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Abstract
Rare category analysis is of key importance both in theory
and in practice. Previous research work focuses on super-
vised rare category analysis, such as rare category detection
and rare category classification. In this paper, for the first
time, we address the challenge of unsupervised rare cate-
gory analysis, including feature selection and rare category
selection. We propose to jointly deal with the two correlated
tasks so that they can benefit from each other. To this end,
we design an optimization framework which is able to co-
select the relevant features and the examples from the rare
category (a.k.a. the minority class). It is well justified the-
oretically. Furthermore, we develop the Partial Augmented
Lagrangian Method (PALM) to solve the optimization prob-
lem. Experimental results on both synthetic and real data
sets show the effectiveness of the proposed method.

1 Introduction
Rare category analysis refers to the problem of detecting
and characterizing the minority classes in an unlabeled data
set. It is of key importance both in theory and in practice.
For example, in financial fraud detection, most transactions
are legitimate, which constitute the majority class, and the
fraudulent transactions of the same type correspond to one
minority class. Detecting and analyzing a new type of
fraud transactions help us prevent similar transactions from
happening in the future.

Existing research work on rare category analysis applies
in supervised settings, either having access to a labeling
oracle (rare category detection), or given labeled examples
from all the classes (rare category classification). In this
paper, we focus on unsupervised rare category analysis, i.e.
no label information is available in the learning process,
and address the following two problems: (1) rare category
selection, i.e. selecting a set of examples which are likely
to come from the minority class; (2) feature selection, i.e.
selecting the features that are relevant to identify the minority
class.

The key observation is that the above two tasks are cor-
related with each other. On one hand, the analysis of the
minority class examples helps us identify the relevant fea-
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tures; on the other hand, the identification of the relevant
features is crucial to the selection of the minority class ex-
amples. Therefore, we propose to jointly deal with the two
tasks so that they can benefit from each other. To this end,
we formulate the problem as a well justified optimization
framework, which co-selects the relevant features and the ex-
amples from the minority class. Furthermore, we design an
effective search procedure based on augmented Lagrangian
method. The basic idea is to alternatively find the rele-
vant features and the minority class examples. Finally, we
demonstrate the performance of the proposed method by ex-
tensive experimental results.

The main contributions of this paper can be summarized
as follows.

Problem Definition. To the best of our knowledge,
we are the first to address the two important tasks in
unsupervised rare category analysis; and we propose to
jointly deal with them;

Problem Formulation. We design an optimization
framework for the co-selection of features and in-
stances, which is well justified theoretically;

Search Procedure. We develop an effective algorithm
to solve the optimization problem which is based on
augmented Lagrangian.

The rest of the paper is organized as follows: in Section
2, we review related work; then in Section 3, we present the
optimization framework with theoretical justification; Sec-
tion 4 introduces the algorithm for solving the optimization
problem; experimental results are given in Section 5; finally,
we conclude in Section 6.

2 Related Work
In this section, we review related work on supervised rare
category analysis, anomaly detection and unsupervised fea-
ture selection. Supervised rare category analysis can be fur-
ther divided into two major groups, rare category detection
and rare category classification.

Rare Category Detection. Here, the goal is to find at
least one example from each minority class with the help of
a labeling oracle, minimizing the number of label requests.
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Assuming the relevance of all the features, researchers have
developed several methods for rare category detection. For
example, in [25], the authors assumed a mixture model to
fit the data, and experimented with different hint selection
methods, of which Interleaving performs the best; in [12],
the authors studied functions with multiple output values,
and used active sampling to identify an example for each of
the possible output values; in [13], the authors developed
a new method for detecting an instance of each minority
class via an unsupervised local-density-differential sampling
strategy; and in [8], the authors presented an active learning
scheme that exploits cluster structure in the data, which was
proven to be effective in rare category detection. Different
from these methods, in our paper, no labeling oracle is
available for querying, and the goal is to select a set of
examples which are likely to come from the minority class.
Furthermore, we assume only some of the features are
relevant to the minority classes, and hope to identify those
features.

