Scheduling with Uncertain Resour ces.
Sear ch for a Near-Optimal Solution

Eugene Fink P. Matthew Jennings Ulas Bardak
e.fink@cs.cmu.edu mattj@cs.cmu.edu cyprus@cs.cmu.edu
Jean Oh Stephen F. Smith Jaime G. Carbonell
jeanoh@cs.cmu.edu sfs@cs.cmu.edu jgc@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsbergh5213,usA

uncertainty [Bardalet al., 2006b], and collaboration between

Abstract—We describe a system for scheduling a the scheduling system and human user [Efrd., 2006].

conference based on incomplete information about We now describe an algorithm for constructing a schedule
available resources and scheduling constraints. We based on uncertain knowledge of resources and constraints.
explain the representation of uncertain knowledge, We explain the representation of uncertain facts
describe a local-search algorithm for generating (Sections II-1V), present the search for a near-optimal
near-optimal schedules, and give empirical results of schedule (Sections V and VI), and give empirical results on its

automatic scheduling under uncertainty. effectiveness (Section VII).
Il. EXAMPLE
. INTRODUCTION We begin with an example of a conference scenario, and use it

HEN we work on a practical scheduling task, weo illustrate the representation of resources and constraints.

usually do not have complete knowledge of the relate®UpPpose that we need to assign rooms to events at a small
resources and constraints. For example, when schedulin§ng-day conference, which starts at 11:00am and ends at
conference, we may not know the exact sizes of availafle30Pm, and that we can use three rooms: auditorium,
rooms or equipment needs of some speakers. classroom, and conference room (Figure 1). These rooms host

Although researchers have long realized the importance(ﬁper events, and they are available for the conference only at

uncertain information in scheduling and optimizatior¥ e following times:
problems, the related work has been limited [Sahinidis, 2004;Auditorium: 11:00am-1:30pm and 3:30pm—4:30pm.
Bidot, 2005]. Researchers have developed severalClassroom: 11:00am—2:30pm.
domain-specific systems for optimization based on Conference room: 12:00pm—4:30pm.
incomplete data [Chajewslet al., 1998; Averbakh, 2001;  Wwe describe each room by a set of properties; in this
Lodwick et al., 2001; Moore, 2002; Balasubramanian anéxample, we consider three properties:
Gros_smann, 2003; Ligt al., 2004]; hoyvever, they have_not Size: Room area in square feet.
studied a gengral prpblem of scheduling under uncerta_mty. Mikes: Number of microphones.
We have investigated thg problem.of schedullng a Stations: Maximal number of demo stations
conference based on uncertain information about available ih5t can be set up in the room.

resources and conference events. The previous techniques o )
have turned out inapplicable to this problem, and we haY¥€ @lso specify distances between rooms in feet; we assume

developed a new mechanism for scheduling under uncertairifj@t the auditorium and classroom are next to each other,
This work has been part of theRADAR project vv_hereas the conference room is in another building. In
(www.radar.cs.cmu.edu) at Carnegie Mellon Universityfigure 1, we show the properties of each room and the
which is aimed at building an intelligent system for assistingiStances between rooms. . ,

an office manager. We have described initial results of this The conference includes five events: demonstration,
work in three earlier papers; specifically, we have explaingdScussion, tutorial, workshop, and committee meeting
the representation of uncertainty [Bardek al., 2006a], (Table 1). For each event, we specify its importance, as well

automatic elicitation of additional data that help to reduc@s reélated constraints and preferences. _ _
We define constraints by limiting appropriate start times,

durations, and room properties. For example, we may indicate

The manuscript was received on March 30, 2006. The described work V\fﬁsat an acceptable start time for the tutorial is 1:00pm or

supported by the Defense Advanced Research Projects AgemryAj
under Contract NavBcHD030010.



earlier, an acceptable duration is 30 minutes or more, and an

acceptable room size is 400 square feet or more.

In addition, we define constraints for distances between
events and for relative start times of events with respect to
other events. For instance, we may specify that the workshop

Auditorium
Size: 1200
Stations: 10

—— Distance: 400——

Conf. room
Size: 500
Stations: 5

Mikes: 5

must be in the same room as the tutorial, and that it must star
shortly after the tutorial, becauseany participants plan to
attend both events. We may also indicate that the tutorial and
workshop must be near the demo, which will allow their
attendees to see the demo during the breaks.

We may also select preferred values for start times,
durations, room properties, distances, and relative start times,
which are subsets of acceptable values. For example, we may

Distance: 50
L |

Classroom
Size: 700

Stations: 5
Mikes: 1

Mikes: 2

Distance: 400
| ]

Figure 1. Available rooms, their properties, and distances.

specify that the preferred start time for the tutorial is 11:00an™ -

S - . Demo Discu- Tuto- Com- Work-
preferred duration is 60 minutes, and preferred room size is ssion rial mittee  shop
600 square feet or more. We may further indicate that th

. . Tmportance 5 3 8 1 5
preferred distance from the workshop to the demo is 100 feeg, Acceptable <lpm >3pm
or less, and the preferred start time for the workshop is 3 Any  Any o 2 Any
1ess, P \ P is 3@me |Preferred 1lam 3:30pm
minutes after the end of the tutorial. In Table 1, we givepyra- |Acceptable| >60 >30 >30 >30 >60
constraints and preferences for all events. tion Preferred 150 90 60 60 120
We construct a schedule by assigning a room and time sldRoom |Acceptable| =600 >200 >400 >400 >600
to every event. For instance, the schedule in Figure 2 satisfiegze | Preferred |[>1200 >600 >600 >800 >1000
all constraints and most preferences given in Table 1. Stat- |Acceptable|  >5 Any Any Ay Any
ions | Preferred >10 >2
[ll. REPRESENTATION i Acceptable 22 21 >1
Mikes Preferred Any >4 22 Any >1

We now explain the representation of resources and
scheduling requirements [Bardetkal., 2006a].

