and
document vectors after the GVSM transformation. As shown in Figure 6, all alignments achieve stable
performance in the validation set near the optimum with sufficiently large SP values, but document and
paragraph alignments approach the performance plateau at much smaller SP values, resulting in faster
on-line response and smaller storage for document indexes. We selected SP=200 for our blind test,
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PRF on UNICEF validation set: Effect of the choise of K
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Figure 4: PRF performance w.r.t. parameter tuning on K
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Figure 5: PRF performance w.r.t. parameter tuning on SP

although any value above 100 should perform comparably, according to our study on the validation set.

LST also has a single tunable parameter, the number of singular values (SV) being used, which
corresponds to the orthogonal dimensions of the reduced vector space, and is equivalent to the number
of indexing terms per document or query after their LSI transformation. The performance of this method
with different corpus alignment strategies is illustrated in Figure 7. Sentence-level alignment for LSI
produces terrible results, both in terms of accuracy and computational time, and therefore is discarded
from further consideration. Paragraph-level alignment also produces significantly worse retrieval results
than document-level alignment does. The performance curve does not reach a plateau until 200 or more
SVs are used for document alignment; the performance climbs slightly at SV values over 600. However,
the computational cost increases superlinearly as with increasing SVs, and using SV=1000 defeats the
original purpose of the SVD step in LSI: dimensionality reduction. Therefore, we selected SV=200, and
document-level alignment for our blind test.

EBT has two tunable parameters: the filtering threshold used in generating the term dictionary
and the total term weighting used in translating/expanding the query. For our experiments with the
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TL-GVSM on UNICEF validation set (550 docs)
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Figure 6: GVSM performance w.r.t. parameter tuning on SP
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Figure 7: LSI performance w.r.t. to parameter tuning on SV

UNICEF corpus, EBT using the full UN multilingual corpus performed best with a filtering threshold of
0.27, 1.e. the term dictionary consists of those word pairs which co-occur with each other in a translated
sentence pair at least 27% of the time. A threshold of 0.11 performed best for a smaller corpus of twelve
megabytes containing only the UNICEF training documents and four megabytes of non-UN texts which
are also used in the full 250-megabyte corpus. For the blind test, therefore, the 12-megabyte corpus was
used with a threshold of 0.11.

EBT term weighting is achieved by outputting multiples of each possible translation in proportion
to the number of co-occurrences found when the term dictionary is generated, and allowing SMART
to weight each word on the number of times it occurs in the newly-generated translated query. In our
experiments, we found that performance does not change beyond a weighting of 20, 1.e. a total of 20
words 1s output for each word in the query. For example, given the entry

(WATER (AGUA 1953) (ABASTECIMIENTO 753)),

20%x1953

49 ”
EBT generates 14 occurrences of “agua (m,

rounded) and 6 of “abasticimiento” for each occur-
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Task  Method ML.doc TL.doc ML.para TL.para Parameters ||
Mate GVSM 9897 9352 9897 9573 SP=200,ntc
Mate LST 9897 9514 9897 9737 SV=200,ntc
Retr  GVSM .3846 3672 4096 4053 SP=200,ntc
Retr LST 4286 4148 .3916 .3834 SV=200,ntc

Table 3: Results summary of mate finding and retrieval

rence of “water” in the query. At least one occurrence of each word is output, even if the proportion
rounds to zero.

5.5 Mate finding

LST was first extended from MLIR to TLIR at Bellcore [17, 12], including the “fold-in” process mentioned
earlier. However, the evaluation was unorthodox due to their lack of a bilingual corpus with queries
and relevance judgements (such as the UNICEF corpus we prepared). Mate-finding was proposed:
use a document in the source language as the query and determine if its translation (the “mate”) is
retrieved. Using LSI, a very high performance was achieved in 1990 and even higher in 1996. However,
Dumais also reported that using machine translation produced an even slightly higher performance.
The performance figures for mate-finding totally eclipse all published query-based document retrieval
evaluations. We submit that the mate-finding task is far easier than true query-based retrieval, and
thus good performance in the former may not be a meaningful indicator of performance in the latter. A
document and its translation mate are extremely close - 1dentical modulo translation in fact — unlike a
query and the documents relevant to it. In order to test this hypothesis, we replicated the Bellcore mate-
finding experiments on the UNICEF corpus, using both LSI and GVSM, and contrast those results with
true retrieval in Table 3. We used the full set of 1121 test documents, i.e., the union of the validation
test set (550 documents) and the evaluation test set (571 documents). The parameters are SV=200
for LSI, and SP=200 for GVSM, which are the optimal parameters found on the validation test set, as
described in the previous section.