Rare Category Classification (Imbalanced Classifi-
cation). Here, the goal is to construct an accurate classi-
fier for the minority classes given labeled examples from all
the classes. Existing methods can be roughly categorized
into 3 groups [5], i.e. sampling based methods [21][19][6],
adapting learning algorithms by modifying objective func-
tions or changing decision thresholds [28][16], and ensem-
ble based methods [27][7]. Furthermore, some researchers
have worked on feature selection for imbalanced data to im-
prove the performance of the classifier, such as in [30]. The
major difference between these methods and our method is
that we work in an unsupervised fashion, i.e. no labeled data
is available.

Anomaly Detection. Anomaly detection refers to the
problem of finding patterns in data that do not conform to
expected behavior [4]. According to [4], the majority of
anomaly detection techniques can be categorized into clas-
sification based [3], nearest neighbor based [26], clustering
based [29], information theoretic [15], spectral [10], and sta-
tistical techniques [1]. Compared with our method, anomaly
detection finds individual and isolated instances that differ
from a given class and from each other. Typically these
are in low-density regions. This is a very different process
than discovering a new compact class, where we are looking
for a local density spike and the minority class instances are
strongly self-similar.

Unsupervised Feature Selection. Generally speaking,
existing methods can be categorized as wrapper models and
filter models. The wrapper models evaluate feature subsets
based on the clustering results, such as the FSSEM algo-
rithm [11], the mixture-based approach which extends to
the unsupervised context the mutual-information based cri-
terion [20], and the ELSA algorithm [17]. The filter mod-
els are independent of the clustering algorithm, such as the

feature selection algorithm based on maximum information
compression index [23], the feature selection method using
distance-based entropy [9], and the feature selection method
based on Laplacian score [14]. Similar to unsupervised fea-
ture selection, in our paper, we also assume that the class
labels are unknown. However, in our settings, the class pro-
portions are extremely skewed, and we are only interested
in the features relevant to the minority classes. In this case,
both wrapper and filter methods select the features primar-
ily relevant to the majority classes. Therefore, we need new
methods that are tailored for our problem.

3 Optimization Framework
In this paper, we focus on the binary case, i.e. one majority
class and one minority class, and our goal is to (1) select a
set of examples which are likely to come from the minority
class, and (2) identify the features relevant to this minority
class. In this section, we formulate this problem as an opti-
mization framework, and provide some theoretical justifica-
tion.

3.1 Notation Let D = {x1, . . . , xn}, xi ∈ Rd denote a
set of n unlabeled examples, which come from 2 classes,
i.e. the class labels yi ∈ {1, 2}, i = 1, . . . , n. yi = 1
corresponds to the majority class with prior 1−p, and yi = 2
corresponds to the minority class with prior p, p ¿ 1.
Furthermore, of the d features, only dr features are relevant
to the minority class. In other words, the examples from
the minority class have very similar values on those features,
and their values on the other features may be quite diverse.
For the sake of simplicity, assume that the dr features are
independent to each other. Therefore, the examples from
the minority class are tightly clustered in the dr-dimensional
subspace spanned by the relevant features, which we call the
relevant subspace.

Let Sdr denote the set of all dr-dimensional subspaces
of Rd, and let Smin denote the relevant subspace, Smin ∈
Sdr

. Let f(x) denote the probability density function (pdf)
of the data in Rd, i.e. f(x) = (1 − p)fmaj(x) + pfmin(x),
where fmaj(x) and fmin(x) are the pdfs of the majority and
minority classes in Rd respectively. Given feature subspace
S ∈ Sdr

and x ∈ Rd, let x(S) denote the projection of x on
S, and f (S)(x(S)), f

(S)
maj(x

(S)) and f
(S)
min(x(S)) denote the

projection of f(x), fmaj(x) and fmin(x) on S respectively.
To co-select the minority class examples and the rele-

vant features, we define two vectors: a ∈ Rn and b ∈ Rd.
Let ai and bj denote the ith and jth elements of a and b re-
spectively. ai = 1 if xi is from the minority class, and 0
otherwise; bj = 1 if the jth feature is relevant to the minority
class, and 0 otherwise.

