

Abstract—We describe a system for scheduling a
conference based on incomplete information about
available resources and scheduling constraints. We
explain the representation of uncertain knowledge,
describe a local-search algorithm for generating
near-optimal schedules, and give empirical results of
automatic scheduling under uncertainty.

I. INTRODUCTION

HEN we work on a practical scheduling task, we
usually do not have complete knowledge of the related

resources and constraints. For example, when scheduling a
conference, we may not know the exact sizes of available
rooms or equipment needs of some speakers.

Although researchers have long realized the importance of
uncertain information in scheduling and optimization
problems, the related work has been limited [Sahinidis, 2004;
Bidot, 2005]. Researchers have developed several
domain-specific systems for optimization based on
incomplete data [Chajewska et al., 1998; Averbakh, 2001;
Lodwick et al., 2001; Moore, 2002; Balasubramanian and
Grossmann, 2003; Lin et al., 2004]; however, they have not
studied a general problem of scheduling under uncertainty.

We have investigated the problem of scheduling a
conference based on uncertain information about available
resources and conference events. The previous techniques
have turned out inapplicable to this problem, and we have
developed a new mechanism for scheduling under uncertainty.
This work has been part of the RADAR project
(www.radar.cs.cmu.edu) at Carnegie Mellon University,
which is aimed at building an intelligent system for assisting
an office manager. We have described initial results of this
work in three earlier papers; specifically, we have explained
the representation of uncertainty [Bardak et al., 2006a],
automatic elicitation of additional data that help to reduce

The manuscript was received on March 30, 2006. The described work was

supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010.

uncertainty [Bardak et al., 2006b], and collaboration between
the scheduling system and human user [Fink et al., 2006].
 We now describe an algorithm for constructing a schedule
based on uncertain knowledge of resources and constraints.
We explain the representation of uncertain facts
(Sections II–IV), present the search for a near-optimal
schedule (Sections V and VI), and give empirical results on its
effectiveness (Section VII).

II. EXAMPLE

We begin with an example of a conference scenario, and use it
to illustrate the representation of resources and constraints.
Suppose that we need to assign rooms to events at a small
one-day conference, which starts at 11:00am and ends at
4:30pm, and that we can use three rooms: auditorium,
classroom, and conference room (Figure 1). These rooms host
other events, and they are available for the conference only at
the following times:

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm.
 Classroom: 11:00am–2:30pm.
 Conference room: 12:00pm–4:30pm.

 We describe each room by a set of properties; in this
example, we consider three properties:

Size: Room area in square feet.
Mikes: Number of microphones.
Stations: Maximal number of demo stations

that can be set up in the room.

We also specify distances between rooms in feet; we assume
that the auditorium and classroom are next to each other,
whereas the conference room is in another building. In
Figure 1, we show the properties of each room and the
distances between rooms.

The conference includes five events: demonstration,
discussion, tutorial, workshop, and committee meeting
(Table 1). For each event, we specify its importance, as well
as related constraints and preferences.

We define constraints by limiting appropriate start times,
durations, and room properties. For example, we may indicate
that an acceptable start time for the tutorial is 1:00pm or

Scheduling with Uncertain Resources:
Search for a Near-Optimal Solution

Eugene Fink
e.fink@cs.cmu.edu

P. Matthew Jennings
mattj@cs.cmu.edu

Ulas Bardak
cyprus@cs.cmu.edu

Jean Oh
jeanoh@cs.cmu.edu

Stephen F. Smith
sfs@cs.cmu.edu

Jaime G. Carbonell
jgc@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

W

earlier, an acceptable duration is 30 minutes or more, and an
acceptable room size is 400 square feet or more.

In addition, we define constraints for distances between
events and for relative start times of events with respect to
other events. For instance, we may specify that the workshop
must be in the same room as the tutorial, and that it must start
shortly after the tutorial, because many participants plan to
attend both events. We may also indicate that the tutorial and
workshop must be near the demo, which will allow their
attendees to see the demo during the breaks.

We may also select preferred values for start times,
durations, room properties, distances, and relative start times,
which are subsets of acceptable values. For example, we may
specify that the preferred start time for the tutorial is 11:00am,
preferred duration is 60 minutes, and preferred room size is
600 square feet or more. We may further indicate that the
preferred distance from the workshop to the demo is 100 feet
or less, and the preferred start time for the workshop is 30
minutes after the end of the tutorial. In Table 1, we give
constraints and preferences for all events.

We construct a schedule by assigning a room and time slot
to every event. For instance, the schedule in Figure 2 satisfies
all constraints and most preferences given in Table 1.

III. REPRESENTATION

We now explain the representation of resources and
scheduling requirements [Bardak et al., 2006a].

Rooms: We represent resources by a set of available
rooms; the description of a room includes its name and a list of
numeric properties (see Figure 1). For each room, we define
its property values and distances to other rooms, as well as its
availability, represented by a set of time intervals.

Events: The description of an event includes its name,
importance, and related constraints and preferences (see
Table 1). The importance is a positive integer; the constraints
are ranges of acceptable values for start time, duration, room
properties, distances, and relative start times; and the
preferences are ranges of preferred values, which must be
sub-ranges of the respective acceptable values. Thus, when
specifying an event, we may include a range of acceptable
values and a sub-range of preferred values for each of the
following parameters:

• Start time and duration
• Every room property
• For every other event, the distance from the specified

event to the location of the other event
• For every other event, the time difference between the

start of the specified event and the start of the other event
• For every other event, the time difference between the

start of the specified event and the end of the other event

Figure 1. Available rooms, their properties, and distances.

