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Abstract

Real-world relational data are seldom stationary, yet
traditional collaborative filtering algorithms generally
rely on this assumption. Motivated by our sales predic-
tion problem, we propose a factor-based algorithm that
is able to take time into account. By introducing ad-
ditional factors for time, we formalize this problem as
a tensor factorization with a special constraint on the
time dimension. Further, we provide a fully Bayesian
treatment to avoid tuning parameters and achieve au-
tomatic model complexity control. To learn the model
we develop an efficient sampling procedure that is ca-
pable of analyzing large-scale data sets. This new algo-
rithm, called Bayesian Probabilistic Tensor Factoriza-
tion (BPTF), is evaluated on several real-world prob-
lems including sales prediction and movie recommenda-
tion. Empirical results demonstrate the superiority of
our temporal model.

1 Introduction

Learning from relational data has always been a central
topic in the fields of data mining and machine learn-
ing. In many real world problems, instead of the at-
tributes of individual entities, we are given only the
data about relationships between them. For example,
in recommendation systems the data we have are the
preference scores of users toward different items. This
learning problem has been extensively investigated un-
der the Collaborative Filtering framework. Nowadays
collaborative filtering plays a vital role in various au-
tomatic recommendation systems and has been used in
many online applications such as Amazon.com, eBay,
and Netflix.

Successful as they are, one limitation of most ex-
isting collaborative filtering algorithms is that they are
static models in which relations are assumed to be fixed
at different time. However, real relational data is often
evolving over time and exhibits strong temporal pat-
terns. To motivate the proposed model, let us consider
the following problem. A shoe production company sells
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many types of shoes to its retailer customers. Now this
company wants to predict the orders that will arrive
for the ongoing season based on this season’s initial or-
ders and historical sales data. Having this prediction,
the company can make more informed decisions on the
marketing strategy and inventory planning.

The traditional way to treat this kind of problems
is using time-series forecasting or statistical regression
models. Typical time-series models such as autoregres-
sive moving average (ARMA) and exponential smooth-
ing [5] use past data to make predictions. But they are
not suitable for our problem because each season this
fashion company introduces a lot of new products, for
which there is no historical data. Regression models are
also not appropriate since few product attributes are
available due to the complexity of domain knowledge
and policy issues. What we have is only the transac-
tion data recording the involved customer, product, and
quantity of each order. Moreover, both of these two
paradigms cannot exploit the “collaboration” between
entities and hence are expected to perform poorly when
the data is sparse. For these reasons, we rely on collab-
orative filtering to make the prediction.

Nevertheless, even if collaborative filtering is able
to handle our relational data, traditional static methods
are incapable of learning the shift of product designs and
customers’ preferences, especially considering that we
are facing the volatile and fast-moving fashion business.
The preference of the market can change from season
to season and even within each season. In this case,
trying to explain all the data with one fixed global model
would be ineffective. On the other hand, if we only
use recent data or down-weigh past instances, a lot of
useful information would be lost, making the already
very sparse data set even worse.

To solve this problem, we propose a factorization
based method that is able to model time-evolving re-
lational data. This method is based on probabilistic
latent factor models [18, 19]. In addition to the fac-
tors that are used to characterize entities, we introduce
another set of latent features for each different time pe-
riod. Intuitively, these additional factors represent the
population-level preference of latent features at each



particular time, so that they are able to capture con-
cepts like “high-heeled shoes lost their popularity this
fall” or “orders of golf shoes tend to arrive late”. A spe-
cial treatment is made to the time factors to ensure that
the evolution of factors is smooth. This model learns
the inherent factors for entities using all the available
data, as well as adapts these factors to different time
periods. It can be formulated as a probabilistic ten-
sor factorization problem, thus is widely applicable to
various relational data sets.

One outstanding problem for many relational data
is that they are often very sparse. Taking the Netflix
Prize1 data for example, there are 17, 770 movies and
480, 189 users, but only 99, 072, 112 training ratings.
In matrix terms this means that we are trying to
complete a huge matrix with only 1.16% of its entries
given. This phenomenon presents two challenges for
us. The first one is how to avoid over-fitting, and
the second is how to take advantage of this sparsity to
accelerate computation. To address the first problem,
we extend our approach using Bayesian techniques. By
introducing priors on the parameters, we can effectively
average over various models and ease the pain of tuning
parameters. We call the resulting algorithm Bayesian
Probabilistic Tensor Factorization (BPTF). And for
scalability, we develop an efficient Markov Chain Monte
Carlo (MCMC) procedure for the learning process so
that this algorithm can be scaled to problems like
Netflix.

The modeling of temporal effects in collaborative
filtering has also been called for in many other prob-
lems since the preferences of users are often subject to
change in recommendation systems. Remarkably, the
latest progress in the Netflix Prize contest is attributed
to a temporal model [12]. The winner identifies strong
temporal patterns in the data, and exploits them to
achieve a significant improvement leading to the best
performance attained by a single algorithm. In our ex-
periments we applied our BPTF model to the sales pre-
diction problem as well as two movie recommendation
data sets. The empirical results show that using the
temporal modeling, consistent improvement of predic-
tion accuracy can be achieved over static methods at
the cost of few additional parameters.

The rest of this paper is organized as follows. First
we introduce some preliminaries about factorization
based collaborative filtering. Then in section 3 we
describe the proposed model and its learning procedure.
Some related works are discussed in section 4. Section
5 presents the empirical performance and efficiency of
our method. Finally we make our conclusions.