3.2 Objective Function Given the prior p of the minority
class and the number of relevant features dr, we hope to find
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np data points whose corresponding ai = 1, and dr features
whose corresponding bj = 1. Intuitively, the np points
should form a compact cluster in the relevant subspace, and
due to the characteristic of the minority class, this cluster
should be more compact than any other np data points in
any dr-dimensional subspace. To be more strict, we have the
following optimization problem.

Problem 1

min F (a, b) =
1
np

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(xij − xkj)2)

s.t.
n∑

i=1

ai = np, ai = 0, 1

d∑

j=1

bj = dr, bj = 0, 1

In the objective function F (a, b),
∑d

j=1 bj(xij − xkj)2 is
the squared distance between xi and xk in the subspace Sb

spanned by the features with non-zero bj . This squared
distance contributes to F (a, b) if and only if both ai and
ak are equal to 1. Given a set of np points, define the set
distance of every data point to be the sum of the squared
distances between this point and all the points within this set.
Therefore, by solving this optimization problem, we aim to
find a set of np points and dr features such that the average
set distance of these points to this set in the corresponding
subspace Sb is the minimum.

Problem 1 can be easily applied to the case where either
a or b is known, and we want to solve for the other vector.
To be specific, if a is known, i.e. we know the examples
that belong to the minority class, and we want to find the
dr-dimensional subspace where the minority class can be
best characterized, we can use the same objective function
F (a, b), and solve for b using the minority class examples.
Similarly, if b is known, i.e. we know which features
are relevant to the minority class, and we want to find the
examples from the minority class, we can also use F (a, b),
and solve for a in the subspace Sb spanned by the relevant
features.

3.3 Justification The optimization problem we intro-
duced in the last subsection is reasonable intuitively. Next,
we look at it from a theoretical perspective.

∀S ∈ Sdr
, define function ψS as fol-

lows. ∀S ∈ Sdr , x ∈ Rd, let ψS(x(S)) =
minDnp⊂D,|Dnp|=np

1
np

∑
y∈Dnp

‖x(S) − y(S)‖2 =
1

np

∑np
i=1 ‖x(S) − z

(i)

x(S)‖2, where z
(i)

x(S) denotes the ith near-

est neighbor of x(S) within x
(S)
1 , . . . , x

(S)
n , i.e. ψS(x(S)) is

the average squared distance between x(S) and its np nearest
neighbors. Furthermore, define function φS as follows.
φS(x(S)) = E(ψS(x(S))). Here, the expectation is with

respect to z
(i)

x(S) , i = 1, . . . , np.
Based on the above definitions, we have the following

theorem.

THEOREM 3.1. If

1. In Smin, the support region of the minority class is
within hyper-ball B of radius r;

2. The support region of f in any dr-
dimensional subspace is bounded, i.e.
maxS∈Sdr

maxx,y∈Rd,f(S)(x(S))>0,f(S)(y(S))>0 ‖x(S) −
y(S)‖ = α < +∞;

3. The density of the majority class in hyper-ball B is non-
zero, i.e. miny∈Rd,y(Smin)∈B(1−p)f (Smin)

maj (y(Smin)) =
f0 > 0;

4. The function value of φS is big enough if the projection
of the data point in the dr-dimensional subspace S is
not within B, i.e. minS∈Sdr ,x∈Rd,x(S) /∈B φS(x(S)) −
4r2 > β > 0;

5. The number of examples is sufficiently large, i.e. n ≥
max{ 1

2(VBf0)2
log 2

δ , α8

4p2β4 log 2Cdr
d

δ }, where VB is the

volume of hyper-ball B, and Cdr

d is the number of d
choose dr;

then with probability at least 1−δ, in the solution to Problem
1, the subspace Sb spanned by the features with bj = 1 is the
relevant subspace Smin, and the data points with ai = 1 are
within B.