 Demo Discu-
ssion

Tuto-
rial

Com-
mittee

Work-
shop

Importance 5 3 8 1 5
Acceptable ≤1pm ≥3pm Start

time Preferred
Any Any

11am 3:30pm
Any

Acceptable ≥60 ≥30 ≥30 ≥30 ≥60 Dura-
tion Preferred 150 90 60 60 120

Acceptable ≥600 ≥200 ≥400 ≥400 ≥600 Room
size Preferred ≥1200 ≥600 ≥600 ≥800 ≥1000

Acceptable ≥5 Any Stat-
ions Preferred ≥10

Any ≥2
Any Any

Acceptable ≥2 ≥1 ≥1
Mikes

Preferred
Any ≥4 ≥2

Any ≥1

(a) Constraints on start times, durations, and room properties.

Event Parameter With Respect To Acceptable Preferred
Demo Start Time Tutorial’s Start [−30..30] 0

Distance Demo’s Room ≤200 ≤100
Distance Tutorial’s Room 0 0

Work-
shop

Start Time Tutorial’s End [0..60] 30

(b) Constraints on distances and relative start times.

Table 1. Conference events and related constraints and preferences.

 Auditorium Classroom Conf. room

11:00
11:30

Tutorial Unavailable

12:00
12:30
1:00

Demo

1:30
2:00

Workshop

2:30

3:00

Unavailable

3:30
4:00

Committee
meeting

Unavailable
Discussion

Figure 2. Schedule for the conference scenario in Tables 1 and 2.

Auditorium
Size: 1200
Stations: 10
Mikes: 5

Classroom
Size: 700
Stations: 5
Mikes: 1

Conf. room
Size: 500
Stations: 5
Mikes: 2

Distance: 400

Distance: 400 Distance: 50

Figure 3. Reward for satisfying a preference.

Sort the events in the decreasing order of expected importances.
For every event:
 Create a list of the rooms and time slots that are consistent
 with the ranges of acceptable values for this event.
Create the empty schedule; that is, mark all events as unscheduled.
Repeat until finding no improvements or reaching a time limit:
 For every event, in the order of decreasing importances:
 For every room and time slot consistent with this event:
 Move the event into this room and time slot.
 If some other events overlap with this event,

then remove them from the schedule.
 If the distances from the moved event
 to some other events are unacceptable,
 then remove these other events.
 If the relative times of the moved event
 w.r.t. some other events are unacceptable,
 then remove these other events.
 Re-compute the schedule utility.
 If the new utility is no greater than the old utility,
 then undo the related schedule changes.

Figure 4: Search for a high-quality schedule.

Uncertainty: When scheduling a conference, we may have
incomplete information about resources, event importances,
constraints, and preferences. We represent an uncertain value
as an interval, encoded by the minimal and maximal possible
values. For example, we may specify that the size of the
conference room is between 500 and 750, the importance of
the demo is between 4 and 6, and the minimal acceptable
duration of the demo is between 60 and 90.

Schedule: To build a schedule, the system assigns a room
and time slot to each event. It represents this assignment by the
event name, room name, start time, and duration.
Alternatively, it can decide that an event is not part of the
schedule, which is also considered an assignment; the system
represents this assignment by setting its room to NIL. Note that
assignments must not overlap, that is, the system cannot assign
two events to the same room at the same time.

IV. SCHEDULE QUALITY

We measure schedule quality on the scale from 0.0 to 1.0;
higher values correspond to better schedules. The quality of a
specific assignment depends on how well the selected room
and time slot match the preferred values. If the start time,
duration, some room property, distance to another event, or
time with respect to another event is outside the acceptable
range, then the assignment quality is zero, regardless of the

other constraints. If we decide that an event is not part of the
schedule, the quality of its assignment is also zero.

If an assignment satisfies all hard constraints, we determine
the rewards for satisfying the related preferences. If a start
time, duration, room property, distance to another event, or
time with respect to another event is within the preferred range
of values, then the respective reward is 1.0. If it is outside the
preferred range, the reward depends on its distance from this
range; specifically, the reward linearly decreases with the
distance from the preferred values, as shown in Figure 3. If an
event has a distance or relative-time preference with respect to
another event that is left unscheduled, we consider this
preference satisfied, and the respective reward is 1.0. If the
event has k preferences, and the respective rewards are
r1,…, rk, then the assignment quality is (r1 + … + rk) / k.

The overall schedule quality is the weighted sum of the
quality values for individual assignments. That is, if a
schedule includes n events, their quality values are Qual1,…,
Qualn, and their importances are imp1,…, impn, then the
overall quality is

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn).

For example, if we use the preferences in Table 1, and the
schedule is as shown in Figure 2, then the quality of the time
slot for the demo is 1.0, for the discussion is 0.75, for the
tutorial is 0.8, for the committee meeting is 1.0, and for the
workshop is 0.91, and the overall schedule quality is 0.87.

