
 
 

 

 
  

Abstract—We describe a system for scheduling a 
conference based on incomplete information about 
available resources and scheduling constraints. We 
explain the representation of uncertain knowledge, 
describe a local-search algorithm for generating 
near-optimal schedules, and give empirical results of 
automatic scheduling under uncertainty. 
 

I. INTRODUCTION 

HEN we work on a practical scheduling task, we 
usually do not have complete knowledge of the related 

resources and constraints. For example, when scheduling a 
conference, we may not know the exact sizes of available 
rooms or equipment needs of some speakers. 

Although researchers have long realized the importance of 
uncertain information in scheduling and optimization 
problems, the related work has been limited [Sahinidis, 2004; 
Bidot, 2005]. Researchers have developed several 
domain-specific systems for optimization based on 
incomplete data [Chajewska et al., 1998; Averbakh, 2001; 
Lodwick et al., 2001; Moore, 2002; Balasubramanian and 
Grossmann, 2003; Lin et al., 2004]; however, they have not 
studied a general problem of scheduling under uncertainty. 

We have investigated the problem of scheduling a 
conference based on uncertain information about available 
resources and conference events. The previous techniques 
have turned out inapplicable to this problem, and we have 
developed a new mechanism for scheduling under uncertainty. 
This work has been part of the RADAR project 
(www.radar.cs.cmu.edu) at Carnegie Mellon University, 
which is aimed at building an intelligent system for assisting 
an office manager. We have described initial results of this 
work in three earlier papers; specifically, we have explained 
the representation of uncertainty [Bardak et al., 2006a], 
automatic elicitation of additional data that help to reduce 
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uncertainty [Bardak et al., 2006b], and collaboration between 
the scheduling system and human user [Fink et al., 2006].  
 We now describe an algorithm for constructing a schedule 
based on uncertain knowledge of resources and constraints. 
We explain the representation of uncertain facts 
(Sections II–IV), present the search for a near-optimal 
schedule (Sections V and VI), and give empirical results on its 
effectiveness (Section VII). 

II.  EXAMPLE 

We begin with an example of a conference scenario, and use it 
to illustrate the representation of resources and constraints. 
Suppose that we need to assign rooms to events at a small 
one-day conference, which starts at 11:00am and ends at 
4:30pm, and that we can use three rooms: auditorium, 
classroom, and conference room (Figure 1). These rooms host 
other events, and they are available for the conference only at 
the following times: 
 

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm. 
 Classroom: 11:00am–2:30pm. 
 Conference room: 12:00pm–4:30pm. 

 

 We describe each room by a set of properties; in this 
example, we consider three properties: 

 

Size: Room area in square feet. 
Mikes: Number of microphones.  
Stations: Maximal number of demo stations 

that can be set up in the room. 

 

We also specify distances between rooms in feet; we assume 
that the auditorium and classroom are next to each other, 
whereas the conference room is in another building. In 
Figure 1, we show the properties of each room and the 
distances between rooms. 

The conference includes five events: demonstration, 
discussion, tutorial, workshop, and committee meeting 
(Table 1). For each event, we specify its importance, as well 
as related constraints and preferences.  

We define constraints by limiting appropriate start times, 
durations, and room properties. For example, we may indicate 
that an acceptable start time for the tutorial is 1:00pm or 
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earlier, an acceptable duration is 30 minutes or more, and an 
acceptable room size is 400 square feet or more.  

In addition, we define constraints for distances between 
events and for relative start times of events with respect to 
other events. For instance, we may specify that the workshop 
must be in the same room as the tutorial, and that it must start 
shortly after the tutorial, because many participants plan to 
attend both events. We may also indicate that the tutorial and 
workshop must be near the demo, which will allow their 
attendees to see the demo during the breaks. 

We may also select preferred values for start times, 
durations, room properties, distances, and relative start times, 
which are subsets of acceptable values. For example, we may 
specify that the preferred start time for the tutorial is 11:00am, 
preferred duration is 60 minutes, and preferred room size is 
600 square feet or more. We may further indicate that the 
preferred distance from the workshop to the demo is 100 feet 
or less, and the preferred start time for the workshop is 30 
minutes after the end of the tutorial. In Table 1, we give 
constraints and preferences for all events. 

We construct a schedule by assigning a room and time slot 
to every event. For instance, the schedule in Figure 2 satisfies 
all constraints and most preferences given in Table 1. 

III.  REPRESENTATION 

We now explain the representation of resources and 
scheduling requirements [Bardak et al., 2006a]. 

Rooms: We represent resources by a set of available 
rooms; the description of a room includes its name and a list of 
numeric properties (see Figure 1). For each room, we define 
its property values and distances to other rooms, as well as its 
availability, represented by a set of time intervals. 

