

Abstract—We consider the task of scheduling a
conference based on incomplete data about available
resource and scheduling constraints, and describe a
procedure for automated elicitation of additional data.
This procedure is part of an interactive system for
scheduling under uncertainty, which identifies critical
missing data, generates related questions to the human
administrator, and uses answers to improve the schedule.

I. INTRODUCTION
HEN we work on a practical scheduling task, we usually
do not have complete knowledge of the related

resources and constraints. For example, when scheduling a
conference, we may not know the exact sizes of available
rooms or equipment needs of some speakers. The task of
constructing a schedule based on incomplete data gives rise to
several related problems, including the representation of
uncertainty, efficient search for near-optimal schedules, and
elicitation of additional data that help to reduce uncertainty.

We have explored these problems and built a scheduling
system that supports the use of incomplete data. This work
has been part of the RADAR project (www.radar.cmu.edu) at
Carnegie Mellon University, which is aimed at building an
intelligent system for assisting an office manager. We have
described initial results in three earlier papers; specifically,
we have explained the representation of uncertainty [Bardak
et al., 2006a], search for a near-optimal schedule [Fink et al.,
2006], and collaboration between the scheduling system and
human administrator [Fink et al., 2006b].
 We now present a procedure for elicitation of additional
data about resources and constraints. We give a review of the
related work (Section II), explain the representation of
uncertainty in the developed scheduling system (Sections III
and IV), describe the elicitation procedure (Sections V and
VI), and give experiments on its effectiveness (Section VII).

Manuscript received on March 30, 2006. The described work has been

supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010.

U. Bardak, E. Fink, C.R. Martens, and J.G. Carbonell are with Language
Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213.
The e-mail of U. Bardak is cyprus@cs.cmu.edu, the e-mail of E. Fink is
e.fink@cs.cmu.edu, the e-mail of C. Martens is cmartens@andrew.cmu.edu,
and the e-mail of J.G. Carbonell is jgc@cs.cmu.edu.

II. RELATED WORK
The elicitation of additional data is important in a variety of
applications, and researchers investigated a number of
elicitation techniques [Chen and Pu, 2004].

For example, Burke et al. [1996; 1997] built an assisted-
browsing system that helped the user to construct her queries.
Linden et al. [1997], Pu and Faltings [2002], and Torrens et
al. [2003] developed systems that helped customers to find
airline tickets, by eliciting information about desirable flights.
The authors of these systems assumed that every query had
only a few uncertain parameters, and their approach would be
impractical for scheduling problems, which may have
thousands of uncertain values.

Boutilier and his colleagues studied elicitation techniques
for the optimization under uncertainty. They developed a
procedure that generated questions about missing data, and
used it in domain-independent optimization [Wang and
Boutilier, 2003; Boutilier et al., 2003c; Boutilier et al., 2005],
and in several domain-specific systems [Boutilier et al.,
2003a; Patrascu et al., 2005]. Their procedure allowed
uncertainty only in discrete parameters; thus, it would be
inapplicable to scheduling with continuous values.

Researchers also developed several procedures for
“collaborative filtering,” which reconstructed missing
preferences of a new user from the past experience with other
similar users. In particular, Boutilier developed a procedure
that selected questions based on the past values of the related
answers [Boutilier and Zemel, 2003; Boutilier et al., 2003b].
Other researches applied collaborative filtering to making
user-specific recommendations of news articles [Resnick et
al., 1994], videos [Hill et al., 1995], music [Shardanand and
Maes, 1995], and eBay products [Schafer et al., 2001]. The
developed procedures required the users to rank relevant
items; this approach would be inapplicable to large-scale
scheduling problems because we cannot represent the related
preferences as a ranking of standard items.

We have considered the problem of scheduling a
conference based on uncertain information about resources,
conference events, and scheduling constraints. It may involve
uncertainty in resources, constraints, and utility functions,
and its representation may contain thousands of uncertain
values, including both discrete and continuous parameters.
The examination of the previous elicitation techniques has
shown that they are inapplicable to this problem, and we have
developed a novel elicitation mechanism.

