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Abstract. Protein fold recognition is an important step towards un-
derstanding protein three-dimensional structures and their functions. A
conditional graphical model, i.e. segmentation conditional random fields
(SCRFs), is proposed to solve the problem. In contrast to traditional
graphical models such as hidden markov model (HMM), SCRFs follow
a discriminative approach. It has the flexibility to include overlapping
or long-range interaction features over the whole sequence, as well as
global optimally solutions for the parameters. On the other hand, the
segmentation setting in SCRFs makes its graphical structures intuitively
similar to the protein 3-D structures and more importantly, provides a
framework to model the long-range interactions directly.

Our model is applied to predict the parallel β-helix fold, an im-
portant fold in bacterial infection of plants and binding of antigens. The
cross-family validation shows that SCRFs not only can score all known β-
helices higher than non β-helices in Protein Data Bank, but also demon-
strate more success in locating each rung in the known β-helix proteins
than BetaWrap, a state-of-the-art algorithm for predicting β-helix fold,
and HMMER, a general motif detection algorithm based on HMM. Ap-
plying our prediction model to Uniprot database, we hypothesize previ-
ously unknown β-helices.

1 Introduction

It is believed that protein structures reveal important information about the
protein functions. One key step towards modeling a tertiary structure is to iden-
tify how secondary structures as building blocks arrange themselves in space, i.e.
the supersecondary structures or protein folds. There has been significant work
on predicting some well-defined types of structural motifs or functional units,
such as αα- and ββ-hairpins [1, 2, 3, 4]. The task of protein fold recognition is
the following: given a protein sequence and a particular fold or super-secondary
structure, predict whether the protein contains the structural fold and if so,
locate its exact positions in the sequence.
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The traditional approach for protein fold prediction is to search the database
using PSI-BLAST [5] or match against an HMM profile built from sequences
with the same fold by HMMER [4] or SAM [3]. These approaches work well
for short motifs with strong sequence similarities. However, there exist many
important motifs or folds without clear sequence similarity and involving the
long-range interactions, such as folds in β class [6]. These cases necessitate a
more powerful model, which can capture the structural characteristics of the
protein fold. Interestingly, the protein fold recognition task parallels an emerging
trend in machine learning community, i.e the structure prediction problem, which
predict the labels of each node in a graph given the observation with particular
structures, for example webpage classification using the hyperlink graph or object
recognition using grids of image pixels. The conditional graphical models prove
to be one of the most effective tools for this kind of problem [7, 8].

In fact, several graphical models have been applied to protein structure pre-
diction. One of the early approaches is to apply simple hidden markov models
(HMMs) to protein secondary structure prediction and protein motif detection
[3, 4, 9]; Delcher et al. introduced probabilistic causal networks for protein sec-
ondary structure modeling [10]. Recently, Liu et al. applied conditional ran-
dom fields (CRFs), a discriminative graphical model based on undirected graph,
for protein secondary structure prediction [11]; Chu et al. extended segmental
semi-Markov model (SSMM) under the Baysian framework for protein secondary
structures [12].

The bottleneck for protein fold prediction is the long-range interactions,
which could be either two β-strands with hydrogen bonds in a parallel β-sheet
or helix pairs in coupled helical motifs. Generative models, such as HMM or
SSMM, assume a particular generating process, which makes it difficult to con-
sider overlapping features and long-range interactions. Discriminative graphical
models, such as CRFs, assume a single residue as an observation. Thus they fail
to capture the features over a whole secondary structure element or the inter-
actions between adjacent elements in 3-D, which may be distant in the primary
sequence. To solve the problem, we propose segmentation conditional random
fields (SCRFs), which retain all the advantages of original CRFs and at the same
time can handle observations of variable length.