If the description of rooms and events includes uncertainty,
the system computes the mathematical expectation of
schedule quality. It determines the expected quality of
individual assignments, E(Qual1),…, E(Qualn), as well as the
expected values of their importances, E(imp1),…, E(impn),
and uses them to compute the expected quality of the
schedule, which is

(E(imp1) · E(Qual1) + … + E(impn) · E(Qualn)) /
(E(imp1) + … + E(impn)).

We have given an algorithm for fast computation of this
expected quality in the paper on the representation of
uncertainty [Bardak et al., 2006a].

For instance, consider the example in Section II, and
suppose that the conference-room size is between 500 and
750, the demo importance is between 4 and 6, the minimal
acceptable duration of the demo is between 60 and 90, and all
other resources and constraints are fully certain, as shown in
Tables 1 and 2. Then, the expected quality of the schedule in
Figure 2 is 0.88.

V. SEARCH ALGORITHM

The purpose of search is to construct a schedule with a high
expected quality; that is, we use the expected quality as the
utility function. The system begins with the empty schedule
and gradually improves it; at each step, it either assigns a slot
to some unscheduled event, or moves some scheduled event to
a better slot.

In Figure 4, we give the main steps of the hill-climbing
search algorithm, which processes the events in the decreasing

property
value

preferred values

acceptable values

0

1

reward

order of their expected importances. When processing an
event, it evaluates every assignment consistent with the
event’s constraints, and selects the assignment that gives the
greatest utility increase. After processing all events, the
algorithm returns to the beginning of the sorted list of events
and repeats the processing. It stops when the last iteration
through all events has not led to any improvements, or when it
has reached a time limit.

We next present a more detailed description of this search
algorithm. We list its main variables in Figure 5, show its main
procedures and calls between them in Figure 6, and give
pseudocode for these procedures in Figures 7–13. Note that
the algorithm includes a mechanism for caching intermediate
results of the assignment-quality computation, which allows
fast evaluation of candidate assignments. This mechanism is
essential for efficiency because the quality computation is the
most time-consuming part of the algorithm.

We use two global variables, accessible from all
procedures: the set of all conference events, denoted
All-Events, and the set of all available rooms, denoted
All-Rooms. In addition, the top-level procedure, which is
called SCHEDULER (Figure 13), inputs four parameters that
control the search: the beginning and end times of the
conference, the discrete time step used in scheduling, and the
limit on the search time. When the algorithm constructs the
schedule, it only considers start times and durations divisible
by the given time step. For instance, if this step is thirty
minutes, then all scheduled events start and end on half hour.

We now outline some techniques for improving the search
efficiency; we have implemented these techniques and used
them in the experiments of Section VII.

Expected rewards: If the description of rooms and events
includes uncertainty, the procedures in Figures 8 and 9
compute the mathematical expectations of rewards. We have
given algorithms for fast computation of expected rewards in
the paper on representing uncertainty [Bardak et al., 2006a].

Event indexing: We index the events by their place in the
current schedule, that is, by room and time slot, which allows
fast retrieval of the events that occupy a given room during a
given time interval. In particular, it allows fast identification
of the events that conflict with a newly scheduled event.

Constraint pointers: The representation of each event
includes pointers to the distance constraints and relative-time
constraints of the other events affected by this event. When the
system moves an event, it uses these pointers to identify the
affected events and re-computes their rewards.

Room availability: For every room, we represent its
availability for the conference by a sorted list of
non-overlapping time intervals; this representation allows fast
checking whether the room is available for a given time slot.

VI. EXTENSIONS

We outline several extensions to the described algorithm; we
have implemented these extensions and used them in the
experiments of Section VII.
 End times: The system supports constraints and
preferences for the end times of events, in addition to
constraints for start times, durations, and room properties. For
instance, we may specify that the workshop should end after
the demo and before 3pm. These constraints require a
modification to the evaluation of time slots in the
CANDIDATE-SLOTS procedure (Figure 11), as well as adding
the re-computation of end-time rewards to REMOVAL,
NEW-START-TIME, and NEW-DURATION (Figure 12).
 Preference weights: The description of preferences may
include their weights, which show the relative importance of
each preference. For example, we may indicate that the size of
a room for the workshop is twice more important than the
preferred time and duration of the workshop. The system
computes the reward for an assignment as the weighted sum of
preference rewards; that is, if an event has k preferences, their
weights are w1,…, wk, and the respective rewards are r1,…, rk,
then the assignment quality is (w1 · r1 + … + wk · rk) / (w1 + …
+ wk). The use of weights requires modifications to the
computation of reward limits in SCORE-LIMITS (Figure 7), as
well as to the reward computations in the ROOM-PROP-DIFF
and DISTANCE-DIFF procedures in Figure 8, and the
START-TIME-DIFF, DURATION-DIFF, and END-TIME-DIFF
procedures in Figure 9.
 Multi-day schedule: If a conference continues for several
days, we specify its beginning and end times for each day, and
the system marks all rooms as unavailable outside of the
specified “business hours.”

Initial schedule: The system can start its search from a
given initial schedule rather than from the empty schedule. We
use this option to repair an old schedule after changes in the
availability of rooms and related resources. We also use it if
the user builds a manual schedule and then applies the system
to finalize it [Fink et al., 2006]. The user can optionally
impose a penalty on rescheduling of events, which prevents
the system from making changes that would give only an
insignificant improvement.
 Locked assignments: The user can “lock” some events in
the manually selected places, and apply the system to find
assignments for the other events [Fink et al., 2006]. This
option requires a modification to the top-level SCHEDULER
procedure (Figure 13); specifically, SCHEDULER should skip
the locked events in its main loop, thus ensuring that they
remain in their original places.