Events: The description of an event includes its name, 
importance, and related constraints and preferences (see 
Table 1). The importance is a positive integer; the constraints 
are ranges of acceptable values for start time, duration, room 
properties, distances, and relative start times; and the 
preferences are ranges of preferred values, which must be 
sub-ranges of the respective acceptable values. Thus, when 
specifying an event, we may include a range of acceptable 
values and a sub-range of preferred values for each of the 
following parameters: 

•  Start time and duration 
•  Every room property 
•  For every other event, the distance from the specified 

event to the location of the other event 
•  For every other event, the time difference between the 

start of the specified event and the start of the other event 
•  For every other event, the time difference between the 

start of the specified event and the end of the other event 
 

 

  
 

Figure 1. Available rooms, their properties, and distances. 
 
 
 

 Demo Discu- 
ssion 

Tuto- 
rial 

Com- 
mittee 

Work- 
shop 

Importance 5 3 8 1 5 
Acceptable ≤1pm ≥3pm Start 

time Preferred 
Any Any 

11am 3:30pm 
Any 

Acceptable ≥60 ≥30 ≥30 ≥30 ≥60 Dura- 
tion Preferred 150  90 60 60 120 

Acceptable ≥600 ≥200 ≥400 ≥400 ≥600 Room 
size Preferred ≥1200 ≥600 ≥600 ≥800 ≥1000 

Acceptable ≥5 Any Stat- 
ions Preferred ≥10 

Any ≥2 
Any Any 

Acceptable ≥2 ≥1 ≥1 
Mikes 

Preferred 
Any ≥4 ≥2 

Any ≥1 
 

(a) Constraints on start times, durations, and room properties. 

 

 
Event Parameter With Respect To Acceptable Preferred 
Demo Start Time Tutorial’s Start [−30..30]   0   

Distance Demo’s Room ≤200    ≤100   
Distance Tutorial’s Room 0    0   

Work- 
shop 

Start Time Tutorial’s End [0..60]   30   
 

(b) Constraints on distances and relative start times. 
 
Table 1. Conference events and related constraints and preferences. 
 
 

 
 Auditorium Classroom Conf. room 

11:00 
11:30 

Tutorial Unavailable 

12:00  
12:30 
1:00 

Demo 

1:30 
2:00 

 
Workshop 

 

2:30 

 

3:00 

Unavailable 

3:30 
4:00 

Committee 
meeting 

Unavailable 
Discussion 

 
Figure 2. Schedule for the conference scenario in Tables 1 and 2. 
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Figure 3. Reward for satisfying a preference. 
                         
Sort the events in the decreasing order of expected importances. 
For every event: 
 Create a list of the rooms and time slots that are consistent 
  with the ranges of acceptable values for this event. 
Create the empty schedule; that is, mark all events as unscheduled. 
Repeat until finding no improvements or reaching a time limit: 
 For every event, in the order of decreasing importances: 
  For every room and time slot consistent with this event: 
   Move the event into this room and time slot. 
   If some other events overlap with this event, 

then remove them from the schedule. 
   If the distances from the moved event 
    to some other events are unacceptable, 
    then remove these other events. 
   If the relative times of the moved event 
    w.r.t. some other events are unacceptable, 
    then remove these other events. 
   Re-compute the schedule utility. 
   If the new utility is no greater than the old utility, 
    then undo the related schedule changes. 
                         

Figure 4: Search for a high-quality schedule. 
 

Uncertainty: When scheduling a conference, we may have 
incomplete information about resources, event importances, 
constraints, and preferences. We represent an uncertain value 
as an interval, encoded by the minimal and maximal possible 
values. For example, we may specify that the size of the 
conference room is between 500 and 750, the importance of 
the demo is between 4 and 6, and the minimal acceptable 
duration of the demo is between 60 and 90. 

Schedule: To build a schedule, the system assigns a room 
and time slot to each event. It represents this assignment by the 
event name, room name, start time, and duration. 
Alternatively, it can decide that an event is not part of the 
schedule, which is also considered an assignment; the system 
represents this assignment by setting its room to NIL. Note that 
assignments must not overlap, that is, the system cannot assign 
two events to the same room at the same time. 

IV.  SCHEDULE QUALITY 

We measure schedule quality on the scale from 0.0 to 1.0; 
higher values correspond to better schedules. The quality of a 
specific assignment depends on how well the selected room 
and time slot match the preferred values. If the start time, 
duration, some room property, distance to another event, or 
time with respect to another event is outside the acceptable 
range, then the assignment quality is zero, regardless of the 

other constraints. If we decide that an event is not part of the 
schedule, the quality of its assignment is also zero. 

If an assignment satisfies all hard constraints, we determine 
the rewards for satisfying the related preferences. If a start 
time, duration, room property, distance to another event, or 
time with respect to another event is within the preferred range 
of values, then the respective reward is 1.0. If it is outside the 
preferred range, the reward depends on its distance from this 
range; specifically, the reward linearly decreases with the 
distance from the preferred values, as shown in Figure 3. If an 
event has a distance or relative-time preference with respect to 
another event that is left unscheduled, we consider this 
preference satisfied, and the respective reward is 1.0. If the 
event has k preferences, and the respective rewards are 
r1,…, rk, then the assignment quality is (r1 + … + rk) / k. 

