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Abstract

Rare category detection is an open challenge in machine

learning. It plays the central role in applications such

as detecting new financial fraud patterns, detecting new

network malware, and scientific discovery. In such cases rare

categories are hidden among huge volumes of normal data

and observations. In this paper, we propose a new method

for rare category detection named SEDER, which requires

no prior information about the data set. It implicitly

performs semiparametric density estimation using specially

designed exponentially families, and then picks the examples

for labeling where the neighborhood density changes the

most. SEDER can work in the cases where the data is not

separable. Its unique feature over all existing methods lies

in its prior-free nature, i.e. it does not require any prior

information about the data set (e.g. the number of classes,

the proportion of the different classes, etc.). Therefore, it is

more suitable for real applications. Experimental results on

both synthetic and real data sets demonstrate the superiority

of SEDER.

1 Introduction.

Classical supervised learning methods require labeled
examples representing each class, from which classifiers
may be induced to predict class membership for unla-
beled data. Whereas classifier induction has been well
studied over the years, both for the balanced case [13],
and the unbalanced case [18] [16] [12], very few methods
have been proposed to discover classes in an unlabeled
data set by proposing initial candidate examples of each
class to a labeling oracle [14] [8] [10] [11]. Active learn-
ing [9] [6] focuses on the related problem of finding max-
imally discriminative examples to label, once each class
has been discovered. If the data set is well balanced, we
may use random sampling to find all the classes. On the
other hand, if the data set is skewed, i.e. some classes
dominate the data set (the majority classes) and the
other classes rarely occur (the minority/rare classes),
random sampling can prove extremely inefficient at dis-
covering all the classes, especially the rare ones. It is
often the case that these rare classes are of key impor-
tance; therefore, we need more sophisticated methods
for rare category detection.
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Rare category detection has a wealth of applica-
tions. For example, in financial fraud detection, the
vast majority of financial transactions are legitimate,
but a small number may be fraudulent; detecting early
instances of the fraud patterns is a major first step to-
wards systematically finding and stopping such illicit
activity [3]. Another example is network intrusion de-
tection. Systematically finding the early onset of new
malicious network activities among huge volumes of rou-
tine network traffic is a critical unmet challenge [19].
Similarly, in astronomy, most of the objects in sky sur-
vey images are explainable by current theories and mod-
els, and only a tiny fraction of the objects may lead to
new discoveries [14]. Rare category detection is also a
bottleneck in reducing the sample complexity of active
learning [2] [5].

Despite its importance, up until now, only a few
methods have been proposed to address the rare cate-
gory detection challenge in a general setting. For ex-
ample, the method based on mixture models proposed
in [14] is among the first attempts in this direction;
in [8], the authors proposed a generic consistency al-
gorithm, and proved upper bounds and lower bounds
for this algorithm in some specific situations. Both of
the two methods require that the support regions of the
different classes be separable or near-separable to work
well. The former also needs to be given the number
of classes in the data set in order to train a reasonable
mixture model [14]. More recently, in [10], the authors
proposed NNDM algorithm for rare category detection,
which is essentially a local-density-differential-sampling
strategy. Different from the above two methods, NNDM
does not depend on the separability assumption. In [11],
the authors generalize the theoretical results for the bi-
nary case in [10] to the cases where we have multiple
rare classes. However, NNDM needs to be given the
number of classes as well as the proportion of the differ-
ent classes in the data set, which is unrealistic in many
real applications.

In this paper, we focus on the more challenging
case where we do not have any prior information about
the data set. The proposed method, SEmiparamet-
ric Density Estimation based Rare category detection
(SEDER), implicitly performs semiparametric density
estimation using specially designed exponentially fami-



lies, and selects the examples with the largest norm of
the gradients for labeling by the oracle. In this way, it
focuses on the areas with the maximum change in the
local density. Different from existing methods, SEDER
does not require any prior information about the data
set. Therefore, it is more suitable for real applications.

The rest of the paper is organized as follows. In
Section 2, we introduce the specially designed exponen-
tially families used in SEDER, and derive the scoring
function. The complete algorithm of SEDER is pre-
sented in Section 3. In Section 4, we compare SEDER
with state-of-the-art techniques on both synthetic and
real data sets. Finally, we conclude the paper in Section
5.