1http://www.netflixprize.com/

2 Preliminaries

First we introduce some symbols and settings. Suppose
we are dealing with pair-wise relationships between two
types of entities {ui} and {vj}, which we shall call
“user” and “item” respectively, and for some ui and
vj we observe a relational score Rij which we shall
call as “rating”. Thus each instance of the data is a
tuple (ui, vj , Rij), which in the movie recommendation
case means that user ui gives rating Rij to movie
vj . Assuming that there are N users and M items,
these tuples are usually organized into a sparse matrix
R ∈ RN×M using (ui, vj) as the index and Rij as the
entry value.

Typical collaborative filtering algorithms can be
categorized into two classes: neighborhood methods
and factorization methods. Generally factor-based al-
gorithms are considered more effective than those based
on neighborhood. But these two class are often comple-
mentary and the best performance is often obtained by
blending them [2]. A practical survey of this field can
be found in [11].

One representative factor-based method for collab-
orative filtering is Probabilistic Matrix Factorization
(PMF) [18]. PMF assigns a D-dimensional latent fea-
ture vector for each user and movie, denoted as Ui, Vj ∈
RD, and model each rating as the inner-product of cor-
responding latent features, i.e. Rij ≈ U ′

iVj where U ′
i is

the transpose of Ui. Formally, the following conditional
distribution is assumed:

(2.1) p(R|U,V, α) =
N∏

i=1

M∏

j=1

[N (
Rij |U ′

iVj , α
−1

)]Iij
,

where {Ui}, {Vj} consist the columns of U ∈ RD×N and
V ∈ RD×M , N (·|·, ·) denotes the Gaussian distribution,
α is the observation precision, and Iij is the indicator
that Rij has been observed. Zero-mean Gaussian prior
are imposed on Ui and Vj to control model complexity.

This model can be learned by estimating the value
of U and V using maximum likelihood. It turns out
that this learning procedure actually corresponds to the
following weighted regularized matrix factorization:

(2.2)

U,V = arg min
U,V

1
2

N∑

i=1

M∑

j=1

Iij (Rij − U ′
iVj)

2

+
λU

2

N∑

i

‖Ui‖2 +
λV

2

N∑

j

‖Vj‖2.

These formulations reflect the basic ideas of factoriza-
tion based collaborative filtering.

The above optimization can be done efficiently
using gradient descent. This model is very successful



in the Netflix Prize contest in terms of speed-accuracy
trade-off. The drawback though is that it requires fine
tuning of both the model and the training procedure to
predict accurately and avoid over-fitting. This process
is computationally expensive on large data sets.

In the next section we first extend PMF to the
tensor version so that it can take time into account,
with the time factors being specially treated. We then
provide a Bayesian treatment to avoid fine parameter
tuning and achieve model averaging automatically.

3 Proposed Methods

We present the proposed method in two parts. First we
extend PMF to tensor factorization to model temporal
relational data, and formulate a maximum a posteriori
(MAP) scheme for estimating the factors. Then we
apply a fully Bayesian treatment to deal with the tuning
of prior parameters and derive an almost parameter-free
probabilistic tensor factorization algorithm. Finally an
efficient learning procedure is developed.

3.1 Probabilistic Tensor Factorization for Tem-
poral Relational Data In PMF each rating is mainly
determined by the inner product of a user feature vec-
tor and an item feature vector. To model their time-
evolving behavior, we make use of the tensor notation.
We can denote a rating as Rk

ij where i, j index users and
items as before, and k indexes the time slice in which
the rating was given. Then similar to the static case, we
can organize these ratings into a three-dimensional ten-
sor R ∈ RN×M×K , whose three dimensions correspond
to user, item, and time slices with sizes N , M , and K,
respectively.

Extending the idea of PMF, we assume that each
entry Rk

ij can be expressed as the inner-product of three
D-dimensional vectors:

(3.3) Rk
ij ≈ < Ui, Vj , Tk > ≡

D∑

d=1

UdiVdjTdk,

where Ui, Vj are for uses and items while Tk is the
additional latent feature vector (or factors) for the
k-th time slice. Using matrix representations U ≡
[U1 U2 · · · UN ],V ≡ [V1 V2 · · · VM ], and T ≡
[T1 T2 · · · TK ], we can also express Eq. (3.3) as a
three-way tensor factorization of R:

(3.4) R ≈
D∑

d=1

Ud,: ◦ Vd,: ◦ Td,:,

where Ud,:, Vd,: and Td,: represent the d-th rows of U,V
and T, and ◦ denotes the vector outer product. This
is an instance of the CANDECOMP/PARAFAC (CP)

decomposition [10], for which a graphical illustration is
in Figure 1.

An interpretation of the factorization (3.3) is that
a rating depends not only on how similar a user’s
preferences and an item’s features are (as in PMF),
but also on how much these preferences/features match
with the “current trend” as reflected in the time feature
vectors. For instance, if a user likes green shoes but the
overall trend of this year is that few people wears them
on the street, then this user is probably not going to
buy them neither.

To account for the randomness in ratings, we con-
sider the following probabilistic model:

(3.5) Rk
ij |U,V,T ∼ N (< Ui, Vj , Tk >,α−1),

i.e, the conditional distribution of Rk
ij given U,V, and T

is a Gaussian distribution with mean < Ui, Vj , Tk > and
precision α. Note that if Tk is an all-one vector then this
model is equivalent to PMF. Since many entries in R are
missing, estimation based on the model (3.5) may over-
fit the observed entries and fail to predict the missing
entries well. To deal with this issue, we follow the usual
Bayesian scheme by placing prior distributions on U,V,
and T. Specifically we impose zero-mean, independent
Gaussian priors on user and feature vectors:

Ui ∼ N (0, σ2
UI), i = 1 . . . N,

Vj ∼ N (0, σ2
V I), j = 1 . . .M,

(3.6)

where I is the D-by-D identity matrix.
As for the time factors, since they account for the

evolution of global trends, a reasonable prior belief is
that they change smoothly over time. Therefore we
further assume that each time feature vector depends
only on its immediate predecessor, and use the following
conditional prior for T:

(3.7) Tk ∼ N (Tk−1, σ
2
dT I), k = 1, . . . , K.