The overall schedule quality is the weighted sum of the 
quality values for individual assignments. That is, if a 
schedule includes n events, their quality values are Qual1,…, 
Qualn, and their importances are imp1,…, impn, then the 
overall quality is 
 

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn). 

 

For example, if we use the preferences in Table 1, and the 
schedule is as shown in Figure 2, then the quality of the time 
slot for the demo is 1.0, for the discussion is 0.75, for the 
tutorial is 0.8, for the committee meeting is 1.0, and for the 
workshop is 0.91, and the overall schedule quality is 0.87. 

If the description of rooms and events includes uncertainty, 
the system computes the mathematical expectation of 
schedule quality. It determines the expected quality of 
individual assignments, E(Qual1),…, E(Qualn), as well as the 
expected values of their importances, E(imp1),…, E(impn), 
and uses them to compute the expected quality of the 
schedule, which is 

 

(E(imp1 ) · E(Qual1) + … + E(impn) · E(Qualn)) /  
(E(imp1) + … + E(impn)). 

 

We have given an algorithm for fast computation of this 
expected quality in the paper on the representation of 
uncertainty [Bardak et al., 2006a]. 

For instance, consider the example in Section II, and 
suppose that the conference-room size is between 500 and 
750, the demo importance is between 4 and 6, the minimal 
acceptable duration of the demo is between 60 and 90, and all 
other resources and constraints are fully certain, as shown in 
Tables 1 and 2. Then, the expected quality of the schedule in 
Figure 2 is 0.88. 

V. SEARCH ALGORITHM 

The purpose of search is to construct a schedule with a high 
expected quality; that is, we use the expected quality as the 
utility function. The system begins with the empty schedule 
and gradually improves it; at each step, it either assigns a slot 
to some unscheduled event, or moves some scheduled event to 
a better slot. 

In Figure 4, we give the main steps of the hill-climbing 
search algorithm, which processes the events in the decreasing 

property 
value 

preferred values 

acceptable values 

0 

1 

reward 



 
 

 

order of their expected importances. When processing an 
event, it evaluates every assignment consistent with the 
event’s constraints, and selects the assignment that gives the 
greatest utility increase. After processing all events, the 
algorithm returns to the beginning of the sorted list of events 
and repeats the processing. It stops when the last iteration 
through all events has not led to any improvements, or when it 
has reached a time limit. 

We next present a more detailed description of this search 
algorithm. We list its main variables in Figure 5, show its main 
procedures and calls between them in Figure 6, and give 
pseudocode for these procedures in Figures 7–13. Note that 
the algorithm includes a mechanism for caching intermediate 
results of the assignment-quality computation, which allows 
fast evaluation of candidate assignments. This mechanism is 
essential for efficiency because the quality computation is the 
most time-consuming part of the algorithm. 

We use two global variables, accessible from all 
procedures: the set of all conference events, denoted 
All-Events, and the set of all available rooms, denoted 
All-Rooms. In addition, the top-level procedure, which is 
called SCHEDULER (Figure 13), inputs four parameters that 
control the search: the beginning and end times of the 
conference, the discrete time step used in scheduling, and the 
limit on the search time. When the algorithm constructs the 
schedule, it only considers start times and durations divisible 
by the given time step. For instance, if this step is thirty 
minutes, then all scheduled events start and end on half hour. 

We now outline some techniques for improving the search 
efficiency; we have implemented these techniques and used 
them in the experiments of Section VII. 

Expected rewards: If the description of rooms and events 
includes uncertainty, the procedures in Figures 8 and 9 
compute the mathematical expectations of rewards. We have 
given algorithms for fast computation of expected rewards in 
the paper on representing uncertainty [Bardak et al., 2006a]. 

Event indexing: We index the events by their place in the 
current schedule, that is, by room and time slot, which allows 
fast retrieval of the events that occupy a given room during a 
given time interval. In particular, it allows fast identification 
of the events that conflict with a newly scheduled event. 

Constraint pointers: The representation of each event 
includes pointers to the distance constraints and relative-time 
constraints of the other events affected by this event. When the 
system moves an event, it uses these pointers to identify the 
affected events and re-computes their rewards. 

Room availability: For every room, we represent its 
availability for the conference by a sorted list of 
non-overlapping time intervals; this representation allows fast 
checking whether the room is available for a given time slot.  