2 Semiparametric Density Estimation for Rare
Category Detection.

In rare category detection, we make the following as-
sumptions: 1) the distribution of the majority classes
is sufficiently smooth; and 2) the minority classes form
compact clusters in the feature space. An example of
the underlying distribution where these assumptions are
satisfied is shown in Figure 1. Note that these assump-
tions are much more realistic than the separable/near-
separable assumption assumed in [8] [14]. Based on our
assumptions, abrupt changes in local density indicate
the presence of rare classes. By sampling in these areas,
we have high probability of finding examples from the
rare classes. Following this line of reasoning, our pro-
posed method SEDER implicitly estimates the density
using specially designed exponential families, which es-
sentially define a semiparametric model. At each data
point, we set the score to be the norm of the gradient
of the estimated density, which measures the maximum
change rate of the local density, and pick the examples
with the largest scores to be labeled by the oracle. Al-
though the intuition of SEDER and NNDM [10] is quite
similar: to pick the examples with the maximum change
in the local density, NNDM is a nearest-neighbor-based
method, it depends on the proportion of different classes
to set the size of the neighborhood, and the scores of the
examples roughly indicate the change in the local den-
sity; whereas SEDER is based on semiparametric den-
sity estimation, it is prior-free, i.e. it does not require
any prior information about the data set, and the scores
measure exactly the maximum change rate in the local
density.

In this section, we first define some notations in
subsection 2.1, and then introduce the specially de-
signed exponential families in subsection 2.2. Finally
we present the scoring function in subsection 2.3.

2.1 Notation. In rare category detection, we are
given a set of unlabeled examples S = {x1, . . . , xn},
xi ∈ Rd, which come from m distinct classes, i.e.
yi ∈ {1, . . . , m}, ∀i ∈ {1, . . . , n}. Without loss of
generality, assume that

∑n
i=1 xi = ~0 and 1

n

∑n
i=1 x2

i = 1.
The proportion of some classes is much smaller than
that of the other classes. They are the so-called rare
classes. Table 1 summarizes the notations used in this
paper. Our goal is to request as few total labels as
possible in order to find at least one example from each
class, especially those rare classes which are of particular
interest to us.

Table 1: Notations

Symbol Definition
S The set of unlabeled examples
n The number of examples in S
m The number of classes in S
xi The ith unlabeled example
xj

i The jth feature of xi

d The dimensionality of the feature space
yi The class label of xi

gβ(x) The density defined by specially designed
exponential families

g0(x) The carrier density
β0 The normalizing parameter in gβ(x)

t(x) The p× 1 vector of sufficient statistics
tj(x) The jth component of t(x)
β1 The p× 1 parameter vector
βj

1 The jth component of β1

σj The bandwidth for the jth feature
β (β1, β0)
β̂ The maximum likelihood estimate of β

l(β) The log-likelihood of the data
gj

β(xj) The marginal distribution of the jth feature
based on gβ(x)

gj(xj) The true marginal distribution of the jth

feature
bj Positive parameter which is a function of βj

1

b̂j The maximum likelihood estimate of bj

A 1
n

∑n
k=1

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)(xj

i )
2

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)

B (σj)2

C 1
n

∑n
k=1(x

j
k)2

Di(x) 1
n

∏d
j=1

1√
2πbjσj

exp(− (xj−bjxj
i )

2

2(σj)2bj )
si The score of xi



2.2 Specially Designed Exponential Families.
Traditional density estimation methods belong to two
categories [7]: by fitting a parametric model via maxi-
mum likelihood, or by nonparametric methods such as
kernel density estimation. For the purpose of rare cat-
egory detection, parametric models are not appropriate
since we can not assume a specific form of the underly-
ing distribution for a given data set. On the other hand,
the estimated density based on nonparametric methods
tends to be under-smoothed, and the examples from
rare classes will be buried among numerous spikes in
the estimated density.