(a) Global variables
We use two global variables, accessible from all procedures:

 All-Events set of all conference events
 All-Rooms set of all available rooms
We index all events by their place in the schedule, which allows fast
retrieval of the events in a given room that overlap a given time slot.

(b) Event structure
We represent a conference event by a data structure that includes its
importance, constraints and preferences, place in the current
schedule, and intermediate results of related computations. We use
the following fields of event in the pseudocode:

imp[event] expected importance of the event
min-start[event] minimal acceptable start time
max-start[event] maximal acceptable start time
min-dur[event] minimal acceptable duration
max-dur[event] maximal acceptable duration

min-start-num[event] min-start converted to discrete time steps
max-start-num[event] max-start converted to discrete time steps
min-dur-num[event] min-dur converted to discrete time steps
max-dur-num[event] max-dur converted to discrete time steps

room[event] room of the event in the current schedule
start[event] current start time of the event
dur[event] current duration of the event

num-prefs[event] total number of the event’s preferences
room-score-limit[event] upper limit on the possible sum of rewards

 for satisfying the room-property and

 distance preferences
start-score-limit[event] upper limit on the possible sum of rewards
 for satisfying the start-time preferences
dur-score-limit[event] upper limit on the possible reward for
 satisfying the duration preference

room-score[event] sum of the current rewards for satisfying the
 room-property and distance preferences
start-score[event] sum of the rewards for the start-time preferences
dur-score[event] reward for the duration preference

(c) Search parameters
We use four parameters to control the search algorithm, which are
inputs of the top-level procedure, called SCHEDULER (Figure 13):

conf-start time of the conference beginning;
 events cannot start before this time

conf-end time of the conference end;
 events cannot end after this time

step discrete time step used in scheduling; all start
 times and durations must be divisible by it
run-time-limit limit on the overall search time

(d) Local arrays
When the algorithm computes the quality of candidate assignments
for a given event, it uses five arrays for caching intermediate results:

room-diffs differences between the quality of new candidate rooms
 and that of the event’s current room
start-diffs differences between the quality of new candidate start
 times and that of the event’s current start time
dur-diffs differences between the quality of new candidate
 durations and that of the event’s current duration
end-diffs differences between the quality of new candidate end
 times and that of the event’s current end time
slot-diffs differences between the quality of new candidate time
 slots and that of the event’s current time slot; each
 candidate slot is defined by its start time and duration

Figure 5: Main variables in the procedures given in Figures 7–13.

Figure 6: Main procedures of the algorithm given in Figures 7–13.

The procedure inputs an event, the beginning and end times of the
conference, and the time step used in scheduling.

It converts the acceptable start times and durations of the given event
into the respective numbers of time steps. For example, if the
conference begins at 11am, the step is 30 minutes, and the range of
acceptable times is “1pm...3pm,” it converts this range into “4...8.”

TIME-NUMS(event, conf-start, conf-end, step)
min-start = max(min-start[event], conf-start)
min-start-num[event] =┌(min-start − conf-start) / step┐
max-start = min(max-start[event], conf-end − min-dur[event])
max-start-num[event] =└(max-start − conf-start) / step┘ min-dur-num[event] =┌min-dur[event] / step┐
max-dur = min(max-dur[event], conf-end − conf-start)
max-dur-num[event] =└max-dur / step┘

For a given event, the procedure determines the upper limits on the
possible rewards for satisfying room-related preferences, start-time
preferences, and duration preferences. For instance, if an event
includes five room preferences, four start-time preferences, and one
duration preference, then the respective limits are 0.5, 0.4, and 0.1.

SCORE-LIMITS(event)
let num-room be the number of event’s preferences
 for room properties and distances,
 num-start be the number of event’s preferences
 for the start time and relative start times, and
 num-dur be the number of event’s duration preferences
num-prefs[event] = num-room + num-start + num-dur
room-score-limit[event] = num-room / num-prefs[event]
start-score-limit[event] = num-start / num-prefs[event]
dur-score-limit[event] = num-dur / num-prefs[event]

The initialization procedure inputs the beginning and end times of
the conference, and the time step used in scheduling.

It converts the acceptable start times and durations of all events into
the respective numbers of time steps, determines the upper limits on
the possible rewards, creates the initial empty schedule by setting the
rooms of all events to NIL, and sorts the events by importance.

INITIALIZATION(conf-start, conf-end, step)
for every event in All-Events do
 TIME-NUMS(event, conf-start, conf-end, step); SCORE-LIMITS(event)
for every event in All-Events do
 room[event] = NIL
 room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0
for every event in All-Events do
 compute its expected importance and set imp[event] to this value
sort All-Events in the decreasing order of their expected importances

Figure 7: Initialization procedures of the scheduling algorithm.