VI.  EXTENSIONS 

We outline several extensions to the described algorithm; we 
have implemented these extensions and used them in the 
experiments of Section VII. 
 End times: The system supports constraints and 
preferences for the end times of events, in addition to 
constraints for start times, durations, and room properties. For 
instance, we may specify that the workshop should end after 
the demo and before 3pm. These constraints require a 
modification to the evaluation of time slots in the 
CANDIDATE-SLOTS procedure (Figure 11), as well as adding 
the re-computation of end-time rewards to REMOVAL, 
NEW-START-TIME, and NEW-DURATION (Figure 12). 
 Preference weights: The description of preferences may 
include their weights, which show the relative importance of 
each preference. For example, we may indicate that the size of 
a room for the workshop is twice more important than the 
preferred time and duration of the workshop. The system 
computes the reward for an assignment as the weighted sum of 
preference rewards; that is, if an event has k preferences, their 
weights are w1,…, wk, and the respective rewards are r1,…, rk, 
then the assignment quality is (w1 · r1 + … + wk · rk) / (w1 + … 
+ wk). The use of weights requires modifications to the 
computation of reward limits in SCORE-LIMITS (Figure 7), as 
well as to the reward computations in the ROOM-PROP-DIFF 
and DISTANCE-DIFF procedures in Figure 8, and the 
START-TIME-DIFF, DURATION-DIFF, and END-TIME-DIFF 
procedures in Figure 9. 
 Multi-day schedule: If a conference continues for several 
days, we specify its beginning and end times for each day, and 
the system marks all rooms as unavailable outside of the 
specified “business hours.” 

Initial schedule: The system can start its search from a 
given initial schedule rather than from the empty schedule. We 
use this option to repair an old schedule after changes in the 
availability of rooms and related resources. We also use it if 
the user builds a manual schedule and then applies the system 
to finalize it [Fink et al., 2006]. The user can optionally 
impose a penalty on rescheduling of events, which prevents 
the system from making changes that would give only an 
insignificant improvement. 
 Locked assignments: The user can “lock” some events in 
the manually selected places, and apply the system to find 
assignments for the other events [Fink et al., 2006]. This 
option requires a modification to the top-level SCHEDULER 
procedure (Figure 13); specifically, SCHEDULER should skip 
the locked events in its main loop, thus ensuring that they 
remain in their original places. 



 
 

 

(a) Global variables 
We use two global variables, accessible from all procedures: 

 All-Events  set of all conference events 
 All-Rooms  set of all available rooms 
We index all events by their place in the schedule, which allows fast 
retrieval of the events in a given room that overlap a given time slot. 
 

(b) Event structure 
We represent a conference event by a data structure that includes its 
importance, constraints and preferences, place in the current 
schedule, and intermediate results of related computations. We use 
the following fields of event in the pseudocode: 
 

imp[event]    expected importance of the event 
min-start[event]  minimal acceptable start time 
max-start[event]  maximal acceptable start time 
min-dur[event]  minimal acceptable duration 
max-dur[event]  maximal acceptable duration 
 

min-start-num[event]  min-start converted to discrete time steps 
max-start-num[event]  max-start converted to discrete time steps 
min-dur-num[event]  min-dur converted to discrete time steps 
max-dur-num[event]  max-dur converted to discrete time steps 
 

room[event]    room of the event in the current schedule 
start[event]    current start time of the event 
dur[event]    current duration of the event 
 

num-prefs[event]    total number of the event’s preferences 
room-score-limit[event] upper limit on the possible sum of rewards 

           for satisfying the room-property and 

         distance preferences 
start-score-limit[event] upper limit on the possible sum of rewards 
           for satisfying the start-time preferences 
dur-score-limit[event]  upper limit on the possible reward for 
           satisfying the duration preference 
 

room-score[event] sum of the current rewards for satisfying the 
         room-property and distance preferences 
start-score[event] sum of the rewards for the start-time preferences 
dur-score[event]  reward for the duration preference 
 

(c) Search parameters 
We use four parameters to control the search algorithm, which are 
inputs of the top-level procedure, called SCHEDULER (Figure 13): 
 

conf-start    time of the conference beginning; 
        events cannot start before this time 

conf-end    time of the conference end; 
        events cannot end after this time 

step      discrete time step used in scheduling; all start  
        times and durations must be divisible by it 
run-time-limit  limit on the overall search time 
 

(d) Local arrays 
When the algorithm computes the quality of candidate assignments 
for a given event, it uses five arrays for caching intermediate results: 
 

room-diffs  differences between the quality of new candidate rooms 
      and that of the event’s current room 
start-diffs  differences between the quality of new candidate start 
      times and that of the event’s current start time 
dur-diffs  differences between the quality of new candidate 
      durations and that of the event’s current duration 
end-diffs  differences between the quality of new candidate end 
      times and that of the event’s current end time 
slot-diffs  differences between the quality of new candidate time 
      slots and that of the event’s current time slot; each  
      candidate slot is defined by its start time and duration 
                           

Figure 5: Main variables in the procedures given in Figures 7–13. 

 
 
 
 

 
 
 

 
 
 
 

 
Figure 6: Main procedures of the algorithm given in Figures 7–13. 

                           

The procedure inputs an event, the beginning and end times of the 
conference, and the time step used in scheduling. 

It converts the acceptable start times and durations of the given event 
into the respective numbers of time steps. For example, if the 
conference begins at 11am, the step is 30 minutes, and the range of 
acceptable times is “1pm...3pm,” it converts this range into “4...8.” 