As proposed in [7], these two kinds of methods can
be combined by putting an exponential family through a
kernel density estimator, the so-called specially designed
exponential families. It is a favorably compromise be-
tween parametric and nonparametric density estima-
tion: the nonparametric smoother allows local adapta-
tion to the data, while the exponential term matches
some of the data’s global properties, and makes the
density much smoother [7]. To be specific, the esti-
mated density gβ(x) = g0(x) exp(β0+βT

1 t(x)) [7]. Here,
x ∈ Rd, g0(x) is a carrier density, t(x) is a p×1 vector of
sufficient statistics, β1 is a p×1 parameter vector, and β0

is a normalizing parameter that makes gβ(x) integrate
to 1. In our application, we use the kernel density esti-
mator with the Gaussian kernel as the carrier density,
i.e. g0(x) = 1

n

∑n
i=1

∏d
j=1

1√
2πσj

exp(− (xj−xj
i )

2

2(σj)2 ), where

xj is the jth feature of x, xj
i is the jth feature of the ith

data point, and σj is the bandwidth for the jth feature.
In SEDER, σj is determined by cross validation [15] on
the jth feature. Here, the parameters β = (β1, β0) can
be estimated according to the following theorem.

Theorem 2.1. The maximum likelihood estimate β̂ of
β satisfies the following conditions [7]: ∀j ∈ {1, . . . , p}

∫

x1
· · ·

∫

xd

tj(x)gβ̂(x)dxd · · · dx1 =
1
n

n∑

i=1

tj(xi)

where tj(x) is the jth component of the vector t(x).

Proof Firstly, notice that β0 is a normalizing
parameter that makes gβ(x) integrate to 1, i.e.

β0 = − log
∫

x1
· · ·

∫

xd

g0(x) exp(βT
1 t(x))dxd · · · dx1

Therefore, ∀j ∈ {1, . . . , p}

∂β0

∂βj
1

= −
∫

x1 · · ·
∫

xd tj(x)g0(x) exp(βT
1 t(x))dxd · · · dx1

∫
x1 · · ·

∫
xd g0(x) exp(βT

1 t(x))dxd · · · dx1

= −
∫

x1
· · ·

∫

xd

tj(x)g0(x) exp(β0 + βT
1 t(x))dxd · · · dx1

= −
∫

x1
· · ·

∫

xd

tj(x)gβ(x)dxd · · · dx1

where βj
1 is the jth component of the vector β1.

Secondly, the log-likelihood of the data is
l(β) =

∑n
i=1 log(gβ(xi)) =

∑n
i=1 log(g0(xi)) + nβ0 +∑n

i=1 βT
1 t(xi). Taking the partial derivative of l(β) with

respect to βj
1, we have:

∂l(β)
∂βj

1

= n
∂β0

∂βj
1

+
n∑

i=1

tj(xi)

= −n

∫

x1
· · ·

∫

xd

tj(x)gβ(x)dxd · · · dx1 +
n∑

i=1

tj(xi)

Setting the partial derivative to 0, we have that
the maximum likelihood estimate β̂ of β satisfies∫

x1 · · ·
∫

xd tj(x)gβ̂(x)dxd · · · dx1 = 1
n

∑n
i=1 tj(xi), ∀j ∈

{1, . . . , p}.¥
In SEDER, we set the vector of sufficient statistics

to be t(x) = [(x1)2, . . . , (xd)2]T 1. If we estimate the
parameters according to Theorem 2.1, different param-
eters will be coupled due to the normalizing parameter
β0. Let βj

1 be the jth component of the vector β1. In or-
der to de-couple the estimation of different βj

1s, we make
the following changes. Firstly, we decompose β0 into βj

0s
such that

∑d
j=1 βj

0 = β0, then gβ(x) can be seen as a ker-
nel density estimator with a ‘special’ kernel, i.e. gβ(x) =
1
n

∑n
i=1

∏d
j=1[

1√
2πσj

exp(− (xj−xj
i )

2

2(σj)2 ) exp(βj
0 + βj

1(x
j)2)].

