
Active Sampling for Rank Learning via

Optimizing the Area Under the ROC Curve

Pinar Donmez and Jaime G. Carbonell

Language Technologies Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA, USA
{pinard,jgc}@cs.cmu.edu

Abstract. Learning ranking functions is crucial for solving many prob-
lems, ranging from document retrieval to building recommendation sys-
tems based on an individual user’s preferences or on collaborative filter-
ing. Learning-to-rank is particularly necessary for adaptive or person-
alizable tasks, including email prioritization, individualized recommen-
dation systems, personalized news clipping services and so on. Whereas
the learning-to-rank challenge has been addressed in the literature, little
work has been done in an active-learning framework, where requisite user
feedback is minimized by selecting only the most informative instances
to train the rank learner. This paper addresses active rank-learning head
on, proposing a new sampling strategy based on minimizing hinge rank
loss, and demonstrating the effectiveness of the active sampling method
for rankSVM on two standard rank-learning datasets. The proposed
method shows convincing results in optimizing three performance met-
rics, as well as improvement against four baselines including entropy-
based, divergence-based, uncertainty-based and random sampling meth-
ods.

Key words: Active learning, document retrieval, rank learning, AUC,
hinge loss, performance optimization

1 Introduction

Dynamic ranking-based challenges abound in many applications. For instance,
search engines must rank results for each query; review and recommendation sites
rank competing products; Netflix ranks movie preferences based on prior user
selections and feedback; Amazon ranks books based on collaborative filtering;
service recommendation sites rank providers based on match to user’s request,
price, quality or reliability as judged by others, and geographical distance to the
user. Rank-based learning methods are relatively recent. Rank learning thus far
has mostly been applied to improving document retrieval, where a global order-
ing of documents is constructed based on the relevance scores of each document
to each given query.

In supervised learning, it is usually necessary for users to examine and label
large amounts of training data, but this process often proves impractical for most

2 Pinar Donmez and Jaime G. Carbonell

real-life applications. Active learning is a paradigm that helps reduce the labeling
effort, sometimes by orders of magnitude, via incrementally sampling from an
unlabeled pool of instances and requesting the labels (or rank decisions) of only
those instances that maximize the information value to the learning function [12,
25]. The learning function is updated each time new labeled instances are added
to the training set via retraining. Relevance feedback in information retrieval can
be regarded as a rudimentary case of active learning where the top k hits are
returned for labeling. However, active learning can improve relevance feedback
by selectively sampling the most informative instances for learning. Moreover,
active learning can help the creation of retrieval test collections by reducing the
number of relevance judgments required from human experts.

Active learning has been studied in the context of classification by several
researchers [9, 19, 20, 24, 27, 29]. Most active sampling methods for classification
try to minimize the classification error; hence do not take into account the rank
order which is crucial for ranking tasks (e.g. an error at the top of the rank order
is more consequential than one further down). Moreover, ranking problems are
often applied to very skewed data distributions with relevant data being a small
minority of the total data as is typical in IR problems. In this paper, we try to
address these issues by proposing an active sampling approach for rank learning
in the context of document retrieval.

A small number of different algorithms have been proposed for supervised
rank learning in the literature [4, 11, 16]. Moreover, standard Support Vector
Machine (SVM) training surprisingly leads to very good performance on vari-
ous ranking problems with respect to the corresponding ordering metrics [2, 17,
23]. SVM solution relies on constructing a separating hyperplane in the input
space to maximize the margin between two data sets with opposing class labels.
The SVM objective is to minimize the training error measured with hinge loss
plus a complexity term subject to some constraints. Recently, [26] has shown
that minimizing hinge loss is an accurate approximation for maximizing the
area under the ROC curve (AUC). Hence, in retrospect, SVMs should be good
rankers, since they implicitly optimize a ranking quality measure, namely the
AUC. This claim is also supported by several studies showing that SVM rank
learning (RankSVM) [11, 16] provides state-of-the-art performance in learning
ranking functions. Hence, we adopt RankSVM as the supervised rank learner in
this paper.

The main focus of this paper is a new active sampling method for SVM
rank learning, which relies on the relationship between the AUC and the hinge
rank loss. We use the relationship proposed by [26] as a theoretically motivated
justification for our loss minimization framework. Moreover, our method goes
beyond [26]’s work by presenting a robust loss estimation that is crucial for
highly skewed datasets typical in ranking tasks. Experimental results indicate
a significant improvement over a random baseline and other active sampling
methods on real-life corpora.