Scheduling with Uncertain Resources:
Elicitation of Additional Data

Ulas Bardak, Eugene Fink, Chris R. Martens, and Jaime G. Carbonell

W

III. SCHEDULING PROBLEM
We begin with an example of a conference scenario, and use
it to illustrate the representation of resources, constraints, and
preferences [Bardak et al., 2006]. Suppose that we need to
assign rooms to events at a small one-day conference, which
starts at 11:00am and ends at 4:30pm, and that we can use
three rooms: auditorium, classroom, and conference room
(Table 1). These rooms host other events, and they are
available for the conference only at the following times:

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm.
 Classroom: 11:00am–2:30pm.
 Conference room: 12:00pm–4:30pm.

 We describe each room by its name and a set of properties;
in this example, we consider three properties:

Size: Room area in square feet.
Mikes: Number of microphones.
Stations: Maximal number of demo stations

that can be set up in the room.

For every room, we define its property values (Table 1), as
well as its availability, represented by a set of time intervals.

Suppose further that the conference includes five events:
demonstration, discussion, tutorial, workshop, and committee
meeting (Table 2). For each event, we specify its name,
importance value, and related constraints and preferences.
We define constraints for an event by limiting acceptable start
times, durations, and room properties. For example, we may
indicate that an acceptable start time for the committee
meeting is 3:00pm or later, an acceptable duration is 30
minutes or more, and an acceptable room size is 400 square
feet or more. We may also select preferred values for start
times, durations, and room properties, which are subsets of
acceptable values. For example, we may specify that the
preferred start time for the committee meeting is 3:30pm,
preferred duration is 60 minutes, and preferred room size is
800 square feet or more. In Table 2, we give constraints and
preferences for all events.

If we do not have exact values for some room properties,
importances, constraints, and preferences, then we represent
every uncertain parameter as an interval, and we assume that
all values in this interval are equally likely. For example, we
may specify that the size of the conference room is between
500 and 750, the importance of the demo is between 4 and 6,
and its minimal acceptable duration is between 60 and 90.

To build a schedule, the system assigns a specific room and
time slot to every event. It represents this assignment by event
name, room name, start time, and duration. Alternatively, it
may decide that an event is not part of the schedule, which is
also considered an assignment. In Figure 1, we show a
schedule for the example problem, which satisfies all
constraints and most preferences given in Table 2.

 Auditorium Classroom Conf. room
Size 1200 700 500
Stations 10 5 5
Mikes 5 1 2

Table 1. Available rooms and their properties.

 Demo Discu-

ssion
Tuto-
rial

Com-
mittee

Work-
shop

Importance 5 3 8 1 5
Acceptable 11am ≥3pmStart

time Preferred Any Any 11am 3:30pm Any

Acceptable ≥60 ≥30 ≥30 ≥30 ≥60Dura-
tion Preferred 150 90 60 60 120

Acceptable ≥600 ≥200 ≥400 ≥400 ≥600Room
size Preferred ≥1200 ≥600 ≥600 ≥800 ≥1000

Acceptable ≥5 Any Stat-
ions Preferred ≥10 Any ≥2 Any Any

Acceptable ≥2 ≥1 ≥1Mikes Preferred Any ≥4 ≥2 Any ≥1
Table 2. Conference events and related constraints and preferences.

 Auditorium Classroom Conf. room

11:00
11:30 Tutorial Unavailable

12:00
12:30

1:00

Demo

1:30
2:00

Workshop

2:30

3:00

Unavailable

3:30
4:00

Committee
meeting

Unavailable Discussion

Figure 1. Schedule for the conference scenario in Tables 1 and 2.

Figure 2. Reward for satisfying a preference. If the related property
value is within the preferred set, the reward is 1.0; else, it linearly
decreases with the distance from the set.

The procedure inputs a property value, prop; the minimal and
maximal acceptable values for this property, min-ac and max-ac;
and minimal and maximal preferred values, min-pref and max-pref.