Proof The basic idea of the proof is to show that if the
selected feature subspace Sb is NOT Smin, or at least one
point in the set of np points is outside B in Smin, we can
always use Smin, and find another set of np points such
that all the points are within B, and its objective function
is smaller than the original set. To do this, first, notice that
according to condition (3), the expected proportion of data
points falling inside B, E(nB

n ) ≥ p + VBf0, where nB

denotes the number of points within B. Second, according
to condition (2), ∀x ∈ D, Pr[0 ≤ ‖x(S)−z

(i)

x(s)‖2 ≤ α2] = 1,

527 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



i = 1, . . . , np. Therefore,

Pr[
nB

n
< p or ∃x ∈ D,∃S ∈ Sdr ,

s.t. ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
< p]

+ Pr[∃x ∈ D,∃S ∈ Sdr , s.t. ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
− E(

nB

n
) < −VBf0]

+ nCdr

d Pr[ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
− E(

nB

n
) < −VBf0]

+ nCdr

d ·∫

z
(np+1)

x(S)

Pr[ψS(x(S)) < φS(x(S))− β|z(np+1)

x(S) ]dPr[z(np+1)

x(S) ]

≤ exp(−2n(VBf0)2)

+ nCdr

d

∫

z
(np+1)

x(S)

exp(−2npβ2

α4
)dPr[z(np+1)

x(S) ]

≤ exp(−2n(VBf0)2) + nCdr

d exp(−2npβ2

α4
)

where Cdr

d is an upper bound on the number of subspaces in
Sdr , and the second last inequality is based on Hoeffding’s
inequality and condition (2)1.

Let exp(−2n(VBf0)2) ≤ δ
2 , and nCdr

d exp(−2npβ2

α4 ) ≤
δ
2 , we get n ≥ 1

2(VBf0)2
log 2

δ , and n ≥ α8

4p2β4 log 2Cdr
d

δ .
In other words, if the number of examples n is sufficiently

large, i.e. n ≥ max{ 1
2(VBf0)2

log 2
δ , α8

4p2β4 log 2Cdr
d

δ }, then
with probability at least 1 − δ, there are at least np points
within hyper-ball B, and ∀x ∈ D, ∀S ∈ Sdr , ψS(x(S)) ≥
φS(x(S)) − β. Furthermore, according to condition (4),
∀x ∈ D, ∀S ∈ Sdr , if x(S) /∈ B, ψS(x(S)) > 4r2.

Notice that ∀a, ∀b, F (a, b) ≥ ∑
i:ai=1 ψSb(x(Sb)

i ). On
the other hand, if Sb = Smin, and the points with ai = 1 are
within B in Smin, then F (a, b) < 4npr2. This is because the
squared distance between any two points within B in Smin

is no bigger than 4r2.
Given a and b, if Sb is not Smin, we can design a′

and b′ in such a way that Sb′ is Smin, and the points
that correspond to a′i = 1 are within B in Smin. We
can always find such a vector a′ since we have shown
that there are at least np points within B. Therefore,
F (a, b) ≥ ∑

i:ai=1 ψSb(x(Sb)
i ) > 4npr2 > F (a′, b′).

On the other hand, if Sb is Smin, but at least one point
with ai = 1 is outside B, we can design a′ and b′ in
such a way that b′ = b, and a′ replaces the points with

1Note that given z
(np+1)

x(S) , ψS(x(S)) can be seen as the average of np
independent items.

ai = 1 that are outside B with some points within B
that are different from existing points in a. For the
sake of simplicity, assume that only xt is outside B.
Therefore, F (a, b) = 1

np

∑
i 6=t

∑
k 6=t aiak‖x(Smin)

i −
x

(Smin)
k ‖2 + 2

np

∑n
i=1 ai‖x(Smin)

i − x
(Smin)
t ‖2 ≥

1
np

∑
i 6=t

∑
k 6=t aiak‖x(Smin)

i − x
(Smin)
k ‖2 +

2ψSmin(x(Smin)
t ) > 1

np

∑
i 6=t

∑
k 6=t aiak‖x(Smin)

i −
x

(Smin)
k ‖2 + 8r2 ≥ F (a′, b′). The above derivation can be

easily generalized to the case where more than one point
with ai = 1 are outside B. Therefore, in the solution to
Problem 1, Sb is the relevant subspace Smin, and the data
points with ai = 1 are within B.¥