2 Conditional Random Fields (CRFs)

Simple graphical chain models, such as hidden markov models (HMMs), have
been applied to various problems. As a “generative” model, HMMs assume that
the data are generated by a particular model and compute the joint distribution
of the observation sequence x and state sequence y, i.e. P (x,y). However, gener-
ative models might perform poorly with inappropriate assumptions. In contrast,
discriminative models, such as neural networks and support vector machines
(SVMs), estimate the decision boundary directly without computing the under-
lying data distribution and thus often achieve better performance.
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Recently, several discriminative graphical models have been proposed by
the machine learning community, such as Maximum Entropy Markov Models
(MEMMs) [13] and Conditional Random fields (CRFs) [14]. Among these mod-
els, CRFs proposed by Lafferty et al., are very effective in many applications,
including information extraction, image processing and so on [8, 7].

CRFs are “undirected” graphical models (also known as random fields, as
opposed to directed graphical models such as HMMs) to compute the condi-
tional likelihood P (y|x) directly. By the Hammersely-Clifford theorem [15], the
conditional probability P (y|x) is proportional to the product of the potential
functions over all the cliques in the graph,

P (y|x) =
1
Z0

∏

c∈C(y,x)

Φc(yc,xc),

where Φc(yc,xc) is the potential function over the clique c, and Z0 is the nor-
malization factor over all possible assignments of y (see [16] for more detail).
For a chain structure, CRFs define the conditional probability as

P (y|x) =
1
Z0

exp(
N∑

i=1

K∑

k=1

λkfk(yi−1, yi,x, i)), (1)

where fk is an arbitrary feature function over x, N is the number of observations
and K is the number of features. The model parameters λk are learned via
maximizing the conditional likelihood of the training data.

CRFs define the clique potential as an exponential function, which results in
a series of nice properties. First, the conditional likelihood function is convex so
that finding the global optimum is guaranteed [14]. Second, the feature function
can be arbitrary, including overlapping features and long-range interactions. Fi-
nally, CRFs still have efficient algorithms, such as forward-backward or Viterbi,
as long as the graph structures are sequences or trees.

Similar to HMMs, we can define the forward-backward probability for CRFs.
For a chain structure, the “forward value” αi(y) is defined as the probability of
being in state y at time i given the observation up to i. The recursive step is:

αi+1(y) =
∑

y′
αi(y′) exp(

∑

k

λkfk(y′, y,x, i + 1)).

Similarly, βi(y) is the probability of starting from state y at time i given the
observation sequence after time i. The recursive step is:

βi(y′) =
∑

y

exp(
∑

k

λkfk(y′, y,x, i + 1))βi+1(y).

The forward-backward and Viterbi algorithms can be derived accordingly [17].

3 Segmentation Conditional Random Fields (SCRFs)

Protein folds are frequent arrangement pattern of several secondary structure
elements: some elements are quite conserved or prefer a specific length, while
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Fig. 1. Graph structure of β-α-β motif (A) 3-D structure (B) Protein structure graph:
node: Green=β-strand, yellow=α-helix, cyan=coil, white=non-β-α-β (I-node); edge:
E1 = {black edges} and E2 = {red edges}

others might form hydrogen-bonds with each other, such as two β-strands in a
parallel β-sheet. To model the protein fold better, it would be natural to think
of each secondary structure element as one observation (or node) and the edges
between elements indicating their interactions in 3-D. Then, given a protein
sequence, we can search for the best segmentation defined by the graph and
determine if the protein has the fold.

3.1 Protein Structural Graph

Before covering the algorithm in detail, we first introduce a special kind of graph,
called protein structural graph. Given a protein fold, a structural graph is defined
as G =< V, E1, E2 >, where V = U

⋃{I}, U is the set of nodes corresponding
to the secondary structure elements within the fold and I is the node to repre-
sent the elements outside the fold. E1 is the set of edges between neighboring
elements in primary sequences, and E2 is the set of edges indicating the po-
tential long-range interactions between elements in tertiary structures. Figure 1
shows an example of the structural graph for β-α-β motif. Notice that there
is a clear distinction between edges in E1 and those in E2 in terms of proba-
bilistic semantics: similar to HMMs, the E1 edges indicate transitions of states
between adjacent nodes. On the other hand, the E2 edges are used to model the
long-range interactions, which is unique to the structural graph.