As expected, GVSM and LSI exhibit very high MLIR performance (both AVGP=0.99) and TLIR
performance (AVGP=0.96 and 0.97 for paragraph alignment) in mate-finding. These are comparable
to the results reported by Dumais et al in a different parallel corpus (the Canadian Hansard). But
our corresponding query-based retrieval performance (AVGP=0.41 and 0.38 for paragraph alignment)
differed extremely from mate finding. Hence, mate-finding does not reflect true IR performance in
realistic tasks, and it should be discarded as an overly optimistic evaluation criterion for TLIR.

5.6 Monolingual retrieval on MEDLARS

We have shown the effectiveness of multiple corpus-based TLIR methods. However a question remains
as to how intrinsically “difficult” the UNICEF corpus and queries are, compared to other (monolingual)
corpora used in the IR community. To address this question we compared our monolingual IR results on
UNICEF with the standard MEDLARS corpus and queries provided with the SMART system. Testing
all our methods on each corpora also enabled us to see whether the relative performance ranking among
the methods is preserved or not, in the monolingual case. Figure 8 presents the recall-precision curves

for MEDLARS, showing:
e MEDLARS is an “easier” collection for IR, as shown by the fact that all the methods perform much
better than in the UNICEF collection.

e All the corpus-based methods clearly outperform basic VSM, in MEDLARS, indicating that the use
of empirical word associations and occurrence patterns provides significant benefits for MEDLARS.
This is possibly the case because there 1s more room for improvement in terms of query expansion
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Figure 8: MLIR Performance of different methods on two corpora

for MEDLARS.

e Other than the basic VSM performance difference noted above, the relative ranking of the various
methods did not change significantly. In both cases LSI performs better by a small margin over
GVSM. PRF was somewhat closer to LSI performance in MEDLARS than in UNICEF.

The effectiveness of the corpus-based MLIR methods also depends on how clustered the relevant
documents are (e.g., in PRF: whether the retrieved subset of the relevant documents is representative of
the un-retrieved relevant documents), and how close the query is to the relevant documents. Therefore,
for some corpora (such as MEDLARS), word expansion techniques (which are essential to our corpus-
based methods) are more effective than for other corpora (such as UNICEF). Nevertheless, our central
focus here is to cross the language barrier via learning from a bilingual corpus; we have found that all
these methods are highly effective in solving this problem, regardless of how much they improve on (or
degrade from) the baseline MLIR performance on a particular set of queries and documents.

6 Conclusions

This paper reports a thorough evaluation of multiple methods for translingual retrieval in a query-based
retrieval task. Some methods were adapted from the literature and others are newly developed for TLIR.
The latter set includes:

e Ezample-Based Term Translation — using a bi-lingual corpus to translate query terms in a corpus-
relevant context.

o Translingual Pseudo-Relevance Feedback — using retrieved documents and their translations in a
bi-lingual corpus for query formulation in the target language.

e Translingual Generalized Vector Space Model — using patterns of term occurrences in translated
document pairs to establish translingual query-document similarities.

Our comparative study indicates that corpus-based methods clearly surpass methods based on
general-purpose dictionaries, though results are a bit closer when the dictionaries are augmented with
glossaries developed for Machine Translation systems. Our results demonstrate that TLIR methods can
achieve performance approaching MLIR, accuracy. More specifically, we conclude:
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e Translingual retrieval is viable by a number of different techniques, ranging from term-based query
translation and Pseudo-Relevance Feedback to Generalized Vector Spaces Model and latent Semantic
Indexing.

e In our translingual retrieval test, Example-Based Term Translation performed best in absolute
terms, but GVSM was a close second and LSI and PRF were not far behind. With respect to relative
performance, all these methods showed only minor degradation from monolingual to translingual

retrieval (TLIR/MLIR ratios of 87% to 101%).

e Dictionary-based query translation, though popular in the literature, should be re-examined as the
TLIR method of choice given the results in this paper, though even there, our dictionary results,
especially when enhanced with a glossary, performed acceptably.

e GVSM exhibited the most stable performance with respect to a large range of parameter values,
while PRF had the smallest query-length after expansion for effective translingual retrieval, imply-
ing the fastest on-line response. LSI performance can reach a similar stability, but has a larger
computation cost (time and space) in both the training and testing phases.

e Mate-finding is not a realistic test of translingual retrieval performance, when compared to standard
evaluations with actual queries.

TLIR is quickly becoming a vibrant field, and this paper raises at least as many questions as it
answers. Some follow directly from our work, and others follow from its limitations. Significant questions
for future research include: Are there unexplored TLIR methods of comparable or better performance?
Which methods scale to much larger collections, and at what cost in time and space? Which methods
extend well to more disparate language pairs (such as English-Chinese)? Is it possible to exploit a small
parallel corpus together with large monolingual ones? Can these methods be extended to comparable
corpora (documents about the same topic in different languages, rather than translation mates)? Can
machine translation play a more central role in TLIR, such as by automatically producing a parallel
corpus for (part of) a collection? What should the user interface to a TLIR system be? Should it
include MT of retrieved target-language documents?
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