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Abstract—Many real world learning problems can be recast
as multi-task learning problems which utilize correlations
among different tasks to obtain better generalization per-
formance than learning each task individually. The feature
selection problem in multi-task setting has many applications in
fields of computer vision, text classification and bio-informatics.
Generally, it can be realized by solving a L-1-infinity regu-
larized optimization problem. And the solution automatically
yields the joint sparsity among different tasks. However, due
to the nonsmooth nature of the L-1-infinity norm, there lacks
an efficient training algorithm for solving such problem with
general convex loss functions. In this paper, we propose an
accelerated gradient method based on an “optimal” first order
black-box method named after Nesterov and provide the con-
vergence rate for smooth convex loss functions. For nonsmooth
convex loss functions, such as hinge loss, our method still
has fast convergence rate empirically. Moreover, by exploiting
the structure of the L-1-infinity ball, we solve the black-box
oracle in Nesterov’s method by a simple sorting scheme. Our
method is suitable for large-scale multi-task learning problem
since it only utilizes the first order information and is very
easy to implement. Experimental results show that our method
significantly outperforms the most state-of-the-art methods in
both convergence speed and learning accuracy.

Keywords-multi-task learning; L-1-infinity regularization;
optimal method; gradient descend

I. INTRODUCTION

The traditional learning problem is to estimate a function
f : X �→ Y , where X is the input space and Y is either
a continuous space for regression or a discrete space for
classification. In many practical situations, a learning task
can often be divided into several related subtasks. Since the
related subtasks always share some common latent factors,
learning them together is more advantageous than learning
each one independently. Consequently, this leads to the
popularity of multi-task learning (MTL) in recent years [1]–
[4]. More formally, given M related tasks, the objective of
MTL is to estimate M functions f (k) : X (k) �→ Y(k) jointly.
Moreover, it is often the case that different tasks share the
same input space but with different output spaces.

Feature selection for MTL has received increasing atten-
tion in machine learning community due to its applications
in many high-dimensional sparse learning problems. For sin-
gle task, feature selection is often performed by introducing
the �1 regularization term [5], [6]. A well-known property of

�1 regularization is its ability to recover sparse solutions. For
feature selection task in MTL, the use of mixed norms, such
as the �1,2 [7]–[9] and the �1,∞ [10], [11], has been shown
to yield joint sparsity on both the feature level and task level.
In particular, the �1,∞ is sometimes more advantageous than
the �1,2 as it can often lead to an even more sparse solution.

In this paper, we mainly consider multi-task learning
problem with the �1,∞ regularizer. Recently, there has been
a lot of interest in this problem. However, there still lacks
an efficient training algorithm for large-scale application.
Turlach et al. [11] develop an interior point method which
requires computation of Hessian matrix of the objective
function. This thus limits its application due to the po-
tentially huge memory requirement. In contrast, gradient
methods only need the first order information (gradient
for smooth optimization and subgradient for nonsmooth
optimization), thus making them suitable for large-scale
learning problems. Most recently, Quattoni et al. [12] pro-
pose a projected subgradient method. The convergence rate
of this algorithm is only O(1/

√
t), where t is the number

of iterations. Han et al. [13] propose a simple blockwise
coordinate descent algorithm for multi-task Lasso. However,
their algorithm lacks theoretical analysis of the convergence
rate and can only handle square loss. Duchi et al. [14]
provide another algorithm, forward looking subgradients
method, for this problem. However, its convergence rate is
still only O(1/

√
t). Recently, Ji et al. [15] take advantage

of the composite gradient mapping [16] and propose an
accelerated gradient method for trace norm minimization
with a convergence rate O(1/t2). However, their goal is
to solve the convex relaxation of matrix rank minimization
problem instead of joint sparsity for multi-task learning.

The main difficulty for solving the �1,∞ regularized
formulation of multi-task learning problem lies in the non-
smooth property of the �1,∞ regularizer. In general, projected
subgradient based methods, as in [12], [14], can only achieve
very slow convergence rate of O(1/

√
t). In this paper,

we present an accelerated gradient descent algorithm with
the convergence rate O(1/t2) by a variation of Nesterov’s
method [17]. We particularly note that Nesterov’s algorithm
calls a black-box oracle in the projection step at each itera-
tion. By exploiting the structure of the �1,∞ ball, we show
that the projection step can be efficiently solved by a simple



sorting procedure. In sum, our accelerated gradient method
can solve the �1,∞-norm regularized problem with smooth
convex loss function in O(d(N + M log M)/

√
ε) time,

where N , M , d, ε denote the number of training examples,
the number of tasks, the dimensionality of the feature vector,
and the desired accuracy, respectively. Although we mainly
consider the �1,∞ norm, the �1,2 penalized learning problem
can also be readily solved in our framework.