Rooms. We represent resources by a set of available
rooms; the description of a room includes its name and a list-of

(a) Constraints on start times, durations, and room properties.

numeric properties (see Figure 1). For each room, we defi

its property values and distances to other rooms, as well ae\[/av@om

availability, represented by a set of time intervals.
Events. The description of an event includes its name,

Exent | Parameter| With Respect To Acceptable Preferred
Start Time| Tutorial's Start [-30..30] 0
k- | Distance Demo’s Room <200 <100
shop | Distance Tutorial’s Room 0 0
Start Time | Tutorial's End [0..60] 30

importance, and related constraints and preferences (see
Table 1). The importance is a positive integer; the constraints
are ranges of acceptable values for start time, duration, room

(b) Constraints on distances and relative start times.

properties, distances, and relative start times; and thgple 1. Conference events and related constraints and preferences.

preferences are ranges of preferred values, which must be
sub-ranges of the respective acceptable values. Thus, when
specifying an event, we may include a range of acceptable

values and a sub-range of preferred values for each of the

Auditorium

Classroom

following parameters:

11:00

« Start time and duration

11:30

e Every room property

« For every other event, the distance from the specified

event to the location of the other event
« For every other event, the time difference between the
start of the specified event and the start of the other even
« For every other event, the time difference between the
start of the specified event and the end of the other event

4:00 meeting

Committee

Tutorial

Workshop

Discussion

Figure 2. Schedule for the conference scenario in Tables 1 and 2.



reward other constraints. If we decide that an event is not part of the
schedule, the quality of its assignment is also zero.

Ll R ; If an assignment satisfies all hard constraints, we determine
: the rewards for satisfying the related preferences. If a start
0 | _ property time, duration, room property, distance to another event, or

' —_ 1| — value time with respect to another event is within the preferred range
3 preferred values of values, then the respective reward is 1.0. If it is outside the
acceptablevalues preferred range, the reward depends on its distance from this
range; specifically, the reward linearly decreases with the
Figure 3. Reward for satisfying a preference. distance from the preferred values, as shown in Figure 3. If an

event has a distance or relative-time preference with respect to
Sort the events in the decreasing order of expected importances.another event that is left wiseduled, we consider this
For every event: preference satisfied, and the respective reward is 1.0. If the
Crea}ttﬁ a list of the rooms apdbltime |S|OtSfth611:LTSll’e CO”tSiSte”t event hask preferences, and the respective rewards are
with the ranges of acceptable values for this event. ; e
Create the emptygschedule; trl)wat is, mark all events as unscheduléa’.”" o then the assignment quqllty Is ¢ y g [k
The overall schedule quality is the weighted sum of the

Repeat until finding no improvements or reaching a time limit: . L . S
For every event, in the order of decreasing importances: quality values for individual assignments. That is, if a

For every room and time slobnsistent with this event: schedule includes events, their quality values a@aly, ...,
Move the event into this room and time slot. Qual,, and their importances aienp;,..., imp,, then the
If some other events overlap with this event, overall quality is
then remove them from the schedule.
If the distances from the moved event (impl -Qualy + ... +imp; - Qualn) / (imp1+ ot impn).

to some other events are unacceptable,
then remove these other events.
If the relative times of the moved event

For example, if we use the preferences in Table 1, and the
schedule is as shown in Figure 2, then the quality of the time

w.r.t. some other events are unacceptable, slot for the demo is 1.0, for the discussion is 0.75, for the
then remove these other events. tutorial is 0.8, for the committee meeting is 1.0, and for the
Re-compute the schedule utility. workshop is 0.91, and the overall schedule quality is 0.87.
If the new utility is no greater than the old utility, If the description of rooms and events includes uncertainty,
then undo the related schedule changes. the system computes the mathematical expectation of

schedule quality. It determines the expected quality of

individual assignments, B{al,),..., EQual,), as well as the

Uncertainty: When scheduling a conference, we may haveé)(pec'[ed values of their importancesinig)...., Eqmpn),

: ) : . and uses them to compute the expected quality of the

incomplete information about resources, event |mportancesh dule. which i

constraints, and preferences. We represent an uncertain veﬁﬁee ule, which 1s

as an interval, encoded by the minimal and maximal possible (E(impl) -EQualy) + ... + Eqmpy) - E(Qualn)) /

values. For example, we may specify that the size of the i

conference room is between 500 and 750, the importance of (E('mpl) Tt Eampn)).

the demo is between 4 and 6, and the minimal acceptable have given an algorithm for fast computation of this

duration of the demo is between 60 and 90. expected quality in the paper on the representation of
Schedule: To build a schedule, the system assigns a rooamcertainty [Bardalet al., 2006a].

and time slot to each event. It represents this assignment by thEor instance, consider thexample in Section Il, and

event name, room name, start time, and duratiosuppose that the conference-room size is between 500 and

Alternatively, it can decide that an event is not part of the50, the demo importance is between 4 and 6, the minimal

schedule, which is also considered an assignment; the systveptable duration of the demo is between 60 and 90, and all

represents this assignment by setting its rooriLtoNote that other resources and constraints are fully certain, as shown in

assignments must not overlap, that is, the system cannot asdigbles 1 and 2. Then, the expected quality of the schedule in

two events to the same room at the same time. Figure 2 is 0.88.