Next, we relax the constraint on βj
0s, and let them de-

pend on xj
i in such a way that

∫

xj

1√
2πσj

exp(− (xj − xj
i )

2

2(σj)2
)(2.1)

exp(βj
0i + βj

1(x
j)2)dxj = 1

where βj
0i implies the dependence of βj

0 on xj
i . In this

1Note that the following analysis also applies to other forms
of the sufficient statistics, such as t(x) = [x1, . . . , xd]T . In all
our experiments, the second order sufficient statistics perform the
best. So we use this form in SEDER.



way, the marginal distribution of the jth feature is

gj
β(xj)

=
∫

x1
· · ·

∫

xj−1

∫

xj+1
· · ·

∫

xd

gβ(x)dxd · · · dxj+1

dxj−1 · · · dx1

=
1
n

n∑

i=1

{ 1√
2πσj

exp(− (xj − xj
i )

2

2(σj)2
) exp(βj

0i + βj
1(x

j)2)·

∏

k 6=j

∫

xk

1√
2πσk

exp(− (xk − xk
i )2

2(σk)2
) exp(βk

0i + βk
1 (xk)2)dxk}

=
1
n

n∑

i=1

1√
2πσj

exp(− (xj − xj
i )

2

2(σj)2
) exp(βj

0i + βj
1(x

j)2)

To estimate the parameters in our current model, we
have the following theorem.

Theorem 2.2. The maximum likelihood estimates β̂j
1

and β̂j
0i of βj

1 and βj
0i satisfy the following conditions:

∀j ∈ {1, . . . , d}

n∑

k=1

(xj
k)2 =(2.2)

n∑

k=1

∑n
i=1 exp(β̂j

0i − (xj
k−xj

i )
2

2(σj)2 )Ej
i ((xj)2)

∑n
i=1 exp(β̂j

0i − (xj
k−xj

i )
2

2(σj)2 )

where Ej
i ((xj)2) =

∫
xj (xj)2 1√

2πσj
exp(− (xj−xj

i )
2

2(σj)2 )

exp(β̂j
0i + β̂j

1(x
j)2)dxj.

Proof First of all, according
to Equation (2.1), we have βj

0i =

− log
∫

xj
1√

2πσj
exp(− (xj−xj

i )
2

2(σ)2 ) exp(βj
1(x

j)2)dxj .
Therefore,

∂βj
0i

βj
1

= −
∫

xj
1√

2πσj
exp(− (xj−xj

i )
2

2(σ)2 ) exp(βj
1(x

j)2)(xj)2dxj

∫
xj

1√
2πσj

exp(− (xj−xj
i )

2

2(σ)2 ) exp(βj
1(xj)2)dxj

= −
∫

xj

1√
2πσj

exp(− (xj − xj
i )

2

2(σj)2
)

exp(βj
0i + βj

1(x
j)2)(xj)2dxj

= −Ej
i ((xj)2)

Then the log-likelihood of the data on the jth

component is

l(βj
1) =

n∑

k=1

log(gj
β(xj

k))

=
n∑

k=1

log(
1
n

n∑

i=1

1√
2πσj

exp(− (xj
k − xj

i )
2

2(σj)2
)·

exp(βj
0i + βj

1(x
j
k)2))

=
n∑

k=1

log(
1

n
√

2πσj
exp(βj

1(x
j
k)2)·

n∑

i=1

exp(− (xj
k − xj

i )
2

2(σj)2
) exp(βj

0i))

Taking the partial derivative of l(βj
1) with respect

to βj
1, we have:

∂l(βj
1)

∂βj
1

=
n∑

k=1

(xj
k)2 +

n∑

k=1

∑n
i=1 exp(βj

0i − (xj
k−xj

i )
2

2(σj)2 )∂βj
0i

∂βj
1∑n

i=1 exp(βj
0i − (xj

k−xj
i )

2

2(σj)2 )

=
n∑

k=1

(xj
k)2 −

n∑

k=1

∑n
i=1 exp(βj

0i − (xj
k−xj

i )
2

2(σj)2 )Ej
i ((xj)2)

∑n
i=1 exp(βj

0i − (xj
k−xj

i )
2

2(σj)2 )

