Learning Preferences with Millions of Parameters by Enforcing Sparsity

Xi Chen M@ Bing Bail")

()NEC Labs America, Princeton, NJ
{bbai, yanjun}@nec-labs.com

Abstract—We study the retrieval task that ranks a set of
objects for a given query in the pairwise preference learning
framework. Recently researchers found out that raw features
(e.g. words for text retrieval) and their pairwise features which
describe relationships between two raw features (e.g. word
synonymy or polysemy) could greatly improve the retrieval
precision. However, most existing methods can not scale up to
problems with many raw features (e.g. English vocabulary),
due to the prohibitive computational cost on learning and
the memory requirement to store a quadratic number of
parameters. In this paper, we propose to learn a sparse
representation of the pairwise features under the preference
learning framework using the L1 regularization. Based on
stochastic gradient descent, an online algorithm is devised to
enforce the sparsity using a mini-batch shrinkage strategy.
On multiple benchmark datasets, we show that our method
achieves better performance with fast convergence, and takes
much less memory on models with millions of parameters.

Keywords-preference learning; sparse model; online learning;
learning to rank; text mining

I. INTRODUCTION

Learning preferences among a set of objects (e.g. doc-
uments) given another object as query is a central task
of information retrieval and text mining. One of the most
natural frameworks for this task is the pairwise preference
learning, expressing that one document is preferred over
another given the query [1]. Most existing methods [2] learn
the preference or relevance function by assigning a real
valued score to a feature vector describing a (query, object)
pair. This feature vector normally includes a small number of
hand-crafted features, such as the BM25 scores for the title
or the whole text, instead of the very natural raw features [3].
A drawback of using hand-crafted features is that they are
often expensive and specific to datasets, requiring domain
knowledge in preprocessing. In contrast, the raw features
are easily available, and carry strong semantic information
(such as word features in text mining).

In this paper we study a basic model presented in [4],
[5] which uses the raw word features under the supervised
pairwise preference learning framework and consider feature

Yanjun QiV)

Qihang Lin® Jaime Carbonell®

(2) Carnegie Mellon University, Pittsburg, PA
{xichen, gihangl, jgc}Qcs.cmu.edu

relationships in the model'. To be specific, let D be the
dictionary size, i.e. the size of the query and document
feature set?, given a query ¢ € R” and a document d € RP,
the relevance score between ¢ and d is modeled as:

f(g,d) :qTWd:ZWij(p(indj)a (1)
i,

where ®(g;,d;) = g¢; - d; and W;; models the rela-
tionship/correlation between i*" query feature ¢; and j**
document feature d;. This is essentially a linear model
with pairwise features ®(-,-) and the parameter matrix
W € RP*P is learned from labeled data. Compared to most
of the existing models, the capacity of this model is very
large because of the D? free parameters which can carefully
model the relationship between each pair of words. From a
semantic point of view, a notable superiority of this model
is that it can capture synonymy and polysemy as it looks at
all possible cross terms, and can be tuned directly for the
task of interest.

Although it is very powerful, the basic model in Eq. (1)
suffers from the following weakness which hinders its wide
application:

1) Memory issue: Given the large dictionary size D, it
requires a huge amount of memory to store the W
matrix with a size quadratic in D. When D = 10, 000,
storing W needs nearly 1Gb of RAM (assuming
double); when D = 30, 000, it requires 8Gb of RAM.

2) Generalization ability: Given D? free parameters (en-
tries of W), when the number of training samples is
limited, it can easily lead to overfitting. Considering
the dictionary with the size D = 10,000, we have
D? = 10® free parameters that need to be estimated
which is far too many for small corpora.

To address the above weakness, we propose to constrain
W to be a sparse matrix with many zero entries for the pairs
of words which are irrelevant for the preference learning
task. If W is a highly sparse matrix, then it consumes

IFor the sake of clarity, we present the model in a text retrieval scenario.
We use the term “words” for features, and “query” and “documents” for
data instances, depending on their roles.