The remainder of this paper is organized as follows: In Section 2, we recapit-
ulate the relationship between the AUC and the hinge rank loss proposed by [26]

Active Rank Learning via Optimizing the Area Under the ROC Curve 3

and present our SVM active sampling method for ranking. Experimental evalu-
ations are discussed in Section 3. Finally, we offer our conclusions and potential
future directions in Section 4.

2 Loss Minimization

2.1 Hinge Rank Loss and AUC

The hinge loss of a real-valued classifier is defined as LH =
∑N

i=1[1−yi(ci−θ)]+.
ci ∈ R is the classifier output, yi ∈ {−1,+1} are the binary class labels, θ is the
real-valued decision threshold, and N is the total number of training instances.
[.]+ denotes the positive part, i.e. [a]+ = a if a > 0, and 0 otherwise. Let the
classifier outputs ci be sorted in ascending order, i.e. the smallest output value
is assigned the lowest rank. Then, the rank version of the standard hinge loss
proposed by [26] becomes:

LHR =

N
∑

i=1

[
1

2
− yi(ri − θ̄)]+ (1)

ri is the rank of the data point xi, θ̄ is the rank threshold defined as θ̄ = max{ri :
ci ≤ θ}+ 1

2 which is half way between two neighboring rank positions where one
belongs to the positive(negative) class, and the other belongs to the other class.
Note that LHR increases linearly in ri tracking the standard hinge loss in ci.

The AUC measure is equivalent to the probability that a randomly chosen
member of class +1 will have a smaller estimated probability of belonging to
class −1 than a randomly chosen member of class −1 [10]. Moreover, AUC is
equivalent to the Wilcoxon-Mann-Whitney test statistic [18, 28]; thus it can be
written in terms of pairwise comparison of ranks:

A =
1

n+n−

n+

∑

j=1

n−

∑

i=1

I(r+
j > r−i) (2)

where I is the indicator function where I(a) = 1 if a is true, and 0 otherwise.
n+ and n− denote the number of positive(relevant) and negative(nonrelevant)
examples, respectively. Steck shows that AUC can be written in terms of the
hinge rank loss defined in Equation 1 as follows [26]:

A ≥ 1 −
LHR − C

n+n−
(3)

where C is a constant, independent of the rank order (see [26] for further details).
The hinge rank loss is the decisive term in the lower bound on the AUC. Hence,
minimizing the hinge rank loss guarantees maximizing the AUC. Similarly, the
bipartite ranking error R adopted by [22] is directly coupled with the AUC;
i.e. R = 1 − AUC. Hence, effectively reducing the bipartite loss guarantees an
increase in the AUC. This is supported empirically in Section 3.2 where both our
method and the bipartite ranking loss based method of [22] improve the AUC.

4 Pinar Donmez and Jaime G. Carbonell

2.2 SVM Active Learning for Ranking

Relying on the relationship between the hinge rank loss and the AUC, we propose
selecting examples that will minimize the expected hinge rank loss in order to
maximize rank-learning as measured by the AUC. Expected loss minimization
has been studied before for active learning, but in classification [9, 19, 20], rather
than in ranking. Unfortunately, active sampling designed for classification error
cannot directly apply to the ranking scenario. Ranking loss is based on the
relative position of the entities instead of the absolute class label. The rank
position of an error matters significantly since the top of the ordered list is more
important than the bottom. Moreover, it is crucial to take into account the data
skew typical in ranking datasets when designing sampling algorithms for ranking.
In this section, we describe a loss minimization algorithm for active learning in
ranking to address these issues.

