
Creating and Visualizing
Fuzzy Document Classification 

Judith Gelernter      Dong Cao      Raymond Lu       Eugene Fink     Jaime G. Carbonell 

School of Computer Science 
Carnegie Mellon University  

5000 Forbes Ave.   
 Pittsburgh, PA  15213 

U.S.A. 
gelern@cs.cmu.edu; caodshen@cs.cmu.edu; raylu@cmu.edu; e.fink@cs.cmu.edu; jgc@cs.cmu.edu 

       Abstract—Fuzzy classification ranks items by degree rather 
than assigning them either within or without of a category.  The 
novelty of our work is in integrating fuzzy classification 
algorithms with an interface to visualize fuzzy results.  An 
advantage of our algorithms’ ‘fuzziness’ is that it provides 
additional information per retrieved result that helps in deciding 
whether to drill down to the document or skip it.  An advantage 
of our interface is that it allows users to visualize those 
differences quickly.  We have created a prototype that allows the 
retrieval of journal articles by content word or by ontology-
supported browse categories that can be selected independently 
or in tandem.  Journal articles in our digital library pertain to 
paleontology, but techniques demonstrated viable in indexing and 
ranking paleo-journal literature should apply to other knowledge 
domains with little modification.

Keywords—fuzzy retrieval systems, fuzzy match, relevance, 
retrieval model, classification; information visualization, 
graphical user interfaces

I. BACKGROUND IN TEXT CLASSIFICATION

Fuzziness has been used in statistics and in computer 
science to indicate the probability that something is true.   
Fuzziness is about uncertainty.  The concept has been used in 
information retrieval to account for the data itself [1], for an 
ontology to aid in matching [2], for method of matching [3], 
for result visualization [4].   

What do we really mean by fuzziness?  In interviewing a 
selection of professionals who “self-identified as having 
aspects of uncertainty in their [daily] work”, the definition of 
the concept most often mentioned was that of level of 
uncertainly [5].  The idea comes from fuzzy set theory, which 
was introduced in the 1960s by mathematician Zadeh [6].  
Skeels et al. have identified five kinds of fuzziness: 
approximation, prediction, disagreement, incompleteness and 
credibility about the data source [5].   

We invoke fuzziness in acknowledgement of fuzzy intuition 
on the part of the system user.  Our user has a vague idea of 
what he wants, but generally will not know for sure until he 
sees it [7].  Our system will help by suggesting those items 
that might be the best match to what he wants, good matches 
and adequate matches.  Our specific task is to classify each 
item such that it may belong to multiple categories partially 
rather than to one category absolutely.  By “fuzziness” we 
mean the degree of relevance of an item to its classification 
and how it is displayed.       

How crisp or fuzzy is the classification fit?  The question 
has been examined over the years with respect to the 
importance of a term in a document, an early example being 
Salton, Wu, Yu [8].  A measure of the classification fit has 
been accomplished through document weighting such that 
some rules “outweigh” others in terms of strength of 
prediction of whether an item should belong to a category.  
For example, higher weighting might be assigned a term if it is 
found in a document repeatedly, or found in the title or 
abstract field, for example, than if it is found just once.  Other 
models are referenced in Cimiano [9].   We discuss this in 
more detail below, and particularly in the “Classification 
crispness or fuzziness” section.   

For automated text classification itself, we rely on standard 
methods and introduce a new measure of classification 
relevancy that suggests how good the classification fit seems 
to be.  We introduce a method of weighting based on term 
frequency and location in the document.  The documents are 
measured and ranked with respect to an absolute scale rather 
than with respect to each other.  Our contribution is the High, 
Medium and Low paleo-document ranking within 
classification categories, and the visualization of such ranking.   

Our methods for automated text classification follow the 
standard procedure:  Sample data that are representative of the 
population are assembled, and then separated into a training 
set to create algorithms and test set to test algorithms.   The 
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purpose of the classifier algorithm is to note a pattern common 
to some known group, and associate the item that manifests 
that pattern with its group.  Patterns have been noted as  
heuristics, and then coded into a classifier algorithm in a 
method known as knowledge engineering.  Alternatively, 
patterns may be determined from a large body of pre-classified 
items in a method known as machine learning.   Some have 
found the accuracy from the application of machine learning to 
be comparable to knowledge engineering techniques [10], 
[11].   