BEST-ASSIGNMENT

CANDIDATE-SLOTS

START-TIME-DIFF

DURATION-DIFF

END-TIME-DIFF

TIME-SLOT-DIFF

NEXT-AVAIL-START
AVAILABILITY-CHECK
OVERLAP-SCORE

SCHEDULER

NEW-ASSIGNMENT

NEW-ROOM

NEW-START-TIME

NEW-DURATION

REMOVAL

ROOM-DIFF

ROOM-PROP-DIFF

DISTANCE-DIFF TOTAL-SCORE

INITIALIZATION

SCORE-LIMITS TIME-NUMS

The procedure determines the total reward score of an event.

TOTAL-SCORE(event)
return imp[event] · (room-score[event] + start-score[event]
 + dur-score[event])

For a given event, the procedure finds the difference between the
quality of a new room and that of the event’s old room.

ROOM-PROP-DIFF(event, new-room)
unscaled-diff = 0
for every room-property preference of event do
 if this property of room is unacceptable then return NIL
 let new-reward be the expected reward for this property in room,
 and old-reward be the expected reward in room[event]
 unscaled-diff = unscaled-diff + new-reward − old-reward
return imp[event] · unscaled-diff / num-prefs[event]

The procedure finds the difference between the distance rewards for
placing a given event into a new room and those for its old room.

DISTANCE-DIFF(event, new-room)
dist-diff = 0
for every distance preference in event do
 let other-event be the related other event in the preference
 if distance from new-room to room[other-event] is unacceptable
 then dist-diff = dist-diff − TOTAL-SCORE(other-event)
 else let new-reward be the expected reward for the distance
 from new-room to room[other-event]
 and old-reward be the expected reward for the distance
 from room[event] to room[other-event]
 dist-diff = dist-diff + imp[event]
 · (new-reward − old-reward) / num-prefs[event]
for every other-event that has a distance preference w.r.t. event do
 if distance from room[other-event] to new-room is unacceptable
 then dist-diff = dist-diff − TOTAL-SCORE(other-event)
 else let new-reward be the expected reward for the distance
 from room[other-event] to new-room,
 and old-reward be the expected reward for the distance
 from room[other-event] to room[event]
 dist-diff = dist-diff + imp[other-event]
 · (new-reward − old-reward) / num-prefs[other-event]
return dist-diff

The procedure evaluates the reward for placing an event into a given
new room. If the properties of this room are unacceptable, it returns
NIL. If the room quality is so low that its use would worsen the
schedule regardless of the time-slot selection, it also returns NIL.
Else, it returns the difference of the room-related reward scores
between this room and the event’s old room.

ROOM-DIFF(event, new-room)
prop-diff = ROOM-PROP-DIFF(event, new-room)
if prop-diff = NIL then return NIL
dist-diff = DISTANCE-DIFF(event, new-room)
if dist-diff = NIL then return NIL
slot-diff-limit =
 imp[event] · (start-score-limit[event] + dur-score-limit[event]
 − start-score[event] − dur-score[event])
if prop-diff + dist-diff + slot-diff-limit ≤ 0 then return NIL
return prop-diff + dist-diff

Figure 8: Computing the reward-score difference between a new
room and the old room of a given event. If the representation of
rooms and events includes uncertainty, this computation relies on
the algorithms for computing the mathematical expectation of
preference values, described in the paper on the representation of
uncertainty [Bardak et al., 2006a].

The procedure finds the difference between the rewards related to a
new start time of an event and those related to its old start time.

START-TIME-DIFF(event, new-start)
if new-start is an unacceptable start time for event then return NIL
let new-reward be the expected start-time reward for new-start,
 and old-reward be the expected reward for start[event]
start-diff=imp[event] · (new-reward − old-reward)/num-prefs[event]
for every relative start-time preference in event do
 let other-event be the related other event in the preference
 if new-start is unacceptable w.r.t. the time of other-event
 then start-diff = start-diff − TOTAL-SCORE(other-event)
 else let new-reward be the expected reward for
 new-start w.r.t. the time of other-event
 and old-reward be the expected reward for
 start[event] w.r.t. the time of other-event
 start-diff = start-diff + imp[event]
 · (new-reward − old-reward) / num-prefs[event]
for every other-event that has a relative start-time preference
 with respect to the start time of event do
 if its relative start time w.r.t. new-start is unacceptable
 then start-diff = start-diff − TOTAL-SCORE(other-event)
 else let new-reward be the expected reward for
 its relative start time w.r.t. new-start
 and old-reward be the expected reward for
 its relative start time w.r.t. start[event]
 start-diff = start-diff + imp-other[event]
 · (new-reward − old-reward) / num-prefs[other-event]
return start-diff

The procedure finds the difference between the reward for a new
duration of an event and that for its old duration.

DURATION-DIFF(event, new-dur)
if new-dur is an unacceptable duration for event then return NIL
let new-reward be the expected reward for new-dur,
 and old-reward be the expected reward for dur[event]
return imp[event] · (new-reward − old-reward) / num-prefs[event]

For a given event, the procedure finds the difference between the
relative-time rewards of other events w.r.t. its new end time and
those w.r.t. its old end time.

END-TIME-DIFF(event, new-end)
old-end = start[event] + dur[event]
end-diff = 0
for every other-event that has a relative start-time preference
 with respect to the end time of event do
 if its relative start time w.r.t. new-end is unacceptable
 then end-diff = end-diff − TOTAL-SCORE(other-event)
 else let new-reward be the expected reward for
 its relative start time w.r.t. new-end
 and old-reward be the expected reward w.r.t. old-end
 end-diff = end-diff + imp-other[event]
 · (new-reward − old-reward) / num-prefs[other-event]
return end-diff

The procedure inputs an event and its new place in the schedule, and
computes the total reward of the events that overlap with this place.