2In our model and algorithm, there is no need to restrict that query g
and document d have the same feature size D; however we make this
assumption for simplicity of explanation.

much less memory and has only a limited number of free
parameters to be estimated. In other words, a sparse W
matrix will allow us to greatly scale up the dictionary size
to model those non-frequent words which are often essential
for the preference ordering. In addition, we can have faster
and more scalable learning algorithm since most entries of
W are zeros so that those multiplications can be avoided.
Another advantage of learning a sparse representation of W
is its good interpretability. The zero W;; indicate that i
query feature and j** document feature are not correlated
to the specific task. A sparse W matrix will accurately
capture correlation information between pairs of words and
the learned correlated word pairs could explain the semantic
rationale behind the preference ordering.

In order to enforce the sparsity on W, inspired by the
success of the sparse linear regression model—*lasso” [6],
we impose the entry-wise ¢; regularization on W. It has
been shown theoretically that under certain conditions, ¢;
regularization can correctly uncover the underlying ground
truth sparsity pattern [7].

A practical challenge in using the ¢; regularized model
is to develop an efficient and scalable learning algorithm.
Since in many preference learning related applications (e.g.
search engine), the model needs to be trained in a timely
fashion and new (query, document) pairs may be added to
the repository at any time, stochastic gradient descent in
the online learning framework is the most desirable learning
method for our task [8]. To enforce the ¢; regularization,
based on [9], we propose to perform a mini-batch shrinking
step for every T iterations in the stochastic gradient descent
which can lead to the sparse solution. Moreover, to reduce
the additional bias introduced by the /; regularization, we
further propose a refitting step which can improve the
preference prediction while keeping the learned sparsity
pattern.

The key idea of this paper is that: learning on a large
number of corpus-independent raw features, or even on
combinations of such features, is not impossible. Although
the number of involved parameters is intimidatingly large,
using sparsity as a powerful tool, the model can be well
controlled and efficiently learned. We believe these ideas
form a fresh perspective and will benefit many other retrieval
related tasks as well.

II. BASIC MODEL

Let us denote the set of documents in the corpus as
{dF K | C RP and the query as ¢ € RP, where D is the
dictionary size, and the j*"* dimension of a document/query
vector indicates the frequency of occurrence of the 5 word,
e.g. using the tf-idf weighting and then normalizing to unit
length [10].

Given a query ¢ and a document d, we wish to learn a
scoring function f (g, d) that measures the relevance of d to
q. In this paper, we assume that f is a linear function which

takes the form of Eq. (1). Each entry of W represents a
“relationship” between a pair of words.

A. Margin Rank Loss

Suppose we are given a set of tuples R (labeled data),
where each tuple contains a query ¢, a preferred document
d* and an unpreferred (or lower ranked) document d~. We
would like to learn a W such that ¢' WdT > ¢ Wd~,
making the right preference prediction.

For that purpose, given tuple (q,d™,d™), we employ the
widely adopted margin rank loss [11]:

Lw(q,d",d™) = h(¢"Wd"t —¢"Wd™))

= max(0,1 — ¢"Wd" +¢"Wd"),
where h(x) = max(0,1 — x) is the well-known hinge loss
function as adopted in SVM.

Our goal is to learn the W matrix which minimize the
loss in Eq. (2) summing over all tuples (q,d™,d™) in R:

1
W* = arg min —- Lw(q,d",d7). (3)
R 2

¢,dT,d7)eER

B. Stochastic Subgradient Descent

In general, the size of R is very large and new tuples
may be added to R in a streaming manner, which makes
it difficult to directly train the objective in Eq. (3). To
overcome this challenge, we adopt stochastic (sub)gradient
descent (SGD) in an online learning framework [12],

Specifically, at each iteration, we randomly draw a
sample (¢,d*,d~) from R, compute the subgradient® of
Ly (q,d*,d ™) with respect to W as following:

vLW (Q7 d+7 d_)