The conditions of Theorem 3.1 are straight-forward ex-
cept conditions (3) and (4). The purpose of condition (3) is to
limit our attention to the problems where the support regions
of the majority and the minority classes overlap. According
to condition (4), ∀S ∈ Sdr , if x(S) /∈ B and y(Smin) ∈ B,
φS(x(S)) is bigger than φSmin(y(Smin)) by at least β when
there are at least np points within B in Smin. Therefore, this
condition can be roughly interpreted as follows. The density
around x(S) is smaller than the density around y(Smin) such
that the expected average squared distance between x(S) and
its np nearest neighbors is much larger than that between
y(Smin) and its np neighbors. In this way, assuming the other
conditions in Theorem 3.1 are also satisfied, with high prob-
ability, we can identify the relevant subspace and pick the
examples within B according to a.

It should be pointed out that if we want to select np
points from the minority class, picking them from hyper-
ball B is the best we can hope for. In this way, each
selected example has a certain probability of coming from
the minority class. On the other hand, if some selected points
are outside B, their probability of coming from the minority
class is 0.

4 Partial Augmented Lagrangian Method
In this section, we introduce the Partial Augmented La-
grangian Method (PALM) to effectively solve Problem 1. In
our method, we alternate the optimization of a and b, i.e.
given the current estimate of a, we solve for b that leads to
the minimum value of F (a, b); given the current estimate of
b, we solve for a that decreases the value of F (a, b) as much
as possible.

To be specific, F (a, b) can be rewritten as F (a, b) =∑d
j=1 bj

∑n
i=1

∑n
k=1

1
npaiak(xij−xkj)2. Therefore, given

a, we can solve for b as follows. For each feature j,
calculate its score sa

j = 1
np

∑n
i=1

∑n
k=1 aiak(xij − xkj)2.

Then find the dr features with the smallest scores, and set
their corresponding bj = 1. It is easy to show that this
vector b minimizes F (a, b) given a. On the other hand,
given b, solving for a is not straight-forward, since F (a, b)
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is not a convex function of a. Therefore, this problem
can not be solved by general binary integer programming
(BIP) algorithms. Even though BIP algorithms can be
combined with heuristics, the performance largely depends
on the heuristics employed. In this paper, we first relax
the constraints on a: instead of requiring that ai be binary,
we require that ai ∈ [0, 1], i.e. we solve the following
optimization problem of a:

Problem 2

min Fb(a) =
1
np

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(xij − xkj)2)

s.t.
n∑

i=1

ai = np, ai ∈ [0, 1]

Next we use augmented Lagrangian method [24] to
solve Problem 2 in an iterative way. The reason for using
augmented Lagrangian method is the following: it is a
combination of Lagrangian and quadratic penalty methods;
compared with the Lagrangian method, the addition of the
penalty terms to the Lagrangian function does not alter the
stationary point of the Lagrangian function, and can help
damp oscillations and improve convergence. Furthermore,
the penalty parameter does not have to go to infinity in
order to get the optimal solution [22]. Here, we define the
following augmented Lagrangian function

LA(a, λ, σ) =
1
np

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(xij − xkj)2)

−
2n+1∑

i=1

λidi(a) +
σ

2

2n+1∑

i=1

d2
i (a)(4.1)

where λi, i = 1, . . . , 2n + 1 are the Lagrange multipliers, σ
is a positive parameter, and di(a), i = 1, . . . , 2n + 1 are a
set of functions defined as follows.

di(a) =
{

ci(a) if i ≤ 1 or ci(a) ≤ λi

σ
λi

σ otherwise

c1(a) =
n∑

i=1

ai − np = 0

cj+1(a) = aj ≥ 0, 1 ≤ j ≤ n

ck+n+1(a) = 1− ak ≥ 0, 1 ≤ k ≤ n

Here ci(a), i = 1, . . . , 2n+1, denote the original constraints
on a, both equality and inequality, and di(a) are truncated
versions of ci(a), i.e. di(a) is equal to ci(a) if and only
if the corresponding constraint is active or near-active; it is
fixed at λi

σ otherwise.
We minimize LA(a, λ, σ) based on Algorithm 4.20

in [22]. Putting together the optimization of a and b, we

have the Partial Augmented Lagrangian Method, which is
presented in Algorithm 1.