Figure 4: Search for a high-quality schedule.

IV. SCHEDULE QUALITY V. SEARCH ALGORITHM

We measure schedule quality on the scale from 0.0 to 1Xhe purpose of search is to construct a schedule with a high
higher values correspond to better schedules. The quality afxpected quality; that is, we use the expected quality as the
specific assignment depends on how well the selected roaility function. The system begins with the empty schedule
and time slot match the preferred values. If the start timand gradually improves it; at each step, it either assigns a slot
duration, some room property, distance to another event, torsome unscheduled event, or moves some scheduled event to
time with respect to another event is outside the acceptabl®etter slot.
range, then the assignment quality is zero, regardless of thén Figure 4, we give the main steps of the hill-climbing
search algorithm, which procesdbe events in the decreasing



order of their expected importances. When processing an
event, it evaluates every assignment consistent with the VI. EXTENSIONS

event's constraints, and selects the assignment that gives\{jg o tiine several extensions to the described algorithm: we

greatest utility increase. After processing all events, the, e implemented these extensions and used them in the
algorithm returns to the beginning of the sorted list of eve”é'%(periments of Section VII.

and repeats the processing. It stops when the last iteratiorEnd times The system supports constraints and
through all events has not led to any improvements, OrWheereferences for the end times of events, in addition to

has reached a time limit. constraints for start times, durations, and room properties. For

We next present a more detailed description of this sear tance, we may specify that the workshop should end after
algorithm. We list its main variables in Figure 5, showits maif},o qemo and before 3pm. These constraints require a

procedures and calls between them in Figure 6, and giN®jification to the evaluation of time slots in the
pseudocode for these procedures in Figures 7-13. Note taf 5,5 are-si oTs procedure (Figure 11), as well as adding
the algorithm includes a mechanism for caching intermediafg, re-computation of end-time rewards EEMOVAL
results of the assignment-quality computation, which allows\\, «rarT-TIME. andNEW-DURATION (Figure 12). ’

fast evf':lluation .of candidate assignment.s. This mechan?sm 9 eference weights: The description of preferences may
essential for efficiency because the quality computation is the, ge their weights, which show the relative importance of
most time-consuming part of the algorithm. , ach preference. For example, we may indicate that the size of
We use two global variables, accessible from aﬁ oom for the workshop is twice more important than the
procedures: the set of all conference events, denotgftarred time and duration of the workshop. The system

All-Events, and the set of all available rooms, denotefl,, tes the reward for an assignment as the weighted sum of
All-Rooms. In addition, the top-level procedure, which |s(/)v

lled ; ) : h reference rewards; that is, if an eventlhpseferences, their
called SCHEDULER (Figure 13), inputs four parameters tha, ejghts araw,, ..., w, and the respective rewards afe.., r,

control the search: the beginning and end times of ”ﬂﬁen the assignment quality ig( ry + ... +Wy - 1) / (Wy + ...
conference, the discrete time step used in scheduling, and thvk) The use of weights requires modifications to the
limit on the search time. When the algorithm constructs t%%e '

hedule. it onl id . 4 durafi divisi mputation of reward limits iBCORELIMITS (Figure 7), as
schedule, it only considers start imes and durations diVISIRIe,|| as to the reward computations in tREOM-PROPDIFF

by the given time step. For instance, if this step is thirtgnd DISTANCE-DIFF procedures in Figure 8, and the

ml\?vutes, then ?II scheduled rtlavlents s;[art. and end Ol’rl] half ho ART-TIME-DIFF, DURATION-DIFF, and END-TIME-DIFF
e now outline some techniques for improving the searchi . res in Figure 9.

efficiency; we have implemented these techniques and use ulti-day schedule: If a conference continues for several

them in the experiments of Section VL. days, we specify its beginning and end times for each day, and

. Expected rewards: If the description of rooms and eventsy e system marks all rooms as unavailable outside of the
includes uncertainty, the procedures in Figures 8 andS ecified “business hours.”

compute the mathematical expectations of rewards. We ha 8 nitial schedule: The system can start its search from a

given algorithms for fas_t computatl_on of expected rewards tﬂven initial schedule rather than from the empty schedule. We
the paper on representing uncertainty [Barela., 2006a]. | se this option to repair an old schedule after changes in the
Event indexing: We index the events by their place in the,, 4iapility of rooms and related resources. We also use it if
current schedule, that is, by room and time slot, which allow \,ser builds a manual schedule and then applies the system
fast retrieval of the events that occupy a given room durin & finalize it [Fink et al., 2006]. The user can optionally
given time interval. In particular, it allows fast identificationimpose a penalty on rescheduling of events, which prevents

of the events that conflict with a newly scheduled event. the system from making changes that would give only an
Constraint pointers. The representation of each evenFnsignificant improvement

includes pointers to the distance constraints and relative-timq_ocked assignments. The user can “lock” some events in

constraints of the other evgnts affected by t_his event_. Whgn mg manually selected places, and apply the system to find

system moves an event, it uses thes_e pointers to identify tatk%ignments for the other events [Figtkal., 2006]. This

affected e"e'ﬁ“s "?‘f_‘d .re-computes their rewards. _._option requires a modification to the top-lesHEDULER
Room availability: For every room, we represent itsy ,coqure (Figure 13); specificallgcHEDULER should skip

availability for the conference by a sorted list Oy |5cred events in its main loop, thus ensuring that they
non-overlapping time intervals; this representation allows fa%main in their original places.

checking whether the room is available for a given time slot.



