
 
 

 

  

Abstract—We consider the task of scheduling a 
conference based on incomplete data about available 
resource and scheduling constraints, and describe a 
procedure for automated elicitation of additional data. 
This procedure is part of an interactive system for 
scheduling under uncertainty, which identifies critical 
missing data, generates related questions to the human 
administrator, and uses answers to improve the schedule. 

I. INTRODUCTION 
HEN we work on a practical scheduling task, we usually 
do not have complete knowledge of the related 

resources and constraints. For example, when scheduling a 
conference, we may not know the exact sizes of available 
rooms or equipment needs of some speakers. The task of 
constructing a schedule based on incomplete data gives rise to 
several related problems, including the representation of 
uncertainty, efficient search for near-optimal schedules, and 
elicitation of additional data that help to reduce uncertainty. 

We have explored these problems and built a scheduling 
system that supports the use of incomplete data. This work 
has been part of the RADAR project (www.radar.cmu.edu) at 
Carnegie Mellon University, which is aimed at building an 
intelligent system for assisting an office manager. We have 
described initial results in three earlier papers; specifically, 
we have explained the representation of uncertainty [Bardak 
et al., 2006a], search for a near-optimal schedule [Fink et al., 
2006], and collaboration between the scheduling system and 
human administrator [Fink et al., 2006b]. 
 We now present a procedure for elicitation of additional 
data about resources and constraints. We give a review of the 
related work (Section II), explain the representation of 
uncertainty in the developed scheduling system (Sections III 
and IV), describe the elicitation procedure (Sections V and 
VI), and give experiments on its effectiveness (Section VII). 
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II. RELATED WORK 
The elicitation of additional data is important in a variety of 
applications, and researchers investigated a number of 
elicitation techniques [Chen and Pu, 2004]. 

For example, Burke et al. [1996; 1997] built an assisted- 
browsing system that helped the user to construct her queries. 
Linden et al. [1997], Pu and Faltings [2002], and Torrens et 
al. [2003] developed systems that helped customers to find 
airline tickets, by eliciting information about desirable flights. 
The authors of these systems assumed that every query had 
only a few uncertain parameters, and their approach would be 
impractical for scheduling problems, which may have 
thousands of uncertain values.  

Boutilier and his colleagues studied elicitation techniques 
for the optimization under uncertainty. They developed a 
procedure that generated questions about missing data, and 
used it in domain-independent optimization [Wang and 
Boutilier, 2003; Boutilier et al., 2003c; Boutilier et al., 2005], 
and in several domain-specific systems [Boutilier et al., 
2003a; Patrascu et al., 2005]. Their procedure allowed 
uncertainty only in discrete parameters; thus, it would be 
inapplicable to scheduling with continuous values. 

Researchers also developed several procedures for 
“collaborative filtering,” which reconstructed missing 
preferences of a new user from the past experience with other 
similar users. In particular, Boutilier developed a procedure 
that selected questions based on the past values of the related 
answers [Boutilier and Zemel, 2003; Boutilier et al., 2003b]. 
Other researches applied collaborative filtering to making 
user-specific recommendations of news articles [Resnick et 
al., 1994], videos [Hill et al., 1995], music [Shardanand and 
Maes, 1995], and eBay products [Schafer et al., 2001]. The 
developed procedures required the users to rank relevant 
items; this approach would be inapplicable to large-scale 
scheduling problems because we cannot represent the related 
preferences as a ranking of standard items. 

We have considered the problem of scheduling a 
conference based on uncertain information about resources, 
conference events, and scheduling constraints. It may involve 
uncertainty in resources, constraints, and utility functions, 
and its representation may contain thousands of uncertain 
values, including both discrete and continuous parameters. 
The examination of the previous elicitation techniques has 
shown that they are inapplicable to this problem, and we have 
developed a novel elicitation mechanism. 
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III. SCHEDULING PROBLEM 
We begin with an example of a conference scenario, and use 
it to illustrate the representation of resources, constraints, and 
preferences [Bardak et al., 2006]. Suppose that we need to 
assign rooms to events at a small one-day conference, which 
starts at 11:00am and ends at 4:30pm, and that we can use 
three rooms: auditorium, classroom, and conference room 
(Table 1). These rooms host other events, and they are 
available for the conference only at the following times: 
 

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm. 
 Classroom: 11:00am–2:30pm. 
 Conference room: 12:00pm–4:30pm. 
 

 We describe each room by its name and a set of properties; 
in this example, we consider three properties: 
 

Size: Room area in square feet. 
Mikes: Number of microphones.  
Stations: Maximal number of demo stations 

that can be set up in the room. 
 