The algorithm works as follows. Given the initial values
λ0 and σ0 of λ and σ, and the maximum number of iteration
steps stepmax, it will output vectors a and b that correspond
to a local minimum of F (a, b). In Step 1, we initialize a
and b. Next, in Step 2, we assign λ and σ to their initial
values, and calculate Kprev , which is the maximum absolute
value of all the di(a) functions, i = 1, . . . , 2n + 1. Then
Step 4 to Step 16 are repeated stepmax times. In Step 4, we
minimize the augmented Lagrangian function with respect to
a, given the current estimates of λ, σ, and b. To be specific,
we use gradient descent to update a, and gradually decrease
the step size until convergence. Once we have obtained an
updated estimate of a, calculate K, which is the maximum
absolute value of the current di(a) functions. If the value of
K is less than a half of Kprev , then we update the Lagrange
multipliers using the formula in Step 7, which is called the
steepest ascent formula in [22]. Furthermore, we update
Kprev using the smaller value of K and Kprev . Otherwise,
if the value K is bigger than a half of Kprev , we double the
value of σ. Next, we update the value of b based on the
current estimate of a. To be specific, for each feature, we
calculate its score based on the formula in Step 14. Then in
Step 16, we pick dr features with the smallest scores, and set
the corresponding bj to 1, which minimizes F (a, b) given a.
In our experiments, the algorithm always converges around
20 iteration steps, so we set stepmax = 30.

Algorithm 1 Partial Augmented Lagrangian Method
(PALM)
Input: Initial values of λ and σ: λ0 and σ0, stepmax

Output: a and b
1: Initialize a and b
2: λ = λ0, σ = σ0, Kprev = ‖d(a)‖∞
3: for step = 1 to stepmax do
4: a := arg mina LA(a, λ, σ), K := ‖d(a)‖∞
5: if K ≤ Kprev

2 then
6: for i = 1 to 2n + 1 do
7: λi := λi − σdi(a)
8: end for
9: Kprev := min(K, Kprev)

10: else
11: σ := 2× σ
12: end if
13: for j = 1 to d do
14: Calculate the score for the jth feature sa

j =
1

np

∑n
i=1

∑n
k=1 aiak(xij − xkj)2

15: end for
16: Pick dr features with the smallest scores, and set their

corresponding bj to 1
17: end for
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Notice that the vectors a and b generated by PALM
correspond to a local minimum of F (a, b). To improve its
performance, we can run PALM with different initializations
of a and b in Step 1 of Algorithm 1, and pick the best values
of a and b that correspond to the smallest F (a, b).

The vectors a and b can be interpreted as follows. For b,
its dr non-zero elements correspond to the relevant features.
For a, ideally the minority class examples should correspond
to ai = 1. However, this may not be the case in practice.
Therefore, we rank the elements of a from large to small,
and hope to find all the minority class examples from the
top of the ranked list. In other words, the elements of a
that correspond to the top np examples of the ranked list are
converted to 1; whereas the elements of a that correspond to
the remaining examples are converted to 0.

5 Experimental Results
In this section, we demonstrate the performance of PALM
from the following perspectives: (1) the quality of rare
category selection; (2) the quality of feature selection; (3) the
benefit of co-selecting features and instances simultaneously.
In addition, we also want to (1) test the sensitivity of the
proposed PALM to small perturbations in p and dr; and
(2) compare the performance of PALM with binary integer
programming (BIP).

In our experiments, we retrieve the minority class exam-
ples from the ranked list generated by different methods, and
use the following performance measures: (1) the precision-
scope curve, i.e. the percentage of the minority class exam-
ples when a certain number of examples are retrieved, such
as 10%×np, . . . , 100%×np; (2) the recall-scope curve, i.e.
the percentage of the minority class examples when a certain
number of MINORITY class examples are retrieved, such as
10%× np, . . . , 100%× np.