(a) Global variables

We use two global variables, accessible from all procedures:

All-Events
All-Rooms

set of all conference events
set of all available rooms

SCHEDULER
|> INITIALIZATION

Ly SCORE-LIMITS TIME-NUMS

BEST-ASSIGNMENT

We index all events by their place in the schedule, which allows fast

A ROOM-DIFF
Ly ROOM-PROP-DIFF
DISTANCE-DIFF —% TOTAL-SCORE

retrieval of the events in a given room that overlap a given time slot.
CANDIDATE-SLOTS
START-TIME-DIFF END-TIME-DIFF
DURATION-DIFF TIME-SLOT-DIFF
NEXT-AVAIL-START :)
AVAILABILITY-CHECK
—» OVERLAP-SCORE

—» NEW-ASSIGNMENT
L NEW-ROOM \\ NEW-DURATION
NEW-START-TIME g — REMOVAL

Figure 6: Main procedures of the algorithm given in Figures 7-13.

(b) Event structure

We represent a conference event by a data structure that includes its
importance, constraints and preferences, place in the current

schedule, and intermediate results of related computations. We use
the following fields ofevent in the pseudocode:

imp[event] expected importance of the event
min-startfevent]  minimal acceptable start time
max-startfevent] maximal acceptable start time
min-dur[event] minimal acceptable duration
max-dur[event]  maximal acceptable duration The procedure inputs an event, the beginning and end times of the
min-start-num{event]  min-start converted to discrete time steps conference, and the time step used in scheduling.
max-start-numevent]  max-start converted to discrete time steps
min-dur-num{event] min-dur converted to discrete time steps
max-dur-num{ event] max-dur converted to discrete time steps

It converts the acceptable start times and durations of the given event
into the respective numbers of time steps. For example, if the
conference begins at 11am, the step is 30 minutes, and the range of

room[event] room of the event in the current schedule acceptable times is “1pm...3pm,” rverts this range into “4...8.”
start[event] current start time of the event TIME-NUM S(event, conf-start, conf-end, step)

dur[event] current duration of the event min-start = maxrin-startevent], conf-start)

num-prefs{event] total number of the event's preferences ~ min-start-num{event] = M(min-start - conf-start) / step

room-score-limit[event] upper limit on the possible sum of rewards Max-start = min(max-start[event], conf-end — min-dur[event])
for satisfying the room-property and ~ max-start-numfevent] = | (max-start — conf-start) / step |
distance preferences min-dur-numlevent] = Fmin-dur[event] / step'
start-score-limit[event] upper limit on the possible sum of rewards M@-dur = min(max-dur[event], conf-end - conf-start)
for satisfying the start-time preferences max-dur-numevent] = | max-dur / step
dur-score-limitfevent]  upper limit on the possible reward for
satisfying the duration preference

For a given event, the procedure determines the upper limits on the
possible rewards for satisfying room-related preferences, start-time
preferences, and duration preferences. For instance, if an event
includes five room preferences, four start-time preferences, and one
guration preference, then the respective limits are 0.5, 0.4, and 0.1.

room-scorefevent] sum of the current rewards for satisfying the
room-property and distance preferences

start-score[event] sum of the rewards for the start-time preference

dur-scorefevent] reward for the duration preference SCORE-LIMITS(event)

(c) Search parameters let num-room be the number avent's preferences

We use four parameters to control the search algorithm, which are for room properties and distances,

. . . num-start be the number advent’s preferences
inputs of the top-level procedure, callstHEDULER (Figure 13): for the start time and relative sFt)art times. and

num-dur be the number oévent’s duration preferences
num-prefg event] = num-room + num-start + num-dur
conf-end time of the conference end,; room-score-limit[event] = num-room / num-prefs event]
events cannot end after this time start-score-limit[event] = num-start / num-prefs] event]
step discrete time step used in scheduling; all start  dur-score-limit[event] = num-dur / num-prefs[event]
times and durations must be divisible by it
run-time-limit  limit on the overall search time

(d) Local arrays . . .
When the algorithm computes the quality of candidate assignme gonverts the acceptable start times and durations of all events into
for a given event, it uses five arrays for caching intermediate resultd€ réspective numbers of time steps, determines the upper limits on

} ] ) . the possible rewards, createsittigal empty schedule by setting the
room-diffs  differences between the quality of new candidate roongoms of all events teiL, and sorts the events by importance.
and that of the event's current room

sart-diffs  differences between the quality of new candidate start!NI TIALIZATION(conf-start, conf-end, step)
times and that of the event's current start time for everyevent in All-Events do
dur-diffs  differences between the quality of new candidate TIME-NUMs(event, conf-start, conf-end, step); SCORELIMITS (event)
durations and that of the event’s current duration O everyevent in All-Events do
end-diffs  differences between the quality of new candidate end "oom{event] = NiL
times and that of the event’s current end time room-scor efevent] = O; start-scorefevent] = 0; dur-scorefevent] = 0
dot-diffs  differences between the quality of new candidate timefor everyevent in All-Events do
slots and that of the event’s current time slot; each Ccompute its expected importance andspfevent] to this value
candidate slot is defined by its start time and duraticsPrtAll-Events in the decreasing order of their expected importances

Figure 5: Main variables in the procedures given in Figures 7—13. Figure 7: Initialization procedures of the scheduling algorithm.

conf-start time of the conference beginning;

events cannot start before this time

The initialization procedure inputie beginning and end times of
the conference, and the time step used in scheduling.