For every room, we define its property values (Table 1), as 
well as its availability, represented by a set of time intervals. 

Suppose further that the conference includes five events: 
demonstration, discussion, tutorial, workshop, and committee 
meeting (Table 2). For each event, we specify its name, 
importance value, and related constraints and preferences. 
We define constraints for an event by limiting acceptable start 
times, durations, and room properties. For example, we may 
indicate that an acceptable start time for the committee 
meeting is 3:00pm or later, an acceptable duration is 30 
minutes or more, and an acceptable room size is 400 square 
feet or more. We may also select preferred values for start 
times, durations, and room properties, which are subsets of 
acceptable values. For example, we may specify that the 
preferred start time for the committee meeting is 3:30pm, 
preferred duration is 60 minutes, and preferred room size is 
800 square feet or more. In Table 2, we give constraints and 
preferences for all events.  

If we do not have exact values for some room properties, 
importances, constraints, and preferences, then we represent 
every uncertain parameter as an interval, and we assume that 
all values in this interval are equally likely. For example, we 
may specify that the size of the conference room is between 
500 and 750, the importance of the demo is between 4 and 6, 
and its minimal acceptable duration is between 60 and 90. 

To build a schedule, the system assigns a specific room and 
time slot to every event. It represents this assignment by event 
name, room name, start time, and duration. Alternatively, it 
may decide that an event is not part of the schedule, which is 
also considered an assignment. In Figure 1, we show a 
schedule for the example problem, which satisfies all 
constraints and most preferences given in Table 2. 

 
 Auditorium Classroom Conf. room 
Size 1200     700     500     
Stations 10     5     5     
Mikes 5     1     2     

Table 1. Available rooms and their properties. 

 
 Demo Discu- 

ssion 
Tuto- 
rial 

Com-
mittee 

Work-
shop 

Importance 5 3 8 1 5
Acceptable 11am ≥3pmStart 

time Preferred Any Any 11am 3:30pm Any

Acceptable ≥60 ≥30 ≥30 ≥30 ≥60Dura-
tion Preferred 150 90 60 60 120

Acceptable ≥600 ≥200 ≥400 ≥400 ≥600Room 
size Preferred ≥1200 ≥600 ≥600 ≥800 ≥1000

Acceptable ≥5 Any Stat- 
ions Preferred ≥10 Any ≥2 Any Any

Acceptable ≥2 ≥1 ≥1Mikes Preferred Any ≥4 ≥2 Any ≥1
Table 2. Conference events and related constraints and preferences. 

 
 Auditorium Classroom Conf. room 

11:00 
11:30 Tutorial Unavailable 

12:00  
12:30 

1:00 

Demo 

1:30 
2:00 

 
Workshop 

 

2:30 

 

3:00 

Unavailable 

3:30 
4:00 

Committee 
meeting 

Unavailable Discussion 

Figure 1. Schedule for the conference scenario in Tables 1 and 2. 
 

 
Figure 2. Reward for satisfying a preference. If the related property 
value is within the preferred set, the reward is 1.0; else, it linearly 
decreases with the distance from the set. 
 
                         

The procedure inputs a property value, prop; the minimal and 
maximal acceptable values for this property, min-ac and max-ac; 
and minimal and maximal preferred values, min-pref and max-pref. 

Note that min-ac ≤ min-pref ≤ max-pref ≤ max-ac. 

If the property is within the acceptable interval, the procedure 
returns the respective reward value; else, it returns NIL. 

REWARD(prop, min-ac, max-ac, min-pref, max-pref) 
if min-ac ≤ prop < min-pref 
 then return (prop − min-ac) / (min-pref – min-ac) 
if min-pref ≤ prop ≤ max-pref then return 1 
if max-pref < prop ≤ max-ac 
 then return (max-ac − prop) / (max-ac − max-pref) 
return NIL 
                         

Figure 3. Computing the reward for satisfying a given preference. 
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• Provide the exact value for an uncertain room property. 
Example: Find out the size of the conference room. 

• Provide the exact value for an uncertain request importance. 
Example: Find out the importance of the demo. 

• Provide the exact specification for a set of acceptable values for 
start time, duration, or room property in an event description. 
Example: Find out the acceptable duration of the demo. 

• Provide the exact specification for a set of preferred values for 
start time, duration, or room property in an event description. 
Example: Find out the preferred room size for the discussion. 

                         

Figure 4. Types of questions to the user. The system may ask the 
user to find out more information about room properties, event 
importances, and scheduling constraints and preferences. 