Machine learning or knowledge engineering: how should 
one choose?  In machine learning, the classification effort goes 
into the construction of the learning algorithms that is 
prerequisite to the construction of the classifier and into 
labeling instances for training, rather than into making the 
classifier itself.  In other words, the effort is put into how to 
extract rules from the training set, rather than whether these 
are the best rules and how to assemble them into a 
classification algorithm.  Categories of classifiers include rule-
based, probability-based, decision tree-based, multivariate 
regression-based, neural network-based, and nearest neighbor-
based [12].   In the knowledge engineering approach, rules are 
engineered through manual inspection of the data, successive 
trials and refinements.  The knowledge engineering approach, 
while it is weakened by its inflexibility (rules may require 
changing if categories are updated) and lack of portability 
(rules may need to be re-worked for each knowledge domain), 
may lead to better classifications.   It also requires many fewer 
items in the training set to extract patterns.  So it was more 
expedient for us to use the knowledge engineering approach 
for this study, though the fuzzy categorization would apply as 
well to machine learning.  

Our fuzzy search tool is slated to be a beta-test site within 
the international e-science project, the GEON portal for the 
geosciences.1   GEON includes a rich set of paleo-resources 
called the “PaleoIntegration Project”.   We were lucky enough 
to be asked by the GEON director to make our scholarly-
literature related tool a model for all of the geosciences.  As it 
is, some of our development choices were made for the sake of 
compatibility with other resources in GEON.  Even our 
decision to create a workable interface without a good deal of 
preliminary human factors testing was driven by our desire to 
produce a prototype for GEON.  We look forward to an online 
venue that promises a fair amount of user traffic, and from 
user evaluations we intend to improve the interface later.   

II. PALEOSEARCH ARCHITECTURE

Our system is diagrammed below.  Fig. 1 shows 
schematically how a collection of journal articles (in .pdf) is 
stored separately from the parsed metadata (in .xml) that have 
been extracted for indexing.  The classifiers use the metadata 
and refer to the ontologies to assign each article to organism 

                                                          
1 http://www.geongrid.org

name, time and region categories.  Users may enter 
keyword(s) or select from browse menus for organism, time 
and region.  Categories that appear in the menus are known 
yield results from the pre-classified corpus.  Interface results 
display consists of article title with publication date, which is 
hyperlinked to a .pdf version of the article full text.   
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Figure 1  PaleoSearch architecture.  The .pdf journal articles in the corpus are 
parsed into title, abstract, caption and other fields in .xml, and then are 
classified with the help of ontologies into organism name, time period and 
region categories.  The articles are then retrievable by way of these categories.    

The architecture is optimized for speedy return of results.  
Classification is time-consuming, particularly classification by 
organism name owing to the vastness of the bio-taxonomies.  
The trilobite ontology alone takes several hours to match 
against our 150 article training data sample.  Rather than farm 
our matching to a supercomputer or re-structure searches to 
run in parallel, we simplified our indexing in two ways: (1) 
each item is classified upon entry to the database rather than 
when a query is input, and (2) the upper levels of a hierarchy 
as well as a more specific classification are saved along with 
the item to speed matching at the time of query entry.  So for 
example, an article is classified as Archaeopteryx, but saved 
for possible matching with a keyword as Aves—
Archaeopterygiformes—Archaeopterygidae—Archaeopteryx  
(that is, Class—Order—Family—Genus).      

III. CLASSIFICATION FOR INFORMATION RETRIEVAL 

A. Triple indexes to search paleontology articles 
Features for the prototype that would be useful to the 

discipline were discussed with paleontologist Christopher 
Noto, presently Visiting Professor of Grand Valley State 
University, Michigan.  He expressed the need for articles 
within wide-reaching disciplines for the corpus.  He also 
defined the three main points of access to be plants or animals, 
time period and region.  The nature of the indices is essential: 
We use paleo-organism and paleo-times, but modern regions.   
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Why do we index region with place names that are 
modern?  Paleo-regions such as Gondwana and Laurasia are so 
vast as to give paleontologists little feel for location.   In 
addition, the literature that discusses organisms (that 
comprises our data sample) refers to modern regions where the 
fossils have been discovered or are housed.  Algorithms exist 
that translate modern coordinates into paleo for a given period 
of time.   But if we were to retrieve all articles that refer to 
modern regions in Europe and Asia under Laurasia, for 
example, the retrieval set of articles would be so vast that it 
would be unhelpful.  These are the most compelling reasons 
why we use a modern index for region.  