The expected loss minimization criterion requires each unlabeled example
to be tested separately in order to calculate the expected future error if it were
chosen for a rank-label. Clearly, this is not efficient for large datasets. Nguyen and
Smeulders [20] proposed selecting the examples that have the largest contribution
to the current estimated error instead of choosing the sample that produces the
smallest future error; s = argmaxi∈IU

Ey|x[(yi − ŷi)
2 | xi] where IU is the set

of indices of the unlabeled data. We adopt a similar approach but our selection
criterion is based on the hinge rank loss rather than the typical loss functions
used for classification such as squared loss. The optimization problem for SVM
Rank Learning [4, 17] can be written as a loss minimization problem as follows:

LH =

l
∑

i=1

[1 − zi〈w,x
(1)
i − x

(2)
i 〉]+ (4)

plus a complexity penalty 1. x
(1)
i and x

(2)
i correspond to two different examples

(i.e. one relevant, one nonrelevant) for a given query (we omit the query subindex

for notational simplicity). LH is specific to a given query. zi = +1 if x
(1)
i ≻ x

(2)
i ,

and zi = −1 otherwise. By algebraic reformulations:

LH =

l
∑

i=1

[1 − zi〈w,x
(1)
i 〉 + zi〈w,x

(2)
i 〉]+

LH =

l
∑

i=1

[(1 − y
(1)
i 〈w,x

(1)
i 〉) + (1 − y

(2)
i 〈w,x

(2)
i 〉) − 1]+

1 The decision threshold θ is typically chosen as 0 without loss of generality.

Active Rank Learning via Optimizing the Area Under the ROC Curve 5

where y1
i = zi and y2

i = −zi. The rank version of the above loss function then
becomes2:

LHR =

l
∑

i=1

[(
1

2
− y

(1)
i (r

(1)
i − θ̄)) + (

1

2
− y

(2)
i (r

(2)
i − θ̄)) − 1]+

LHR ≤

l
∑

i=1

[
1

2
− y

(1)
i (r

(1)
i − θ̄)]+ + [

1

2
− y

(2)
i (r

(2)
i − θ̄)]+ (5)

where the rank threshold θ̄ is specific to a given query q. Since the RankSVM
implementation takes as input vectors corresponding to individual data points
(documents), we use, for convenience, the right hand side of the above inequality
as the loss function instead of Equation 4 that uses pairwise difference vectors.
In our active learning scenario, this corresponds to selecting the example pair

that has the largest expected hinge rank loss Ey|x[[12 − y
(1)
i (r

(1)
i − θ̄)]+ + [12 −

y
(2)
i (r

(2)
i − θ̄)]+ | (x

(1)
i ,x

(2)
i)], where the expectation is taken over the poste-

rior distribution of y given x. However, picking an optimal pair requires O(n2)
comparisons in a set of size n; hence it is impractical for large-scale ranking ap-
plications. Therefore, we proceed with selecting individual example(s) per query
with the largest expected loss. A selected example may not be optimal compared
to the pair selected according to Equation 5; however, it is a reasonable choice for
performance-time tradeoff. In fact, our empirical results show that this strategy
is quite effective for learning a good ranker with few labeled instances.

E
[

[
1

2
− yk(rk − θ̄)]+ | xk

]

=

P̂ (yk = 1 | xk)[
1

2
− (rk − θ̄)]+ + P̂ (yk = −1 | xk)[

1

2
+ (rk − θ̄)]+ (6)

Sampling according to Equation 6 favors points with the highest uncertainty.
RankSVM optimizes pairwise preferences, and it may not learn a reasonable
decision threshold. Thus, the estimated decision boundary may not be in corre-
spondence with the true rank threshold. This bias may not affect the ranking
performance as long as the correct order is obtained. However, it presents a
larger problem in the active-learning-to-rank context. The idea of uncertainty
has a different interpretation in ranking since the most uncertain points in rank-
ing problems can be considered as the points whose rankings are closest to the
rank threshold. This corresponds to multiple thresholds in a multi-level rating
scenario with uncertain points being specific to each threshold. Therefore, the
rank threshold should define the decision boundary. In order to simulate this
effect, we propose a normalized rank distance measure and incorporate it into

2 The transformation from Equation 4 to 5 is possible when the data has binary rele-
vance judgments, which is the case for the majority of the benchmark test collections
including ones used in this paper. An extension of this work to multi-level ratings is
projected future work.