Note that min-ac ≤ min-pref ≤ max-pref ≤ max-ac.

If the property is within the acceptable interval, the procedure
returns the respective reward value; else, it returns NIL.

REWARD(prop, min-ac, max-ac, min-pref, max-pref)
if min-ac ≤ prop < min-pref
 then return (prop − min-ac) / (min-pref – min-ac)
if min-pref ≤ prop ≤ max-pref then return 1
if max-pref < prop ≤ max-ac
 then return (max-ac − prop) / (max-ac − max-pref)
return NIL

Figure 3. Computing the reward for satisfying a given preference.

property
value

preferred values

acceptable values

0

1

reward

• Provide the exact value for an uncertain room property.
Example: Find out the size of the conference room.

• Provide the exact value for an uncertain request importance.
Example: Find out the importance of the demo.

• Provide the exact specification for a set of acceptable values for
start time, duration, or room property in an event description.
Example: Find out the acceptable duration of the demo.

• Provide the exact specification for a set of preferred values for
start time, duration, or room property in an event description.
Example: Find out the preferred room size for the discussion.

Figure 4. Types of questions to the user. The system may ask the
user to find out more information about room properties, event
importances, and scheduling constraints and preferences.

IV. SCHEDULE QUALITY
We measure the quality of schedules on the scale from 0.0 to
1.0; higher values correspond to better schedules. The quality
of a specific assignment depends on how well the selected
room and time slot match the preferred values. If the start
time, duration, or some room property is outside the
acceptable set, then the assignment quality is zero. If an event
is not part of the schedule, the assignment quality is also zero.

If an assignment satisfies all hard constraints, we determine
the rewards for its preferences. If a start time, duration, or
room property is within the preferred set of values, the
respective reward is 1.0. If it is outside the preferred set, the
reward depends on its distance from this set; specifically, the
reward linearly decreases with the distance from the preferred
values, as shown in Figure 2. We give pseudocode for the
procedure that computes the reward value in Figure 3. If an
event has k preferences, and the respective rewards are
r1,…, rk, then the assignment quality is (r1 + … + rk) / k.

The overall schedule quality is the weighted sum of the
quality values for individual assignments. That is, if a
schedule includes n events, the quality values of their
assignments are Qual1,…, Qualn, and their importances are
imp1,…, impn, then the schedule quality is

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn).

For example, if we use the preferences in Table 2, and the
schedule is as shown in Figure 1, then the assignment quality
for the demo is 1.0, for the discussion is 0.75, for the tutorial
is 0.8, for the committee meeting is 1.0, and for the workshop
is 0.85, and the overall schedule quality is 0.86.
 If the description of rooms and events includes uncertainty,
we evaluate candidate schedules by the mathematical
expectation of their quality. If the assignment of an event
violates some hard constraint with a nonzero probability, its
quality is zero. If it satisfies all hard constraints, the system
computes its expected quality; specifically, it determines the
expected rewards for all preferences, E(r1),…,E(rk), and uses
them to compute the expected assignment quality, which is
(E(r1) + … + E(rk)) / k. The system uses the expected quality
of assignments, along with the expected importance values, to
determine the expected schedule quality, which is

(E(imp1) · E(Qual1) + … + E(impn) · E(Qualn)) /
(E(imp1) + … + E(impn)).

We have given an algorithm for fast computation of this
expected quality in the paper on the representation of
uncertainty [Bardak et al., 2006].
 The system searches for a schedule with a high expected
quality; that is, it uses the expected quality as the utility
function. The search algorithm is based on hill-climbing; it
does not guarantee optimality, but is usually finds
near-optimal solutions. If we apply it to construct a new
schedule, it begins with the initially empty schedule and
gradually improves it. If we use it to repair a schedule after
changing resources or constraints, it starts with the old
schedule. At each step, it either assigns a slot to some
unscheduled event, or moves some scheduled event to a better
slot. When the algorithm assigns a new slot, it never violates
the event’s constraints on the acceptable time and room
properties; if it cannot find a slot that satisfies all these
constraints with full certainty, it leaves the event
unscheduled. The algorithm stops when it cannot find further
improvements, or when reaching a time limit. We have given
a more detailed description of this algorithm in the paper on
the search for a near-optimal schedule [Fink et al., 2006b].