For the initial time feature vector T0, we assume

(3.8) T0 ∼ N (µT , σ2
0I),

where µT is D-by-1 column vector. We call this model
the Probabilistic Tensor Factorization (PTF).

Having the observational model (3.5) and the priors,
we may estimate the latent features U,V, and T by
maximizing the logarithm of the posterior distribution,
which takes the following form assuming ratings are



Figure 1: CP decomposition of a three-way tensor R

made independently conditioned on latent factors:

log p(U,V,T, T0|R)
∝ log p(R|U,V,T, T0) + log p(U,V,T, T0)

=
K∑

k=1

N∑

i=1

M∑

j=1

Ik
ij log p(Rk

ij |Ui, Vj , Tk) +
N∑

i=1

log p(Ui)

+
M∑

j=1

log p(Vj) +
K∑

k=1

log p(Tk|Tk−1) + log p(T0)

= −
K∑

k=1

N∑

i=1

M∑

j=1

Ik
ij(R

k
ij− < Ui, Vj , Tk >)2

2α−1
+

(#nz) log α

2

−
N∑

i=1

||Ui||2
2σ2

U

−N log σU −
M∑

j=1

||Vj ||2
2σ2

V

−M log σV

−
K∑

k=1

||Tk − Tk−1||2
2σ2

dT

−K log σdT − ||T0 − µT ||2
2σ2

0

− log σ0 + C,

where Ik
ij is one if Rk

ij is available and zero otherwise,
#nz is the total number of ratings, and C is a constant.
Under fixed values of α, σU , σV , σdT , σ0 and µT , which
are usually referred to as hyper-parameters, maximizing
the log-posterior with respect to U,V,T, and T0 is
equivalent to minimizing the following regularized sum
of squared errors:

K∑

k=1

N∑

i=1

M∑

j=1

Ik
ij(R

k
ij− < Ui, Vj , Tk >)2 +

N∑

i=1

λU ||Ui||2
2

+

M∑

j=1

λV ||Vj ||2
2

+
K∑

k=1

λdT ||Tk − Tk−1||2
2

+
λ0||T0 − µT ||2

2
,

(3.9)

where λU = (ασ2
U )−1, λV = (ασ2

V )−1, λdT = (ασ2
dT )−1,

and λ0 = (ασ2
0)−1.

This objective function (3.9) is non-convex, and we
may only be able to find a local minimum. To optimize
it, common choices include stochastic gradient descent
and block coordinate descent, both of which update

the latent feature vectors iteratively. After the MAP
estimates U∗,V∗, and T∗ are obtained, we may predict
an unobserved rating R̂k

ij by the distribution (3.5) or
simply < U∗

i , V ∗
j , T ∗k >.

One issue with the aforementioned approach is the
tuning of the hyper-parameters α, σU , σV , σdT , σ0 and
µT . Since there are quite a few, the usual approach
of hyper-parameter selection, such as cross-validation,
is infeasible even for a modest problem size. We thus
propose in the next section a fully Bayesian treatment to
average out the hyper-parameters in the model, leading
to an almost parameter-free estimation procedure.

3.2 Bayesian Probabilistic Tensor Factoriza-
tion (BPTF) The performance of PTF is tied to the
careful tuning of the hyper-parameters when model pa-
rameters are estimated by maximizing the posterior
probability, as pointed out in [18]. Such a point esti-
mate as obtained by MAP is often vulnerable to over-
fitting when hyper-parameters are not properly tuned,
and is more likely so when the data is large and sparse.

An alternative estimation scheme that may help
alleviate over-fitting is a fully Bayesian treatment,
which integrates out all model parameters and hyper-
parameters, arriving at a predictive distribution of fu-
ture observations given observed data. Because this pre-
dictive distribution is obtained by averaging all models
in the model space specified by the priors, it is less likely
to over-fit a given set of observations.

However, when integrating over parameters one
often cannot obtain an analytical solution, thus we will
need to apply sampling-based approximation methods,
such as Markov Chain Monte Carlo (MCMC). For large-
scale problems, sampling-based methods are usually
not preferred due to their computational cost and
convergence-related issues. Nevertheless, [19] devises
an MCMC procedure for PMF that can run efficiently
on large data sets like Netflix. The main trick is
choosing proper distributions for hyper-parameters so
that sampling can be carried out efficiently.

Inspired by the work of [19], we present in the
following a fully Bayesian treatment to the Probabilistic
Tensor Factorization model proposed in Section 3.1. We
refer to the resulting method as BPTF for Bayesian
Probabilistic Tensor Factorization.

3.2.1 Model Specification for BPTF A graphical
overview of our entire model is in Figure 2, and each
component is described below. The model for generat-
ing ratings is the same as Eq. (3.5):

(3.10) Rk
ij |U,V,T ∼ N (< Ui, Vj , Tk >,α−1).
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Figure 2: The graphical model for BPTF

As before, the prior distributions for the user and
the item feature vectors are assumed to be Gaussian,
but the mean and the precision matrix (inverse of the
covariance matrix) may take arbitrary values:

Ui ∼ N (µU ,Λ−1
U ), i = 1 . . . N,(3.11)

Vj ∼ N (µV ,Λ−1
V ), j = 1 . . .M.(3.12)

For the time feature vectors, we make the same Marko-
vian assumption as in Section 3.1 and consider the pri-
ors:

Tk ∼ N (Tk−1,Λ−1
T ), k = 2, . . . K,(3.13)

T1 ∼ N (µT ,Λ−1
T ).(3.14)

The key ingredient of our fully Bayesian treatment is
to view the hyper-parameters α, ΘU ≡ {µU ,ΛU},ΘV ≡
{µV ,ΛV }, and ΘT ≡ {µT ,ΛT } also as random variables,
leading to a predictive distribution for an unobserved
rating R̂k

ij ,

p(R̂k
ij |R) =(3.15)∫

p(R̂k
ij |Ui, Vj , Tk, α)p(U,V,T, α,ΘU ,ΘV ,ΘT |R)

d{U,V,T, α,ΘU ,ΘV ,ΘT }
that integrates over both the model parameters and the
hyper-parameters, as opposed to the prediction scheme

in Section 3.1 that simply plugs the MAP estimates into
Eq. (3.5).

