
A Probabilistic Framework to Learn from Multiple Annotators with

Time-Varying Accuracy

Pinar Donmez

Language Technologies Institute

Carnegie Mellon University

pinard@cs.cmu.edu

Jaime Carbonell

Language Technologies Institute

Carnegie Mellon University

jgc@cs.cmu.edu

Jeff Schneider

Robotics Institute

Carnegie Mellon University

schneide@cs.cmu.edu

Abstract

This paper addresses the challenging problem of learning

from multiple annotators whose labeling accuracy (reliabil-

ity) differs and varies over time. We propose a framework

based on Sequential Bayesian Estimation to learn the ex-

pected accuracy at each time step while simultaneously de-

ciding which annotators to query for a label in an incremen-

tal learning framework. We develop a variant of the particle

filtering method that estimates the expected accuracy at ev-

ery time step by sets of weighted samples and performs se-

quential Bayes updates. The estimated expected accuracies

are then used to decide which annotators to be queried at

the next time step. The empirical analysis shows that the

proposed method is very effective at predicting the true label

using only moderate labeling efforts, resulting in cleaner la-

bels to train classifiers. The proposed method significantly

outperforms a repeated labeling baseline which queries all

labelers per example and takes the majority vote to predict

the true label. Moreover, our method is able to track the true

accuracy of an annotator quite well in the absence of gold

standard labels. These results demonstrate the strength of

the proposed method in terms of estimating the time-varying

reliability of multiple annotators and producing cleaner, bet-

ter quality labels without extensive label queries.

1 Introduction

In many data mining applications, obtaining expert la-
bels is a time-consuming and costly process. More im-
portantly, obtaining noise-free or low-noise labels is cru-
cial to build reliable systems/models. Recent advances
in crowdsourcing tools (e.g. Amazon Mechanical Turk)
provide cheaper, faster ways of acquiring labels for large
data collections. Despite crowdsourcing not providing
very reliable labels, for mostly simple tasks these tools

are shown to be reliable in producing quality labels on
average[12]. Nevertheless, it is still unclear to what ex-
tent such tools can be trusted for tasks that require
expertise higher than unvetted average annotators can
handle. Furthermore, using human labelers (annota-
tors) is not the only way to acquire labels. For instance,
expensive machinery and wet lab experiments are often
applied in protein structure prediction. In medical di-
agnosis, blood or urine tests, certain type of biopsy, etc.
are used to diagnose a patient (i.e. to produce diagnosis
labels). These procedures range from cheap and par-
tially reliable to more costly and more reliable. Hence,
it is essential to use multiple sources to increase confi-
dence while maintaining a trade-off between quality and
cost. This requires estimating the accuracy (reliability)
of multiple prediction sources and identifying the highly
accurate ones to rely on.

A dimension not yet addressed is that in many
application areas, providers of information may exhibit
varying accuracy over time, and it is therefore useful
to track such variation in order to know when and how
much to rely upon their answers. For instance, scientific
equipment may lose calibration over time, and thus
increase measurement error until upgraded returning to
peak performance or better. Text topic labelers become
careless with time due to fatigue effects, but may be
refreshed for future labeling sessions or hone their skills
to produce increasingly reliable results.

In this paper, we tackle the problem of learning from
multiple sources whose accuracy may vary over time. To
the best of our knowledge, this is the first attempt in the
literature that addresses this phenomenon. Throughout
the paper, we use the terms accuracy, reliability, quality
interchangeably and also the terms labeler, annotator,

predictor, and source interchangeably. We present a
new algorithm based on sequential Bayesian estimation
that continuously and selectively tracks the accuracy
of each labeler and selects the top quality one(s) at
each time step. We assume each time step corresponds
a single example to be labeled. This framework also
allows aggregating the observed labels to predict the
true label for the given example. The experimental
analysis shows the effectiveness of our approach for 1)
improving the quality (reducing noise) of the labeled
data, 2) tracking the accuracy drift of multiple sources
in the absence of ground truth, and 3) consistently
identifying the low-quality labelers and reducing their
affect in learning. We note that we assume the labeler
accuracy changes gradually over time without abrupt
large shifts. However, we analyze the increased rate
of change and report its effect on the performance.
We conclude with high confidence that our method is
relatively robust to higher variations.