In practice, one protein fold might correspond to several reasonable structural
graphs given different semantics for one node. There is always a tradeoff between
the graph complexity, fidelity of model and the real computational costs. There-
fore a good graph is the most expressive one that captures the properties of the
protein folds while retaining as much simplicity as possible. There are several
ways to simplify the graph, for example we can combine multiple nodes with
similar properties into one, or remove those E2 edges that are less important or
less interesting to us. We give a concrete example of β-helix fold in Section 4.

3.2 Segmentation Conditional Random Fields

Since a protein fold is regular arrangement of its secondary structure elements,
the general topology is often known apriori and we can easily define a structural
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graph with deterministic transitions between adjacent nodes. Therefore it is
not necessary to consider the effect of E1 edges in the model explicitly. In the
following discussion, we focus on this simplified but common case.

Consider the graph G′ = 〈V, E2〉, given a protein sequence x = x1x2 . . . xN ,
we can have a possible segmentation of the sequence, i.e. S = (S1, S2, . . . , SM ),
where M is the number of segments, Si = 〈pi, qi, yi〉 with a starting position pi,
an end position qi, and the label of the segment yi. The conditional probability
of a segmentation S given the observation x can be computed as follows:

P (S|x) =
1
Z0

∏

c∈G′(S,x)

exp(
∑

k

λkfk(xc, Sc)),

where Z0 is a normalization factor. If each subgraph of G′ is a chain or a tree
(an isolated node can also be seen as a chain), then we have

P (S|x) =
1
Z0

exp(
M∑

i=1

K∑

k=1

λkfk(x, Si, S
′
i−1)), (2)

where S′i−1 is the direct forward neighbor of Si in graph G′.
We estimate the parameters λk by maximizing the conditional log-likelihood

of the training data:

LΛ =
M∑

i=1

K∑

k=1

λkfk(x, Si, S
′
i−1)− log Z0 +

λ2
k

2σ2 ,

where the last term is a Gaussian prior over the parameters as a smoothing term
to deal with sparsity problem in the training data. To perform the optimization,
we need to seek the zero of the first derivative, i.e.

∂LΛ

∂λk
=

M∑

i=1

(fk(x, Si, S
′
i−1)− EP (s|x)[fk(x, Si, S

′
i−1)]) +

λk

σ2 , (3)

where EP (s|x)[fk(x, Si, S
′
i−1)] is the expectation of feature fk(x, Si, S

′
i−1) over

all possible segmentations of x. The convexity property guarantees that the
root corresponds to the optimal solution. However, since there is no closed-form
solution to (3), it is not straightforward to find the optimal. Recent work on
iterative searching algorithms for CRFs suggests that L-BFGS converges much
faster than other commonly used methods, such as iterative scaling or conjugate
gradient [17], which is also confirmed in our experiments.

Similar to CRFs, we still have an efficient inference algorithm as long as each
subgraph of G′ is a chain. We redefine the forward probability α<l,yl>(r, yr) as
the conditional probability that a segment of state yr ends at position r given
the observation xl+1 . . . xr and a segment of state yl ends at position l. The
recursive step can be written as:

α<l,yl>(r, yr) =
∑

p, p′, q′
α<l,yl>(q′, y′)α<q′,y>(p− 1,←−yr) exp(

∑

k

λkfk(x, S, S′)),
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Fig. 2. An example of forward algorithm for the graph defined in Figure-1(B). x/y-axis:
index of starting/end residue position; green circle: target value; red circle: intermedi-
ate value. (Left) calculation for α<0,S0>(r, S3) for segment S3 with no direct forward
neighbor; (right) calculation for α<0,S0>(r, S4) for segment S4 with direct forward
neighbor S2

where S′ is the direct forward neighbor of S in graph G′ (if any), S = 〈p, r, yr〉,
S′ = 〈p′, q′, y′〉, “→” is the operator for next state and “←” for previous state
(the value is known since the state transition is deterministic). The range over
the summation is

∑r−�2+1
p=r−�1+1

∑p−1
q′=l+�′

1−1
∑q′−�′

1+1
p′=l , where �1 = max length(y),

�2 = min length(y). Then the normalizer Z0 = α<0,ystart>(N, yend). Figure 2
shows a toy example of how to calculate the forward probability in detail.