We then need to choose prior distributions for the
hyper-parameters (the so-called hyper-priors). For the
Gaussian parameters, we choose the conjugate distribu-
tions as priors that facilitate subsequent computations:

p(α) =W(α|W̃0, ν̃0),

p(ΘU )=p(µU |ΛU )p(ΛU )=N (µ0, (β0ΛU )−1)W(ΛU |W0, ν0),

p(ΘV )=p(µV |ΛV )p(ΛV )=N (µ0, (β0ΛV )−1)W(ΛV |W0, ν0),

p(ΘT )=p(µT |ΛT )p(ΛT ) =N (ρ0, (β0ΛT )−1)W(ΛT |W0, ν0).

Here W is the Wishart distribution2 of a D×D random
matrix Λ with ν0 degrees of freedom and a D×D scale
matrix W0:
(3.16)

W(Λ|W0, ν0) =
|Λ|(ν0−D−1)/2

C
exp(−Tr(W−1

0 Λ)
2

),

where C is a normalizing constant. There are several
parameters in the hyper-priors: µ0, ρ0, β0,W0, ν0, W̃0,
and ν̃0; These parameters should reflect our prior
knowledge about the specific problem and are treated
as constants during training. In fact, Bayesian learning
is able to adjust them according to the training data,
and varying their values (within in a reasonably large
range) has little impact on the final prediction, as often
observed in Bayesian estimation procedures.

3.2.2 Learning by Markov Chain Monte Carlo
The predictive distribution (3.15) involves a multi-
dimensional integral, which cannot be computed ana-
lytically. We thus resort to numerical approximation
techniques. The main idea is to view Eq. (3.15) as
an expectation of p(R̂k

ij |Ui, Vj , Tk, α) over the posterior
distribution p(U,V,T, α,ΘU ,ΘV ,ΘT |R), and approx-
imate the expectation by an average on samples drawn
from the posterior distribution. Since the posterior is
too complex to directly sample from, we apply a widely-
used indirect sampling technique, Markov Chain Monte
Carlo (MCMC) [14, 13, 8]. The method works by draw-
ing a sequence of samples from some proposal distribu-
tion such that each sample depends only on the previous
one, thus forming a Markov chain. When the sampling
step obeys certain properties, the most notably being
detailed balance, the chain converges to the desired dis-
tribution. Then we collect a number of samples and
approximate the integral in Eq. (3.15) by

(3.17) p(R̂k
ij |R) ≈

L∑

l=1

p(R̂k
ij |U (l)

i , V
(l)
j , T

(l)
k , α(l)),

2The Wishart distribution is usually used as the conjugate
prior for the precision matrix in a Gaussian distribution.



where L denotes the number of samples collected and
U

(l)
i , V

(l)
j , T

(l)
k , and α(l) are from the lth sample. A

detailed treatment of MCMC can be found in [17].
There are quite a few different flavors of MCMC.

Here we choose to use the Gibbs sampling paradigm
[7]. In Gibbs sampling, the target random variables
are decomposed into several disjoint subsets or blocks,
and at each iteration a block of random variables is
sampled while all the others are fixed. All the blocks are
iteratively sampled until convergence. Such a scheme
is very similar to the nonlinear Gauss-Seidel method
(Chapter 2.7, [3]) for nonlinear optimization, which
optimizes iteratively over blocks of variables.

As indicated by its parametrization, our target dis-
tribution p(U,V,T, α,ΘU ,ΘV ,ΘT |R) bears an inher-
ent block structure of random variables. In Appendix
A we show that such a block structure, together with
our choice of model components in Section 3.2.1, gives
rise to conditional distributions that are easy to sample
from, leading to a simple and efficient Gibbs sampling
procedure as outlined in Algorithm 3.1. It has two no-
table features: 1) the only distributions that need to
be sampled are multivariate Gaussian distributions and
the Wishart distribution; 2) individual user feature vec-
tors can be sampled in parallel, so can individual item
vectors.

3.3 Scalability and Practical Issues In our imple-
mentation, the PTF model is optimized using alternat-
ing least squares, which is actually a block coordinate
descent algorithm that optimizes one user or one item at
each time. And the learning process of the BPTF model
is implemented using Gibbs sampling as described in al-
gorithm 3.1. Both of them are efficient and scalable for
large data sets.

Let #nz be the number of observed relations in the
training data. For each iteration, the time complexity
for both PTF and BPTF is O(#nz ×D2 + (N + M +
K) × D3). In typical cases, the term (#nz × D2)
is much larger than the rest so we can consider this
complexity to be linear with respect to the number of
observations. For the choice of D, in our experience
using tens of latent features usually achieves a good
balance between speed and accuracy. Inevitably, the
running time of BPTF is slower than the non-Bayesian
PMF, which has a complexity of O(#nz ×D) for each
iteration using stochastic gradient descent. But using
PMF involves a model selection problem. Typically
parameters λU and λV have to be tuned along with the
early-stopping strategy. This process can be prohibitive
for large data sets. On the other hand, BPTF eliminates
the existence of hyper-parameters by introducing priors
for them. Therefore, we can set the priors according to

Algorithm 3.1. Gibbs sampling for BPTF

Initialize model parameters {U(1),V(1),T(1)}.
For l=1, . . . , L,

• Sample the hyperparameters according to (A.2),
(A.3), (A.4) and (A.5), respectively:

α(l) ∼ p(α(l)|U(l),V(l),T(l),R),

Θ(l)
U ∼ p(Θ(l)

U |U(l)),

Θ(l)
V ∼ p(Θ(l)

V |V(l)),

Θ(l)
T ∼ p(Θ(l)

T |T(l)).