The procedure determines the total reward score of an event.  The procedure finds the difference between the rewards related to a

new start time of an event and those related to its old start time.
TOTAL-SCORE(event)

return imp[event] - (room-scorefevent] + start-scoref event] START-TIME-DIFF(event, new-start)

+dur-scor €] event]) if new-start is an unacceptable start time &ent then return NiL
Enew—reward be the expected start-time reward fiew-start,
andold-reward be the expected reward faart[event]
start-diff=imp[event] - (new-reward — old-reward)/num-prefg event]

For a given event, the procedure finds the difference between !ﬁ
quality of a new room and that of the event’s old room.

ROOM -PROP-DIFF(event, new-room) for every relative start-time preferencesirent do
unscaled-diff = 0 let other-event be the related other event in the preference
for every room-property preferenceesent do if new-start is unacceptable w.r.t. the timeaher-event
if this property ofoom is unacceptablehen return NiL then start-diff = start-diff — TOTAL-SCOREo0ther-event)
let new-reward be the expected reward for this propertydaom, else let new-reward be the expected reward for
andold-reward be the expected rewardrioom[ event] new-start w.r.t. the time obther-event
unscal ed-diff = unscaled-diff + new-reward — old-reward andold-reward be the expected reward for
return imp[event] - unscaled-diff / num-prefg event] start[event] w.r.t. the time ofbther-event
The procedure finds the difference between the distance rewards for start-diff = start-diff +imp[event]
placing a given event into a new room and those for its old room. - (new-reward - old-reward) / num-prefsf event]
for everyother-event that has a relative start-time preference
DISTANCE-DIFF(event, new-room) with respect to the start time @fent do
dist-diff = 0 _ if its relative start time w.r.new-start is unacceptable
for every distance preferencedvent do then start-diff = start-diff — TOTAL-scOREother-event)
let other-event be the related other event in the preference dse let new-reward be the expected reward for
if distance frormew-room to room[other-event] is unacceptable its relative start time w.rmew-start
then dist-diff = dist-diff — TOTAL-sCOREother-event) andold-reward be the expected reward for
else let new-reward be the expected reward for the distance its relative start time w.rdtart[event]
fromnew-room to room[other-event] start-diff = start-diff +imp-other[event]
andold-reward be the expected reward for the distance - (new-reward — old-reward) / num-prefs]other-event]
fromroom[event] to room[other-event] return start-diff
dist-diff = dist-diff +imp[event] - .
- (new-reward — old-reward) / num-prefs[event] The procedure finds the difference between the reward for a new

for everyother-event that has a distance preference weuént do duration of an event and that for its old duration.

if distance frontoom[other-event] to new-roomis unacceptable  puraTiON-DIFF(event, new-dur)

then dist-diff = dist-diff — TOTAL-SCOREOther-event) if new-dur is an unacceptable duration favent then return NiL
else let new-reward be the expected reward for the distance let new-reward be the expected reward fioew-dur,
fromroom[ other-event] to new-room, andold-reward be the expected reward fdur[event]

andold-reward be the expected reward for the distance eturn imp[event] - (new-reward — old-reward) / num-prefs] event]
fromroom[ other-event] to room[event]
dist-diff = dist-diff +imp[other-event]
- (new-reward - old-reward) / num-prefg other-event]
return dist-diff

The procedure evaluates the reward for placing an event into a givelp-T'ME-DI FF(event, new-end)

new room. If the properties of this room are unacceptable, it returf -er_wd :start[event] + durfevent]

NIL. If the room quality is so lowhat its use would worsen the end-diff = 0 . .

schedule regardless of the timetsselection, it also returmgL, O Everyother-event that has a relative start-time preference

Else, it returns the difference die room-related reward scores _ With respect to the end time @fent do
between this room and the event's old room if its relative start time w.r.hew-end is unacceptable

then end-diff = end-diff — TOTAL-SCOREOther-event)

For a given event, the procedure finds the difference between the
relative-time rewards of other events w.r.t. its new end time and
those w.r.t. its old end time.

ROOM-DIFF(event, new-room) else let new-reward be the expected reward for

prop-diff = ROOM-PROPDIFF(event, new-room) its relative start time w.rew-end

if prop-diff = NIL then return NiL andold-reward be the expected reward w.otd-end
dist-diff = DISTANCE-DIFF(event, new-room) end-diff = end-diff +imp-other[event]

if dist-diff = NIL then return NiL - (new-reward - old-reward) / num-prefg other-event]
slot-diff-limit = return end-diff

imp[event] - (start-score-limit[event] + dur-score-limit[event]
—start-scor e event] — dur-scoref event])

if prop-diff + dist-diff + slot-diff-limit < 0 then return niL
return prop-diff + dist-diff OVERLAP-SCORE(event, new-room, new-start, new-dur)
score=0
Figure 8: Computing the reward-score difference between a ngwt everyother-event that overlaps with the new placesvent do
room and the old room of a given event. If the representation ofscore = score + ToTAL-sCORH other-event]
rooms and events includes uncertainty, this computation relies p&urn score

the algorithms for computing the mathematical expectation of

preference values, described in the paper on the representatioxfigf”e o C_omputing the _reward-sc_cdiﬁerences related to the start
uncertainty [Bardalet al., 2006a]. time, duration, and end time of a given event.