—q(dt —d)T if "Wt —-d7) <1 @
1o otherwise ’

and then update the W matrix accordingly. It has been shown
that SGD achieves fast learning on large scale datasets [8].
We suggest to initialize W to the identity matrix as
this initializes the model to the same solution as a cosine
similarity score. The strategy introduces a prior expressing
that the weight matrix should be close to the identity matrix.
We consider term correlations only when it is necessary to
increase the score of a relevant document, or conversely,
decrease the score of a irrelevant document. As for the
learning rate 7., we suggest to adopt a decaying learning
rate: 1y = %, where C' is a pre-defined constant as the
initial learning rate. Intuitively, it should be better than the
fixed learning rate since at the beginning, when W is far
away from the optimal solution W*, a larger learning rate
is desirable since it leads to a significant decrease of the
objective value. On the other hand, when W gets close
to W*, a smaller rate should be adopted to avoid missing
the optimal solution. We will show the advantage of the

3Since L is a non-smooth function, it does not have the gradient but only
has the subgradient.

decaying learning rate scheme over the fixed one in the
experiment section.

III. PREFERENCE LEARNING WITH SPARSITY

As discussed in the introduction, the model and the
learning algorithm in the previous section will lead to a
dense W matrix which consumes a large amount of memory
and has poor generalization ability for small corpora. To
address these problems, we can learn a sparse model with
a small number of nonzero entries of W. In order to obtain
a sparse W, inspired by [6], we add an entry-wise ¢; norm
to the W as a regularization term to the loss function. We
propose to optimize the following objective function:

1
W :argmin% Z L (q,d™,d™) + AW,
wo [R] (g.d+,d=)ER

&)
where || = ijzl |W,;| is the entry-wise ¢; norm
of W and A is the regularization parameter which controls
the sparsity level (the number of nonzero entries) of . In
general, a larger A leads to a more sparse W. On the other
hand, a too sparse W will miss some useful relationship
information among word pairs (considering diagonal W as
an extreme case). Therefore, in practice, we need to tune A

to obtain a W with a suitable sparsity level.

A. Training the Sparse Model

To optimize Eq. (5), we adopt a variant of the general
sparse online learning scheme in [9]. In [9], after updating
W at each iteration in SGD, a shrinkage step is performed
by solving the following optimization problem:

. 1
w' = arg min SIW = WG+ [Wik, ()

and then use W as the starting point for the next iteration.
In Eq. 6, || - || denote the matrix Frobenius norm and 7
is the decaying learning rate for the ¢! iteration. According
to the next proposition, we know that performing (6) will
shrink those W}, with an absolute value less than A7 to
zero and hence lead to a sparse W matrix.

Proposition 1. The solution W to the optimization problem
in Eq. (6) takes the following form:

N Wh+ X g, if W < =,
W =140 if =g <WE <M ()
Wi =g, it W > g

Although performing the shrinkage step leads a sparse
W solution, it is very expensive for a large dictionary size
D. For example, when D = 10,000, we need D2 =108
operations. Therefore, we suggest to perform the shrinkage
step for every T iteration cycles. In general, a smaller T’
guarantees that the shrinkage step can be done in a timely
fashion so that the entries of W will not grow too large to
produce inaccurate V Ly (q,d",d™); on the other hand, a

smaller T increases the computational cost of the training
process. In practice, we suggest to set 7' = 100. The details
of the algorithm are presented in Algorithm 1.

Note that when t is a multiple of 7, we perform the
shrinkage step with a cumulative regularization parameter
for ||[W||; from ¢t —T +1 to ¢:)\ZZ:FTH n:. The reason
why we adopt cumulative regularization parameter is due to
the following simple fact that: W7 obtained by solving a
sequence of successive optimization problems:

.1
Wt:argmlniHWth_lH%+)\77t||W||1, t=1,...T
w

is identical to the one by solving the following single
optimization problem:

T
W~ arg min %HW —Wollz + A W
t=1
The above equivalence can be easily proved using Proposi-
tion 1 as shown in [9]. Although we take the gradient update
so that Algorithm 1 is not exactly identical to the one taking
the shrinkage step at every iteration, empirically, the learned
sparse W from Algorithm 1 is a good approximation.