6 Pinar Donmez and Jaime G. Carbonell

Equation 6 to obtain the following:

E
[

[
1

2
− yk(rk − θ̄)]+ | xk

]

=

{

P̂ (yk = 1 | xk)
[12 − (rk − θ̄)]+

|rmin − θ̄|
(1 − λ)+

P̂ (yk = −1 | xk)
[12 + (rk − θ̄)]+

|rmax − θ̄|
λ

}

(7)

where rmin = 1 and rmax = |IUq
| since the most relevant examples have the

highest rank and vice versa. |IUq
| denotes the size of the unlabeled set for the

query q. The normalization in Equation 7 regularizes the effect of the points
that are ranked further below in the rank order, and those ranked at the top.
Generally, the number of points that are ranked above the threshold would be
small since there are only a handful of positive(relevant) examples compared to
the large amount of negative(non-relevant) examples in tasks such as document
retrieval. Without normalization, the points with rank rk > θ̄ have little chance
of being selected since the rank distance rk − θ̄ is small. Dividing both distances
by their maximum renormalizes them into the same scale, favoring a more bal-
anced estimation. 0 < λ < 1 is a trade-off parameter that controls the weight
of the examples on either side of the rank threshold. Setting λ > 0.5 gives more
weight to the examples that are mistakenly ranked above the threshold but are
in fact negative(nonrelevant). We tuned the λ parameter on a small dataset not
reported in this paper and that resulted in fixing λ at 0.6. Better tuning on
a validation set could further improve our results. The outline of our selection
algorithm is given in Figure 1.

Input: Labeled data L, Unlabeled data U , # rounds T
Output: A ranking function f(x) = 〈w, x〉
for t=1:T

1. Learn a ranking function f on L

2. Rank the examples xk ∈ U in ascending order acc. to f(xk)

3. Estimate their posterior, i.e. P̂ (yk | xk)

4. Select the top l examples, U (l), when sorted in descending order w.r.t.:

P̂ (yk = 1 | xk)
[1
2
−(rk−θ̄)]+

|rmin−θ̄|
(1 − λ) + P̂ (yk = −1 | xk)

[1
2
+(rk−θ̄)]+

|rmax−θ̄|
λ

6. Remove U (l) from U and update L = L ∪ U (l)

end

Fig. 1. Our active sampling algorithm

The class probability P̂ (yk | xk) in step 3 of the algorithm in Figure 1 can
be estimated by fitting a sigmoid to the ranking function output:

P̂ (yk | xk) =
1

1 + exp(−yk ∗ f(xk))
(8)

In this paper, we propose a simple method to construct a calibrated estimate
for the posterior class distribution. First, we propose a way to estimate the rank

Active Rank Learning via Optimizing the Area Under the ROC Curve 7

threshold θ̄ and then we use it to calibrate the posterior. We assume that the
true ranking function maximizes the score difference between the lowest ranked
relevant and the highest ranked non-relevant examples. We sort the data in
ascending order of rank scores and compute the absolute difference of the scores
of two neighboring examples. The threshold is then chosen as summarized in
Figure 2.

Input: a ranking function f , unlabeled data U

Output: the estimated rank threshold ˆ̄θ
1. Sort the examples x ∈ U acc. to f(x) to obtain a rank order, i.e.

x1 ≺ x2 ≺ ... ≺ xrmax

2. Compute |f(xi) − f(xi+1)| ∀i = 1, 2, ..., rmax − 1

3. The threshold then becomes: ˆ̄θ = argmaxi=1,...,rmax−1 |f(xi) − f(xi+1)|

Fig. 2. Posterior calibration

Now we can calibrate the estimate in Equation 8 by adding the output score
of the instance whose rank is equal to the estimated threshold, i.e.

P̂ (yk | xk) =
1

1 + exp(−yk ∗ f(xk) + f(x ˆ̄θ
))

We substitute the above estimate into Equation 7 for active instance selection.
Now, it should be clear that Equation 7 favors points with the highest uncer-
tainty with respect to the current ranker. This is consistent with many other
active sampling methods proposed for classification in which uncertainty-based
selection criterion plays an effective role [9, 27, 29], although none of them has
previously adopted a normalized uncertainty-based criterion for rank-learning.

3 Experimental Evaluation

3.1 Data and Problem Setup

In order to assess the effectiveness of our active-sampling method, we used the
Learning to Rank (LETOR) Benchmark dataset [13]. We report results of our
studies on the TREC 2003 and TREC 2004 topic distillation tasks [6, 7] in
LETOR, namely TD2003 and TD2004. The relevance assessments are binary
and created by human judges. There are 44 features for each document-query
pair. In our evaluation, we used query-based normalization into the [0, 1] interval
for the features, as suggested by the producers of the LETOR [13] package. There
are 50 and 75 queries, each with ∼ 1000 documents, in TD2003 and TD2004,
respectively. The percentage of relevant documents is 1% in TD2003 and 0.6%
in TD2004. The TD2003 and TD2004 datasets come with standard train and
test splits divided into 5 folds. In each fold, we randomly picked 11 documents