• For i = 1, . . . , N , sample the user features (in
parallel) according to (A.6):

U
(l+1)
i ∼ p(Ui|V(l),T(l),ΘU

(l), α(l),R).

• For j = 1, . . . , M , sample the item features (in
parallel) according to (A.7):

V
(l+1)
j ∼ p(Vj |U(l+1),T(l),ΘV

(l), α(l),R).

• Sample the time features according to (A.8):
For k = 1,

T
(l+1)
1 ∼ p(T1|U(l+1),V(l+1), T

(l)
2 ,ΘT

(l), α(l),R).

For k = 2, . . . , K − 1,

T
(l+1)
k ∼ p(Tk|U(l+1),V(l+1), T

(l+1)
k−1 , T

(l)
k+1,ΘT

(l), α(l),R).

For k = K,

T
(l+1)
K ∼ p(TK |U(l+1),V(l+1), T

(l+1)
K−1 ,ΘT

(l), α(l),R).

our knowledge and let the algorithm adapt them to the
data. Empirically, impressive results can be obtained
without any tuning.

When using MCMC, a typical issue is the conver-
gence of sampling. Theoretically, the results generated
are only accurate when the chain has reached its equilib-
rium. This however would usually take a long time and
there is no effective way to diagnose the convergence. To
alleviate this, we use the MAP result from PMF to ini-
tialize the sampling. Then the chain usually converges
within a few hundreds samples from our experience.
Moreover, we found that the accuracy increases mono-



tonically as the number of samples increases. Therefore
in practice we can just monitor the performance on val-
idation sets and stop sampling when the improvement
from more samples is diminishing.

4 Related Work

There is a lot of work on factorization methods for col-
laborative filtering, among which the most well-known
one is Singular Value Decomposition (SVD), which is
also called Latent Semantic Analysis (LSA) in the lan-
guage and information retrieval communities. Based on
the LSA, probabilistic LSA [9] was proposed to provide
the probabilistic modeling, and further latent Dirichlet
allocation (LDA) [4] provides a Bayesian treatment of
the generative process. Along another direction, PMF
improves the SVD by introducing regularization and
handling missing values, which became one of the most
effective algorithms in the Netflix Prize.

Bayesian PMF (BPMF) [19] provides a Bayesian
treatment for PMF to achieve automatic model com-
plexity control. It demonstrates the effectiveness and
efficiency of Bayesian methods and MCMC in real-world
large-scale data mining tasks, and inspired our research.
However, as mentioned before, BPMF is still a static
model that cannot handle evolving data. BPTF en-
hance it by adapting the latent features to include the
time information. From the algorithmic perspective,
BPTF extends BPMF so that it can deal with multi-
dimensional tensor data and the time dimension is spe-
cially taken care of. Although BPTF gives more flexi-
bility over BPMF, the increase of parameters is negligi-
ble considering that the number of time slices are often
much smaller than the number of entities. Another dif-
ference is that BPMF leaves the observation precision
α as a tuning parameter while our Bayesian treatment
covers all the parameters. There are also other ten-
sor factorizations such as Multi-HDP [15], Probabilis-
tic Non-negative Tensor Factorization [21], and Proba-
bilistic polyadic factorization [?]. Yet they are neither
designed for prediction purpose nor modeling temporal
effects.

Temporal modeling has been largely neglected in
the collaborative filtering community until Koren [12]
proposed their award winning algorithm timeSVD++.
The timeSVD++ method assumes that the latent fea-
tures consist of some components that are evolving over
time and some others that are dedicated bias for each
user at each specific time point. This model can ef-
fectively capture local changes of user preference which
the authors claim to be vital for improving the perfor-
mance. On the other hand, BPTF tries to capture the
overall effect of time that are shared among all users
and items. For our sales prediction purpose we argue

that modeling the evolution of the overall market would
be more effective since the behavior of retailers are not
very localized and the data is very sparse.

Real data sets are rarely stationary. Recently,
several algorithms aimed at learning the evolution of
relational data were proposed. Tong et al. [22] proposed
an online algorithm to efficiently compute the proximity
in a series of evolving bipartite graphs. Ahmed and
Xing [1] added dynamic components to the LDA to
track the evolution of topics in a text corpus. Sarkar
et al. [20] considers the dynamic graph embedding
problem and uses Kalman Filter to track the embedding
coordinates through time. All these works reveal the
dynamic nature of various problems.

5 Experiments

We conducted several experiments on three real world
data sets to test the effectiveness of BPTF. In these
data sets, a timestamp is available for each relational
instance, which can thus be denoted by the tuple
(ui, vj , tk, Rk

ij). The experimental domains include sales
prediction and online movie recommendation.

For comparison, we also implemented and report
the performance of PMF and BPMF. When training the
non-temporal models, the time information is dropped
so the actual tuple used is (ui, vj , R

k
ij). For PMF

model, plain stochastic gradient descent with a fixed
learning rate (lrate) is adopted for training, and its
parameters are obtained by hand tuning to achieve the
best accuracy. For BPMF and BPTF, Gibbs sampling is
used for training and the results from PMF are used to
initialize the sampling. Similar to [19], parameters for
Bayesian methods are set according to prior knowledge
without tuning. Unless indicated otherwise, parameters
used for priors are µ0 = 0, ν0 = D, β0 = 1,W0 = I, ρ0 =
e, ν̃0 = 1, where e is an D × 1 column vector of 1s.