We organize the rest of the paper as follows. The
next section reviews related work in the literature. Sec-
tion 3 explains in detail the proposed framework, fol-
lowed by the empirical evaluation in Section 4. Finally,
the last section offers our conclusions and future direc-
tions.

2 Related Work

Collecting multiple annotations in the absence of gold
standard labels is becoming a more common practice
in the literature. Raykar et al. [9] propose an EM-
based algorithm to estimate the error rate of multiple
annotators assuming conditional independence of the
annotator judgments given the true label. Their method
iteratively estimates the gold standard, and measures
the performance of multiple annotators and update
the gold standard based on the performance measures.
Dekel and Shamir [4] offer a solution to identify low-
quality or malicious annotators. But their framework
is rather limited in the sense that it is based only on
Support Vector Machines (SVMs). More importantly,
they assume that each annotator is either good or bad,
not in a continous distribution and not time-varying.
Good annotators assign labels based on the marginal
distribution of the true label conditioned on the instance
whereas bad annotators provide malicious answers.

There are earlier attempts that address multiple
imperfect annotators, but they do not infer the per-
formance of each individual annotator. Sheng et al.
[11] and Snow et al. [12] show that it can be effective
to use multiple, potentially noisy labels in the absence
of gold standard. Sheng et al. [11] takes the major-
ity voting to infer a single integrated label. Further-
more, their experimental analysis relies on the assump-

tion that all labelers have the same labeling quality,
which is very unlikely to hold in real world. Snow et al.
[12] collected labeled data through Amazon Mechanical
Turk for simple natural language understanding tasks.
They empirically show high agreement between the ex-
isting gold-standard labels and non-expert annotations.
Their analysis is carried out on fairly straightforward
tasks and collecting a reasonably large number of non-
experts labels. However, it is unclear if their conclusions
would generalize to other tasks that require better-than-
average expertise and under high label acquisition cost
which restricts the total number of labelings one can
afford.

Our framework differs from the previous body of
work in a variety of ways. The previous works all as-
sume the accuracy (or the labeling quality) of the an-
notators are fixed. Our framework explicitly deals with
non-stationary labeling accuracy. We model the accu-
racy of each annotator as a time-varying unobserved
state sequence without directional bias. For instance,
an annotator might learn the task over time and get
better in labeling. Also, she might occasionally get tired
and her performance drops but it increases again after
enough rest and so on. Our framework provides the
necessary tools to track this change with the assump-
tion that the maximal degree of the change is known.
Another example is the case where the annotators are
trained classifiers. As one can imagine, the performance
of a classifier improves with more training data but it
may decrease due to noise in the labels or over-fitting.
Hence, such classifiers are good examples for annotators
with time-varying accuracies.

Another point where the proposed work differs is
the identification and selection of the most reliable
annotators for each instance to be labeled. Donmez et
al. [5] propose a solution that balances the exploration
vs. exploitation trade-off, but it is only applicable when
the accuracies are fixed over time. The proposed model,
however, constantly monitors the potential changes
in little- or non-explored annotators. It may select
previously rejected annotators if there is some chance
that their accuracies now exceed that of the already
exploited ones. This leads to reliable estimates of
changing annotator quality with very modest labeling
cost.

3 Estimation Framework

In this section, we describe our estimation and selec-
tion framework in detail. We start with the underlying
particle filtering algorithm and the specific probabilis-
tic distributions we modeled. Then, we discuss how to
modify this model to estimate the varying accuracy of
each labeler and simultaneously select the most accu-

rate ones. Our framework supports a balance between
exploration and exploitation to achieve estimation ac-
curacy without extensively exploiting the labelers and
incurring associated costs.

3.1 Sequential Bayesian Estimation Particle fil-
tering is a special case of a more general family of models
called Bayesian Sequential Estimation. The Bayesian
approach to estimate a system that dynamically changes
is to construct the posterior probability density function
(pdf) of the state of the system based on all information
observed up to that point. Inference on such a system
requires at least two models: a model describing the
evolution of the state with time and a model govern-
ing the generation of the noisy observations. Once the
state space is probabilistically modeled and the infor-
mation is updated based on new observations, we are
provided with a general Bayesian framework to model
the dynamics of a changing system.