OVERLAP-SCORE(event, new-room, new-start, new-dur)
score = 0
for every other-event that overlaps with the new place of event do
 score = score + TOTAL-SCORE[other-event]
return score

Figure 9: Computing the reward-score differences related to the start
time, duration, and end time of a given event.

The procedure inputs a room, the start time and duration of a time
slot, represented by the respective time-step numbers, the beginning
time of the conference, and the time step.

It checks if the room is available for the conference during a given
time slot, and returns TRUE if it is available.

AVAILABILITY-CHECK(room, start-num, dur-num, conf-start, step)
start = conf-start + time-num · step; end = start + dur-num · step
search for the availability interval, in the sorted list of room’s
 availability intervals, that includes both start and end
if such an interval is found then return TRUE; else return FALSE

The procedure inputs a room, the start time and duration of a time
slot, represented by the respective time-step numbers, the beginning
time of the conference, and the time step.

If the room is available for the given time slot, the procedure returns
the input start time. If not, it returns the earliest start time after the
input start time that allows using the room for the specified duration.
If we cannot use the room for the specified duration at any later time,
it returns NIL.

NEXT-AVAIL-START(room, start-num, dur-num, conf-start, step)
start = conf-start + start-num · step; end = start + dur-num · step
let room-end be the ending time of room’s latest availability interval
if end > room-end then return NIL
identify the earliest room’s availability interval
 whose ending time is no earlier than end
let interval-start be the beginning time of this interval
if start ≥ interval-start then return start-num
interval-start-num = ┌(interval-start − conf-start) / step┐
return NEXT-AVAIL -START(room, interval-start-num,
 dur-num, conf-start, step)

Figure 10: Checking the availability of a room, and identifying the
earliest available time slot in a room after a given time.

The procedure inputs an event and three reward-score differences
between its new candidate slot and its old slot. The first difference is
for the start-time preferences, the second is for the duration
preferences, and the third is for the relative-time preferences of the
other events with respect to the end time of the given event.

It checks if the new slot is sufficiently good. If the slot’s quality is so
low that its use would worsen the schedule regardless of the room
selection, the procedure returns NIL; else, it returns the difference of
the time-related reward scores between this new slot and the old slot.

TIME-SLOT-DIFF(event, start-diff, dur-diff, end-diff)
if start-diff = NIL or dur-diff = NIL or end-diff = NIL then return NIL
slot-diff = start-diff + dur-diff + end-diff
room-diff-limit = imp[event] · (room-score-limit[event] −
 room-score[event])
if slot-diff + room-diff-limit ≤ 0 then return NIL
return slot-diff

The procedure inputs an event, the beginning and end times of the
conference, and the time step used in scheduling.

It evaluates the quality of all potential time slots for this event; each
slot is defined by its start time and duration. It returns the
two-dimensional array slot-diffs, indexed by start times and
durations; for each slot, it shows the difference between the quality
of this slot and that of the event’s old slot.

If a time slot is unacceptable, the procedure marks it by NIL. If the
slot is acceptable, but contains a smaller sub-slot with the same or
higher quality, the procedure also marks it by NIL, which prevents the
use of unnecessarily long slots. For example, if the 9am–11am slot is
acceptable, but its 9am–10am sub-slot has the same quality, the
procedure marks the 9am–11am slot by NIL.

CANDIDATE-SLOTS(event, conf-start, conf-end, step)
for start-num = min-start-num[event] to max-start-num[event] do
 new-start = conf-start + start-num · step
 start-diffs[start-num] = START-TIME-DIFF(event, new-start)
for dur-num = min-dur-num[event] to max-dur-num[event] do
 new-dur = dur-num · step
 dur-diffs[dur-num] = DURATION-DIFF(event, new-dur)
conf-end-num = └(conf-end − conf-start) / step┘
min-end-num = min-start-num[event] + min-dur-num[event]
max-end-num = min(max-start-num[event] + max-dur-num[event],
 conf-end-num)
for end-num = min-end-num to max-end-num do
 new-end = conf-start + end-num · step
 end-diffs[start-num] = END-TIME-DIFF(event, new-end)
for start-num = min-start-num[event] to max-start-num[event] do
 if start-diffs[start-num] ≠ NIL
 then best-slot-diff = NIL
 for dur-num = min-dur-num[event]
 to min(max-dur-num[event],
 conf-end-num − start-num) do
 slot-diff = TIME-SLOT-DIFF(event, start-diffs[start-num],
 dur-diffs[dur-num], end-diffs[start-num + dur-num])
 if slot-diff = NIL
 or (best-slot-diff ≠ NIL and best-slot-diff ≥ slot-diff)
 then slot-diffs[start-num, dur-num] = NIL
 else best-slot-diff = slot-diff
 slot-diffs[start-num, dur-num] = slot-diff
return slot-diffs

Figure 11: Evaluation of candidate time slots for a given event,
where each slot is defined by its start time and duration.