The algorithms are implemented in MATLAB with
some embedded C functions.

5.1 Sales Prediction In this section we evaluate the
performance of BPTF on a sales prediction task for
ECCOR©, a shoe company selling thousands of kinds of
shoes to thousands of retailer customers from all over
the world. For the consistency of expression we still use
“user” to represent “customer” and “item” to represent
ECCO’s product: shoes.

ECCO sells its shoes in two seasons each year. Here
we use “2008.1” to denote the spring season of 2008
and “2006.2” for the fall season of 2006. For each
season there is a period for accepting orders. Suppose
we are in the middle of current ordering period, our
problem is: in the rest of this season, how many orders
of an item can be expected from a particular user?



The data we have is only the existing sales record.
No attributes for the items or users are available.
As mentioned in section 1, this is a relational data
set characterized by changing preferences and the fast
emergence and disappearance of entities. On average we
have thousands of items and users with only 2% of the
possible relations observed. Moreover, in each season
75 − 80% of the items and around 20% of the users
are new arrivals compared to the last corresponding
season. All these characteristics render it a particular
challenging problem for collaborative filtering.

The data specification is as follows. We have the
sales record from years 2005 to 2008 so there are 4 spring
seasons and 4 fall seasons, which are handled separately.
For each season, we select a week as the cut-off point
so that orders before this week will be used for training
and the rest are for testing. For example, if we want
to predict for orders of season 2008.1 after week 40 of
2007 (the cut-off point), then the training data will be
orders in seasons {2005.1, 2006.1, 2007.1, 2008.1} that
happened before the cut-off and the testing data are
orders of 2008.1 after the cut-off. We use a single cut-
off point for all spring seasons and another one for fall
seasons. The resulting test set contains 15− 20% of the
orders. Note that this choice is arbitrary in the sense
that the progress of the sales vary from season to season.
We measure the performance of algorithms using mean
absolute error (MAE) for each order since it is the most
relevant quantity for ECCO.

We observed that the within-season variability of
data is much larger than the cross-season one. This
means that trends like “Customers tend to order formal
shoes early and golf shoes late” are strong. Therefore,
we assign the timestamp of each order according to
the cut-off week so that the latent factors can evolve
within seasons. Concretely, every season is divided into
early season and late season by the cut-off week. Then
we have two time slices and the orders are assigned
accordingly. Note that now the data are not grouped
by seasons, and all the test data are in the late season
slice.

We test the performance of three algorithms on
all the seasons except 2005.1 and 2005.2 since they
do not have previous seasons. The parameters are
λU = λV = 0.1, lrate = 1× 10−5 for PMF, α = 0.04 for
BPMF, and W̃0 = 0.04 for BPTF. BPMF and BPTF
both use the same initialization from PMF. 50 samples
are generated in sampling when the accuracy stabilizes.

The prediction accuracies are reported in Figure 3.
We conclude that our prediction has an average error
of 20 pairs for each order, and the accuracy for spring
seasons are much lower than fall. For all the seasons
BPTF consistently outperforms the static methods by
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Figure 3: Performance comparison of PMF, BPMF, and
BPTF on 6 seasons of ECCO data. BPTF outperforms
others by a large margin. See text for details.

a fairly large margin. Note that PMF appears better
than BPMF here. The reason may be that for this
moderately sized data set we are able fine tune the
parameters of PMF to gain the best results, while for
BPMF (and also BPTF) we assign the parameters by
prior knowledge. The results verify that we can enhance
the prediction by modeling the temporal effects of data
using BPTF.

5.2 Movie Rating Prediction To make the com-
parison more transparent, we also did experiments on
benchmark movie rating problems: Netflix3 and Movie-
Lens4. These large-scale data sets consist of users’ rat-
ings to various movies on a 5-star scale, and our task is
to predict the rating for new user-movie pairs.

To measure the accuracy, we adopt the root mean
squared error (RMSE) criterion as commonly used in
collaborative filtering literature and the Netflix Prize.
For all models, raw user ratings are used as the input.
Prediction results are clipped to fit between [1, 5].

5.2.1 Netflix The Netflix data set contains
100, 480, 507 ratings from N = 480, 189 users to
M = 17, 770 movies between 1999 and 2005. Among
these ratings, 1, 408, 395 are selected uniformly over the
users as the probe set for validation. Time information
is provided in days. The ratio of observed ratings to
all entries of the rating matrix is 1.16%. As a baseline,
the test score of Netflix’s Cinematch system is RMSE

3http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
4http://www.grouplens.org/node/73



PMF BPMF BPTF
RMSE 0.9166 0.9083 0.9044

Table 1: RMSE of PMF, BPMF and BPTF on Netflix
data.

= 0.9514.
Basically the timestamps we used for BPTF corre-

spond to calendar months. However, since the ratings
in the early months are much more scarce than that in
the later months, we aggregated several earlier months
together so that every time slice contains an approxi-
mately equal number of ratings. In practice we found
that in a fairly large range, the slicing of time does not
affect the performance much. In the end, we have 27
time slices for the entire data set.

Following the settings in the BPMF paper [19], we
use D = 30 latent features to model each entity and
set λU = λV = 0.015, lrate = 0.001 for PMF, α = 2
for BPMF, and W̃0 = 2 for BPTF. These parameters
for Bayesian methods are set as constant based on prior
knowledge and not tuned for best accuracy. 100 samples
are used to generate the final prediction.