The procedure inputs an event and its nese@in the schedule, and
computes the total reward of the events that overlap with this place.




The procedure inputs a room, the start time and duration of a tiffke procedure inputs an event and three reward-score differences
slot, represented by the respective time-step numbers, the beginregveen its new candidate slot and its old slot. The first difference is
time of the conference, and the time step. for the start-time preferences, the second is for the duration

It checks if the room is available for the conference during a givé)qreferences, a'.”d the third is for the r_elatlve-tlme_preferences of the
. o ; other events with respect to the end time of the given event.
time slot, and returmsRUE if it is available.

It checks if the new slot is sufficiently good. If the slot’s quality is so
low that its use would worsen the schedule regardless of the room
selection, the procedure retumns; else, it returns the difference of
the time-related reward scores between this new slot and the old slot.

AVAILABILITY-CHECK (room, start-num, dur-num, conf-start, step)

start = conf-start + time-num - step; end = start + dur-num - step

search for the availability inteal, in the sorted list afoom's
availability intervals, that includes bagtart andend

if such an interval is fountthen return TRUE; else return FALSE TIME-SLOT-DIFF(event, start-diff, dur-diff, end-diff)

if start-diff = NIL or dur-diff = NIL or end-diff = NIL then return NiL

The procedure inputs a room, the start time and duration of a tirjet-diff = start-diff + dur-diff + end-diff

slot, represented by the respective time-step numbers, the beginnisgm-diff-limit = imp[event] - (room-score-limit[event] —

time of the conference, and the time step. room-scor e event))

If the room is available for the given time slot, the procedure returfisS Ot-diff + room-diff-limit < 0 then return niL

the input start time. If not, it returns the earliest start time after tfj&turn slot-diff

input start time that allows using the room for the specified duratioHl

If we cannot use the room for the specified duration at any later timé?e procedure |nputs_ an event, the_beglnnlng_ and end times of the
it returnsniL. conference, and the time step used in scheduling.

It evaluates the quality of all potential time slots for this event; each
slot is defined by its start time and duration. It returns the
two-dimensional arraysot-diffs, indexed by start times and
durations; for each slot, it shows the difference between the quality
of this slot and that of the event's old slot.

NEXT-AVAIL-START(room, start-num, dur-num, conf-start, step)
start = conf-start + start-num - step; end = start + dur-num - step
letroom-end be the ending time abom'’s latest availability interval
if end > room-end then return NiL

identify the earliestoom's availability interval

whose ending time is no earlier tham If a time slot is unacceptable, the procedure marks ibhylf the
let interval-start be the beginning time of this interval slot is acceptable, but contains a smaller sub-slot with the same or
if start > interval-start then return start-num higher quality, the procedure also marks itby which prevents the
interval-start-num = [(interval-start — conf-start) / stepl use of unnecessarily long slots. For example, if the 9am-11am slot is
r €tur N NEXT-AVAIL -START(room, interval-start-num, acceptable, but its 9arh0am sub-slot has the same quality, the
dur-num, conf-start, step) procedure marks the 9am-11am slotvhy

CANDIDATE-SLOTS(event, conf-start, conf-end, step)
for start-num = min-start-num{event] to max-start-num[event] do
new-start = conf-start + start-num - step
start-diffg start-num] = START-TIME-DIFF(event, new-start)
for dur-num = min-dur-numlevent] to max-dur-num[event] do
new-dur = dur-num - step
dur-diffs{dur-num] = DURATION-DIFF(event, new-dur)
conf-end-num = | (conf-end - conf-start) / step
min-end-num = min-start-num[event] + min-dur-numevent]
max-end-num = min(max-start-num[event] + max-dur-num[event],
conf-end-num)
for end-num = min-end-num to max-end-num do
new-end = conf-start + end-num - step
end-diffgstart-num] = END-TIME-DIFF(event, new-end)
for start-num = min-start-num{event] to max-start-numevent] do
if start-diffgstart-num] # NiL
then best-dlot-diff = NIL
for dur-num = min-dur-num[event]
to min(max-dur-num[event],
conf-end-num — start-num) do
slot-diff = TIME-SLOT-DIFF(event, start-diffs[start-num),
dur-diffg dur-num], end-diffg[start-num + dur-num)
if dot-diff = NIL
or (best-slot-diff # NIL andbest-slot-diff > sl ot-diff)
then slot-diffg[start-num, dur-num] = NIL
€lse best-slot-diff = slot-diff
slot-diffg start-num, dur-num] = dlot-diff
return slot-diffs

Figure 10: Checking the availability of a room, and identifying the
earliest available time slot in a room after a given time.

Figure 11: Evaluation of candidate time slots for a given event,
where each slot is defined by its start time and duration.