8 Pinar Donmez and Jaime G. Carbonell

(one relevant and 10 non-relevant) for each query from the given training data
to construct the initial labeled set. The remaining training data is used as the
unlabeled set. Each sampling method selects l = 5 unlabeled instances per query
at each round. Then, the selected instances are labeled and added to the cur-
rent training set. The performance of the ranker is re-evaluated on the testing
data. This procedure is repeated for 20 iterations on every fold, and the averaged
results are reported.

We tested the performance of our method (denoted by LossMin) against four
baselines: the entropy-based sampling method of [22] (denoted by Entropy), the
uncertainty sampling heuristic of [30] (denoted by Uncertain), the divergence-
based sampling strategy of [1] (denoted by Diverse), and random sampling (de-
noted by Random). Entropy method [22] samples the most confusing instances
for the current ranker which are identified via estimating the bipartite ranking
error [8] that counts an error each time a relevant instance is ranked lower than
an irrelevant one. The selection mechanism of [30] favors the most ambiguous
set of samples (data pairs that are closest in the rank scores and thus most
ambiguous) with respect to the current ranker. Diverse method selects samples
exhibiting maximal divergence (disagreement) between the current hypothesis
and a randomized one [1]. We report AUC, Mean Average Precision (MAP) and
Normalized Discounted Cumulative Gain (NDCG) as the evaluation measures.
The NDCG measure was evaluated at the 10th rank cut-off. The performance at
the beginning is the same for all methods since they start with the same initial
random samples. The ranking implementation in SVMLight [15] was used with
a linear kernel and default parameter settings.

3.2 Empirical Results

Figure 3 shows the performance comparison on the TD2004 and TD2003 datasets.
Our method outperforms the others on both datasets. In fact, these results are
significant (p < 0.0001 on TD2003 and p < 0.001 on TD2004 w.r.t. MAP and
NDCG10) according to a two-sided paired t-test at 95% confidence conducted
over the entire operating range. Furthermore, we can order the methods accord-
ing to the significance of the results with respect to three evaluation metrics.
We denote p < 0.01 significance level by ≫, p < 0.05 significance level by
>, and statistical indifference by ≈. Table 1 shows the relative performance of
each active ranker on both datasets with respect to all three evaluation criteria.
Unfortunately, Uncertain and Diverse have low performance, similar to random
sampling. Uncertain selects instances with the most similar scores, but ignores
the fact that examples with the same rank label are likely be assigned similar
scores. However, such examples do not provide any additional information to the
rank learner, leading to a poor performance. A similar behavior is also observed
by [1]. On the other hand, the low performance of Diverse is perhaps due to the
heavy dependence of this algorithm on a sufficiently large initial training set. Di-

verse divides the initial training set into folds and a ranking function is trained
on each fold. These functions are not reliable when the training set size is small;
hence do not help improve the performance. Our method, on the other hand,

Active Rank Learning via Optimizing the Area Under the ROC Curve 9

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5
M

A
P

LossMin
Entropy

Diverse
Uncertain

Random

TD04

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

M
A

P

LossMin
Entropy

Diverse
Uncertain

Random

TD03

0 5 10 15 20
0.3

0.35

0.4

0.45

0.5

N
D

C
G

1
0

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

N
D

C
G

1
0

0 5 10 1515 20
0.9

0.92

0.94

0.96

0.98

A
U

C

0 5 10 15 20
0.77

0.79

0.81

0.83

0.85

A
U

C

Fig. 3. Average results on TD2004 (left figure) and TD2003 (right figure) datasets.
X-axis shows the # of iterations. 5 instances per query are selected per iteration.

effectively increases the performance even when starting with minimal labeled
data, which makes it quite useful for many ranking applications that otherwise
would require extensive labeling effort, such as document retrieval.

Our method also increases the AUC on both datasets. The increase is quite
sharp on TD2004 with a slight decline at the end while it is continuous and
gradual on TD2003 dataset. This supports the theoretical claim that our method
tries to optimize the AUC metric by sampling the instances that have the largest
effect on the expected hinge rank loss, and thereby on maximizing the expected
AUC score. A similar improvement is also apparent for the MAP and NDCG@10
metrics, indicating that they might be well correlated with the AUC. On the
other hand, Entropy method achieves comparable AUC score to ours even though

10 Pinar Donmez and Jaime G. Carbonell

Table 1. Relative Performance Comparison. ≫ denotes p < 0.01, ≈ denotes indiffer-
ence, and > denotes p < 0.05.