Setting the partial derivative to 0, we
have that the maximum likelihood estimate β̂j

1

and β̂j
0i of βj

1 and βj
0i satisfy

∑n
k=1(x

j
k)2 =

∑n
k=1

∑n
i=1 exp(β̂j

0i−
(x

j
k
−x

j
i
)2

2(σj)2
)Ej

i ((xj)2)

∑n
i=1 exp(β̂j

0i−
(x

j
k
−x

j
i
)2

2(σj)2
)

.¥

Notice that according to Theorem 2.2, βj
1s can

be estimated separately, which greatly simplifies our
problem. At the first glance, Equation (2.2) is hard
to solve. Next, we let βj

1 = (1− 1
bj ) 1

2(σj)2 , where bj 6= 1
is a positive parameter, the introduction of which will
simplify this equation. According to Equation (2.1), βj

0i

can be expressed in terms of bj , i.e.

βj
0i = − log

∫

xj

1√
2πσj

exp(− (xj − xj
i )

2

2(σj)2
+ βj

1(x
j)2)dxj

= − log
∫

xj

1√
2πσj

exp(− (xj)2 + bj(xj
i )

2 − 2bjxjxj
i

2(σj)2bj
)dxj

=
(1− bj)(xj

i )
2

2(σj)2
− 1

2
log bj

Therefore, the estimated density becomes

(2.3) g̃b(x) =
1
n

n∑

i=1

d∏

j=1

1√
2πbjσj

exp(− (xj − bjxj
i )

2

2(σj)2bj
)

Replacing β̂j
1 and β̂j

0i with functions of b̂j (the
maximum likelihood estimate of bj) in the definition



of Ej
i ((xj)2), we have Ej

i ((xj)2) = b̂j(σj)2 + (b̂j)2(xj
i )

2,
and Equation (2.2) becomes

n∑

k=1

(xj
k)2 = nb̂j(σj)2+

(b̂j)2
n∑

k=1

∑n
i=1 exp( (1−b̂j)(xj

i )
2

2(σj)2 − (xj
k−xj

i )
2

2(σj)2 )(xj
i )

2

∑n
i=1 exp( (1−b̂j)(xj

i )
2

2(σj)2 − (xj
k−xj

i )
2

2(σj)2 )

In general, the value of β̂j
1 is very close to 0, and

gβ̂(x) is a smoothed version of g0(x). Therefore, b̂j

should be close to 1, and we can re-write the above
equation as follows.

1
n

n∑

k=1

(xj
k)2 ≈ b̂j(σj)2+(b̂j)2

1
n

n∑

k=1

∑
i exp(− (xj

k−xj
i )

2

2(σj)2 )(xj
i )

2

∑
i exp(− (xj

k−xj
i )

2

2(σj)2 )

This is a second-degree polynomial equation of
b̂j , and the roots can be easily obtained by Vieta’s
theorem2, i.e. ∀j ∈ {1, . . . , d}

(2.4) b̂j =
−B +

√
B2 + 4AC

2A

where A = 1
n

∑n
k=1

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)(xj

i )
2

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)

, B = (σj)2,

and C = 1
n

∑n
k=1(x

j
k)2.

Theorem 2.3. Let gj(xj) be the true density for the

jth feature. If 1
n

∑n
i=1

xj
i

gj(xj
i )
· dgj(xj

i )

dxj
i

≥ −1 + O(1), then

b̂j ≤ 1 and β̂j
1 ≤ 0.

Proof For the sake of simplicity, let z =
xj , h = σj , and f(z) = gj(xj). Then A =

1
n

∑n
k=1

∑n
i=1 exp(− (zk−zi)

2

2h2 )(zi)
2

∑n
i=1 exp(− (zk−zi)

2

2h2 )
, B = h2, and C =

1
n

∑n
k=1(zk)2. Consider the following regression prob-

lem where the true regression function r(z) = z2, the
noise has mean 0, and we use kernel regression to es-
timate this function. Then A − C is the bias of ker-
nel regression on the training data, i.e. A − C =
1
n

∑n
i=1 h2(1

2r′′(zi)+
r′(zi)f

′(zi)
f(zi)

)
∫

z2k(z)dz+O(h2) [17],
where k(z) is the Gaussian kernel used in kernel regres-
sion, i.e. k(z) = 1√

2π
exp(− z2

2 ). Therefore, A − C =

h2 + h2

n

∑n
i=1

2zif
′(zi)

f(zi)
+ O(h2), and A + B − C ≥ 0 if

and only if 1
n

∑n
i=1

zif
′(zi)

f(zi)
≥ −1 + O(1). Given that

2Note that the other root
−B−

√
B2+4AC
2A

is disregarded since
it is negative.