Similarly, we can define the backward probability β<r,yr>(l, yl) as the prob-
ability of xl+1 . . . xr given a segment of state yl ends at l and a segment of state
yr ends at r. Then we have

β<r,yr>(l, yl) =
∑

q′, p, q

β<r,yr>(p−1,←−y )β<p′−1,←−y >(q′,−→yl ) exp(
∑

k

λkfk(x, S, S′)),

where S = 〈p, q, y〉, S′ = 〈l + 1, q′,−→yl 〉. Given the backward and forward algo-
rithm, we can compute the expectation of each feature fk in (3) accordingly.

For a test sequence, we search for the segmentation that maximizes the con-
ditional likelihood P (S|x). Similar to CRFs, we define:

δ<l,yl>(r, yr) =
∑

p, p′, q′
δ<l,yl>(q′, y′)δ<q′,y>(p− 1,←−yr) exp(

∑

k

λkfk(x, S, S′)).

The best segmentation is the path traced back by max δ<0,ystart>(N, yend), where
N is the number of residues in the sequence.

In general, the computational cost of SCRFs for the forward-backward prob-
ability and Viterbi algorithm will be polynomial to the length of the sequence
N . However, in most real applications of protein fold prediction, the number of
possible residues in each node is much smaller than N or fixed. Therefore the
final complexity will be approximately O(N2).
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4 Application to Right-Handed Parallel β-Helix
Prediction

The right-handed parallel β-helix fold is an elongated helix-like structure with a
series of progressive stranded coilings (called rungs), each of which is composed
of three parallel β-strands to form a triangular prism shape [18]. The typical
3-D structure of a β-helix is shown in Fig. 3(A-B). As we can see, each basic
structural unit, i.e. a rung, has three β-strands of various lengths, ranging from
3 to 5 residues. The strands are connected to each other by loops with distinctive
features. One loop is a unique two-residue turn which forms an angle of approx-
imately 120� between two parallel β-strands (called T-2 turn). The other two
loops vary in size and conformation, which might contain helix or even β-sheets.
There currently exist 14 protein sequences with three-stranded right-hand β-
helix whose crystal structures have been deposited in Protein Data Bank (PDB)
(See Table 1). The β-helix structures are significant in that they include pec-
tate lyases, which are secreted by pathogens and initiate bacterial infection of
plants; the phage P22 tailspike adhesin that binds the O-antigen of Salmonella
typhimurium; and the P.69 pertactin toxin from Bordetella pertussis, the cause
of Whooping Cough. Therefore it would be very interesting if we can accurately
predict other unknown β-helix structure proteins.

Fig. 3. 3-D structures and side-chain patterns of β-helices; (A) Side view (B) top view
of one rung (C) Segmentation of 3-D structures (D) protein structural graph. E1 =
{black edge} and E2 = {red edge}

Traditional methods for protein family classification, such as threading, PSI-
BLAST and HMMs, fail to solve the β-helix recognition problem across differ-
ent families [19]. Recently, a computational method called BetaWrap, has been
proposed to predict the β-helix specifically [19]. The algorithm “wraps” the un-
known sequences in all plausible ways and check the scores to see if any wrap
makes sense. The cross-validation results in the protein data bank (PDB) seem
promising. However, the BetaWrap algorithm suffers from hand-coding many
biological heuristic rules. Hence it is prone to over-fit the known β-helix proteins
and hard to generalize for other structural prediction tasks.
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4.1 Protein Structural Graph for β-Helix

From previous literature on β-helix, there are two facts important for accurate
prediction: 1) the β-strands of each rung have patterns of pleating and hydrogen
bonding that are well conserved across the superfamily; 2) the interaction of the
strand side-chains in the buried core are critical determinants of the fold [20, 21].
Therefore we define the protein structural graph of β-helix as in Fig.3-(D).