The procedure removes an event from the schedule and adjustsThe procedure inputs an event, the beginning and end times of the
reward scores of the other events that have distance or start-ticomference, and the time step used in scheduling.
preferences with respect to the removed event. The representatio ?

h event includes pointers to the other-event preferences affe ecjpds the best new place in the schedule for the given event, and
each eve Jes p . P §Hfeh moves the event to this place. If the event has already been in its
by this event, which allow fast retrieval of the related events.

best place, it returrsaLsE.

REMOVAL (event)

room[event] = NIL

room-scorefevent] = 0; start-scorefevent] = 0; dur-scoregfevent] = 0

for everyother-event that has a distance preference weugént do
adjustother-event’s reward score for distances

for everyother-event that has a start-time preference wevent do
adjustother-event’s reward score for relative start times

BEST-ASSIGNMENT (event, conf-start, conf-end, step)
for everyroomin All-Rooms do
room-diffs{room] = ROOM-DIFF(event, room)
dot-diffs = CANDIDATE-sLOTHevent, conf-start, conf-end, step)
best-asst-diff = 0
for everyroom in All-Rooms do
if room-diffs{room] # NIL
The procedure moves an event to a new room, removes the eventhien start-num= NEXT-AVAIL -START(room, min-start-num[event],

whose distances to this event have become unacceptable, and min-dur-num[event], conf-start, step)
re-computes the rewards for the related distance preferences while start-num# NIL
NEW-ROOM (event, new-room) _ and start-num < max-start-num[event] do
room[event] = new-room if start-dlffs[start-r_wum] #NIL
for every distance preferenceevent do then dur-num = min-dur-num{event]

let other-event be the related other event in the preference while dur-num < max-dur-num{event]

if this distance is now unacceptatiien REMOVAL (other -event) and AVAILABILITY -CHECK(room, start-num,
for everyother-event that has a distance preference weuént do _ ~ dur-num, conf-start, step) do

if this distance is now unacceptattien REmovAL (other-event) if slot-diffs start-num, dur-num] # niL

else re-computeother-event's reward score for the new distance then asst-diff = rooms-diffsroom]
re-compute the value obom-score]event] +slot-diffs[start-num, dur-num

~OVERLAP-SCOREevent, room,

The procedure changes the start tim_e of an eve_nt, and removes the conf-start + start-num- step,
other events that violate the related time constraints. dur-num - step)
NEW-START-TIME(event, new-start) if asst-diff > best-asst-diff
start[event] = new-start then best-asst-diff = asst-diff
for every preference on relative start timexent do best-room = room

let other-event be the related other event in the preference best-start-num = start-num

if the start time oévent w.r.t. other-event is unacceptable best-dur-num = dur-num

then REMOVAL (other-event) dur-num = dur-num + 1
for everyother-event that has a start-time preference start-num = NEXT-AVAIL -START(room, start-num + 1,
w.r.t. the start time afvent do min-dur-num{event], conf-start, step)

if its start time is now unacceptableen REMOVAL (other-event) ~ |f best-asst-diff = Othen return FaLsE
else re-computether-event’s score for the relative start time ~ best-start = conf-start + best-start-num - step

re-compute the value sfart-scoreevent] best-dur = best-dur-num - step
. NEW-ASSIGNMENT(event, best-room, best-start, best-dur)
The procedure changes an event's duration, and removes the ofgln True

events that violate the related time constraints.

The top-level scheduling procedure inputs the beginning and end
times of the conference, the time step used in scheduling, and the
limit on the search time.

NEW-DURATION(event, new-dur, old-end)
dur[event] = new-dur

re-compute the value afir-scorefevent]
if start[event] + dur[event] = old-end then return It begins with the empty schedule and searches for local
for everyother-event that has a start-time preference improvements; at each step, it improves the assignment of one event.

. .W'r't' the_ enc_i time cdvent do It stops after either reaching the time limit or iterating through all
if its start time is now unacceptalblesn REMOVAL (other-event) . . )
events without funding any improvements.

else re-computether-event’s score for the relative start time

The procedure moves an event to a given new place in the schedifs!EPULER(conf-start, conf-end, step, run-time-limit)
TIALIZATION (conf-start, conf-end, step)

removes the events that conflict with this new assignment, a ! tsbe th b ¢ 1o Afl-Event
re-computes the related rewards. etnum-events be the number of events Al-Events
num-unchanged = 0

NEW-ASSIGNMENT (event, new-room, new-start, new-dur) while the search time is smaller tham-time-limit do
for everyother-event that overlaps with the new placeavent do for everyevent in All-Events,

REMOVAL (other-event) in the order of decreasing importandes
old-end = start[event] + dur[event] change = BEST-ASSIGNMENT(event, conf-start, conf-end, step)
NEW-ROOM(event, new-room) if change then num-unchanged = 0
NEW-START-TIME (event, new-start) else num-unchanged = num-unchanged + 1
NEW-DURATION(event, new-dur, old-end) if num-unchanged = num-events then return

Figure 12: Changing an event’s assignment, which involves removal

of the conflicting events and re-computation of the related reward§igure 13: Top-level search procedure, which reschedules one event
at a time, until reaching a local maximum or hitting the time limit.