A+B−C ≥ 0, we can show that b̂j = −B+
√

B2+4AC
2A ≤

−B+
√

B2+4A(A+B)

2A = 1, and β̂j
1 = (1− 1

b̂j
) 1
2(σj)2 ≤ 0.¥

At the beginning of Section 2, we have made
the following assumptions: 1) the distribution of the
majority classes is sufficiently smooth; and 2) the
minority classes form compact clusters in the feature
space. In this case, the first order derivative of the
density would be close to 0 for most examples, and
have large absolute values for a few examples near the
rare classes. Therefore, the condition in Theorem 2.3 is
always satisfied, and the exponential term appended to
the carrier density decreases away from the origin.

2.3 Scoring Function. Once we have estimated all
the parameters using Equation (2.4), we can measure
the change in the local density at each data point based
on the estimated density in Equation (2.3). Note that
at each data point, if we pick a different direction, the
change in local density would be different. In SEDER,
we measure the change along the gradient, which gives
the maximum change at each data point.

Theorem 2.4. Using the estimated density in Equa-
tion (2.3), ∀x ∈ Rd, the maximum change rate of

the density at x is
√∑d

l=1
(
∑n

i=1 Di(x)(xl−blxl
i))

2

((σl)2bl)2
, where

Di(x) = 1
n

∏d
j=1

1√
2πbjσj

exp(− (xj−bjxj
i )

2

2(σj)2bj ) is the contri-
bution of xi to the estimated density at x.

Proof of ∀x ∈ Rd, let the gradient vector be
w ∈ Rd. We have ∀l ∈ {1, . . . , d}

wl =
∂g̃b(x)

∂xl
=

1
n

n∑

i=1

(−xl − blxl
i

(σl)2bl
)

d∏

j=1

exp(− (xj−bjxj
i )

2

2(σj)2bj )
√

2πbjσj

= −
n∑

i=1

Di(x)(xl − blxl
i)

(σl)2bl

where wl is the lth component of w.
Therefore, the maximum change rate of the density

at x is

‖w‖2 =

√√√√
d∑

l=1

(−
n∑

i=1

Di(x)(xl − blxl
i)

(σl)2bl
)2

=

√√√√
d∑

l=1

(
∑n

i=1 Di(x)(xl − blxl
i))2

((σl)2bl)2
¥

If the distribution of the majority classes is suffi-
ciently smooth, and the minority classes form compact
clusters in the feature space, the minority classes are
always located in the regions where the density changes



the most. Therefore, in SEDER, to discover the rare
classes, we set the score of each example to be the max-
imum change rate of the density at this example, i.e.
∀k ∈ {1, . . . , n}

(2.5) sk =

√√√√
d∑

l=1

(
∑n

i=1 Di(xk)(xl
k − blxl

i))2

((σl)2bl)2

where sk is the score of xk. We pick the examples with
the largest scores for labeling until we find at least one
example from each class.