IV. SCHEDULE QUALITY 
We measure the quality of schedules on the scale from 0.0 to 
1.0; higher values correspond to better schedules. The quality 
of a specific assignment depends on how well the selected 
room and time slot match the preferred values. If the start 
time, duration, or some room property is outside the 
acceptable set, then the assignment quality is zero. If an event 
is not part of the schedule, the assignment quality is also zero. 

If an assignment satisfies all hard constraints, we determine 
the rewards for its preferences. If a start time, duration, or 
room property is within the preferred set of values, the 
respective reward is 1.0. If it is outside the preferred set, the 
reward depends on its distance from this set; specifically, the 
reward linearly decreases with the distance from the preferred 
values, as shown in Figure 2. We give pseudocode for the 
procedure that computes the reward value in Figure 3. If an 
event has k preferences, and the respective rewards are 
r1,…, rk, then the assignment quality is (r1 + … + rk) / k. 

The overall schedule quality is the weighted sum of the 
quality values for individual assignments. That is, if a 
schedule includes n events, the quality values of their 
assignments are Qual1,…, Qualn, and their importances are 
imp1,…, impn, then the schedule quality is 

 

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn). 
 

For example, if we use the preferences in Table 2, and the 
schedule is as shown in Figure 1, then the assignment quality 
for the demo is 1.0, for the discussion is 0.75, for the tutorial 
is 0.8, for the committee meeting is 1.0, and for the workshop 
is 0.85, and the overall schedule quality is 0.86. 
 If the description of rooms and events includes uncertainty, 
we evaluate candidate schedules by the mathematical 
expectation of their quality. If the assignment of an event 
violates some hard constraint with a nonzero probability, its 
quality is zero. If it satisfies all hard constraints, the system 
computes its expected quality; specifically, it determines the 
expected rewards for all preferences, E(r1),…,E(rk), and uses 
them to compute the expected assignment quality, which is 
(E(r1) + … + E(rk)) / k. The system uses the expected quality 
of assignments, along with the expected importance values, to 
determine the expected schedule quality, which is 
 

(E(imp1 ) · E(Qual1) + … + E(impn) · E(Qualn)) /  
(E(imp1) + … + E(impn)). 

 

We have given an algorithm for fast computation of this 
expected quality in the paper on the representation of 
uncertainty [Bardak et al., 2006]. 
 The system searches for a schedule with a high expected 
quality; that is, it uses the expected quality as the utility 
function. The search algorithm is based on hill-climbing; it 
does not guarantee optimality, but is usually finds 
near-optimal solutions. If we apply it to construct a new 
schedule, it begins with the initially empty schedule and 
gradually improves it. If we use it to repair a schedule after 
changing resources or constraints, it starts with the old 
schedule. At each step, it either assigns a slot to some 
unscheduled event, or moves some scheduled event to a better 
slot. When the algorithm assigns a new slot, it never violates 
the event’s constraints on the acceptable time and room 
properties; if it cannot find a slot that satisfies all these 
constraints with full certainty, it leaves the event 
unscheduled. The algorithm stops when it cannot find further 
improvements, or when reaching a time limit. We have given 
a more detailed description of this algorithm in the paper on 
the search for a near-optimal schedule [Fink et al., 2006b]. 

V. ELICITATION PROBLEM 
The system computes not only the expected quality of 
candidate schedules, but also the standard deviation of the 
expected quality. If this standard deviation is high, the true 
schedule quality may turn out much lower than the expected 
quality. For example, if the classroom properties are 
uncertain, and the schedule is as shown in Figure 1, then we 
risk placing the workshop and tutorial into a low-quality 
room. 
 The system may reduce uncertainty by asking the human 
administrator to provide more accurate data. For instance, it 
may ask to measure the classroom size and check the number 
of microphones in the classroom. We list the types of possible 
questions in Figure 4; every question corresponds to an 
uncertain value, and the number of possible questions equals 
the number of uncertain values. 
 The human effort involved in providing answers may vary 
from question to question. For example, checking the number 
of microphones is easier than measuring the room size. We 
represent this effort by question costs; that is, we assign 
different costs to different questions, and subtract the costs of 
all answered questions from the final schedule quality.  
 The purpose of the elicitation procedure is to identify a 
small number of critical questions, which help to improve the 
schedule without incurring a high elicitation cost.  

VI. ESTIMATE OF QUESTION UTILITIES 
We define the utility of a question trough its potential effect 
on the schedule quality. Specifically, this utility is the 
expected increase of the schedule quality due to finding out 
the answer and then rescheduling. 