B. Information retrieval and the ontologies  
Ontologies and taxonomies are types of controlled 

vocabulary.  Ontologies have been found to improve 
information retrieval [13], especially for domain-focused 
document collections  It has been known for decades that 
matching exhaustivity and specificity to the data set tends to 
improve retrieval [14].  Our preliminary tests with the 
ontologies showed us how to adjust the number of words in 
the ontologies (esp. for organism name and for region, as 
described later in the paper).  Another fundamental question 
regarding any ontology is whether it should comprise not only 
words, but phrases as well.  Ontologies for this study 
incorporate both.  A species name, for example, is sometimes 
seen in a phrase lead by the genus.   

Ontologies are limited by the words that constitute them.  
That is, different words per ontology mean that the choice of 
ontology will alter the system’s retrieval properties.  
Ontologies with topic hierarchies have been derived from the 
data themselves [15].  Our research uses ready-made 
ontologies that are domain specific.   

The ontologies in PaleoSearch were up-to-date at the time 
of absorption into the prototype.  Whereas updating ontologies 
is, in most cases, an unavoidable requirement, the ontologies 
we use for organism name, time period and region are unlikely 
to change within the several year span of system use.  
Updating in this particular application, therefore, seems non-
essential.  

For the sake of compatibility with GEON, we adopted 
GEON ontologies for time and region.  GEON has no 
organism ontology, however. PaleoSearch requires an 
organism ontology with species that are extinct as well as 
extant.  We found a chronologically rich taxonomy in the 
Thomson Reuters Index to Organism Names (ION), and were 
given a sample of trilobites, but its plant taxonomy will not be 
available until at least 2010.  So we have supplemented our 
ION Trilobite sample with animal and plant taxonomies from 
the Paleobiology database.   

C. The sample: article selection and preparation for indexing 

We selected a number of plant and animal paleo- taxa 
randomly.2  Our choices are at different taxonomic levels, and 
there is some overlap (Allosaurus and Apatosaurus are within 
the order Saurischia, for example).   We used these pre-
selected taxa as keywords to collect 200 articles from open 
source and proprietary databases to which had access.  Articles 
come from databases including Academic Search Premier, 
JSTOR, BioOne, Web of Science, PubMed, AnthroSource, 
Proceedings of the National Academy of Science (PNAS), 
PLoS One, and Google Scholar.  The articles are taken from 
journals in fields of geology, ecology, biology (including 
evolution, anthropology, anatomy, zoology and botany), and 
chemistry, as well as paleontology.   

We stratified the collected articles according to organism 
to make a 150-article training set and a 50-article test set.  The 
by-product of mixing articles among journals and disciplines 
is that it produces a potentially more generalizable sample.  
The different disciplines use some of their own vocabulary to 
exercise our ontologies.  The different layout formats of 
various journals challenge our parse algorithm.    

1) Article preparation.  To change the default, adjust the 
template as follows.  The articles were downloaded in .pdf.  
Most were exported manually to .xml using Adobe Acrobat.  
We decided based on manual inspection that we needed to 
extract the metadata for classification from certain fields.  The 
fields we defined are: title, abstract, year, university (that is, 
where authors come from), captions, body text, footnotes, 
keywords, and references. 3   Very few of the articles had 
author-supplied keywords, but for those that do, keywords are 
quite useful for classification.   

We had hoped to use .xml tag divisions to help parse each 
article into fields.  However, only the few articles which were 
downloaded in native .xml form had tags that were genuinely 
useful.  The tags introduced by Adobe from the conversion 
between .pdf and .xml, while they subdivide the articles, do 
not distinguish but only separate one area of text from another.  
So to distinguish title from abstract from references, and so on, 
we inspected the articles manually and created heuristics to 
code.   