TIME-NUMS(event, conf-start, conf-end, step) 
min-start = max(min-start[event], conf-start) 
min-start-num[event] =┌(min-start − conf-start) / step┐ 
max-start = min(max-start[event], conf-end − min-dur[event]) 
max-start-num[event] =└(max-start − conf-start) / step┘ min-dur-num[event] =┌min-dur[event] / step┐ 
max-dur = min(max-dur[event], conf-end − conf-start) 
max-dur-num[event] =└max-dur / step┘ 
                           

For a given event, the procedure determines the upper limits on the 
possible rewards for satisfying room-related preferences, start-time 
preferences, and duration preferences. For instance, if an event 
includes five room preferences, four start-time preferences, and one 
duration preference, then the respective limits are 0.5, 0.4, and 0.1. 

SCORE-LIMITS(event) 
let num-room be the number of event’s preferences 
  for room properties and distances, 
 num-start be the number of event’s preferences 
  for the start time and relative start times, and 
 num-dur be the number of  event’s duration preferences 
num-prefs[event] = num-room + num-start + num-dur 
room-score-limit[event] = num-room / num-prefs[event] 
start-score-limit[event] = num-start / num-prefs[event] 
dur-score-limit[event] = num-dur / num-prefs[event] 
                           

The initialization procedure inputs the beginning and end times of 
the conference, and the time step used in scheduling. 

It converts the acceptable start times and durations of all events into 
the respective numbers of time steps, determines the upper limits on 
the possible rewards, creates the initial empty schedule by setting the 
rooms of all events to NIL, and sorts the events by importance. 

INITIALIZATION(conf-start, conf-end, step) 
for every event in All-Events do 
 TIME-NUMS(event, conf-start, conf-end, step); SCORE-LIMITS(event) 
for every event in All-Events do 
 room[event] = NIL 
 room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0 
for every event in All-Events do 
 compute its expected importance and set imp[event] to this value 
sort All-Events in the decreasing order of their expected importances 
                           

Figure 7: Initialization procedures of the scheduling algorithm. 
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The procedure determines the total reward score of an event. 

TOTAL-SCORE(event) 
return imp[event] · (room-score[event] + start-score[event]  
        + dur-score[event]) 
                           

For a given event, the procedure finds the difference between the 
quality of a new room and that of the event’s old room. 

ROOM-PROP-DIFF(event, new-room) 
unscaled-diff = 0 
for every room-property preference of event do 
 if this property of room is unacceptable then return NIL 
 let new-reward be the expected reward for this property in room, 
  and old-reward be the expected reward in room[event] 
 unscaled-diff = unscaled-diff + new-reward − old-reward 
return imp[event] · unscaled-diff / num-prefs[event] 
                           

The procedure finds the difference between the distance rewards for 
placing a given event into a new room and those for its old room. 

DISTANCE-DIFF(event, new-room) 
dist-diff = 0 
for every distance preference in event do 
 let other-event be the related other event in the preference 
 if distance from new-room to room[other-event] is unacceptable 
  then dist-diff = dist-diff − TOTAL-SCORE(other-event) 
  else let new-reward be the expected reward for the distance 
      from new-room to room[other-event] 
     and old-reward be the expected reward for the distance 
      from room[event] to room[other-event] 
    dist-diff = dist-diff  + imp[event] 
     · (new-reward − old-reward) / num-prefs[event] 
for every other-event that has a distance preference w.r.t. event do 
 if distance from room[other-event] to new-room is unacceptable 
  then dist-diff = dist-diff − TOTAL-SCORE(other-event) 
  else let new-reward be the expected reward for the distance 
      from room[other-event] to new-room, 
     and old-reward be the expected reward for the distance 
      from room[other-event] to room[event] 
    dist-diff = dist-diff  + imp[other-event] 
     · (new-reward − old-reward) / num-prefs[other-event] 
return dist-diff 
                           

The procedure evaluates the reward for placing an event into a given 
new room. If the properties of this room are unacceptable, it returns 
NIL. If the room quality is so low that its use would worsen the 
schedule regardless of the time-slot selection, it also returns NIL. 
Else, it returns the difference of the room-related reward scores 
between this room and the event’s old room. 

ROOM-DIFF(event, new-room) 
prop-diff = ROOM-PROP-DIFF(event, new-room) 
if prop-diff = NIL then return NIL 
dist-diff = DISTANCE-DIFF(event, new-room) 
if dist-diff = NIL then return NIL 
slot-diff-limit =  
 imp[event] · (start-score-limit[event] + dur-score-limit[event] 
       − start-score[event] − dur-score[event]) 
if prop-diff + dist-diff + slot-diff-limit ≤ 0 then return NIL 
return prop-diff + dist-diff 
                           

Figure 8: Computing the reward-score difference between a new 
room and the old room of a given event. If the representation of 
rooms and events includes uncertainty, this computation relies on 
the algorithms for computing the mathematical expectation of 
preference values, described in the paper on the representation of 
uncertainty [Bardak et al., 2006a]. 

The procedure finds the difference between the rewards related to a 
new start time of an event and those related to its old start time. 