The prediction accuracies of PMF, BPMF, and
BPTF on the probe set are presented in Table 1. Figure
4 shows the change of accuracies as the number of
sample increases. BPMF shows a large improvement
over its non-Bayesian ancestor PMF, and BPTF further
provides a steady increment in accuracy. However,
BPTF does not beat the RMSE = 0.8891 result of
20-dimensional timeSVD++ (quoted from their paper),
which is the state-of-the-art temporal model for the
Netflix. As pointed out by the authors of timeSVD++,
the most important trait of the Netflix data is that there
are many local changes of preference which could just
affect one user in one day. BPTF on the other hand aims
at learning the global evolution thus cannot capture
these changes. However, modeling the global changes
still gives us improved performance. Another difference
is that BPTF has almost no parameters to tune, while
timeSVD++ still has several of them that need to be
set by cross-validation.

To generate one sample, BPTF with D = 30 latent
features took about 9 minutes using about 5GB RAM.
For comparison, BPMF uses 6 minutes for one sample.
We ran our experiments in a single-threaded MATLAB
process on a 2.4 GHz AMD Opteron CPU with 64 GB
RAM. We did not use the parallel implementation be-
cause it involves distributing a large amount of data and
the computational model provided by MATLAB does
not handle it well. However, since each user and movie
latent feature vector can be sampled independently, we
believe that on more sophisticated platforms, BPTF can
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Figure 4: Convergence curves of BPTF and BPMF on
the full Netflix data. As the number of samples increase,
the RMSE of Bayesian methods drop monotonically.
The RMSE of the Netflix’s baseline and PMF are also
presented.

work nicely with MapReduce-style parallel processing.
We also did a group of experiments on a subset

of the Netflix data constructed by randomly selecting
20% of the users and 20% of the movies. It consists of
N = 95, 992 users, M = 3, 565 movies, and 4, 167, 600
ratings. This subset is further divided into training and
testing sets by randomly selecting 10 ratings (or 1/3 of
the total ratings, whichever is smaller) from each user
as the testing set. This sampling strategy is similar
to the way that the Netflix Prize did it. Finally the
new data set contains about 4% of the original data set
and is thus suitable for detailed experimental analysis.
In the training process, parameters are λU = λV =
0.03, lrate = 0.001 for PMF, and for Bayesian methods
the same parameters as for full data are adopted.

Firstly, we investigate the performance of algo-
rithms as the number of factors varies. For dimensions
10, 20, 50, and 100, the curves of convergence are shown
in Figure 5. The RMSE steadily decreases as the num-
ber of factors increase, and no over-fitting is observed.
When using 100 factors, there are on average two pa-
rameters for a single rating. This clearly shows the effect
of model averaging using Bayesian technique. Also by
comparing the curves of BPTF and BPMF, we see that
BPTF with 20 factors performs similarly to BPMF with
100 factors. This demonstrates the advantage of tempo-
ral modeling considering that the number of parameters
in BPMF is about 5 times more than BPTF.

We further examine the significance of the improve-
ment of BPTF over the BPMF by repeating the pre-
diction tasks 20 times using different random test sets.
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Figure 5: Convergence curves of BPMF and BPTF with
different number of factors. The accuracy increases
when more factors are used, and no over-fitting is
observed. Also, BPTF with 20 factors achieves similar
performance as BPMF with 100 factors.
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Figure 6: Box plot of accuracies from PMF, BPMF, and
BPTF on Netflix. See text.

The resulting box plot of RMSEs are shown in figure
6. The p-value of paired t-test between the results of
BPMF and BPTF is 1.3 × 10−22. In fact, in all runs,
BPTF always produce better results than BPMF.

5.2.2 MovieLens The MovieLens data set contains
1, 000, 209 ratings from N = 6, 040 users and M =
3, 706 movies between April, 2000 and February, 2003,
with the restriction that each user has at least 20
ratings. The ratio of observed ratings is round 4.5%.
Time information is provided in seconds. We randomly
select 10 ratings from each user as the test set, which
is roughly 6.5% as large as the training set. The
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Figure 7: Box plot of the accuracies from PMF, BPMF,
and BPTF on MovieLens data.

timestamp used for BPTF corresponds to calendar
months. We also use D = 30 latent features here. The
parameters for PMF are λU = λV = 0.05, lrate = 0.001
as in [6], and the parameters for Bayesian methods are
the same as for Netflix.

Figure 7 shows the performance of three algorithms
from 20 random runs. This result is similar to what
we have for the Netflix data. BPTF still consistently
outperforms BPMF, and the p-value of paired t-test
between them is 8.9× 10−15.

6 Conclusions

We present the Bayesian Probabilistic Tensor Factor-
ization algorithm for modeling evolving relational data.
By introducing a set of additional time features to tra-
ditional factor-based collaborative filtering algorithms,
and imposing a smoothness constraint on those factors,
BPTF is able to learn the global evolution of latent fea-
tures. An efficient MCMC procedure is proposed to re-
alize automatic model averaging and largely eliminates
the need for tuning parameters on large-scale data. We
show extensive empirical results on several real-world
data sets to illustrate the advantage of temporal model
over static models.

There are several possible directions worth explor-
ing in the future. First, we may adopt other types of
observational models other than Gaussian, such as the
exponential family distributions. Then this more gen-
eral approach can accommodate various kinds of data.
However, this may lead to a more complicated posterior
distribution for which Gibbs sampling is not applica-
ble. We may then consider the more general Metropolis-
Hastings sampling techniques such as [16]. Another di-
rection is that we can learn a Kalman Filtering-style



dynamic system by estimating the covariance matrix be-
tween successive time factors, so that predictions about
the future can be made.
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A Conditional distributions in Gibbs sampling

In this section we give explicit forms for the conditional
distributions used in Algorithm 3.1. According to
our model assumption in Figure 2, the joint posterior
distribution can be factorized as

p(U,V,T, α,ΘU ,ΘV ,ΘT |R)
∝ p(R|U,V,T, α)p(U|ΘU )p(V|ΘV )p(T|ΘT )

p(ΘU )p(ΘV )p(ΘT )p(α).
(A.1)

By plugging into Eq. (A.1) all the model compo-
nents described in Section 3.2.1 and carrying out proper
marginalization, we derive the desired conditional dis-
tributions in the following two subsections.