2) Our parse algorithm.   Our heuristics for the title field 
range from simple, to requiring that another program be 
invoked.  Simple heuristics use labeling from within the 
article.  For example, an article abstract begins often with the 
word “Abstract,” and the reference section often begins 

                                                          
2 For plants: Ginkgo, Cycad, Lepidodendron, Sequoia, Conifer, Glossopteris; 
For animals: Eurypterid, Saurischia, Archaeopteryx, Allosaurus, Homo 
habilis, Anthropoidea, Trilobite, Archelon, Apatosaurus, Ammonite 

3 We refer to this later as the “Lu Parser” for its developer, Raymond Lu of 
Carnegie Mellon University. 
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“References”.  More complicated means are necessary to 
isolate the title.  To isolate the title to make title field 
metadata, first, we submit each article to an open source 
program to convert it to .html.4  This open source program 
introduces font information that is helpful in distinguishing the 
title.  In cases where there is no distinguishing font 
information, we subject the article to our heuristics to help find 
or, at last resort, generate a title.  For example, we will take for 
the title field the first phrase of seven or more non-numerical 
words that contain a colon, or, we will take for the title field 
the first phrase of seven or more non-numerical words that 
appear before the word "Abstract," or “Author(s)”.    

Irregularities in the metadata as minor as an extra space or 
a misplaced “>” throw off our algorithm and prevent an article 
from being run through the Lu parser.  Some of the articles did 
not parse properly and had to be discarded.  The total number 
of articles for the training set thus comes to 147.  

D. The classifier algorithms 

We coded three separate algorithms to classify paleo-
related articles based on three sets of heuristics.  One classifier 
is for organism name with the name taxonomy, another is for 
geologic time period with the GEON time ontology and a third 
is for region with the GEON region ontology.   

This section on information retrieval describes 
commonalities among the three classifier algorithms.  It is 
followed by a section on the fuzziness aspect of the 
classifications.     

1) Rules.  The objective is to create rules with the highest 
predictive accuracy for mapping independent variables (here, 
articles) to dependent variables (here, classification 
categories).  Rules derived using machine learning algorithms 
include some that are good predictors, and some that are not, 
but the ones that are not good predictors are averaged with the 
stronger.  Knowledge engineering methods, by contrast, 
induce rules more selectively such that each rule is likely to be 
a good predictor, and juggling individual rules through 
weighting and averaging is not crucial.   Then the heuristics, or 
rules, are coded into algorithms using JAVA for a web-based 
application.

An excerpt from the time classifier appears below.   The 
particular problem considered below is the translation of time 
spans from numbers to words, and how those words might 
lead to an article classification.   “Match” of target data with 
the ontology results in a classification.  

Convert time period numbers to words to facilitate matching.  
Numbers that indicate geologic time periods might appear in 
phrases:   

                                                          
4 http://pdftohtml.sourceforge.net 

[number] Ma
[number] Mya 
[number]  Myr (Million years ago)
[number] million years ago 
[number] B.P. (before present—used for radiocarbon 
dating),
[number] years ago [when x is a number in the millions 
or uses the word million]   

2) Algorithm execution.  Each rule could execute in linear 
sequence.  An advantage is that every item is classified by the 
rule that takes highest priority, but a disadvantage is that 
lower-ranked rules are harder to interpret.  Alternatively, all 
rules could fire simultaneously.  This method makes rule 
interpretation easier, although a higher value rule might be 
overlooked in favor of rule with lesser value for predicting a 
classification, making the classification less appropriate.  We 
elected priority-based ordering for our research primarily 
because metadata location is important with respect to 
reliability of prediction.   

3) Algorithm refinement.  Analyzing mistakes made by the 
classifiers during the training phase and adjusting the 
algorithms improves their performance.  That is, the 
algorithms may be tuned for higher classification accuracy in 
the general case in the hope of increasing generalizability.  
Algorithms are not evaluated with previously unseen 
documents in the testing set until after the adjustment phase is 
halted.  Only then are the unseen items of the test set run as an 
evaluation.  We are still adjusting our algorithms as of the 
writing of this paper.  

4) Algorithm output.  Output of classification generally has 
been organized into three ordered types: abstract, rank and 
measurement level [16].  The lowest level is abstract, 
providing only enough information to group items into classes.  
The rank level classifier groups items into an ordered list in 
which position reflects likelihood of belonging to the class, but 
there are no attached confidence values.  The measurement 
level assigns a confidence value, however arbitrary, to each 
entry.  Our classifiers measure at the rank level.   