There are 5 states in the graph altogether, i.e. s-B23, s-T3, s-B1, s-T1 and
s-I. The state s-B23 is a union of B2, T2 and B3 because these three segments
are all highly conserved in pleating patterns and a combination of conserved
evidence is generally much easier to detect. We fix the length of S-B23 and S-B1
as 8 and 3 respectively for two reasons: first, these are the number of residues
shared by all known β-helices; second, it helps limit the search space and reduce
the computational costs. The states s-T3 and s-T1 are used to connect s-B23
and s-B1. It is known that the β-helix structures will break if the insertion is
too long. Therefore we set the length of s-T3 and s-T1 so that it varies from
1 to 80. s-I is the non-β-helix state, which refers to all those regions outside
the β-helix structures. The red edge between s-B23 is used to model the long-
range interaction between adjacent β-strand pairs. For a protein without any
β-helix structures, we define the protein structural graph as a single node of
state s-I.

4.2 SCRFs for β-Helix Fold Prediction

In Section 3.2, we made two assumptions in the SCRFs model: a) the state tran-
sition is deterministic; b) each subgraph of G′ =< V, E2 > is a chain or a tree.
For β-helix, we cannot directly define a structural graph with deterministic state
transitions, since the number of rungs in a protein is unknown beforehand. In
Fig.3, it seems that the previous state of s-B23 can be either s-I or s-T1. How-
ever, notice that s-I can appear only at the beginning or the end of a sequence,
therefore s-I can be the previous state of s-B23 iff the previous segment starts
at the first residue in the sequence. Similarly, s-I can be the next state of s-B23
iff the next segment ends at the last residue. Therefore the state transition is
deterministic given the constraint we have for s-I. As for assumption b), it is
straightforward that graph G′ consists of a chain and a set of isolated nodes.
Therefore the algorithm discussed in Section 3.2 can be applied accordingly.

To determine whether a protein sequence has the β-helix fold, we define
the score ρ as the log ratio of the probability of the best segmentation to the
probability of the whole sequence as one state s-I, i.e. ρ = log maxs P (S|x)

P (<1,N,s−I>|x) .
The higher the score ρ, the more likely that the sequence has a β-helix fold. We
did not consider the long-range interactions between B1 strands explicitly since
the effect is relatively weak given only 3 residues in s-B1 segments. However, we
use the B1 interactions as a filter in Viterbi algorithm: specifically, δt(y) will be
the highest value whose corresponding segmentation also have alignment scores
for B1 higher than some threshold set using cross-validation.
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4.3 Feature Extraction

SCRFs provide an expressive framework to handle long-range interactions for
protein fold prediction. However, the choice of feature function fk plays a key role
in accurate predictions. We define two types of features for β-helix prediction,
i.e. node features and inter-node features.

Node features cover the properties of an individual segment, including:

a) Regular expression template: Based on the side-chain alternating pat-
terns in B23 region, BetaWrap generates a regular expression template to detect
β-helices, i.e. ΦXΦXXΨXΦX, where Φ matches any of the hydrophobic residues
as {A, F, I, L, M, V, W, Y}, Ψ matches any amino acids except ionisable residues
as {D, E, R, K} and X matches any amino acid [19]. Following similar idea, we
define the feature function fRST (x, S) equal to 1 if the segment S matches the
template, and 0 otherwise.

b) Probabilistic HMM profiles: The regular expression template as above is
straightforward and easy to implement. However, sometimes it is hard to make
a clear distinction between a true motif and a false alarm. Therefore we built
a probabilistic motif profile using HMMER [4] for the s-B23 and s-B1 segments
respectively. We define the feature function fHMM1(x, S) and fHMM2(x, s) as
the alignment scores of S against the s-B23 and s-B1 profiles.

c) Secondary structure prediction scores: Secondary structures reveal sig-
nificant information on how a protein folds in three dimension. The state-of-art
prediction method can achieve an average accuracy of 76 - 78% on soluble pro-
teins. We can get fairly good prediction on alpha-helix and coils, which can help
us locate the s-T1 and s-T3 segments. Therefore we define the feature function
fssH(x, S), fssE(x, S) and fssC(x, S) as the average of the predicted scores over
all residues in segment S, for helix, sheet and coil respectively by PSIPRED [22].

d) Segment length: It is interesting to notice that the β-helix structure has
strong preferences for insertions within certain length ranges. To consider this
preference in the model, we did parametric density estimation. Several com-
mon functions are explored, including Poisson distribution, negative-binomial
distribution and asymmetric exponential distribution, which consists for two
exponential functions meeting at one point. We use the latter one since it pro-
vides a better estimator than the other two. Then we define the feature function
fL1(x, S) and fL3(x, S) as the estimated probability of the length of segment S
as s-T1 and s-T3 respectively.