Metric Dataset Relative Results

MAP
TD04 LossMin ≫ Entropy ≫ Diverse ≫ Uncertain
TD03 LossMin ≫ Entropy ≫ Uncertain ≫ Diverse

NDCG10
TD04 LossMin ≫ Entropy ≫ Diverse ≈ Uncertain
TD03 LossMin ≈ Entropy ≫ Uncertain > Diverse

AUC
TD04 LossMin > Entropy > Diverse ≫ Uncertain
TD03 LossMin ≈ Entropy ≫ Uncertain > Diverse

Table 2. Performance and Selection Time Comparison. Iter: the # of iterations. Loss-
Min: the proposed method, Ent: entropy-based method, Diverse: Divergence-based
sampling, Un: maximum-uncertainty sampling. Time: training time + ranking time
+ instance selection time.

Time (cpu-sec) MAP
Iter

LossMin Ent Diverse Un LossMin Ent Diverse Un

1.347 1.347 1.347 1.347 0.184 0.184 0.184 0.184 0

1.977 45.234 36.072 1.947 0.219 0.183 0.190 0.194 1

2.003 48.576 39.127 1.953 0.201 0.204 0.171 0.191 2

2.038 52.865 41.973 1.968 0.221 0.222 0.183 0.189 3

2.110 55.038 44.665 2.001 0.226 0.228 0.160 0.186 4

our method has significantly better MAP and NDCG scores. This is not a very
surprising result since the Entropy method is suited for the bipartite ranking loss
R, which is inversely correlated with the AUC, i.e. R = 1−AUC. But, the main
advantage of our method is its use of the normalized rank distance resulting in
a more balanced selection for the highly skewed datasets. This sampling favors
the mistakenly ranked instances at the top of the ordered list, hence boosts the
metrics sensitive to the high ranks, such as MAP and NDCG, without damaging
results on the full range as evidenced by our AUC results.

Table 2 summarizes the average results on TD2003 dataset. Due to space
constraints, we only show the MAP score and the average selection time for
each method for the first 5 iterations. The selection time is calculated as the
time each algorithm spends to train the rank learner on the current labeled set,
and then to assign scores to the unlabeled examples and finally to select new
instances to be labeled. Our method achieves greater learning efficiency with
modest computation time in comparison with the other baselines. Particularly,
our method has very similar performance to that of the entropy-based method
for the early iterations despite the greater complexity of the latter. Nevertheless,
our method reaches a significantly better final performance.

4 Conclusions and Future Directions

This paper presented an active learning approach to ranking problem in the con-
text of document retrieval, which is in principle extensible to any other partially

Active Rank Learning via Optimizing the Area Under the ROC Curve 11

(or totally) ordered ranking task. The novelty of our approach lies in relying on
expected loss minimization for rank learning via the use of a normalized ranking
loss estimation. Experimental results on real-life corpora show that our sampling
algorithm works well in practice on two different datasets, successfully learning
a ranking function with many fewer labeling requests than the other baselines,
except for comparable performance with the entropy-based method on AUC. On
other metrics, our method dominates all the baselines.

This paper takes a step towards showing that active learning is an effective
and promising area of research in rank learning. It also opens further questions
regarding potential future directions. For instance, we observe that our method
while optimizing AUC also improves MAP and NDCG@10 significantly, but
its closest competitor (entropy-based method) does not. Further investigation
should shed more light on why this is the case. Moreover, if either MAP and
NDCG were the real objective function (vs. the precision-recall balanced AUC
metric), we would adjust our sampling strategy, or develop a new one that more
directly optimizes these metrics.

Ranking problems with a complete order (e.g. a declining-preference ranking
for a recommendation system) pose challenges for active learning beyond those
based on binary relevance judgments. In such a scenario, the system can ask the
oracle (e.g. human user) only about the partial (relative) order of a set of points.
In subsequent work, we plan to investigate these scenarios in order to develop
effective sampling methods for a wider range of ranking challenges.