V. ELICITATION PROBLEM
The system computes not only the expected quality of
candidate schedules, but also the standard deviation of the
expected quality. If this standard deviation is high, the true
schedule quality may turn out much lower than the expected
quality. For example, if the classroom properties are
uncertain, and the schedule is as shown in Figure 1, then we
risk placing the workshop and tutorial into a low-quality
room.
 The system may reduce uncertainty by asking the human
administrator to provide more accurate data. For instance, it
may ask to measure the classroom size and check the number
of microphones in the classroom. We list the types of possible
questions in Figure 4; every question corresponds to an
uncertain value, and the number of possible questions equals
the number of uncertain values.
 The human effort involved in providing answers may vary
from question to question. For example, checking the number
of microphones is easier than measuring the room size. We
represent this effort by question costs; that is, we assign
different costs to different questions, and subtract the costs of
all answered questions from the final schedule quality.
 The purpose of the elicitation procedure is to identify a
small number of critical questions, which help to improve the
schedule without incurring a high elicitation cost.

VI. ESTIMATE OF QUESTION UTILITIES
We define the utility of a question trough its potential effect
on the schedule quality. Specifically, this utility is the
expected increase of the schedule quality due to finding out
the answer and then rescheduling.

 The system estimates a question utility by the impact of the
respective uncertain value on the standard deviation of the
schedule quality. To determine this impact, it replaces all
other uncertain parameters by their mathematical
expectations, and then computes the standard deviation of the
schedule quality. We show this computation for an uncertain
room property in Figure 5, for an uncertain event importance
in Figure 6, and for an uncertain range of acceptable values in
Figure 7. We do not show the computation for an uncertain
range of preferred values because it is similar to that for
uncertain acceptable values in Figure 7.
 For instance, consider the example in Section III, and
suppose that the conference-room size is between 500 and
750, the importance of the demo is between 4 and 6, its
minimal acceptable duration is between 60 and 90, and all
other resources and preferences are fully certain, as shown in
Tables 1 and 2. Then, the impact of the conference-room size
on the standard deviation of the schedule quality is 0.00027,
the impact of the demo importance is 0.026, and the impact of
the minimal acceptable duration of the demo is zero.
 The elicitation procedure estimates the utility of all
questions and prunes the questions whose estimated utilities
are no greater than their costs. Then, it sorts the remaining
questions in the decreasing order of the differences between
the utility and cost, and displays them to the user in this order.
The system does not expect the user to provide all answers;
the human administrator may answer some questions and
delay or ignore the others. When she provides some answers,
the system improves the schedule based on this information,
re-evaluates the utility of the remaining questions, and
re-orders them according to the new utility estimates.

VII. EXPERIMENTS
We have applied the developed system to schedule a four-day
conference, which includes eighty-four events and uses
thirteen rooms; every event has seventeen preferences, and
every room has fifteen properties. The representation of this
problem includes 2500 parameters; the values of 700
parameters are uncertain, which means that the elicitor may
potentially ask 700 questions.

First, the system has constructed a schedule based on the
available incomplete knowledge; then, it has asked for
additional data, one question at a time, and modified the
schedule after each answer. We illustrate the results in
Figure 9, which shows the dependency of the schedule
quality on the number of questions. We plot the true quality,
evaluated based on the complete knowledge (solid line), as
well as the system’s quality estimate based on its partial
knowledge (dashed line).

The procedure inputs the lowest and highest possible values of an
uncertain room property, low-prop and high-prop; its minimal and
maximal acceptable values, min-ac and max-ac; and its minimal and
maximal preferred values, min-pref and max-pref.

Note that min-ac ≤ min-pref ≤ max-pref ≤ max-ac; furthermore, for
a valid schedule, min-ac ≤ low-prop < high-prop ≤ max-ac.