A.1 Hyper-parameters By using the conjugate
prior for the rating precision α, we have that the con-
ditional distribution of α given R, U, V and T follows
the Wishart distribution:

p(α|R,U,V,T) = W(α|W ∗
0 , ν∗0 ),(A.2)

ν∗0 = ν̃0 +
K∑

k=1

N∑

i=1

M∑

j=1

Ik
ij ,

(W̃ ∗
0 )−1 = W̃−1

0 +
K∑

k=1

N∑

i=1

M∑

j=1

Ik
ij(R

k
ij− < Ui, Vj , Tk >)2.

For ΘU ≡ {µU ,ΛU}, our graphical model assumption
in Figure 2 suggests that it is conditionally independent
of all the other parameters given U. We thus integrate
out all the random variables in Eq. (A.1) except U and



obtain the Gaussian-Wishart distribution:

p(ΘU |U) = N (µU |µ∗0, (β∗0ΛU )−1)W(ΛU |W ∗
0 , ν∗0 ),

(A.3)

µ∗0 =
β0µ0 + NŪ

β0 + N
, β∗0 = β0 + N, ν∗0 = ν0 + N ;

(W ∗
0 )−1 = W−1

0 + NS̄ +
β0N

β0 + N
(µ0 − Ū)(µ0 − Ū)′,

Ū =
1
N

N∑

i=1

Ui, S̄ =
1
N

N∑

i=1

(Ui − Ū)(Ui − Ū)′.

Similarly, ΘV ≡ {µV ,ΛV } is conditionally independent
of all the other parameters given V, and its conditional
distribution has the same form:

p(ΘV |V) = N (µV |µ∗0, (β∗0ΛV )−1)W(ΛV |W ∗
0 , ν∗0 ),

(A.4)

µ∗0 =
β0µ0 + MV̄

β0 + M
, β∗0 = β0 + M, ν∗0 = ν0 + M ;

(W ∗
0 )−1 = W−1

0 + MS̄ +
β0M

β0 + M
(µ0 − V̄ )(µ0 − V̄ )′,

V̄ =
1
M

M∑

j=1

Vj , S̄ =
1
M

M∑

j=1

(Vj − V̄ )(Vj − V̄ )′.

Finally, ΘT ≡ {µT ,ΛT } is conditionally independent of
all other parameters given T, and its conditional distri-
bution also follows a Gaussian-Wishart distribution:

p(ΘT |T) = N (µT |µ∗0, (β∗0ΛU )−1)W(ΛT |W ∗
0 , ν∗0 ),

(A.5)

µ∗0 =
T1 + β0ρ0

β0 + 1
, β∗0 = β0 + 1, ν∗0 = ν0 + K;

(W ∗
0 )−1 = W−1

0 +
K∑

k=2

(Tk − Tk−1)(Tk − Tk−1)′

+
β0

1 + β0
(T1 − ρ0)(T1 − ρ0)′.

A.2 Model parameters We first consider the user
features U. According to the graphical model in Figure
2, its conditional distribution factorizes with respect to
individual users:

p(U|R,V,T, α,Θ) =
N∏

i=1

p(Ui|R,V,T, α,ΘU ).

We then have, for each user feature vector,

p(Ui|R,V,T, α,ΘU ) = N (Ui|µ∗i , (Λ∗i )−1),(A.6)

µ∗i ≡ (Λ∗i )
−1

(
ΛUµU + α

K∑

k=1

M∑

j=1

Ik
ijR

k
ijQjk

)
,

Λ∗i ≡ ΛU + α
K∑

k=1

M∑

j=1

Ik
ijQjkQ′jk,

where Qjk ≡ Vj · Tk is the element-wise product of
Vj and Tk. For the item features V the conditional
distribution factorizes with respect to individual items,
and for each item feature vector we have

p(Vj |R,U,T, α,ΘV ) = N (Vj |µ∗j , ( Λ∗j )
−1),(A.7)

µ∗j ≡ (Λ∗j )
−1

(
ΛV µV + α

K∑

k=1

N∑

i=1

Ik
ijR

k
ijPik

)
,

Λ∗j ≡ ΛV + α
K∑

k=1

N∑

i=1

Ik
ijPikP ′ik,

where Pik ≡ Ui · Tk.
Regarding the time features, the conditional distri-

bution of Tk is also a Gaussian distribution:

(A.8) p(Tk|R,U,V,T−k, α,ΘT ) = N (Tk|µ∗k, (Λ∗k)−1),

where T−k denotes all the time feature vectors except
Tk. The mean vectors and the precision matrices depend
on k in the following way:
For k = 1,

µ∗1 =
T2 + µT

2
, Λ∗1 = 2ΛT + α

N∑

i=1

M∑

j=1

I1
ijXijX

′
ij ,

where Xij ≡ Ui · Vj (the same for the following).
For 2 6 k 6 K − 1,

µ∗k = (Λ∗k)−1
(
ΛT (Tk−1 + Tk+1) + α

N∑

i=1

M∑

j=1

Ik
ijR

k
ijXij

)
,

Λ∗k = 2ΛT + α

N∑

i=1

M∑

j=1

Ik
ijXijX

′
ij .

For k = K,

µ∗K = (Λ∗K)−1
(
ΛT TK−1 + α

N∑

i=1

M∑

j=1

IK
ij RK

ij Xij

)
,

Λ∗K = ΛT + α
N∑

i=1

M∑

j=1

IK
ij XijX

′
ij .