5) Classifier combination in future?  This study involves 
three classifiers: one for organism name, another for time 
period, and a third for region.  It has been found that 
combining classifiers may yield better performance than 
invoking each singly [17].  Combination in parallel tends to be 
employed for high accuracy, while sequential (cascaded, or 
vertical) combination tends to be used for speeding 
classification of large sets.  The outcome has been found to 
depend not only on how the classifiers are fused, but also on 
how complementary they are.  Our three indexes seem to 
provide a reasonable combination, although their optimal 
fusion waits for a later stage of research.  
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E. Classification category labels

The question for implementation was: to what level of 
specificity should we classify?  We based on decision 
primarily on two factors.  The first factor is database contents.  
We stock the database, and plan to continue to stock the 
database, with journals that have at least some proportion of 
their articles relevant to paleontology.  So we assume that we 
will find terms that are very specific.  The second factor is 
usability.  Researchers who will be using the system 
presumably will have focused areas of specialization and 
expertise.  The more precise the indexing, the better it should 
help our intended population of users.    

We plan to populate the browse menus with those 
categories that appear in our result set.  In this way, selecting a 
browse option is guaranteed to retrieve results.  Not so with 
the keyword search, that might come yield an empty result set 
with error message.   

F. Multi-label classification

Classification may be either single-label, also called 
absolute or hard, with each item classified into a single 
category, or multi-label, also called soft, with each item 
classified into one or more categories.   Classification of each 
item by multiple categories within a facet aims to broaden 
item relevance to scholars.  Interesting from an information 
retrieval perspective is less that the article has been classified 
into multiple categories, than that it has different levels of 
“belongingness” to each category.  

G. Evaluation of algorithms

It has been found that desirable properties of similar 
algorithms include: good performance time and not overly 
demanding memory requirements, simple implementation of 
the algorithms, and robustness [18].  We propose an 
experiment to evaluate one aspect of the algorithms --system 
accuracy in categorizing and ranking journal article relevancy.  
We will give people the same basic rules as we give the 
system (classify to organism name and time period and region 
using the ontologies provided, and be as specific as the 
ontology allows).  People with background in paleontology 
will create an answer key for a set of articles that will be 
considered the “ground truth” and will be assembled into a 
benchmark file.  Then the search engine’s classifications of the 
same articles will be compared to the benchmark.  The higher 
the correlation between classification categories and category 
rankings between our system and the benchmark, the better 
our classifier algorithms will have performed.   

IV. FUZZINESS OF CLASSIFICATION 

Classifier algorithms may be designed to group items into 
categories whose bounds are crisp or fuzzy [19].  PaleoSearch 

uses three levels of fuzziness in its algorithms to show how 
well an item belongs to a category: a good fit (or High), an 
acceptable fit (or Medium), or an approximate fit (or Low).  
Each item may belong to as many categories as its content 
warrants.   

What we have done is essentially to make every match 
between target document and ontology into a classification, 
and then juggle the strength of the classification with respect 
to the document itself.  The absolute measures of High, 
Medium, and Low are relevancy thresholds.  Our measures are 
based on properties of term location and repetition within the 
article.  Within each relevancy category, the more recent a 
publication, the more relevant an article is assumed to be, such 
that the articles within High, Medium and Low sort according 
to publication date.   

How do we know that an article is a good fit for a 
category and should list as High, for example?  We have 
inspected the articles in the training set, and have formed the 
general rule that terms mentioned in the article title or abstract, 
and sometimes within the first three or so pages of the article 
(especially if repeated several times), are core to the topic.    

The meaning of High, Med, and Low is muddied in search 
by keyword.  This is because in keyword search, the rankings 
may indicate either the item’s level of belongingness to a 
classification category, or else to its level of relevance to the 
keyword term entered.  Consequently, the user will not know 
whether the classification is inexact or whether the match of 
retrieved article(s) to query keyword is itself inexact, or both.  
For example, if an article is classified as Low, but matches the 
query keyword exactly, it is displayed as Low.  Or if an article 
is classified as High, but does not match the query keyword 
exactly, it may display as Low.   Unlike in keyword search, 
High, Medium and Low result rankings from a browse search 
indicate the level of belongingness to a classification category 
only. 

A. Example of fuzziness

To review, each article is classified into facets of 
organism name, time period, and region categories at a certain 
level of specificity.  Parsed fields of article title, abstract, 
captions and full text are the basis of the classifications.  The 
result is that each article is classified into multiple categories 
and different levels of “belongingness” (High, Med, or Low) 
within each facet. 