The procedure returns the standard deviation of the reward for
satisfying the preference for the given room property.

It uses the following local variables:
low-r, high-r reward values for low-prop and high-prop
prob-small probability that the property value is below min-pref
prob-large probability that the property value is above max-pref
exp-r mathematical expectation of the reward value
exp-sqr-r mathematical expectation of the squared reward value

LOCAL-IMPACT(low-prop, high-prop, min-ac,
 max-ac, min-pref, max-pref)
if min-pref ≤ low-prop < high-prop ≤ max-pref then return 0
low-r = REWARD(low-prop, min-ac, max-ac, min-pref, max-pref)
high-r = REWARD(high-prop, min-ac, max-ac, min-pref, max-pref)
if min-ac ≤ low-prop < high-prop < min-pref

 then return (high-r − low-r) / (2 · 3)
if max-pref < low-prop < high-prop ≤ max-ac

 then return (low-r − high-r) / (2 · 3)
if min-pref ≤ low-prop then prob-small = 0
else prob-small = (min-pref − low-prop) / (high-prop − low-prop)
if high-prop ≤ max-pref then prob-large = 0
else prob-large = (high-prop − max-pref) / (high-prop − low-prop)
exp-r = small-prob · (low-r + 1) / 2 + large-prob · (high-r + 1) / 2
 + (1 − small-prob − large-prob)
exp-sqr-r = small-prob · (low-r2 + low-r + 1) / 3
 + large-prob · (high-r2 + high-r + 1) / 3
 + (1 − small-prob − large-prob)
return (exp-sqr-r − exp-r2)0.5

The procedure inputs the lowest and highest possible values of an
uncertain room property, low-prop and high-prop; a list of the events
scheduled in the room with this property, events; and the sum of the
importances of all conference events, sum-imps.

It returns the impact of the uncertain room property on the standard
deviation of the schedule quality.

It uses the following local variables:
std-r standard deviation of the related reward for one event
total-sqr-std sum of the squared standard deviations for all events,
 weighted by the respective importances

PROPERTY-IMPACT(low-prop, high-prop, events, sum-imps)
for every event in events do
 let k be the number of event’s preferences,
 imp be the importance of event,
 min-ac and max-ac be the minimal and maximal
 acceptable values of the given property, and
 min-pref and max-pref be the minimal and maximal
 preferred values of this property
 std-r = LOCAL-IMPACT(low-prop, high-prop, min-ac,
 max-ac, min-pref, max-pref)
 total-sqr-std = total-sqr-std + (imp · std-r / k)2
return total-sqr-std0.5 / sum-imps

Figure 5. Computing the impact of an uncertain room property on
the standard deviation of the overall schedule quality. Note that this
computation uses the REWARD procedure, given in Figure 3.

The procedure inputs an uncertain event importance, represented by
its lowest and highest possible values, low-imp and high-imp; the
quality of the respective event assignment, qual; and the sum of the
importances of all conference events, sum-imps.

It returns the impact of the uncertain importance on the standard
deviation of the schedule quality. The computation of this impact is
an approximation, based on the assumption that low-imp and
high-imp are significantly smaller than sum-imps.

IMPORTANCE-IMPACT(low-imp, high-imp, qual, sum-imps)
std-imp = (high-imp − low-imp) / (2 · 3)
return qual · std-imp / sum-imps

Figure 6. Impact of an uncertain importance on the schedule quality.

The procedure inputs an uncertain range of acceptable values,
represented by the lowest and highest possible values of its left
endpoint, low-min-ac and high-min-ac, and the lowest and highest
possible values of its right endpoint, low-max-ac and high-max-ac.

It also inputs the respective range of preferred values, represented by
its endpoints, min-pref and max-pref; the actual value of the
respective property in the current schedule, prop; the number of
preferences in the respective event, k; the importance of this event,
imp; and the sum of the importances of all conference events,
sum-imps.