The rest of the paper is structured as follows. Section II
gives some background and presents the formulation of our
problem. Section III then proposes the accelerated gradient
method and shows how to solve the gradient mapping update
efficiently. We also briefly discuss the efficient gradient map-
ping update scheme for other regularizer, such as the �1,2.
Subsections III-A and III-B present the convergence rate and
time complexity respectively. Section IV reports experiments
on multi-task classification and regression. Experimental
results show that the proposed method significantly outper-
forms the most recent state-of-the-art algorithms proposed in
2009, [12], [14]. Finally, we conclude our work and point
out some potential future work.

II. BACKGROUND AND NOTATIONS

Assume the dataset contains N tuples, zi = (xi, yi, ki)
for i = {1 . . . N}, where xi ∈ R

d is the feature vector and
ki ∈ {1 . . . M} is the indicator specifying which task the
example (xi, yi) corresponds to. yi is either a real number
in regression case or yi ∈ {−1,+1} for binary classification.
Our goal is to learn M linear classifiers of the form wT

k ·x.
In this work, we mainly consider three different types of
loss:

1) square loss: �s(z,W ) = (y − wT
k · x)2;

2) logistic loss: �l(z, W ) = ln(1 + exp(−ywT
k · x));

3) hinge loss: �h(z,W ) = max(0, 1 − ywT
k · x).

where z = (x, y, k).
Let W = [w1,w2, . . . ,wM ] ∈ R

d×M and W j be the
jth row of W . In sparse multi-task learning, we enforce the
joint sparsity across different tasks by adding the l1,∞ norm
of the matrix W to the loss function, which leads to only a
few non-zero rows of W . In sum, we formulate our problem
as:

min
W

F (W ) = f(W )+ψ(W ) =
1
N

N∑
i=1

�(zi,W )+λ‖W‖1,∞,

(1)
where

‖W‖1,∞ =
d∑

j=1

‖W j‖∞ =
d∑

j=1

max
1≤k≤M

|Wjk|. (2)

A natural way to solve (1) is subgradient method. Namely,

Wt+1 = Wt − htF
′(Wt), (3)

where Wt is the solution at t’s step and ht is the step
size. The most common strategy is to set ht = h√

t+1
.

F ′(W ) ∈ ∂F (W ) is the subgradient of F (W ) at W and
∂F (W ) denotes the subdifferential of F (W ) at W [18].
According to [19], the subdifferential of sup-norms can be
characterized as following:

Proposition 1: The subdifferential of ‖ · ‖∞ is:

∂‖ · ‖∞ |x=

{
{y : ‖y‖1 ≤ 1} x = 0,

conv{sign(xi)ei : |xi| = ‖x‖∞} x �= 0.
(4)

where conv denotes the convex hull and ei is the vector
with one at ith entry and zeros at all other entries. Due
to the additivity property of subdifferential, we can easily
obtain the subgradient of ‖W‖1,∞ and then plug into
the subgradient descent procedure. However, as shown in
[20], the convergence rate of subgradient method is only
O(1/

√
t), i.e.

F (Wt) − F (W ∗) ≤ τ√
t
, (5)

where τ is some constant and W ∗ is the optimal solution.

III. ACCELERATED GRADIENT METHOD

For smooth convex functions, Nesterov [20] introduces a
so-called “optimal” first order (gradient) method in the sense
of complexity with the convergence rate O(1/t2). How-
ever, in our formulation (1), the objective function is non-
smooth due to the �1,∞ regularizer. The recent unpublished
manuscript by Nesterov [16] considers the minimization
problem with the objective function composed of a smooth
convex part and a “simple” nonsmooth convex part. Here
“simple” means that we have the closed form minimizer of
the sum of the nonsmooth part with a quadratic auxiliary
function. The algorithm in [16] still achieves O(1/t2) con-
vergence rate. Independently, Beck et al. [21] propose the
“ISTA” algorithm for solving linear inverse problem with
the same convergence rate. [22] further extends this method
for the convex-concave optimization and obtains O(1/t)
convergence rate.