Algorithm 1 Sparse SGD

Initialization: W° € RP*P_ T, learning rate sequence {7 }.
Iterate for t = 1,2, ... until convergence of W?:
1) Randomly draw a tuple (¢,d",d") € R
2) Compute the subgradient of Lyye—1(q,d™,d~) with
respect to W: V Ly -1(q,d¥,d™)
3) Update W! = W' — 0,V Ly1(q,d¥,d7)
4) If (t mod T =0)

t
1
Wt:argm1n§||W—Wt||2F—|—/\ Z ne|| W1
w
k=t—T+1

B. Refitting the Sparse Model

From Eq. (7), we see that ¢; regularization will not
only shrink the weights for uncorrelated word pairs to
zero but also reduce the absolute value of the weights for
correlated word pairs. This additional bias introduced by
¢ regularization often harm the prediction performance. In
order to reduce this bias, we propose to refit the model
without ¢; regularization, but enforcing the sparsity pattern
of W obtained from Algorithm 1.

More precisely, after learning the sparse W from 1 Algo-
rithm 1, let Q\ be the indices of nonzero entries of W, i.e.
Q = {(i,5)|W;; # 0}. Given a matrix W € RP*P_ et
Pqo(W) € RPXP be the matrix defined as following:

Po(W);; = {WZ i Laea
0 if (i,5) €Q
where P, is called the projection operator which projects
W onto (.

In the refitting step, given (), we try to minimize the
following objective function:
1
W* = arg min — Z
W Rl al T er
We still adopt SGD to minimize Eq. (8), but re-
place VL (q,d%,d™) with VLp,w)(q,d",d™). Us-
ing the chain rule for subgradient, we can show that
VLp,w)(q,d™,d™) takes the following form:
VLPQ(W) (Qa d+7 d_)

_ {Pg(q(d+ —d)T) if ¢TPo(W)(dt —d) < 1

LPQ(W)(q7d+vd7)v (8)

0 otherwise

In the experiment section, we show that the prediction
performance gets improved after the refitting step.

IV. EXPERIMENT
A. Experiment Setup

Pairwise preference learning discussed in this paper be-
longs to a more general framework “Learning to rank”,
which is a key topic in the research of information retrieval
[2]. Learning to rank methods are usually evaluated using
standard benchmark data like TREC* data or LETOR [3].
However, TREC has only a limited number of queries avail-
able, which makes the training of a large number of features
very difficult. On the other hand, LETOR and most of the
other learning to rank datasets (e.g. Microsoft Learning
to Rank Datasets’, Yahoo! Learning to Rank Challenge
Datasets®) have only few hundred (or even less) features
such as BM25 or pagerank scores instead of the actual word
features, and are therefore not adequate for evaluating our
methods. It would be ideal to test the proposed method on
click-through data from web search logs, but such data are
not publicly available.

As pointed out by a seminal paper [13], preference learn-
ing and multiclass classification can be modeled in a unified
framework. It is natural to adopt the multiclass classification
(with many different classes) datasets to evaluate the our
proposed preference learning models. More precisely, we
construct training samples (q,d™,d~) € R where ¢ and
d™ are in the same class while ¢ and d~ belong to differ-
ent classes. In our experiment, we use several benchmark
multiclass classification datasets, including the text datasets
20 Newsgroups’ (20NG), RCV18[15] and digital recogni-
tion dataset MNIST®. For 20NG and RCV1, we adopt the
normalized tf-idf of the 10,000 most frequent words as the
document features. For MINST, the normalized grey scale

“http://trec.nist.gov/

Shttp://research.microsoft.com/en-us/projects/mslr/

Shttp://learningtorankchallenge.yahoo.com

"http://people.csail.mit.edu/jrennie/20Newsgroups

8We adopt the preprocessing method in [14], remove the multi-labelled
instances and result in 53 different classes.