The user is more interested in what matches his query 
than in how each article is classified.   One might say that the 
classification of each article is the back end.  For the purposes 
of illustration, we provide below the results of running one 
article through the time classifier.   
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This sample article 5  has been classified with highest 
confidence into the Mesozoic era.  It has been classified with 
lesser confidence in two of the three periods that make up the 
Mesozoic—the Jurassic and the Triassic—as well as the Upper 
Jurassic epoch which is one of three stages of the Jurassic.  It 
has been classified with low confidence into ages of the 
Hettangian within the Jurassic, and the Carnian and Norian 
within the Triassic.   

vertical error bar alongside each item indicating the level of 
accuracy, or as a sphere surrounded by a buffer zone.  Another 
type of visualization shows box plots with distributions, or 
data plots in quartiles [5].  We choose not to use icons or 
statistical notation because they are easily misunderstood.  
Other possibilities include varying the size or orientation of 
objects, or 3D depth.   

We use screen location and color to visualize relevance.  
It was not our intention to test every possibility for 
visualization, and in fact, recent tests have shown users 
reacting favorably to a 3D layout [4].  Our visualization is 
limited somewhat by what we feel are the requirements of 
metadata that we wish to include per article.  Even now, with 
article title and publication date, we intend to test whether 
users will find even more metadata helpful in deciding 
whether to view a particular result.  
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Figure 2  Output of PaleoSearch time classification for sample article.  

[Title]: The coelophysoid lophostropheus airelensis, gen. 
nov.: a review of the systematics of "liliensternus" airelensis 
from the triassic-jurassic outcrops of normandy (france)  

[Abstract]: —In the early 1990s a theropod dinosaur found 
close to the Triassic-Jurassic boundary of France was 
assigned to a second species of the genus Liliensternus: L. 
airelensis (Moon Airel Formation). This contribution reveals 
that common features that purportedly unite “L.” airelensis 
with L. liliensterni are more widely distributed among 
coelophysoids and basal dinosaurs than it was thought. A 
cladistic analysis reveals that “L.” airelensis is more closely 
related to the Coelophysidae than to L. liliensterni. A 
feature that supports this systematic arrangement includes 
a supraacetabular crest forming a well-developed ridge 
continuous with the lateral margin of the brevis fossa, with 
non-distinct notch between both structures. The new genus 
Lophostropheus, gen. nov., is therefore erected to include 
the species L. airelensis. Thus, the new combination 
Lophostropheus airelensis is proposed.  

[Classification]: Mesozoic -- High  
[Classification]: Triassic -- Mid  
[Classification]: Carnian -- Low  
[Classification]: Norian -- Low  
[Classification]: Rhaetian -- Mid  
[Classification]: Jurassic -- Mid  
[Classification]: Hettangian – Low  
[Classification]: Early Jurassic -- Mid

We use a result grid of a single color whose shades 
indicate relative strength of connection.  The color blocks are 
labeled “Highly relevant” for the darkest shade, “Relevant” for 
the middle shade, and “Somewhat Relevant” for the lightest 
shade (Fig. 3).  We deliberately avoid labeling the lightest 
block “Low relevance.”  We do not want to mislead the user 
into thinking that the results are only of minor relevance.  
These results are just less relevant that those at the other two 
levels.     

Studies suggest that essential to interface design is not 
how the most relevant result is shown, but where on screen 
that result appears.  Users’ choices of the ‘best’ results from 
different sort rankings suggest that placement on the web page 
(i.e., whether the result appears near the top) is most important 
in determining whether a given result is selected, not the actual 
content displayed in the top excerpts [21].  This has been 
called a “presentation bias” (ibid., p. 148), and we account for 
it in our PaleoSearch display.  The best results in our grid 
display on the top row and spill into the second row (Fig 3).  
The upper left hand corner result is the very best, and 
relevancy reads as the language itself from left to right.   Sort 
order within a block is determined by publication date.  

B. Visualizing fuzziness 
Visualization enables users to gain a data overview.   As 

explained above, we use fuzz to indicate varying levels of 
relevance of each article either with respect to classification 
category, or with respect to match between query keyword and 
classified items (Fig. 3).  We describe aspects of our 
visualization below.  Showing fuzz is helpful because it gives 
the user insight into whether a retrieved result is worth a click.   