Schedule

VII. EXPERIMENTS Quality

We have applied the developed system to several scheduling 1.0 )
problems, and compared the quality of the automatically 0.92 0.94 0.94 0.93
constructed schedules with the results of manual scheduling. 094 [
These problems involve the scheduling of four-day 0.83

: : . . ) . > > >
conferences, with the time discretized to fifteen-minute steps. 08+ |5 & s S
Every room has fifteen properties, and every event has 23 =|3 3
between fifteen and twenty constraints and preferences. 074 |& %— § % %

We have used a 2.4-GHz Xeon computer, and set the time 8 061

limit to ten seconds. On the other hand, we have not imposed 0.6 :

5rooms 9rooms 13 rooms

any time limit on manual scheduling; most subjects have spent
32 events 62 events 84 events

five to ten minutes on small scheduling problems, and ten to

>

twenty minutes on large problems. In Figure 14, we Problem Size
summarize the results of these experiments, which show that (a) Experiments with fully certain knowledge.
the system has outperformed the human subjects.
We have also evaluated the dependency of the quality of Schedule
automatically constructed schedules on the search time, and Quality
we show the results in Figure 15. If the knowledge is fully A
certain, the system constructs a near-optimal schedule in about 097 0.83 0.83
three seconds. If the knowledge is uncertain, it needs about 0.8 0.78 0.80 ) '
nine seconds because it spends more time for computing the ' z 0.72 E 5
expected quality of candidate assignments. 0.7+ g =13 S
' B 2| 0632

VIII. CONCLUDING REMARKS 06 2 ° =°
We have described a scheduling algorithm that accounts for Srooms  9rooms 13 rooms
uncertainty in resources and constraints. The experiments 32events 62events 84 events
have confirmed that it quickly solves large-scale problems, Problem Size >

and that the resulting schedules are better than manual
solutions. We are now working on an extended system, which
will support more flexible utility functions, optimize the use of igure 14: Comparison of manual and automatic scheduling. We
portable equipment related to the scheduled events, e the results for small problems (5 rooms and 32 events), medium

analyze the trade-offs involved in renting additional room&roblems (9 rooms and 62 events), and large problems (13 rooms
and equipment and 84 events). We show the quality of manual schedules by grey

bars, and the results of automatic scheduling by white bars.

(b) Experiments with uncertain knowledge.

ACKNOWLEDGMENTS 1
We are grateful to Konstantin Salomatin, Greg Jorstad, ar 0.95_
Daniel Cheng for their help in developing the representatio 0.9 |
of uncertain knowledge. We thank Chris R. Martens, Jaso '
Knichel, Vijay Prakash, and Sung-joo Lim for their work on > 0854 ~
evaluating the scheduling system. We also thank Aaro S 0.8
Steinfeld and Matt Lahut for their help in applying the systen © 0.751
to real-world scheduling problems. 0.7 ,
065 .
0.6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ \ \

1 2 3 4 5 6 7 8 9 10

Time (seconds)

Figure 15. Dependency of the schedule quality on the running time.
We show the results of scheduling with fully certain knowledge
(dashed line) and uncertain knowledge (solid line); both problems
include 13 rooms and 84 events.



REFERENCES [Chajewskaet al., 1998] Urszula Chajewska, Lise Getoor,

[Averbakh, 2001] Igor C. Averbakh. On the complexity of a Joseph Nprmal, and Yuval Shahar. Utility elicitation as a
class of combinatorial optimization problems with classification problem. IProceedings of the Fourteenth

uncertainty. Mathematical Programming, 90(2), pages Conference on Uncertainty in Artificial Intelligence,
263-272, 2001. _ pages 7988, 1998. _

[Balasubramanian and Grossmann, 2003] Jayanth Balgink et al., 2006] Eugene Fink, Ulas Bardak, Brandon
subramanian and Ignacio E. Grossmann. Scheduling Rothrock, and Jaime G. Carbonell. Scheduling with
optimization under uncertainty: An alternative approach. uncertain resources: Collaboration with the user. In
Computers and Chemical Engineering, 27(4), pages Proceedings of the IEEE Internanonal Conference on
469-490, 2003. Systems, Man, and Cybernetics, 2006.

[Bardaket al., 2006a] Ulas Bardak, Eugene Fink, and Jaimgin € al., 2004] Xiaoxia Lin, Stacy L. Janak, and
G. Carbonell. Scheduling with uncertain resources: Christodoulos A. Floudas. A new robust optimization

Representation and utility function. Rroceedings of the approach for scheduling under uncertainty: Bounded
IEEE International Conference on Systems, Man, and uncertaintyComputersand Chemical Engineering, 28(6),
Cybernetics, 2006. pages 1069-1085, 2004.

[Bardaket al., 2006b] Ulas Bardak, Eugene Fink, Chris R[Lodwick et al., 2001] Weldon A. Lodwick, Arnold
Martens, and Jaime G. Carbonell. Scheduling with Neumaier, and Francis Newman. Optimization under
uncertain resources: Elicitation of additional data. In Uncertainty: Methods and applications in radiation
Proceedings of the IEEE International Conference on therapy. InProceedings of the Tenth IEEE International
Systems, Man, and Cybernetics, 2006. Conference on Fuzzy Systems, pages 1219-1222, 2001.

[Bidot, 2005] Julien Bidot. A general framework integratingMoore, 2002] Frank W. Moore. A methodology for missile
techniques for scheduling under uncertainty. PhD Thesis, Countérmeasures  optimizan  under  uncertainty.

Institut National Polytechnique de Toulouse, 2005. Evolutionary Computation, 10(2), pages 129-149, 2002.
[Sahinidis, 2004] Nikolaos V. Sahinidis. Optimization under

uncertainty: State-of-thart and opportunitie€Computers
and Chemical Engineering, 28(6), pages 971-983, 2004.