Inter-node features capture long-range interactions between adjacent β-strand
pairs, including:

a) Side chain alignment scores: BetaWrap calculates the alignment scores
of residue pairs depending on whether the side chains are buried or exposed.
In this method, the conditional probability that a residue of type X will align
with residue Y, given their orientation relative to the core, is estimated from
a β-structure database developed from the whole PDB [19]. Following similar
idea, we define the feature function fSAS(x, S, S′) as the weighted sum of the
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side chain alignment scores for S given S′ if both are s-B23 segments, where a
weight of 1 is given to inward pairs and 0.5 to the outward pairs.

b) Parallel β-sheet alignment scores: In addition to the side chain position,
another aspect is to study the different preferences for parallel and anti-parallel
β-sheets. Steward & Thornton [23] derived the “pairwise information values”
(V) for a residue of type X given the residue Y on the pairing parallel (or
anti-parallel) strand and the offsets of Y from the paired residue Y’ of X. The
alignment score for two segments x = X1 . . . Xm and y = Y1 . . . Ym is defined as

score(x, y) =
∑

i

∑

j

(V (Xi|Yj , i− j) + V (Yi|Xj , i− j)).

Compared with the side chain alignment scores, this score also takes into account
the effect of neighboring residues on the paired strand. We define the feature
function fPAS(x, S, S′) = score(S, S′) if both S and S′ are s-B23 and 0 otherwise.

c) Distance between adjacent s-B23 segments There are also different
preferences for the distance between adjacent s-B23 segments. It is difficult to get
an good estimation of this distribution since the range is too large. Therefore we
simply define the feature function as the normalized length, i.e. fDIS(x, S, S′) =
dis(S,S′)−µ

σ , where µ is the mean and σ2 is the variance.
It is interesting to notice that some features defined above are quite general,

not limited to predicting β-helices only. For example, an important aspect to
discriminate a specific protein fold with others is to build HMM profiles or
identify regular expression templates for conserved regions if they exist; the
secondary structure assignments are essential in locating the elements within a
protein fold; if some segments have strong preferences for certain length range,
then length are also informative. For internode features, the β-sheet alignment
scores are useful for folds in β-family while hydrophobicity is important for α-
or αβ-family.

5 Experiments

In our experiments, we followed the setup described in [19]. A PDB-minus
dataset was constructed from the PDB protein sequences (July 2004 version)
[24] with less than 25% similarity to each other and no less than 40 residues
in length. Then the β-helix proteins are removed from the dataset, resulting
in 2094 sequences in total. The proteins in PDB-minus dataset will serve as
negative examples in the cross-family validation and discovery of new β-helix
proteins. Since negative data dominate the training set, we subsample 15 nega-
tive sequences that are most similar to the positive examples in sequence identity
so that SCRFs can learn a better decision boundary than randomly sampling.

5.1 Cross-Family Validation

A leave-family-out cross-validation was performed on the nine β-helix families of
closely related proteins in the SCOP database [1]. For each cross, proteins in the
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one β-helix family are placed in the test set while the remainder are placed in the
training set as positive examples. Similarly, the PDB-minus was also randomly
partitioned into nine subsets, one of which are placed in the test set while the rest
serve as the negative training examples. We compare our results with BetaWrap,
a state-of-art algorithm for predicting β-helices, and HMMER, a general motif
detection algorithm based on a simple graphical model, i.e. HMMs. The input
to HMMER is a multiple sequence alignment. The best multiple alignments
are typically generated using 3-D structural information, although this is not
strictly sequence-based method. Therefore we generated two kinds of alignments
for comparison: one is the multiple structural alignments using EC-MC [25], the
other is purely sequence-based alignments by CLUSTALW[26].