We adopt framework in [22] to provide a fast convergence
rate algorithm for solving (1). Moreover, by exploiting the
structure of the �1,∞ ball, we show that the generalized
gradient update step in each iteration can be easily solved
by a simple sorting procedure.

Firstly, we define the generalized gradient update step as
following:

QL(W,Wt) =f(Wt) + 〈W − Wt,∇f(Wt)〉
+

L

2
‖W − Wt‖2

F + λ‖W‖1,∞

qL(Wt) =argminW QL(W,Wt),

(6)

where ‖ · ‖F denotes the Frobenius norm and 〈A,B〉 =
Tr(AT B) denotes the matrix inner product.

The accelerated gradient method is presented in algorithm
1.



Algorithm 1 Accelerated Gradient Algorithm
Initialization: L0 > 0, η > 1, W0 ∈ R

d×M , V0 = W0 and
a0 = 1.
Iterate for t = 0, 1, 2, . . . until convergence of Wt:

1) Set L = Lt

2) While F (qL(Vt)) > QL(qL(Vt), Vt)

L = ηL

3) Set Lt+1 = L and compute

Wt+1 = argminW QLt+1(W,Vt)

at+1 =
2

t + 3
δt+1 = Wt+1 − Wt

Vt+1 = Wt+1 +
1 − at

at
at+1δt+1

In addition, we suggest a look-ahead stopping criterion
for algorithm 1. Firstly, we fix a step size h and in each
iteration t, we calculate the following ratio:

κ =
max

t≤i≤t+h
F (Wi) − min

t≤i≤t+h
F (Wi)

max
t≤i≤t+h

F (Wi)
. (7)

And we stop the procedure when κ ≤ τ where τ is a prefixed
constant.

Now, we focus on how to solve the generalized gradient
update efficiently. Rewrite (6), we obtain that

qL(Vt) = argminW

(1
2
‖W − (Wt − 1

L
∇f(Wt))‖2

F

+
λ

L
‖W‖1,∞

)
.

(8)

For the sake of simplicity, we denote (Wt − 1
L∇f(Wt))

as V and λ
L as λ̃. (8) then takes the following form:

qL(Vt) =argminW

(
1
2
‖W − V ‖2

F + λ̃‖W‖1,∞

)
= argmin

W 1...W d

d∑
i=1

(
1
2
‖W i − V i‖2

2 + λ̃‖W i‖∞
)

,

(9)

where W i, V i denotes the ith row of the matrix W ,
V respectively. Therefore, (8) can be decomposed into d
separate subproblems of dimension M .

For each subproblem:

min
w

1
2
‖w − v‖2

2 + λ̃‖w‖∞, (10)

since the conjugate of a quadratic function is still a quadratic
function and the conjugate of the l∞ norm is the l1 barrier
function, the dual of (10) takes the following form:

min
α

1
2
‖α − v‖2

2 s.t. ‖α‖1 ≤ λ̃. (11)

And the vector of dual variables α satisfies the relation α =
v−w. (11) can be efficiently solved by a efficient projection

onto the l1 ball according to [23]. With the primal dual
relationship, we present algorithm 2 for solving (10).

Algorithm 2 Algorithm for projection onto the �∞ ball

Input: A vector v ∈ R
M and a scalar λ̃ > 0

1) If ‖v‖1 ≤ λ̃, set w = 0. Return.
2) Let ui be the absolute value of vi, i.e. ui = |vi|. Sort

vector u in the decreasing order: u1 ≥ u2 ≥ . . . ≥ uM

3) Find ĵ = max
{

j : λ̃ − ∑j
r=1(ur − uj) > 0

}
Output: wi = sign(vi)min

(
|vi|, (

∑ĵ
r=1 ur − λ̃)/ĵ

)
, i =

1 . . . M

In the multi-task learning setting, the step 1 of algorithm
2 is the key step to enforce the coefficients of a feature to
achieve zeros simultaneously among different tasks.

At last, we briefly describe how to solve the �1,2 penal-
ized multi-task learning problem and thus demonstrate the
universality of the algorithm.