5.1 Synthetic Data Sets
An illustrative example. To demonstrate the performance
of PALM, we first use a simple synthetic data set shown in
Figure 1. In this figure, there are 1000 examples from the
majority class, denoted as black dots, which are uniformly
distributed in the feature space, and only 10 examples from
the minority class, denoted as red circles, whose features
on Z are uniformly distributed. Of the 3 features, only 2
features (X and Y ) are relevant to the minority class, i.e. the
minority class examples have very similar values on these
features; and 1 feature (Z) is irrelevant to the minority class,
i.e. the minority class examples spread out on this feature.
Using PALM, given the number of minority class examples
and the number of relevant features, we are able to identify
the relevant features, with the corresponding bj = 1. Of the
10 examples with the largest ai values, 9 examples are from
the minority class, and the remaining minority class example
has the 11th largest ai value.

−0.5
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0.5

−0.5

0

0.5

−0.5

0

0.5
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Figure 1: An illustrative example. (Best viewed in color)

Accuracy of feature selection. Next we test the preci-
sion of the selected features of PALM using synthetic data
sets with different prior p. Figure 2 shows the comparison
results of PALM with Laplacian score method [14], feature
variance method (selecting the features with the largest vari-
ance), CRO [18], and random sampling. The x-axis is the
proportion of irrelevant features, and the y-axis is the pre-
cision of the selected features. From these results, we can
see that PALM is much better than the other 4 methods es-
pecially when the prior p is small. As for Laplacian score
method, although it is comparable with PALM for large p,
its performance quickly deteriorates as p decreases (e.g. Fig-
ure 2a and b), which is the case we are interested in for rare
category analysis.

5.2 Real Data Sets
Methods for comparison and data sets. In this subsection,
we test the performance of PALM on rare category selection.
To the best of our knowledge, there are no existing methods
for this task. Therefore, we have designed the following
methods for the sake of comparison.

1. Random: randomly rank all the examples, and select
the first np points from the ranked list as the minority
class examples.

2. NNDB-based: calculate the score of each example us-
ing NNDB [13]. Note that no feedback from the label-
ing oracle is available, so the scores are not updated.

3. Interleave-based: calculate the score of each example
using the Interleave principle [25]. Similar as the
NNDB-based method, the scores of the examples are
not updated in this method.

4. PALM-full: assume that all the features are relevant to
the minority class, i.e. bj = 1, j = 1, . . . , d, and run
PALM with dr = d.

Note that NNDB-based method and Interleave-based method
are both derived from rare category detection methods. For
PALM, we tune the number of relevant features dr without
any label information.
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(a) p = 0.01
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(b) p = 0.015
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(c) p = 0.02
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(d) p = 0.05
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(e) p = 0.1
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(f) p = 0.2

Figure 2: Precision of selected features on synthetic data.

Here we use 4 real data sets, which are summarized in
Table 1. In this paper, we focus on binary problems, i.e.
there is only one majority class and one minority class in the
data set. Therefore, for each data set, we construct several
subproblems as follows. We combine the examples from
two different classes into a smaller binary data set, using
the larger class as the majority class, the smaller class as the
minority class, and test the different methods on these binary
subproblems. For each data set, we present the results on
2 binary subproblems. On the other subproblems, similar
results are observed and therefore omitted for brevity.

Table 1: Properties of the data sets [2] used.

DATA SET n d LARGEST SMALLEST

CLASS CLASS

ECOLI 336 7 42.56% 2.68%
GLASS 214 9 35.51% 4.21%

ABALONE 4177 7 16.50% 0.34%
YEAST 1484 8 31.20% 1.68%

Accuracy of rare category selection. Figure 3 to
Figure 10 compare the performance of different methods on
the 4 real data sets. In these figures, the left figure shows
precision vs. scope, and the right figure shows recall vs.
scope. On all the data sets, PALM performs the best: the
precision and recall sometimes reach 100%, such as Figure 8
and Figure 9. As for the other methods (Interleave-based,
NNDB-based, and PALM-full), their performance depends

on different data sets, and none of them is consistently better
than Random. Comparing with Random, Interleave-based,
and NNDB-based, we can see that PALM does a better
job at selecting the minority class examples; comparing
with PALM-full, we can see that the features selected by
PALM indeed help improve the performance of rare category
selection.