9http://yann.lecun.com/exdb/mnist

Table I
THE STATISTICS OF THE EXPERIMENTAL DATASETS

| | 20NG [RCVI [MNIST
No. of training samples 11,314 15,564 60,000
No. of testing samples 7,532 | 518,571 10,000
No. of Classes 20 53 10
Dictionary Size D 10,000 10,000 784
No. of Free Parameters 108 108 | 614,656

pixel values are used as features. Some statistics of these
datasets are shown in Table I.

For the experiments, we use the cosine similarity as the
baseline, i.e. W = I and mainly compare the following
methods:

1) W is a diagonal matrix.

2) W is unconstrained and trained by SGD with the fixed
learning rate n = 0.01.

3) W is unconstrained and trained by SGD with the
decaying learning rates 1, = % where C' = 200.

4) W is sparse and trained by Algorithm 1 with the
decaying learning rates 7; = % where C' = 200 and
then perform the corresponding refitting step'”.

Note that for the decaying learning rate case, we try a
wide range of starting rate C' and find that C' = 200 can
provide us the most rapid decrease of the objective value.
So C' is set to be 200 through out the paper. As for the
regularization parameter A\, when the dictionary size is large,
say D = 10,000 for the text data, we choose A which leads
to the 5% to 10% density (percentage of nonzero entries)
of W. When D is relatively small, say 748 for the MNIST
dataset, we set \ so that the density of W is roughly 50%.
This way of setting A provides us a sparse enough W which
has the advantage of the memory savings and being easy to
interpret. In the meanwhile, we have enough nonzero entries
of W to guarantee a reasonably good preference learning
performance on the testing datasets.

We compare the performance of each method by the
following metrics:

1) Test error rate: for a testing tuple (q,d*,d™), if
qTWdJr < qTWd*, test error is increased by 1 and
normalized by the test sample size.

2) Mean average precision (MAP) [16].

And we also provide the semantic information encoded in
the W matrix for the text data.

B. Results

1) Learning Curves: It has been shown that test error
rate is monotonic to area under ROC curve (AUC). In
Figure 1, we show the curves of the test error rate and

10For the fair comparison, we use exactly the same training samples in
the refitting step as in the sparse learning procedure without any additional
samples.

Figure 1.

o
IS

The test error rate and the density W for 3 benchmark datasets

0.25 0.25
= Sparse SGD l = Sparse SGD = Sparse SGD
035 Sparse SGD (Refitting) — Sparse SGD (Refitting) — Sparse SGD (Refitting)
X = = =SGD (Decaying Learning Rate) X 02 = = = SGD (Decaying Learning Rate) X = = =SGD (Decaying Learning Rate)
~ 03 SGD (Fixed Learning Rate) ~ SGD (Fixed Learning Rate) <= 02 SGD (Fixed Learning Rate)
£ 3 5
& 0.25 o 0.15 x
5 5 5 015
= 02 =01 =
w w - I}
® 0.15 b 3
)) 0.05 o 01
= 0.1 e e e e] = o =
0.05 0 0.05
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of Data Accesses 1¢* Number of Data Accesses 10* Number of Data Accesses y 10*
(a) The test error curve for 20NG (b) The test error curve for RCV1 (¢) The test error curve for MNIST
0.8
1 || = Sparse SGD = Sparse SGD
= = =SGD (Decaying Learning Rate) = = =SGD (Decaying Learning Rate) 0.7
= SGD (Fixed Learning Rate) = 0.5 SGD (Fixed Learning Rate) = e
Los S S
0.4 -~
2 = = o5
% 0.6 B = z
2 /.—-—-—-""‘ 003 O 04
é‘ _/’ é *? 03
7] 7} e @ 0.
204 _r/ c 02 = c
[Pd [= 7]
a) ’ [a} - 002
0.2,/ 0.1 Pl = Sparse SGD
H ’ /’ 0.11 = = =SGD (Decaying Learning Rate)
f / | SGD (Fixed Learning Rate)
0 0: o4
0 8 10 0 8 10 0 8 10

2 4 6
Number of Data Accesses 10
(d) The density of W for 20NG

the corresponding density of W vs. the number of training
iterations, i.e. the number of accesses of the training data.
Each row in Figure 1 corresponds to one dataset.