Note that low-max-ac ≤ min-pref ≤ max-pref ≤ high-max-ac;
furthermore, for a valid schedule, high-max-ac ≤ prop ≤ low-min-ac.

The procedure returns the impact of the acceptable-value
uncertainty on the standard deviation of the schedule quality.

It uses the following local variables:
exp-r mathematical expectation of the reward value
exp-sqr-r mathematical expectation of the squared reward value

CONSTRAINT-IMPACT(low-min-ac, high-min-ac, low-max-ac,
high-max-ac, min-pref, max-pref, prop, k, imp, sum-imps)

if min-pref ≤ prop ≤ max-pref then return 0
if prop < min-pref
 then exp-r = 1 − ((min-pref − prop) / (high-min-ac − low-min-ac))

· (ln(min-pref − low-min-ac) − ln(min-pref − high-min-ac))
 exp-sqr-r = 2 · exp-r − 1 + (min-pref − prop)2

/ ((min-pref − low-min-ac) · (min-pref − high-min-ac))
else exp-r = 1 − ((prop − max-pref) / (high-max-ac − low-max-ac))
 · (ln(high-max-ac − max-pref) − ln(low-max-ac − max-pref))
 exp-sqr-r = 2 · exp-r − 1 + (prop − max-pref)2
 / ((high-max-ac − max-pref) · (low-max-ac − max-pref))
return imp · ((exp-sqr-r − exp-r2)0.5 / k) / sum-imps

Figure 7. Computing the impact of an uncertain range of acceptable
values on the standard deviation of the schedule quality.

0.55

0.6

0.65

0.7

0.75

0.8

0 5 10 15 20 25 30 35 40 45 50

Number of Questions

Sc
he

du
le

 Q
ua

lit
y

Figure 8. Dependency of the schedule quality on the number of
elicitation questions. We show the true quality, computed based on
the full knowledge (solid line), and the system’s quality estimate
based on the available incomplete data (dashed line). We also show
the quality of the schedule constructed based on the full world
knowledge (horizontal gray line).

The results confirm that the elicitation helps to improve the
schedule; specifically, the quality has increased from 0.72 to
0.77. The system has correctly selected important questions,
and asked them in the beginning of the elicitation. It has
found a near-optimal schedule after asking 20 questions,
which is 3% of all potential questions, whereas the remaining
680 questions have given almost no further improvement.

VIII. CONCLUDING REMARKS
We have described a procedure for identifying critical
missing information about a scheduling problem; it enables
the system to focus on finding out important additional facts,
and disregard less important facts. We are now developing an
extended system, which will optimize the use of portable
equipment related to the scheduled events, and elicit related
missing data. We are also working on learning techniques for
automated improvement of elicitation strategies.

ACKNOWLEDGMENTS
We are grateful to Stephen F. Smith, P. Matthew Jennings,
Jean Oh, Greg Jorstad, and Daniel Cheng for their help in
development of the scheduling system. We thank Jason
Knichel, Konstantin Salomatin, Vijay Prakash, and Sung-joo
Lim for their work on testing and evaluating this system. We
also thank Aaron Steinfeld and Matt Lahut for their help in
applying the system to real-world scheduling problems.

REFERENCES
[Bardak et al., 2006] Ulas Bardak, Eugene Fink, and Jaime G.

Carbonell. Scheduling with uncertain resources:
Representation and utility function. In Proceedings of the
IEEE International Conference on Systems, Man, and
Cybernetics, 2006.

[Boutilier et al., 2003a] Craig Boutilier, Rajarshi Das, Jeffrey
O. Kephart, Gerald Tesauro, and William E. Walsh.
Cooperative negotiation in autonomic systems using
incremental utility elicitation. In Proceedings of the
Nineteenth Conference on Uncertainty in Artificial
Intelligence, pages 89−97, 2003.

[Boutilier et al., 2003b] Craig Boutilier, Richard S. Zemel,
and Benjamin Marlin. Active collaborative filtering. In
Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence, pages 98−106, 2003.