START-TIME-DIFF(event, new-start) 
if new-start is an unacceptable start time for event then return NIL 
let new-reward be the expected start-time reward for new-start, 
 and old-reward be the expected reward for start[event] 
start-diff=imp[event] · (new-reward − old-reward)/num-prefs[event] 
for every relative start-time preference in event do 
 let other-event be the related other event in the preference 
 if new-start is unacceptable w.r.t. the time of other-event 
  then start-diff = start-diff − TOTAL-SCORE(other-event) 
  else let new-reward be the expected reward for  
      new-start w.r.t. the time of other-event 
     and old-reward be the expected reward for 
      start[event] w.r.t. the time of other-event 
    start-diff = start-diff  + imp[event] 
     · (new-reward − old-reward) / num-prefs[event] 
for every other-event that has a relative start-time preference 
  with respect to the start time of event do 
 if its relative start time w.r.t. new-start is unacceptable 
  then start-diff = start-diff − TOTAL-SCORE(other-event) 
  else let new-reward be the expected reward for  
      its relative start time w.r.t. new-start 
     and old-reward be the expected reward for 
      its relative start time w.r.t. start[event] 
    start-diff = start-diff  + imp-other[event]  
     · (new-reward − old-reward) / num-prefs[other-event] 
return start-diff 
                           

The procedure finds the difference between the reward for a new 
duration of an event and that for its old duration. 

DURATION-DIFF(event, new-dur) 
if new-dur is an unacceptable duration for event then return NIL 
let new-reward be the expected reward for new-dur, 
 and old-reward be the expected reward for dur[event] 
return imp[event] · (new-reward − old-reward) / num-prefs[event] 
                           

For a given event, the procedure finds the difference between the 
relative-time rewards of other events w.r.t. its new end time and 
those w.r.t. its old end time. 

END-TIME-DIFF(event, new-end) 
old-end = start[event] + dur[event] 
end-diff = 0 
for every other-event that has a relative start-time preference 
  with respect to the end time of event do 
 if its relative start time w.r.t. new-end is unacceptable 
  then end-diff = end-diff − TOTAL-SCORE(other-event) 
  else let new-reward be the expected reward for  
      its relative start time w.r.t. new-end 
     and old-reward be the expected reward w.r.t. old-end 
    end-diff = end-diff  + imp-other[event]  
     · (new-reward − old-reward) / num-prefs[other-event] 
return end-diff 
                           

The procedure inputs an event and its new place in the schedule, and 
computes the total reward of the events that overlap with this place. 

OVERLAP-SCORE(event, new-room, new-start, new-dur)  
score = 0 
for every other-event that overlaps with the new place of event do 
 score = score + TOTAL-SCORE[other-event] 
return score 
                           

Figure 9: Computing the reward-score differences related to the start 
time, duration, and end time of a given event. 



 
 

 

The procedure inputs a room, the start time and duration of a time 
slot, represented by the respective time-step numbers, the beginning 
time of the conference, and the time step. 

It checks if the room is available for the conference during a given 
time slot, and returns TRUE if it is available. 

AVAILABILITY-CHECK(room, start-num, dur-num, conf-start, step) 
start = conf-start + time-num · step;  end = start + dur-num · step 
search for the availability interval, in the sorted list of room’s  
 availability intervals, that includes both start and end 
if such an interval is found then return TRUE; else return FALSE 
                     

The procedure inputs a room, the start time and duration of a time 
slot, represented by the respective time-step numbers, the beginning 
time of the conference, and the time step. 

If the room is available for the given time slot, the procedure returns 
the input start time. If not, it returns the earliest start time after the 
input start time that allows using the room for the specified duration. 
If we cannot use the room for the specified duration at any later time, 
it returns NIL. 

NEXT-AVAIL-START(room, start-num, dur-num, conf-start, step) 
start = conf-start + start-num · step;  end = start + dur-num · step 
let room-end be the ending time of room’s latest availability interval 
if end > room-end then return NIL 
identify the earliest room’s availability interval 
 whose ending time is no earlier than end 
let interval-start be the beginning time of this interval 
if start ≥ interval-start then return start-num 
interval-start-num = ┌(interval-start − conf-start) / step┐ 
return NEXT-AVAIL -START(room, interval-start-num,  
    dur-num, conf-start, step) 
                          

Figure 10: Checking the availability of a room, and identifying the 
earliest available time slot in a room after a given time. 

The procedure inputs an event and three reward-score differences 
between its new candidate slot and its old slot. The first difference is 
for the start-time preferences, the second is for the duration 
preferences, and the third is for the relative-time preferences of the 
other events with respect to the end time of the given event. 

It checks if the new slot is sufficiently good. If the slot’s quality is so 
low that its use would worsen the schedule regardless of the room 
selection, the procedure returns NIL; else, it returns the difference of 
the time-related reward scores between this new slot and the old slot. 

TIME-SLOT-DIFF(event, start-diff, dur-diff, end-diff) 
if start-diff = NIL or dur-diff = NIL or end-diff = NIL then return NIL 
slot-diff = start-diff + dur-diff + end-diff 
room-diff-limit = imp[event] · (room-score-limit[event] −  
              room-score[event]) 
if slot-diff + room-diff-limit ≤ 0 then return NIL 
return slot-diff 
                         

The procedure inputs an event, the beginning and end times of the 
conference, and the time step used in scheduling. 