We have the following observations:

1) For SGD with the fixed learning rate, the test error rate
decreases very slowly, and is relatively flat compared
to other methods.

The schemes with decaying learning rates (including
two sparse models “Sparse SGD”, and the dense
model “SGD (Decaying Learning Rate)”) have sim-
ilarly good convergence rate.

Using the same regularization parameter, “Sparse
SGD” achieves the most sparse model. For dense
models, “SGD (Decaying Learning Rate)” reaches a
more sparse model than using naive method “SGD
(Fixed Learning Rate)”. This is another evidence that
decaying learning rates are superior to fixed learning
rates.

Refitting the sparse models clearly achieves the best
test error rate while keeping the low density of the W
matrix.

2)

3)

4)

2) Retrieval Performance and Memory: In this section,
we present mean average precision (MAP), test error rate
and the memory space of W of each method after training
100,000 iterations. The results are presented in Table II.
We use the abbreviation for each method due to the space
limitation of the table. “Identity” stands for W = I and
“Diagonal” means that W is a diagonal matrix where only
the diagonal entries are learned. ‘SGD FLR” means SGD

2 4 6
Number of Data Accesses 10
(e) The density of W for RCV1

2 4 6
Number of Data Accesses 10*
(f) The density of W for MNIST

with the fixed learning rate, while “SGD DLR” means SGD
with the decaying learning rate. Both of them are trained
on the basic model without the ¢; regularization. “Sparse”
and “Sparse-R” are sparse models, without refitting and with
refitting, respectively.

The results on MAP are essentially consistent to those
on the test error rate. The sparse method with decaying
learning rate has similar performance compared to its dense
counterpart but takes much less memory. Moreover, sparse
models after refitting achieves the best performance

3) Anecdotal Evidences: The sparse model can also pro-
vide much useful semantic information. For example, we
can easily infer the most related word pair between query
word and document word from the sparse W matrix. More
precisely, each row of W represents the strength of the
correlation (either positive or negative) of document words
to a specific query word. Given the i*" query word, we sort
the absolute value of the i*" row of W in a descending order
and pick the first few nonzero entries. Those selected entries
of W represent the most correlated document words to the
given " query word.

In Table III, we present the query words from different
categories and the five most correlated document words from
the learned sparse W in Eq. (5). We can see that most corre-
lated document words are clearly from the same topics as the
query words. It also provide us some interesting semantic
information. For example, in 20NG, “fbi” is closely related
to “handgun”; “colorado” to “hockey” which indicates that
there might be a popular hockey team in Colorado (in fact,

Table II
RETRIEVAL PERFORMANCE AND MEMORY. ITEMS IN BOLD FONTS ARE THE BEST AMONG METHODS TESTED.

(a) 20NG (b) RCV1 (c) MNIST
| MAP [Error | Mem. MB) | | | MAP | Error | Mem. MB) | | | MAP [Error | Mem. (MB) |
Identity 0.185 | 0.323 0.2 Identity 0.380 | 0.230 0.2 Identity 0.453 | 0.221 0.018
Diagonal 0.190 | 0318 0.2 Diagonal 0.390 | 0.223 0.2 Diagonal 0.460 | 0.318 0.018
SGD FLR || 0.258 | 0.197 1294 SGD FLR || 0.451 | 0.087 7172 SGD FLR || 0.610 | 0.096 6.796
SGD DLR || 0.399 | 0.099 9431 SGD DLR || 0.453 | 0.046 360.2 SGD DLR || 0.654 | 0.082 6.121
Sparse 0.360 | 0.114 154.2 Sparse 0.463 | 0.036 105.4 Sparse 0.654 | 0.083 4.301
Sparse-R 0.426 | 0.090 154.2 Sparse-R 0.501 | 0.029 105.4 Sparse-R 0.669 | 0.075 4301
Table III