Table 1 shows the output scores by different methods and the relative rank
for the β-helix proteins in the cross-family validation. From the results, we can
see that the SCRFs model can successfully score all known β-helices higher than
non β-helices in PDB. On the other hand, there are two proteins (i.e. 1ktw
and 1ea0) in our validation sets that are crystallized recently and thus are not
included in the BetaWrap system. We test these two sequences on BetaWrap and
get a score of -23.4 for 1ktw and -24.87 for 1ea0. These values are significantly

Table 1. Scores and rank for the known right-handed β-helices by HMMER, BetaWrap
and SCRFs. 1: the scores and rank from BetaWrap are taken from [3] except 1ktw and
1ea0; 2: the bit scores in HMMER are not directly comparable

SCOP family PDB-id Struct-based HMMs Seq-based HMMs BetaWrap1 SCRFs
Bit score2 Rank Bit score2 Rank Score Rank ρ-score Rank

P.69 pertactin 1dab -73.6 3 -163.4 75 -17.84 1 10.17 1
Chondroitinase
B

1dbg -64.6 5 - 171.0 55 -19.55 1 13.15 1

Glutamate
synthase

1ea0 -85.7 65 -109.1 72 -24.87 N/A 6.21 1

Pectin
methylesterase

1qjv -72.8 11 -123.3 146 -20.74 1 6.12 1

P22 tailspike 1tyu -78.8 30 -154.7 15 -20.46 1 6.71 1
Iota-
carrageenase

1ktw -81.9 17 - 173.3 121 -23.4 N/A 8.07 1

Pectate lyase 1air -37.1 2 -133.6 35 -16.02 1 16.64 1
1bn8 180.3 1 -133.7 37 -18.42 3 13.28 2
1ee6 -170.8 852 -219.4 880 -16.44 2 10.84 3

Pectin lyase 1idj -78.1 14 -178.1 257 -17.99 2 15.01 2
1qcx -83.5 28 -181.2 263 -17.09 1 16.43 1

Galacturonase 1bhe -91.5 18 -183.4 108 -18.80 1 20.11 3
1czf -98.4 43 -188.1 130 -19.32 2 40.37 1
1rmg -78.3 3 -212.2 270 -20.12 3 23.93 2
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Table 2. (Left) Histograms of protein scores of known β-helix proteins against PDB-
minus dataset. Blue bar: PDB-minus dataset; green bar: known β-helix proteins. 2076
out of 2098 protein sequences in PDB-minus have a log ratio score ρ of 0, which means
that the best segmentation is a single segment in non-β-helix state; (Right) Examples
of proteins predicted to form β-helix in UniProt
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2076 

UniProt ID Description Score
Q8YK40 All8078 protein 119.7
Q8PRX0 Conserved protein 93.8
Q8WTU9 Hypothetical protein 81.3
Q8DK34 Tlr1036 protein 81.1
Q8RD81 Hypothetical protein 55.1
O26812 Cell surface glycopro-

tein
54.2

Q6LZ14 Hypothetical protein 43.8
P35338 Exopolygalacturonase

precursor
42.2

Q6ZGA1 Putative polygalac-
turonase

41.6

Q9K1Z6 Hypothetical protein 40.8

lower than the scores of other β-helices and some of the non β-helix proteins,
which indicates that the BetaWrap might be overtrained. As expected, HMMER
did worse than SCRFs and BetaWrap even using the structural alignments.

Table 2 plots the score histogram for known β-helix sequences against the
PDB-minus dataset. Compared with the histograms in similar experiment by
BetaWrap [19], our log ratio score ρ indicates a clearer separation of β-helix
proteins v.s. non β-helix proteins. Only 18 out of 2094 proteins has a score
higher than 0. Among these 18 proteins, 13 proteins belong to the beta class and
5 proteins belong to the alpha-beta class in CATH database [2]. In Table 3 we
also cluster the proteins into three different groups according to the segmentation
results and show examples of the predicted segmentation in each group.