It evaluates the quality of all potential time slots for this event; each 
slot is defined by its start time and duration. It returns the 
two-dimensional array slot-diffs, indexed by start times and 
durations; for each slot, it shows the difference between the quality 
of this slot and that of the event’s old slot. 

If a time slot is unacceptable, the procedure marks it by NIL. If the 
slot is acceptable, but contains a smaller sub-slot with the same or 
higher quality, the procedure also marks it by NIL, which prevents the 
use of unnecessarily long slots. For example, if the 9am–11am slot is 
acceptable, but its 9am–10am sub-slot has the same quality, the 
procedure marks the 9am–11am slot by NIL. 

CANDIDATE-SLOTS(event, conf-start, conf-end, step) 
for start-num = min-start-num[event] to max-start-num[event] do 
 new-start = conf-start + start-num · step 
 start-diffs[start-num] = START-TIME-DIFF(event, new-start) 
for dur-num = min-dur-num[event] to max-dur-num[event] do 
 new-dur = dur-num · step 
 dur-diffs[dur-num] = DURATION-DIFF(event, new-dur) 
conf-end-num = └(conf-end − conf-start) / step┘ 
min-end-num = min-start-num[event] + min-dur-num[event] 
max-end-num = min(max-start-num[event] + max-dur-num[event], 
       conf-end-num) 
for end-num = min-end-num to max-end-num do 
 new-end = conf-start + end-num · step 
 end-diffs[start-num] = END-TIME-DIFF(event, new-end) 
for start-num = min-start-num[event] to max-start-num[event] do 
 if start-diffs[start-num] ≠ NIL 
 then best-slot-diff = NIL 
   for dur-num = min-dur-num[event] 
     to min(max-dur-num[event],  
       conf-end-num − start-num) do 
    slot-diff = TIME-SLOT-DIFF(event, start-diffs[start-num],  
     dur-diffs[dur-num], end-diffs[start-num + dur-num]) 
    if slot-diff = NIL  
      or (best-slot-diff ≠ NIL and best-slot-diff ≥ slot-diff) 
     then slot-diffs[start-num, dur-num] = NIL 
     else best-slot-diff = slot-diff 
       slot-diffs[start-num, dur-num] = slot-diff 
return slot-diffs 
                          

Figure 11: Evaluation of candidate time slots for a given event, 
where each slot is defined by its start time and duration. 



 
 

 

The procedure removes an event from the schedule and adjusts the 
reward scores of the other events that have distance or start-time 
preferences with respect to the removed event. The representation of 
each event includes pointers to the other-event preferences affected 
by this event, which allow fast retrieval of the related events. 

REMOVAL(event) 
room[event] = NIL 
room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0 
for every other-event that has a distance preference w.r.t. event do 
 adjust other-event’s reward score for distances 
for every other-event that has a start-time preference w.r.t. event do 
 adjust other-event’s reward score for relative start times 
                     

The procedure moves an event to a new room, removes the events 
whose distances to this event have become unacceptable, and 
re-computes the rewards for the related distance preferences. 

NEW-ROOM(event, new-room) 
room[event] = new-room 
for every distance preference in event do 
 let other-event be the related other event in the preference 
 if this distance is now unacceptable then REMOVAL(other-event) 
for every other-event that has a distance preference w.r.t. event do 
 if this distance is now unacceptable then REMOVAL(other-event) 
 else re-compute other-event’s reward score for the new distance 
re-compute the value of room-score[event] 
                     

The procedure changes the start time of an event, and removes the 
other events that violate the related time constraints. 

NEW-START-TIME(event, new-start) 
start[event] = new-start 
for every preference on relative start time in event do 
 let other-event be the related other event in the preference 
 if the start time of event w.r.t. other-event is unacceptable 
  then REMOVAL(other-event) 
for every other-event that has a start-time preference 
  w.r.t. the start time of event do 
 if its start time is now unacceptable, then REMOVAL(other-event) 
 else re-compute other-event’s score for the relative start time 
re-compute the value of start-score[event] 
                     

The procedure changes an event’s duration, and removes the other 
events that violate the related time constraints. 

NEW-DURATION(event, new-dur, old-end) 
dur[event] = new-dur 
re-compute the value of dur-score[event] 
if start[event] + dur[event] = old-end then return 
for every other-event that has a start-time preference 
  w.r.t. the end time of event do 
 if its start time is now unacceptable then REMOVAL(other-event) 
 else re-compute other-event’s score for the relative start time 
                     

The procedure moves an event to a given new place in the schedule, 
removes the events that conflict with this new assignment, and 
re-computes the related rewards. 

NEW-ASSIGNMENT(event, new-room, new-start, new-dur) 
for every other-event that overlaps with the new place of event do 
 REMOVAL(other-event) 
old-end = start[event] + dur[event] 
NEW-ROOM(event, new-room) 
NEW-START-TIME(event, new-start) 
NEW-DURATION(event, new-dur, old-end) 
                     

Figure 12: Changing an event’s assignment, which involves removal 
of the conflicting events and re-computation of the related rewards. 