Recall that the �1,2 norm of a matrix W is defined as:

‖W‖ =
∑

j

‖W j‖2. (12)

Note that the key step in algorithm 1 is to efficiently compute
the gradient mapping update. For the �1,2 norm, the simple
update rule can be derived. Similarly, we decompose the
gradient mapping update into d subproblems as in (9). Each
subproblem takes the following form:

min
w

1
2
‖w − v‖2

2 + λ̃‖w‖2. (13)

It is easy to show that the optimal solution w∗ must lie on
the same direction of v and takes the form: w∗ = γv with
γ ≥ 0. Otherwise, we can always remove the non-parallel
part with respect to v from the vector w∗ and achieve a
lower objective value. By forming the Lagrangian dual form,
the analytical solution of (13) can be easily obtained:

w∗ =

{(
1 − λ̃

‖v‖2

)
v ‖v‖2 > λ̃

0 ‖v‖2 ≤ λ̃.
(14)

A similar algorithm for �1,2 regularized multi-task learn-
ing problem has also been proposed very recently [24].

A. Convergence Rate Analysis

Following the same strategy as in [21] and [22], we
present the following theorem:

Theorem 1: Consider the general composite optimization
problem:

min
W

F (W ) = f(W ) + ψ(W ), (15)

where f is a smooth convex function of the type C1,1
L(f), i.e.

f is continuously differentiable and its gradient is Lipschitz
continuous with the constant L(f):

‖∇f(W ) −∇f(V )‖F ≤ L(f)‖W − V ‖F ∀ W,V.



And ψ(W ) is a continuous function which is possibly
nonsmooth. Furthermore, we assume the set of optimal
solution is nonempty.

Let W0 be the randomly chosen starting point, Wt, Vt

be the sequences generated by algorithm 1 and W ∗ be any
optimal solution. We assume that:

F (W ∗) ≤ F (Wt) ∀ t. (16)

Then for any t ≥ 1, we have

F (Wt) − F (W ∗) ≤ 2ηL(f)‖W0 − W ∗‖2
F

(t + 1)2
. (17)

According to theorem 1, the number of iterations to
achieve ε optimal solution, i.e.

F (Wt) − F (W ∗) ≤ ε,

is at most �
√

2ηL(f)‖W0−W∗‖2
F

ε −1�, i.e. O(1/
√

ε). In other
words, the convergence rate of algorithm 1 is O(1/t2).

Finally, we should point out that the hinge loss is non-
smooth which contradicts our assumption in theorem 1.
Therefore, we cannot guarantee O(1/t2) convergence rate
for hinge loss. It is a very challenging work to derive an
algorithm with fast convergence rate for the combination
of nonsmooth loss function and nonsmooth regularizer.
However, we find out that, simply replacing the gradient
by the subgradient of hinge loss in (6), the experiment still
has impressive performance.

B. Time Complexity Analysis

For each iteration, the main computational cost is to
calculate the gradient of the loss function and solve the
minimization problem (6). The computation of the gradient
for the above three types of loss functions lies on the
calculation of vector inner product. Thus, for each data point,
the time complexity for calculating the gradient is O(d)
and, in sum, O(dN). The time complexity of algorithm
2 is O(M log M) due to the sorting procedure. We need
to call d times algorithm 2 to solve (6). In sum, the total
time complexity for each iteration is O(d(N + M log M)).
Combining the result in section III-A, the time for achieving
ε accuracy is O(d(N + M log M)/

√
ε).

[23] proposes a randomized algorithm which has the
expected linear time complexity to project onto the �1 ball.
The similar tricks can also be applied here. Interested readers
are referred to [23].

Similarly, for the �1,2 norm regularizer, the total time
complexity is O(d(N + M)/

√
ε).

IV. EXPERIMENTS

In this section, we perform experiments on sparse multi-
task learning with �1,∞ regularization. We will compare the
proposed accelerated gradient method (denoted MTL-AGM
in the sequel) with two state-of-the-art algorithms, namely,

the projected gradient method (denoted MTL-PGM) in [12]
and the FOLOS method (denoted MTL-FOLOS) in [14].

Note that both our MTL-AGM and the MTL-FOLOS
solve the following regularization problem:

min
W

1
N

N∑
i=1

�(zi,W ) + λ‖W‖1,∞, (18)

where the amount of regularization is controlled by λ.
However, MTL-PGM puts the regularizer in the constraint,
as:

min
W

1
N

N∑
i=1

�(zi,W )

s.t. ‖W‖1,∞ ≤ C,

(19)

where the amount of regularization is controlled by C.
It is well known that, due to the Lagrangian duality, the
formulations (18) and (19) are equivalent, i.e. there is a one-
to-one correspondence between λ and C [25]. However, it
is hard to find the closed-form function to characterize this
one-to-one mapping. For a relatively fair comparison, we
choose (λ, C) that gives comparable level of sparsity.