References

1. Amini, M., Usunier, N., Laviolette, F., Lacasse, A., Gallinari, P.: A selective sam-
pling strategy for label ranking. In: ECML ’06, pp. 18–29. (2006)

2. Brefeld, U., Scheffer, T.: AUC maximizing support vector learning. In: ICML Work-
shop on ROC Analysis in Machine Learning, (2005)

3. Brinker, K.: Active Learning of Label Ranking Functions. In: ICML ’04, pp. 17–24.
(2004)

4. Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., Hon, H.-W.: Adapting ranking svm
to document retrieval. Proceedings of the international ACM SIGIR Conference
on Research and Development in information retrieval (SIGIR’06), pp. 186–193.
(2006)

5. Chu, W., Ghahramani, Z.: Extensions of Gaussian Processes for Ranking: Semi-
supervised and Active Learning. In: Proceedings of the NIPS 2005 Workshop on
Learning to Rank, pp. 29–34. (2005)

6. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the trec 2003 web
track. In: Text Retrieval Conference (TREC’03). (2003)

7. Craswell, N., Hawking, D.: Overview of the trec 2004 web track. In: Text Retrieval
Conference (TREC’04). (2004)

8. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. In: Journal of Machine Learning Research, vol. 4, pp.
933–969. (2003)

9. Donmez, P., Carbonell, J. G., Bennett, P. N.: Dual strategy active learning. In:
Proceedings of the European Conference on Machine Learning, pp. 116–127. (2007)

12 Pinar Donmez and Jaime G. Carbonell

10. Hand, D. J., Till, R. J.: A simple generalization of the area under the ROC curve
for multiple class classification problems. Machine Learning, pp. 171–186. (2001)

11. Gao, J., Qi, H., Xia, X., Nie, J.-Y.: Linear discriminant model for information
retrieval. In: Proceedings of the international ACM SIGIR Conference on Research
and Development in information retrieval (SIGIR’05), pp. 290–297. (2005)

12. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: SIGIR
’94, pp. 3–12. (1994)

13. Liu, T. Y., Xu, J., Qin, T., Xiong, W., Wang, T., Li, H.: http://research.

microsoft.com/users/tyliu/LETOR/

14. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
In: ACM Transaction on Information Systems, vol. 20(4), pp. 422–446. (2002)

15. Joachims, T.: http://svmlight.joachims.org/
16. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings

of ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’02), (2002)

17. Joachims, T.: A support vector method for multivariate performance measures. In:
Proceedings of the International Conference on Machine Learning (ICML’05), pp.
377-384. (2005)

18. Mann, H. B., Whitney, D. R.: On a test whether one of two random variables is
stochastically larger than the other. Annals of Mathematical Statistics, pp. 50–60.
(1947)

19. McCallum, A., Nigam, K.: Employing EM and pool-based active learning for text
classification. In: ICML ’98, pp. 359–367. (1998)

20. Nguyen, H. T., Smeulders, A.: Active learning with pre-clustering. In: ICML ’04,
pp. 623–630. (2004)

21. Radlinski, F., Joachims, T.: Active Exploration for Learning Rankings from Click-
through Data. In: KDD ’07, pp. 570–579. (2007)

22. Rajaram, S., Dagli, C. K., Petrovic, N., Huang, T. S.: Diverse Active Ranking for
Multimedia Search. In: Computer Vision and Pattern Recognition (CVPR ’07).
(2007)

23. Rakotomamonjy, A.: Optimizing the area under ROC curve with SVMs. In: ECAI
Workshop on ROC Analysis in AI, (2004)

24. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: ICML ’01, pp. 441–448. (2001)

25. Seung, H. S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings
of the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 287–
294. (1992)

26. Steck, H.: Hinge rank loss and the area under the ROC curve. In: Proceedings of
the European Conference on Machine Learning (ECML’07), pp. 347–358. (2007)

27. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. In: Proceedings of International Conference on Machine Learn-
ing, pp. 999–1006. (2000)

28. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, pp. 80–83.
(1945)

29. Xu, Z., Yu, K., Tresp, V., Xu, X., Wang, J.: Representative sampling for text classi-
fication using support vector machines. In: Proceedings of the European Conference
on Information Retrieval, (2003)

30. Yu, H.: SVM selective sampling for ranking with application to data retrieval. In:
SIGKDD ’05, pp. 354–363. (2005)