The procedure inputs an event, the beginning and end times of the 
conference, and the time step used in scheduling. 

It finds the best new place in the schedule for the given event, and 
then moves the event to this place. If the event has already been in its 
best place, it returns FALSE. 

BEST-ASSIGNMENT(event, conf-start, conf-end, step) 
for every room in All-Rooms do 
 room-diffs[room] = ROOM-DIFF(event, room) 
slot-diffs = CANDIDATE-SLOTS(event, conf-start, conf-end, step) 
best-asst-diff = 0 
for every room in All-Rooms do 
 if room-diffs[room] ≠ NIL 
 then start-num= NEXT-AVAIL -START(room, min-start-num[event],  
         min-dur-num[event], conf-start, step)  
   while start-num ≠ NIL  
     and start-num ≤ max-start-num[event] do 
    if start-diffs[start-num] ≠ NIL 
    then dur-num = min-dur-num[event] 

     while dur-num ≤ max-dur-num[event] 
        and AVAILABILITY -CHECK(room, start-num, 
          dur-num, conf-start, step) do 

       if slot-diffs[start-num, dur-num] ≠ NIL  
       then asst-diff = rooms-diffs[room] 
             + slot-diffs[start-num, dur-num] 
             − OVERLAP-SCORE(event, room, 
                conf-start + start-num · step, 
                dur-num · step) 
         if asst-diff > best-asst-diff 
         then best-asst-diff = asst-diff 
           best-room = room 
           best-start-num = start-num 
           best-dur-num = dur-num 
       dur-num = dur-num + 1 
    start-num = NEXT-AVAIL -START(room, start-num + 1, 
          min-dur-num[event], conf-start, step) 
if best-asst-diff = 0 then return FALSE 
best-start = conf-start + best-start-num · step 
best-dur = best-dur-num · step 
NEW-ASSIGNMENT(event, best-room, best-start, best-dur) 
return TRUE 
                           

The top-level scheduling procedure inputs the beginning and end 
times of the conference, the time step used in scheduling, and the 
limit on the search time. 

It begins with the empty schedule and searches for local 
improvements; at each step, it improves the assignment of one event. 
It stops after either reaching the time limit or iterating through all 
events without funding any improvements. 

SCHEDULER(conf-start, conf-end, step, run-time-limit) 
INITIALIZATION (conf-start, conf-end, step) 
let num-events be the number of events in All-Events 
num-unchanged = 0 
while the search time is smaller than run-time-limit do 
 for every event in All-Events, 
   in the order of decreasing importances do 
  change = BEST-ASSIGNMENT(event, conf-start, conf-end, step) 
  if change then num-unchanged = 0 
  else num-unchanged = num-unchanged + 1 
  if num-unchanged = num-events then return 
                          

Figure 13: Top-level search procedure, which reschedules one event 
at a time, until reaching a local maximum or hitting the time limit. 



 
 

 

VII.  EXPERIMENTS 

We have applied the developed system to several scheduling 
problems, and compared the quality of the automatically 
constructed schedules with the results of manual scheduling. 
These problems involve the scheduling of four-day 
conferences, with the time discretized to fifteen-minute steps.  
Every room has fifteen properties, and every event has 
between fifteen and twenty constraints and preferences. 

We have used a 2.4-GHz Xeon computer, and set the time 
limit to ten seconds. On the other hand, we have not imposed 
any time limit on manual scheduling; most subjects have spent 
five to ten minutes on small scheduling problems, and ten to 
twenty minutes on large problems. In Figure 14, we 
summarize the results of these experiments, which show that 
the system has outperformed the human subjects. 

We have also evaluated the dependency of the quality of 
automatically constructed schedules on the search time, and 
we show the results in Figure 15. If the knowledge is fully 
certain, the system constructs a near-optimal schedule in about 
three seconds. If the knowledge is uncertain, it needs about 
nine seconds because it spends more time for computing the 
expected quality of candidate assignments. 

VIII.  CONCLUDING REMARKS 

We have described a scheduling algorithm that accounts for 
uncertainty in resources and constraints. The experiments 
have confirmed that it quickly solves large-scale problems, 
and that the resulting schedules are better than manual 
solutions. We are now working on an extended system, which 
will support more flexible utility functions, optimize the use of 
portable equipment related to the scheduled events, and 
analyze the trade-offs involved in renting additional rooms 
and equipment. 
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Figure 14: Comparison of manual and automatic scheduling. We 
give the results for small problems (5 rooms and 32 events), medium 
problems (9 rooms and 62 events), and large problems (13 rooms 
and 84 events). We show the quality of manual schedules by grey 
bars, and the results of automatic scheduling by white bars. 
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Figure 15.  Dependency of the schedule quality on the running time. 
We show the results of scheduling with fully certain knowledge 
(dashed line) and uncertain knowledge (solid line); both problems 
include 13 rooms and 84 events. 
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(b) Experiments with uncertain knowledge. 
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