Keyword searches are dogged by misspelling and 
inexactness in granularity with database terms.  To improve 
the situation, we follow the Google example by giving our 
users a “hint” after they types a few letters into the keyword 
box.  They might decide to select one of our default words, or 
else continue typing their own.  Users looking for an author 
name, for example, will disregard our suggestions and 
continue with the name.    “Research in visualisation of fuzzy systems is still at an 

early stage” [20, p.181].  No standard method is used to 
visualize the degree of belongingness or relative uncertainty in 
assigning an item to a category.  It has been shown as a 

5 M. Ezcurra and G. Cuny, G., “The Coelophysoid Lophostopheus Airelensis, 
Gen. Nov: A Review of the systematics of ‘Liliensternus’ Airelensis from the 
Triassic-Jurassic Outcrops of Normanday (France),” Journal of Vertebrate 
Paleontology, vol. 27, issue 1, 2007, pp. 73-86. 



Figure 3  The interface shows three levels of relevance by labeling color block in shades of the same color with “Highly relevant”, 
 “Relevant” and “Somewhat relevant”.  A live version of the interface is being developed at http://paleosearch.rutgers.edu/paleo

Advantages of our fuzzy display are that it provides the 
user with information about each result and about the results 
as whole.  Information about each result is shown by its 
position in the grid.  Information about the whole result set 
is shown by whether the grid is full or empty.  If, for 
example, no items are returned of high relevance but a few 
are low, the user knows little in the data set pertains to the 
query topic directly.  

V. HOW VALUABLE IS PALEOSEARCH?
We wish to determine the value of PaleoSearch to users 

with paleontology background.   To do this, we might pose a 
test in which users perform a similar search task on 
comparable systems.  The larger the number of 
paleontologist-participants, the more valid would be the 
results of our study.   We will find queries that will yield 
comparable results both in the small collection PaleoSearch 
as well as in the vast digital library contenders.  Participants 
would be asked to pose these same few questions to each 
system.  Participants would then have a relatively even 
foundation to compare the systems’ input mechanism, 
results and display.  After these few tasks, we would not ask 
them which system they prefer, because their responses 
might be swayed by the Hawthorne effect (viz., trying to 
please investigators).  Instead, we turn the question into 
forced choice:     

Suppose you were allowed access to only one of these 
systems.  Which would you choose?  Why?   

We do not intend for our system to replace any other 
necessarily.  We force a choice to suggest which system is 

considered most vital.  The “why” request aims to get 
feedback on relative system strength.  It would be 
interesting to get accuracy findings from all systems 
involved and see whether preference correlates with 
quantitative measures of system accuracy.   

VI. FUTURE WORK

We will continue to collect articles from open access 
sources to expand the corpus, which will improve validity 
for both algorithm testing and to a certain extent also 
interface assessment.   We will take articles that will work 
with the parser for the moment, and will improve the parser 
itself later.  At the same time, we will be automating more 
steps in the process, such as the .pdf to .xml conversion 
necessary, and possibly also the collection of new articles.    

We will continue to improve each classifier algorithm 
individually.   When we are satisfied with preliminary 
results, we plan to evaluate the algorithms in the procedure 
outlined above by comparing system classifications and 
rankings to those decided by people with domain 
knowledge.  We may also consider how to combine the 
classifiers for the three facets.    

User testing should include determining how 
paleontologists determine relevance for articles in their 
field—or at least asking them to evaluate how well our 
thresholds of high, medium and low relevance correspond to 
what they believe to be relevance levels.   

It was not our intention to compare possibilities in 
visualization, but only to present a workable solution for 
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users to try.  Our visualization is limited by the 
comparatively large amount of metadata per result we feel is 
necessary to help users make judgments.   Future research 
will involve user testing to determine the value of our 
system vis à vis comparable systems.   

VII. CONCLUSION

We have developed methods to automate the parsing of 
.pdf journal articles into title, abstract, caption, full text, 
footnote and reference fields by converting from .pdf to 
.xml and using both layout and words within the articles to 
help distinguish among fields.  We have developed 
algorithms that classify paleontology articles by organism 
name, time period, and region by rank-level classification.  
Also, we are developing an interface for the clear display of 
rank-level classification.    Our classification and relevance 
algorithms are limited to paleontology.  However, aspects 
should be generalizable and help determine relevance in 
scholarly articles of other disciplines, with the help of 
ontologies appropriate to the other disciplines.  We 
encourage others to challenge and improve upon our work.   
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