A. Multi-Task Classification

In this section, we perform multi-task classification
experiments on the Letter data set, which is a handwritten
words data set with 45,679 examples collected from more
than 180 different writers. There are 8 binary classification
tasks for the handwritten letters: a vs o, a vs o, c vs e, g vs
y, m vs n, f vs t, i vs j, and h vs n. Each letter is represented
as an 8 × 16 binary pixel image. This data set has been
studied in the context of multi-task learning by Obozinski
et al. [8].

We randomly split the data into training and testing sets
such that each of them contains roughly half of the entire
data set. We run the algorithms for three different types
of loss functions: (a) square loss; (b) logistic loss and (c)
hinge loss, and then report the values of the (a) optimization
objective, (b) training error, (c) testing error and (d) sparsity
level. Here, sparsity level means the number of relevant
features (non-zero rows) in the coefficient matrix W .

In the first experiment, we only enforce a small amount
of regularization by using a small λ (λ = 0.01) and a
large C (C = 100). This leads to the non-sparse results
as shown in Figure 1. As can be seen, obviously, MTL-
AGM converges much faster than MTL-FOLOS and MTL-
PGM. The objective values for MTL-AGM decrease rapidly
at the first few iterations and become stable after about 30
iterations for the square loss and hinge loss, and 70 iterations
for the logistic loss. As for the other metrics, MTL-AGM
also performs much faster than the other multi-task learning
algorithms.

To achieve larger sparsity level, we increase λ to 0.05, and
decrease C to 50. The corresponding experimental results
are reported in Figure 2. Again, we can see that MTL-AGM
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Figure 1: Performance of MTL methods on the Letter data set
(with weak sparsity). 1st row: objective value; 2nd row: training
error rate; 3rd row: testing error rate; 4th row: sparsity level. (a)-

(d): square loss; (e)-(h): logistic loss; (i)-(l): hinge loss.

achieves significantly better performance over MTL-FOLOS
and MTL-PGM on all performance metrics.

B. Multi-Task Regression

We further demonstrate the efficiency and effectiveness
of MTL-AGM on a multi-task regression problem. We
experiment on the commonly used School data set [8], which
contains 139 regression tasks with 15, 362 instances. Again,
we randomly take half of each task’s data for training, and
the rest for testing.

As it is a regression task, we use the square loss and report
the objective value, root mean squared error (RMSE), and
the sparsity level. We set λ = 1 and C = 100. Experimental
results are shown in Figure 3. As can be seen, MTL-AGM
again significantly outperforms MTL-FOLOS and MTL-
PGM on all performance metrics.

In both the classification and regression experiments, the
empirically much faster convergence speed strongly echoes
with the theoretical guarantee of the convergence rate of the
proposed algorithm.
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Figure 2: Performance of MTL methods on the Letter data set
(with strong sparsity). 1st row: objective value; 2nd row: training
error rate; 3rd row: testing error rate; 4th row: sparsity level. (a)-

(d): square loss; (e)-(h): logistic loss; (i)-(l): hinge loss.

V. CONCLUSION AND DISCUSSION

In this paper, we study the multi-task sparse learning
problem. We mainly consider the formulation based on
the �1,∞ norm regularization with the “grouping” effect
such that the coefficient among different tasks can achieve
zeros simultaneously. We present a very efficient gradient
method by composite gradient mapping and show that the
generalized gradient update in each iteration can be solved
analytically by a simple sorting procedure. We also present
the convergence rate analysis of the algorithm. Experimental
results show that our method significantly outperforms the
most state-of-the-art algorithms in both the convergence
speed and learning accuracy. Moreover, our method only
needs first order information, making it suitable for large-
scale learning problems.

In order to further improve the practical performance
of our algorithms for very large-scale setting, as in text
classification, a natural idea is to design the online version
of our algorithm. Since it is convex optimization method,
we can easily adopt online convex optimization framework
proposed in [26]. Moreover, we might take the advantage of
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(b) Training error rate.
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(c) Testing error rate
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Figure 3: Performance of MTL methods on the School data set.

stochastic programming to further improve the convergence
rate for the online version of our algorithm based on the
method proposed in [27].

Another future work is to design an algorithm with the
theoretically superior convergence rate for the combination
of general nonsmooth convex loss, such as hinge loss, and
nonsmooth regularization term. Can we design a similar
algorithm and theoretically prove the fast convergence rate
for nonsmooth convex loss? It is a good question for the
further investigation.
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