The procedure removes an event from the schedule and adjusts the
reward scores of the other events that have distance or start-time
preferences with respect to the removed event. The representation of
each event includes pointers to the other-event preferences affected
by this event, which allow fast retrieval of the related events.

REMOVAL(event)
room[event] = NIL
room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0
for every other-event that has a distance preference w.r.t. event do
 adjust other-event’s reward score for distances
for every other-event that has a start-time preference w.r.t. event do
 adjust other-event’s reward score for relative start times

The procedure moves an event to a new room, removes the events
whose distances to this event have become unacceptable, and
re-computes the rewards for the related distance preferences.

NEW-ROOM(event, new-room)
room[event] = new-room
for every distance preference in event do
 let other-event be the related other event in the preference
 if this distance is now unacceptable then REMOVAL(other-event)
for every other-event that has a distance preference w.r.t. event do
 if this distance is now unacceptable then REMOVAL(other-event)
 else re-compute other-event’s reward score for the new distance
re-compute the value of room-score[event]

The procedure changes the start time of an event, and removes the
other events that violate the related time constraints.

NEW-START-TIME(event, new-start)
start[event] = new-start
for every preference on relative start time in event do
 let other-event be the related other event in the preference
 if the start time of event w.r.t. other-event is unacceptable
 then REMOVAL(other-event)
for every other-event that has a start-time preference
 w.r.t. the start time of event do
 if its start time is now unacceptable, then REMOVAL(other-event)
 else re-compute other-event’s score for the relative start time
re-compute the value of start-score[event]

The procedure changes an event’s duration, and removes the other
events that violate the related time constraints.

NEW-DURATION(event, new-dur, old-end)
dur[event] = new-dur
re-compute the value of dur-score[event]
if start[event] + dur[event] = old-end then return
for every other-event that has a start-time preference
 w.r.t. the end time of event do
 if its start time is now unacceptable then REMOVAL(other-event)
 else re-compute other-event’s score for the relative start time

The procedure moves an event to a given new place in the schedule,
removes the events that conflict with this new assignment, and
re-computes the related rewards.

NEW-ASSIGNMENT(event, new-room, new-start, new-dur)
for every other-event that overlaps with the new place of event do
 REMOVAL(other-event)
old-end = start[event] + dur[event]
NEW-ROOM(event, new-room)
NEW-START-TIME(event, new-start)
NEW-DURATION(event, new-dur, old-end)

Figure 12: Changing an event’s assignment, which involves removal
of the conflicting events and re-computation of the related rewards.

The procedure inputs an event, the beginning and end times of the
conference, and the time step used in scheduling.

It finds the best new place in the schedule for the given event, and
then moves the event to this place. If the event has already been in its
best place, it returns FALSE.

BEST-ASSIGNMENT(event, conf-start, conf-end, step)
for every room in All-Rooms do
 room-diffs[room] = ROOM-DIFF(event, room)
slot-diffs = CANDIDATE-SLOTS(event, conf-start, conf-end, step)
best-asst-diff = 0
for every room in All-Rooms do
 if room-diffs[room] ≠ NIL
 then start-num= NEXT-AVAIL -START(room, min-start-num[event],
 min-dur-num[event], conf-start, step)
 while start-num ≠ NIL
 and start-num ≤ max-start-num[event] do
 if start-diffs[start-num] ≠ NIL
 then dur-num = min-dur-num[event]

 while dur-num ≤ max-dur-num[event]
 and AVAILABILITY -CHECK(room, start-num,
 dur-num, conf-start, step) do

 if slot-diffs[start-num, dur-num] ≠ NIL
 then asst-diff = rooms-diffs[room]
 + slot-diffs[start-num, dur-num]
 − OVERLAP-SCORE(event, room,
 conf-start + start-num · step,
 dur-num · step)
 if asst-diff > best-asst-diff
 then best-asst-diff = asst-diff
 best-room = room
 best-start-num = start-num
 best-dur-num = dur-num
 dur-num = dur-num + 1
 start-num = NEXT-AVAIL -START(room, start-num + 1,
 min-dur-num[event], conf-start, step)
if best-asst-diff = 0 then return FALSE
best-start = conf-start + best-start-num · step
best-dur = best-dur-num · step
NEW-ASSIGNMENT(event, best-room, best-start, best-dur)
return TRUE

The top-level scheduling procedure inputs the beginning and end
times of the conference, the time step used in scheduling, and the
limit on the search time.

It begins with the empty schedule and searches for local
improvements; at each step, it improves the assignment of one event.
It stops after either reaching the time limit or iterating through all
events without funding any improvements.

SCHEDULER(conf-start, conf-end, step, run-time-limit)
INITIALIZATION (conf-start, conf-end, step)
let num-events be the number of events in All-Events
num-unchanged = 0
while the search time is smaller than run-time-limit do
 for every event in All-Events,
 in the order of decreasing importances do
 change = BEST-ASSIGNMENT(event, conf-start, conf-end, step)
 if change then num-unchanged = 0
 else num-unchanged = num-unchanged + 1
 if num-unchanged = num-events then return

Figure 13: Top-level search procedure, which reschedules one event
at a time, until reaching a local maximum or hitting the time limit.

VII. EXPERIMENTS

We have applied the developed system to several scheduling
problems, and compared the quality of the automatically
constructed schedules with the results of manual scheduling.
These problems involve the scheduling of four-day
conferences, with the time discretized to fifteen-minute steps.
Every room has fifteen properties, and every event has
between fifteen and twenty constraints and preferences.