3 Algorithm.

The intuition of SEDER is to select the examples with
the maximum change in the local density for labeling
by the oracle. As introduced in subsection 2.3, the
scores of the examples measure the maximum change
rate in the local density, and they do not take into
account the fact that nearby examples tend to have
the same class label. Therefore, if we ask the oracle
to label all the examples with large scores, we may
repeatedly select examples from the most distinctive
rare class, rather than discovering all the rare classes.
To address this problem in SEDER, we make use of
the following heuristic: if xi ∈ S has been labeled,
∀xk ∈ S, xk 6= xi, if ∀j ∈ {1, . . . , d}, |xj

i −xj
k| ≤ 3σj , we

would preclude xk from being selected. In other words,
if an unlabeled example is very close to a previously
labeled one, it is quite likely that the labels of the two
examples are the same, and labeling that example will
not have a high probability of detecting a new rare
class. The size of the neighborhood is set to 3σj such
that the estimated density for the examples outside this
neighborhood using Gaussian kernel is hardly affected
by the labeled example. It should be pointed out that
the feedback strategy is orthogonal to the remaining
parts of the proposed algorithm. In our experiments,
we find that despite its simplicity, the current strategy
leads to satisfactory performance.

The proposed method, SEDER, is summarized in
Algorithm 1. It works as follows. Firstly, we initialize
the set I of selected examples and the set L of their
labels to empty sets. Then step 2 to step 5 calculate
the parameters in our model. Step 6 to step 8 calculate
the score for each example in S. Finally, step 9 to step
13 gradually include the example with the maximum
score into I and its label into L until we run out of the
labeling budget. In each round, the selected example
should be far away from all the labeled examples.

Note that: 1) unlike the methods proposed
in [10] [14], SEDER does not need to be given the num-
ber of classes in S or any other information, hence it is
more suitable for real applications; 2) in SEDER, we do

Algorithm 1 SEmiparametric Density Estimation
based Rare category detection (SEDER)
Input: Unlabeled data set S
Output: The set I of selected examples and the set L

of their labels
1: Initialize I = φ and L = φ.
2: for j = 1 : d do
3: Calculate the bandwidth σj using cross valida-

tion [15].
4: Calculate the maximum likelihood estimate b̂j of

the parameter bj according to Equation (2.4).
5: end for
6: for i = 1 : n do
7: Calculate the score si of the ith example according

to Equation (2.5) using the estimated parameters.
8: end for
9: while the labeling budget is not exhausted do

10: Set S′ = {x|x ∈ S,∀i ∈ I,∃j ∈
{1, . . . , d}, s.t. |xj − xj

i | > 3σj}
11: Query x = argmaxxi∈S′si for its label yx

12: I = I ∪ {x}, L = L ∪ {yx};
13: end while

not need to explicitly calculate the density at each ex-
ample; 3) SEDER does not depend on the assumption
that different classes be separable or near-separable.

4 Experimental Results.

In this section, we compare SEDER with NNDM [10],
Interleave (the best method proposed in [14]), random
sampling (RS) and SEDER with bj = 1 for j = 1, . . . , d
(abbreviated as Kernel, which is equivalent to using
kernel density estimator to estimate the density and
to get the scores) on both synthetic and real data
sets. For this purpose, we run these methods until all
the classes have discovered, and compare the number
of label requests by each method in order to find a
certain number of classes. Note that SEDER, NNDM
and Kernel are deterministic, whereas the results for
Interleave and random sampling are averaged over 100
runs.

Here we would like to emphasize that only SEDER,
RS and Kernel do not need any prior information about
the data set, whereas NNDM and Interleave need extra
information about the data set as inputs, such as the
number of classes and the proportion of the different
classes. When such prior information is not available,
which is quite common in real applications, NNDM and
Interleave are not applicable.

4.1 SYNTHETIC DATA SETS Figure 1(a)
shows the underlying distribution of a 1-dimensional



synthetic data set. The majority class with 2000 exam-
ples has a Gaussian distribution with a large variance;
whereas the minority classes with 50 examples each cor-
respond to the two lower-variance peaks. As can be
seen from this figure, the first two examples selected by
SEDER (red stars) are both from the regions where the
density changes the most.