THE EXAMPLES OF LEARNED RELATED WORD PAIRS IN 20NG

Query word H Five most related document words
clinton clinton government health people gay
cpu mac drive scsi card jon
graphics graphics tiff image color polygon
handgun gun weapons handgun militia fbi
hockey hockey game espn colorado team
motorcycle bike brake turbo rpi cylinder
religions god religions bible christian jesus

it is Colorado Avalanche team); “government” to “clinton”
which indicates that Clinton might be a famous politician
(The former US president Bill Clinton).

V. CONCLUSIONS

In contrast to the traditional preference learning or “learn-
ing to rank” with a few hundred hand-crafted features, our
basic model directly performs learning on actual words
and considers their pairwise relationships between query
and document. Although the pairwise relationship of words
could improve and provide us additional semantic informa-
tion, the basic model suffers from storage overloads and
parameter overfitting. To overcome these drawbacks, we
introduce sparsity to the model which is achieved by the
¢ regularization with an efficient online learning algorithm.
We show with multiple benchmark datasets that our method
achieves good performance with fast convergence, while
remaining sparse during training (small memory consump-
tion), on a model with hundreds of millions of parameters.

For future work, we will explore extended models to learn
group structure or even hierarchical structure of the words
using group lasso [17] type of regularization. The prior
knowledge on the structure of W can also be imposed.

REFERENCES

[1] J. Fiirnkranz and E. Hiillermeier, “Pairwise preference learn-
ing and ranking,” in ECML, 2003.

[2] T.Y.Liu, Learning to Rank for Information Retrieval. Now

Publishers Inc, 2009.

(3]

(4]

[5]

(6]

[71

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li, “Letor: Benchmark
dataset for research on learning to rank for information
retrieval,” in SIGIR 2007 Workshop on Learning to Rank for
Information Retrieval, 2007.

D. Grangier and S. Bengio, “A discriminative kernel-based
approach to rank images from text queries,” IEEE Trans.
PAML., vol. 30, no. 8, pp. 1371-1384, 2008.

B. Bai, J. Weston, R. Collobert, and D. Grangier, “Supervised
semantic indexing,” in ECIR, 2009.

R.Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society, Series B,
vol. 58, pp. 267-288, 1996.

M. J. Wainwright, “Sharp thresholds for noisy and high-
dimensional recovery of sparsity using ¢;-constrained
quadratic programming (lasso),” IEEE Tran on Information
Theory, vol. 55, pp. 2183-2202,, 2009.

L. Bottou and Y. LeCun, “Large-scale on-line learning,” in
Advances in Neural Information Processing Systems 15. MIT
Press, 2004.

J. Duchi and Y. Singer, “Efficient learning using forward-
backward splitting,” in Advances in Neural Information Pro-
cessing Systems 23, 2009.

R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information
retrieval. Addison-Wesley Harlow, England, 1999.

R. Herbrich, T. Graepel, and K. Obermayer, Large margin
rank boundaries for ordinal regression. MIT Press, Cam-
bridge, MA, 2000.

M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in /CML, 2003.

F.Aiolli and A. Sperduti, “Learning preferences for multiclass
problems,” in Advances in Neural Information Processing
Systems 18, 2004.

R. Bekkerman and M. Scholz, “Data weaving: Scaling up the
state-of-the-art in data clustering,” in CIKM, 2008.

D. Lewis, Y.Yang, T. Rose, and F. Li, “Rcvl: A new bench-
mark collection for text categorization,” Journal of Machine
Learning Research, vol. 5, pp. 361-397, 2004.

G. Cormack and T. Lynam, “Statistical precision of informa-
tion retrieval evaluation,” in SIGIR, 2006.

M. Yuan and Y. Lin, “Model selection and estimation in re-
gression with grouped variables,” Journal of Royal Statistical
Society, Series B, vol. 68(1), pp. 49-67, 2006.