Notice that in some figures (Figure 3b, Figure 4b,
Figure 5b, Figure 7b, and Figure 8b), at the end of the recall
curves, the different methods seem to overlap with each
other. This is because with no supervision, it is sometimes
difficult to retrieve all the examples from the minority class,
and the last example from the minority class tends to appear
towards the end of the ranked list. Therefore, the recall value
at 100%np is often close to the prior of the minority class in
the data set.

Comparison with BIP. Next, in Figure 11 and Fig-
ure 12, we compare the performance of PALM and Binary
where the vector a is obtained by a BIP algorithm combined
with heuristics on Abalone data set. To be specific, in Bi-
nary, we randomly initialize a binary vector a which satisfies
all the constraints in Problem 1. Then we pick each pair of
elements in a with different values, and swap their values if
this leads to a smaller value of the objective function.2

2We tested different heuristics, and only the best performance is reported
here.
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(b)
Figure 3: Abalone data set: class 1 vs. class 7, p = 0.362, 4
features selected by PALM.
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(b)
Figure 4: Abalone data set: class 2 vs. class 7, p = 0.381, 4
features selected by PALM.

20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Scope

P
re

ci
si

on

 

 

PALM
PALM−full
Random
NNDB−based
Interleave−based

(a)

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scope

R
ec

al
l

 

 

PALM
PALM−full
Random
NNDB−based
Interleave−based

(b)
Figure 5: Ecoli data set: class 1 vs. class 4, p = 0.197, 3
features selected by PALM.
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(b)
Figure 6: Ecoli data set: class 2 vs. class 4, p = 0.313, 4
features selected by PALM.
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(b)
Figure 7: Glass data set: class 1 vs. class 3, p = 0.195, 2
features selected by PALM.
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(b)
Figure 8: Glass data set: class 2 vs. class 3, p = 0.183, 3
features selected by PALM.
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(b)
Figure 9: Yeast data set: class 2 vs. class 6, p = 0.093, 2
features selected by PALM.
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(b)
Figure 10: Yeast data set: class 2 vs. class 9, p = 0.055, 3
features selected by PALM.
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The vector b is obtained in the same way as PALM.
From these figures, we can see that the performance of
Binary is consistently worse than PALM in terms of both
precision and recall, showing the effectiveness of PALM in
obtaining the vector a.

Sensitivity of PALM. Finally, we test the performance
of PALM when there are small perturbations in the prior
of the minority class and the number of relevant features.
To this end, we first run PALM with p increased by 5%
(PALM+5%) and decreased by 5% (PALM-5%) respec-
tively, and compare their performance with PALM in Fig-
ure 13. From this figure, we can see that PALM is quite ro-
bust against small perturbations in p. Then we run PALM
with dr increased by 1 (PALM+1) and decreased by 1
(PALM-1) respectively, and compare their performance with
PALM and PALM-full in Figure 14. From this figure, we can
see that PALM is also robust against small perturbations in
dr in most cases (Abalone, Ecoli, and Glass), and in all the
cases, the performance of PALM+1 and PALM-1 is better
than PALM-full (i.e. PALM without feature selection).
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Figure 11: Abalone data set: class 1 vs. class 7, p = 0.362.
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Figure 12: Abalone data set: class 2 vs. class 7, p = 0.381.
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Figure 13: Perturbations on the prior of the minority class.
(Best viewed in color)
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Figure 14: Perturbations on the number of relevant features.
(Best viewed in color)

6 Conclusion
In this paper, we address the problem of unsupervised rare
category analysis. To be specific, our goal is to co-select the
relevant features and the examples from the minority class.
To this end, we proposed an optimization framework, which
is well justified theoretically. To solve this optimization
problem, we designed the Partial Augmented Lagrangian
Method (PALM), which alternatively finds the relevant fea-
tures and the minority class examples. The effectiveness
of PALM is demonstrated by extensive experimental results.
Future research work includes: (1) extending the optimiza-
tion framework to multiple classes, which may be addressed
by running PALM with respect to the prior of each minor-
ity class, from large to small; (2) generalizing PALM to the
cases where the prior information (i.e. the prior of the mi-
nority class p and the number of relevant features dr) is not
available, which may be addressed by introducing objective
functions to evaluate different values of p and dr.
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