Figure 1(b) shows a 2-dimensional synthetic data
set. The majority class has 2000 examples (blue dots)
with a Gaussian distribution. The four minority classes
(black circles) all have different shapes, and each has
267, 280, 84 and 150 examples respectively. This data
set is similar to the one used in [11]. To discover all
the classes, SEDER only needs to label 6 examples,
which are represented by red stars in the figure; whereas
random sampling needs to label more than 50 examples
on average.
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Figure 1: Synthetic data sets: red stars represent the
examples selected by SEDER

4.2 REAL DATA SETS In this subsection, we
present the experimental results on some real data sets.
The properties of the data sets are summarized in Table
2. Notice that all these data sets are skewed: the

proportion of the smallest class is less than 5%. For the
last three data sets (Page Blocks, Abalone and Shuttle),
it is even less than 1%. We refer to these three data sets
as ‘extremely’ skewed; whereas the remaining two data
sets (Ecoli and Glass) are referred to as ‘moderately’
skewed.

Table 2: Properties of the data sets used

Data Set n d m Largest Smallest
Class Class

Ecoli [1] 336 7 6 42.56% 2.68%
Glass [1] 214 9 6 35.51% 4.21%

Page Blocks [1] 5473 10 5 89.77% 0.51%
Abalone [1] 4177 7 20 16.50% 0.34%
Shuttle [4] 4515 9 7 75.53% 0.13%

First, let us focus on the ‘moderately’ skewed data
sets, which are shown in Figure 2. With Ecoli data
set, to discover all the classes, NNDM needs 36 label
requests, Interleave needs 41 label requests on average,
RS needs 43 label requests on average, Kernel needs
78 label requests, and SEDER only needs 20 label
requests; with Glass data set, to discover all the classes,
NNDM needs 18 label requests, Interleave needs 24
label requests on average, RS needs 31 label requests on
average, Kernel needs 102 label requests, and SEDER
needs 22 label requests. Therefore, if the data set
is ‘moderately’ skewed, the performance of SEDER is
better than or comparable with NNDM, which requires
more prior information than SEDER, including the
number of classes in the data set and the proportion
of the different classes.

Next, let us look at the ‘extremely’ skewed data sets.
For example, in Shuttle data set, the largest class has
580 times more examples than the smallest class. With
Page Blocks data set (Figure 3(a)), to discover all the
classes, SEDER needs 36 label requests, NNDM needs
23 label requests, Interleave needs 77 label requests
on average, RS needs 199 label requests on average,
and Kernel needs more than 1000 label requests; with
Abalone data set (Figure 3(b)), to discover all the
classes, SEDER needs 316 label requests, NNDM needs
179 label requests, Interleave needs 333 label requests
on average, RS needs 483 label requests on average3,
and Kernel needs more than 1000 label requests; with
Shuttle data set (Figure 3(c)), to discover all the classes,

3Note that with Abalone data set, the results of NNDM and
Interleave are slightly different from [10]. This is due to the effect
of normalization on the data.
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Figure 2: Real data sets: ‘moderately’ skewed

SEDER needs 249 label requests, NNDM needs 87 label
requests, Interleave needs 140 label requests on average,
RS needs 512 label requests on average, and Kernel
needs more than 1000 label requests.

Based on the above results, we have the following
observations. First, SEDER, RS and Kernel require no
prior information about the data set, and yet SEDER
is significantly better than RS and Kernel in all the
experiments. Second, if the data is not separable, the
performance of Interleave is worse than SEDER (except
Figure 3(c)), even though it is given the additional
information about the number of classes in the data
set. Finally, although NNDM is better than SEDER for
the ‘extremely’ skewed data sets, in real applications, it
is very difficult to estimate the number of classes in the
data set, not to mention the proportion of the different
classes. If the information provided to NNDM is not
accurate enough, the performance of NNDM may be
negatively affected. Moreover, when such information
is not available, NNDM is not applicable at all.

5 Conclusion.

In this paper, we have proposed a new method for rare
category detection named SEDER, which requires no
prior information about the data set. It implicitly esti-
mates the density using specially designed exponential
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Figure 3: Real data sets: ‘extremely’ skewed

families, which is essentially a semiparametric approach,
and selects examples with the maximum norm of the
gradient in the estimated density for labeling by an or-
acle.

To the best of our knowledge, SEDER is the first
method tailored for the very challenging case where
no prior information about the data set is available.
Therefore, we expect it be more suitable for many real
applications. The proposed method is based on sound
theoretical analysis and its effectiveness is demonstrated
by extensive experimental evaluations.
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