We have used a 2.4-GHz Xeon computer, and set the time
limit to ten seconds. On the other hand, we have not imposed
any time limit on manual scheduling; most subjects have spent
five to ten minutes on small scheduling problems, and ten to
twenty minutes on large problems. In Figure 14, we
summarize the results of these experiments, which show that
the system has outperformed the human subjects.

We have also evaluated the dependency of the quality of
automatically constructed schedules on the search time, and
we show the results in Figure 15. If the knowledge is fully
certain, the system constructs a near-optimal schedule in about
three seconds. If the knowledge is uncertain, it needs about
nine seconds because it spends more time for computing the
expected quality of candidate assignments.

VIII. CONCLUDING REMARKS

We have described a scheduling algorithm that accounts for
uncertainty in resources and constraints. The experiments
have confirmed that it quickly solves large-scale problems,
and that the resulting schedules are better than manual
solutions. We are now working on an extended system, which
will support more flexible utility functions, optimize the use of
portable equipment related to the scheduled events, and
analyze the trade-offs involved in renting additional rooms
and equipment.

ACKNOWLEDGMENTS

We are grateful to Konstantin Salomatin, Greg Jorstad, and
Daniel Cheng for their help in developing the representation
of uncertain knowledge. We thank Chris R. Martens, Jason
Knichel, Vijay Prakash, and Sung-joo Lim for their work on
evaluating the scheduling system. We also thank Aaron
Steinfeld and Matt Lahut for their help in applying the system
to real-world scheduling problems.

Figure 14: Comparison of manual and automatic scheduling. We
give the results for small problems (5 rooms and 32 events), medium
problems (9 rooms and 62 events), and large problems (13 rooms
and 84 events). We show the quality of manual schedules by grey
bars, and the results of automatic scheduling by white bars.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Time (seconds)

Q
u

al
ity

Figure 15. Dependency of the schedule quality on the running time.
We show the results of scheduling with fully certain knowledge
(dashed line) and uncertain knowledge (solid line); both problems
include 13 rooms and 84 events.

0.63

13 rooms
84 events

0.92
0.94

0.83

5 rooms
32 events

9 rooms
62 events

0.6

0.7

0.8

0.9

1.0
0.94 0.93

0.61

Problem Size

13 rooms
84 events

0.78
0.80

0.72

5 rooms
32 events

9 rooms
62 events

0.6

0.7

0.8

0.9
0.83 0.83

Problem Size

(a) Experiments with fully certain knowledge.

(b) Experiments with uncertain knowledge.

A
u

to
m

atic

A
u

to
m

atic

A
u

to
m

atic

A
u

to
m

atic

A
u

to
m

atic

A
u

to
m

atic

M
an

u
al

M
an

u
al

M
an

u
al

M
an

u
al

Schedule
Quality

Schedule
Quality

REFERENCES

[Averbakh, 2001] Igor C. Averbakh. On the complexity of a
class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90(2), pages
263–272, 2001.

[Balasubramanian and Grossmann, 2003] Jayanth Bala-
subramanian and Ignacio E. Grossmann. Scheduling
optimization under uncertainty: An alternative approach.
Computers and Chemical Engineering, 27(4), pages
469–490, 2003.

[Bardak et al., 2006a] Ulas Bardak, Eugene Fink, and Jaime
G. Carbonell. Scheduling with uncertain resources:
Representation and utility function. In Proceedings of the
IEEE International Conference on Systems, Man, and
Cybernetics, 2006.

[Bardak et al., 2006b] Ulas Bardak, Eugene Fink, Chris R.
Martens, and Jaime G. Carbonell. Scheduling with
uncertain resources: Elicitation of additional data. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Bidot, 2005] Julien Bidot. A general framework integrating
techniques for scheduling under uncertainty. PhD Thesis,
Institut National Polytechnique de Toulouse, 2005.

[Chajewska et al., 1998] Urszula Chajewska, Lise Getoor,
Joseph Normal, and Yuval Shahar. Utility elicitation as a
classification problem. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence,
pages 79−88, 1998.

[Fink et al., 2006] Eugene Fink, Ulas Bardak, Brandon
Rothrock, and Jaime G. Carbonell. Scheduling with
uncertain resources: Collaboration with the user. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Lin et al., 2004] Xiaoxia Lin, Stacy L. Janak, and
Christodoulos A. Floudas. A new robust optimization
approach for scheduling under uncertainty: Bounded
uncertainty. Computers and Chemical Engineering, 28(6),
pages 1069–1085, 2004.

[Lodwick et al., 2001] Weldon A. Lodwick, Arnold
Neumaier, and Francis Newman. Optimization under
uncertainty: Methods and applications in radiation
therapy. In Proceedings of the Tenth IEEE International
Conference on Fuzzy Systems, pages 1219–1222, 2001.

[Moore, 2002] Frank W. Moore. A methodology for missile
countermeasures optimization under uncertainty.
Evolutionary Computation, 10(2), pages 129–149, 2002.

[Sahinidis, 2004] Nikolaos V. Sahinidis. Optimization under
uncertainty: State-of-the-art and opportunities. Computers
and Chemical Engineering, 28(6), pages 971–983, 2004.