 
 

 

 The system estimates a question utility by the impact of the 
respective uncertain value on the standard deviation of the 
schedule quality. To determine this impact, it replaces all 
other uncertain parameters by their mathematical 
expectations, and then computes the standard deviation of the 
schedule quality. We show this computation for an uncertain 
room property in Figure 5, for an uncertain event importance 
in Figure 6, and for an uncertain range of acceptable values in 
Figure 7. We do not show the computation for an uncertain 
range of preferred values because it is similar to that for 
uncertain acceptable values in Figure 7. 
  For instance, consider the example in Section III, and 
suppose that the conference-room size is between 500 and 
750, the importance of the demo is between 4 and 6, its 
minimal acceptable duration is between 60 and 90, and all 
other resources and preferences are fully certain, as shown in 
Tables 1 and 2. Then, the impact of the conference-room size 
on the standard deviation of the schedule quality is 0.00027, 
the impact of the demo importance is 0.026, and the impact of 
the minimal acceptable duration of the demo is zero. 
 The elicitation procedure estimates the utility of all 
questions and prunes the questions whose estimated utilities 
are no greater than their costs. Then, it sorts the remaining 
questions in the decreasing order of the differences between 
the utility and cost, and displays them to the user in this order. 
The system does not expect the user to provide all answers; 
the human administrator may answer some questions and 
delay or ignore the others. When she provides some answers, 
the system improves the schedule based on this information, 
re-evaluates the utility of the remaining questions, and 
re-orders them according to the new utility estimates. 

VII. EXPERIMENTS 
We have applied the developed system to schedule a four-day 
conference, which includes eighty-four events and uses 
thirteen rooms; every event has seventeen preferences, and 
every room has fifteen properties. The representation of this 
problem includes 2500 parameters; the values of 700 
parameters are uncertain, which means that the elicitor may 
potentially ask 700 questions. 

First, the system has constructed a schedule based on the 
available incomplete knowledge; then, it has asked for 
additional data, one question at a time, and modified the 
schedule after each answer. We illustrate the results in 
Figure 9, which shows the dependency of the schedule 
quality on the number of questions. We plot the true quality, 
evaluated based on the complete knowledge (solid line), as 
well as the system’s quality estimate based on its partial 
knowledge (dashed line). 

                         

The procedure inputs the lowest and highest possible values of an 
uncertain room property, low-prop and high-prop; its minimal and 
maximal acceptable values, min-ac and max-ac; and its minimal and 
maximal preferred values, min-pref and max-pref.  

Note that min-ac ≤ min-pref ≤ max-pref ≤ max-ac; furthermore,  for 
a valid schedule, min-ac ≤ low-prop < high-prop ≤ max-ac. 

The procedure returns the standard deviation of the reward for 
satisfying the preference for the given room property. 

It uses the following local variables:  
low-r, high-r reward values for low-prop and high-prop  
prob-small  probability that the property value is below min-pref 
prob-large  probability that the property value is above max-pref  
exp-r    mathematical expectation of the reward value  
exp-sqr-r   mathematical expectation of the squared reward value 

LOCAL-IMPACT(low-prop, high-prop, min-ac, 
       max-ac, min-pref, max-pref) 
if min-pref ≤ low-prop < high-prop ≤ max-pref then return 0 
low-r = REWARD(low-prop, min-ac, max-ac, min-pref, max-pref) 
high-r = REWARD(high-prop, min-ac, max-ac, min-pref, max-pref) 
if min-ac ≤ low-prop < high-prop < min-pref 

 then return (high-r − low-r) / (2 · 3 ) 
if max-pref < low-prop < high-prop ≤ max-ac 

 then return (low-r − high-r) / (2 · 3 ) 
if min-pref ≤ low-prop then prob-small = 0 
else prob-small = (min-pref − low-prop) / (high-prop − low-prop) 
if  high-prop ≤ max-pref then prob-large = 0 
else prob-large = (high-prop − max-pref) / (high-prop − low-prop) 
exp-r = small-prob · (low-r + 1) / 2 + large-prob · (high-r + 1) / 2 
     + (1 − small-prob − large-prob) 
exp-sqr-r = small-prob · (low-r2 + low-r + 1) / 3 
     + large-prob · (high-r2 + high-r + 1) / 3 
     + (1 − small-prob − large-prob) 
return (exp-sqr-r − exp-r2)0.5 
                         

The procedure inputs the lowest and highest possible values of an 
uncertain room property, low-prop and high-prop; a list of the events 
scheduled in the room with this property, events; and the sum of the 
importances of all conference events, sum-imps. 

It returns the impact of the uncertain room property on the standard 
deviation of the schedule quality. 