5.2 Discovery of Potential β-Helix Proteins

New potential β-helix proteins were identified from the UniProt reference data-
bases (UniRef) (a combination of Swiss-Prot Release 44.2 of 30-Jul-2004 and
TrEMBL 27.2 of 30-Jul-2004) [27]. We choose the UniRef50 (50% identity)
with 490,713 sequences as the discovering set. 93 sequences were returned with
scores above a cutoff of 5, which are identified as potential beta-helices. The
sequences come from organisms in all domains of life. Of 44 eukaryotic se-
quences, 25 are from plants. It is interesting to note that none of the known
β-helices are from plants. The remaining eukaryotic sequences come from mam-
mals, fungi, nematodes and pathogens from the genus Plasmodium: 4 sequences
were viral, including 3 from bacteriophages; 9 sequences are archeal, 7 of which
are from methanogens of the genus Methanosarcina. Of the 93 high scoring se-
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Table 3. Groups of segmentation results for the known right-handed β-helix

quences, 48 are likely homologous (BLAST E-val < 0.001) with proteins currently
known to contain parallel beta-helix domains. For the rest, most sequences are
not homologous to any of the sequences in PDB. The protein sequences with
maximal log ratio scores is shown in Table 2 (the full list can be accessed at
http://www.cs.cmu.edu/ yanliu/SCRF.html.

Our method also identifies gp14 of Shigella bacteriophage Sf6 as having a
parallel beta-helix domain, giving it a score of 15.63. This protein was not in-
cluded in the UniRef50 dataset because it was incorrectly grouped with the P22
tailspike protein (1tyu), which was used in the training dataset. These two pro-
teins share homologous capsid binding domains at their N-termini which are not
parallel beta-helices while their C-terminal domains do not have any sequence
identity. A Sf6 gp14 crystal structure has recently been solved and shown to be
a trimer of parallel β-helices (R. Seckler, personal communication). Therefore
SCRFs not only can identify homologous sequences to the known proteins, but
also succeed in discovering proteins with less sequence similarity.

6 Discussion and Conclusion

In [19], BetaWrap was compared with other alternative methods, such as PSI-
BLAST and Threader. We repeated their experiments and got similar results
confirming that these methods fail to detect β-helix proteins accurately. Now it
would be interesting to ask: why is β-helix prediction difficult for these commonly
used methods? why can SCRFs model perform better?

Group Perfect match Good match OK match

Missing
rungs

0 1-2 3 or more

PDB-
ID

1czf 1air, 1bhe, 1bn8, 1dbg,
1ee6(right), 1idj, 1ktw(left),
1qcx, 1qjv, 1rmg

1dab(left), 1ea0, 1tyu(right)
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We think the β-helix motif is hard to predict because there are long-range
interactions in the β-helix fold. In addition, the structural properties unique to
β-helix are not reflected clearly in the sequences. For example, the conserved
templates for s-B23 segment also appear many times in non β-helix proteins;
the side chain alignment propensities in β-sheets are also shared by β-sheets in
other structures, such as the β-sandwich. Therefore the commonly used methods
based on sequence similarity, such as PSI-BLAST and HMMER, cannot perform
well in this kind of task. However, a combination of both sequence and structure
characteristics might help to identify a β-helix, which is one of the major reasons
why BetaWrap and SCRFs work well. The difference between these two methods
is: BetaWrap searches the combination space by defining a series of heuristic rules
while SCRFs search automatically by maximizing the conditional likelihood of
the training data under a unified graphical model, which guarantees the solution
to be global optimally. Therefore the SCRFs model is more general and robust.

There are several directions to improve the SCRFs model, which are inter-
esting both computationally and empirically. One is to extend the SCRFs model
for predicting other protein folds, such as the leucine rich repeats (LLR) or
triple β-spirals. On the other hand, the 2-D protein structural graph has limited
power to capture the dynamic constraints for 3-D protein structures. Therefore
it would be interesting to extend the SCRFs model to include protein dynamics.
The latter, however, will be a major undertaking.
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