[Boutilier et al., 2003c] Craig Boutilier, Relu Patrascu, Pascal
Poupart, and Dale Schuurmans. Constraint-based
optimization with the minimax decision criterion. In
Proceedings of the Ninth International Conference on
Principles and Practice of Constraint Programming, pages
168−182, 2003.

[Boutilier et al., 2005] Craig Boutilier, Relu Patrascu, Pascal
Poupart, and Dale Schuurmans. Regret-based utility
elicitation in constraint-based decision problems. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 929−934,
2005.

[Boutilier and Zemel, 2003] Craig Boutilier and Richard S.
Zemel. Online queries for collaborative filtering. In
Proceedings of the Ninth International Workshop on
Artificial Intelligence and Statistics, 2003.

[Burke et al., 1996] Robin D. Burke, Kristian J. Hammond,
and Benjamin C. Young. Knowledge-based navigation of
complex information spaces. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
volume 1, pages 462−468, 1996.

[Burke et al., 1997] Robin D. Burke, Kristian J. Hammond,
and Benjamin C. Young. The FindMe approach to assisted
browsing. IEEE Expert, 12(4), pages 32−40, 1997.

[Chen and Pu, 2004] Li Chen and Pearl Pu. Survey of
preference elicitation methods. In Technical Report
IC/200467, pages 1−23. Swiss Federal Institute of
Technology in Lausanne, 2004.

[Fink et al., 2006a] Eugene Fink, Ulas Bardak, Brandon
Rothrock, and Jaime G. Carbonell. Scheduling with
uncertain resources: Collaboration with the user. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Fink et al., 2006b] Eugene Fink, P. Matthew Jennings, Ulas
Bardak, Jean Oh, Stephen F. Smith, and Jaime G.
Carbonell. Scheduling with uncertain resources: Search for
a near-optimal solution. In Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, 2006.

[Hill et al., 1995] William C. Hill, Larry Stead, Mark
Rosenstein, and George W. Furnas. Recommending and
evaluating choices in a virtual community of use. In
Proceedings of the Conference on Human Factors in
Computing Systems, pages 194−201, 1995.

[Linden et al., 1997] Greg Linden, Steve Hanks, and Neal
Lesh. Interactive assessment of user preference models:
The automated travel assistant. In Proceedings of the Sixth
International Conference on User Modeling, pages 67−78,
1997.

[Patrascu et al., 2005] Relu Patrascu, Craig Boutilier,
Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and
William E. Walsh. New approaches to optimization and
utility elicitation in autonomic computing. In Proceedings
of the National Conference on Artificial Intelligence, pages
140−145, 2005.

[Pu and Faltings, 2002] Pearl Pu and Boi Faltings.
Personalized navigation of heterogeneous product spaces
using SmartClient. In Proceedings of the 2002
International Conference on Intelligent User Interfaces,
pages 212−213, 2002.

[Resnick et al., 1994] Paul Resnick, Neophytos Iacovou,
Mitesh Suchak, Peter Bergstrom, and John Riedl.
GroupLens: An open architecture for collaborative filtering
of netnews. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work, pages 175−186,
1994.

[Schafer et al., 2001] Ben J. Schafer, Joseph A. Konstan, and
John Riedl. E-commerce recommender applications. Data
Mining and Knowledge Discovery, 5(1/2), pages 115−153,
2001.

[Shardanand and Maes, 1995] Upendra Shardanand and
Pattie Maes. Social information filtering: Algorithms for
automating “word of mouth.” In Proceedings of the
Conference on Human Factors in Computing Systems,
pages 210−217, 1995.

[Torrens et al., 2003] Marc Torrens, Patrick Herzog, Loic
Samson, and Boi Faltings. Reality: A scalable intelligent
travel planner. In Proceedings of the 2003 ACM Symposium
on Applied Computing, pages 623−630, 2003.

[Wang and Boutilier, 2003] Tianhan Wang and Craig
Boutilier. Incremental utility elicitation with the minimax
regret decision criterion. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence,
pages 309−316, 2003.