It uses the following local variables:  
std-r    standard deviation of the related reward for one event 
total-sqr-std sum of the squared standard deviations for all events,
      weighted by the respective importances 

PROPERTY-IMPACT(low-prop, high-prop, events, sum-imps) 
for every event in events do 
 let k be the number of event’s preferences, 
  imp be the importance of event, 
  min-ac and max-ac be the minimal and maximal 
   acceptable values of the given property, and 
  min-pref and max-pref be the minimal and maximal 
   preferred values of this property 
 std-r = LOCAL-IMPACT(low-prop, high-prop, min-ac, 
          max-ac, min-pref, max-pref) 
 total-sqr-std = total-sqr-std + (imp · std-r / k)2 
return total-sqr-std0.5 / sum-imps 
                         

Figure 5. Computing the impact of an uncertain room property on 
the standard deviation of the overall schedule quality. Note that this 
computation uses the REWARD procedure, given in Figure 3. 



 
 

 

                         

The procedure inputs an uncertain event importance, represented by 
its lowest and highest possible values, low-imp and high-imp; the 
quality of the respective event assignment, qual; and the sum of the 
importances of all conference events, sum-imps. 

It returns the impact of the uncertain importance on the standard 
deviation of the schedule quality. The computation of this impact is 
an approximation, based on the assumption that low-imp and 
high-imp are significantly smaller than sum-imps. 

IMPORTANCE-IMPACT(low-imp, high-imp, qual, sum-imps) 
std-imp = (high-imp − low-imp) / (2 · 3 ) 
return qual · std-imp / sum-imps 
                         

Figure 6. Impact of an uncertain importance on the schedule quality. 
 
                         

The procedure inputs an uncertain range of acceptable values, 
represented by the lowest and highest possible values of its left 
endpoint, low-min-ac and high-min-ac, and the lowest and highest 
possible values of its right endpoint, low-max-ac and high-max-ac. 

It also inputs the respective range of preferred values, represented by 
its endpoints, min-pref and max-pref; the actual value of the 
respective property in the current schedule, prop; the number of 
preferences in the respective event, k; the importance of this event, 
imp; and the sum of the importances of all conference events, 
sum-imps. 

Note that low-max-ac ≤ min-pref ≤ max-pref ≤ high-max-ac; 
furthermore, for a valid schedule, high-max-ac ≤ prop ≤ low-min-ac. 

The procedure returns the impact of the acceptable-value 
uncertainty on the standard deviation of the schedule quality. 

It uses the following local variables:  
exp-r   mathematical expectation of the reward value  
exp-sqr-r mathematical expectation of the squared reward value 

CONSTRAINT-IMPACT(low-min-ac, high-min-ac, low-max-ac, 
high-max-ac, min-pref, max-pref, prop, k, imp, sum-imps) 

if min-pref ≤ prop ≤ max-pref then return 0 
if prop < min-pref 
 then exp-r = 1 − ((min-pref − prop) / (high-min-ac − low-min-ac)) 

· (ln(min-pref − low-min-ac) − ln(min-pref − high-min-ac))  
     exp-sqr-r = 2 · exp-r − 1 + (min-pref − prop)2  

/ ((min-pref − low-min-ac) · (min-pref − high-min-ac)) 
else exp-r = 1 − ((prop − max-pref) / (high-max-ac − low-max-ac)) 
   · (ln(high-max-ac − max-pref) − ln(low-max-ac − max-pref))  
   exp-sqr-r = 2 · exp-r − 1 + (prop − max-pref)2  
   / ((high-max-ac − max-pref) · (low-max-ac − max-pref)) 
return imp · ((exp-sqr-r − exp-r2)0.5 / k) / sum-imps 
                         

Figure 7. Computing the impact of an uncertain range of acceptable 
values on the standard deviation of the schedule quality. 
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Figure 8. Dependency of the schedule quality on the number of 
elicitation questions. We show the true quality, computed based on 
the full knowledge (solid line), and the system’s quality estimate 
based on the available incomplete data (dashed line). We also show 
the quality of the schedule constructed based on the full world 
knowledge (horizontal gray line). 
 

The results confirm that the elicitation helps to improve the 
schedule; specifically, the quality has increased from 0.72 to 
0.77. The system has correctly selected important questions, 
and asked them in the beginning of the elicitation. It has 
found a near-optimal schedule after asking 20 questions, 
which is 3% of all potential questions, whereas the remaining 
680 questions have given almost no further improvement. 

VIII. CONCLUDING REMARKS 
We have described a procedure for identifying critical 
missing information about a scheduling problem; it enables 
the system to focus on finding out important additional facts, 
and disregard less important facts. We are now developing an 
extended system, which will optimize the use of portable 
equipment related to the scheduled events, and elicit related 
missing data. We are also working on learning techniques for 
automated improvement of elicitation strategies. 
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