The problem of estimating the time-varying accu-
racy of a labeler can be cast into the sequential estima-
tion framework. The states of the system correspond
to the unknown time-varying accuracy of the labeler
where φt represents the accuracy of the labeler at time
t. The observations are the noisy labels zt output by the
labeler according to some probability distribution gov-
erned by the corresponding labeling accuracy φt. In this
problem, it is important to estimate the accuracy every
time an observation is obtained. Hence, it is crucial to
have an estimate of the accuracy of each labeler to infer
a more accurate prediction. Or equivalently, the esti-
mation update is required at each step to decide which
labelers to query next. For problems where an estimate
is required every time an observation is made, sequen-
tial filtering approach offers a convenient solution. Such
filters alternate between prediction and update stages.
The prediction stage predicts the next state given all the
past observations. The update stage modifies the pre-
dicted prior from the previous time step to obtain the
posterior probability density of the state at the current
time.

In this paper, we design this dynamic system with
the following probabilistic models. Let φt denote the
labeling accuracy and it is assumed to change according
to the following model:

φt = ft(φt−1,∆t−1)

= φt−1 + ∆t−1(3.1)

where ∆t is a zero-mean, σ2-variance Gaussian random
variable. ft denotes that the accuracy at the current
time step differs from the previous accuracy by some
small amount drawn from a Gaussian distribution. The
mean of the Gaussian is assumed to be zero not to in-

troduce any bias towards increase or decrease in accu-
racy. We can easily add a bias, e.g. positive mean µ for
labelers who are expected to improve with experience.
However, we prefer fewer parameters and we can still
track the improving sources (more details in Section 4).
We assume σ or at least its upper bound to be known.
We realize that the exact value of σ can be difficult to
obtain in many situations. On the other hand, it is of-
ten reasonable to assume the maximum rate of change
of the labeling accuracy is known. We added an analysis
testing the sensitivity to the exact σ in the experiments
section 4. For notational simplicity and concreteness,
we focus on binary classification here; extensions to the
multi-category case are straightforward generalizations
to this scheme. Furthermore, the accuracy at any time
t is assumed to be between 0.5 and 1, i.e. any labeler is
a weak learner, which is a standard assumption. Thus,
the transition probability from one state to the next
follows a truncated Gaussian distribution:

p(φt | φt−1, σ, 0.5, 1) =
1
σ
β(φt−φt−1

σ
)

Φ(1−φt−1

σ
) − Φ(0.5−φt−1

σ
)

(3.2)

where β and Φ are the pdf and cdf of the standard
Gaussian distribution, respectively.

The observed variables zj
1:t are the sequentially

arriving noisy labels generated by labeler j at the
corresponding time steps. We model the noisy label
generation with a Bernoulli distribution given the true
label y. In other words, the noisy label zt is a random
variable whose probability conditioned on the accuracy
φt at time t and the true label yt is

p(zj
t | φj

t , yt) = φj
t

I(zj
t =yt)

(1 − φj
t)

I(zj
t 6=yt).(3.3)

(3.3) requires yt, which is unknown. We use the wisdom-
of-the-crowds trick to predict yt. Specifically, we esti-
mate the probability of the true label yt conditioned on
the noisy labels observed from all the other labelers.

p(zj
t | φj

t , z
J́(t)
t) =

∑
y∈Y

p(zj
t | φj

t , yt = y)P (yt = y | z
J́(t)
t)

(3.4)

J́(t) is the set of selected labelers at time t such that

j /∈ J́(t); hence, z
J́(t)
t = {zs

t | s ∈ J́(t)}. We compute

P (yt = y | z
J(t)
t) using the estimated expected accuracy

of the selected labelers and the estimated P̂t−1(y) from
the previous time step, assuming conditional indepen-
dence.

P (yt = y | z
J(t)
t) =

P̂t−1(y)
∏

s∈J́(t) p
Ê[φs

t−1]
(zs

t | y)∑
y∈Y P̂t−1(y)

∏
s∈J́(t) p

Ê[φs
t−1]

(zs
t | y)

(3.5)

Φ
t-1

Φ
t

Φ
t+1

……

z
t-1

z
t

z
t+1

Figure 1: The Hidden Markov Model structure for the
time-varying accuracy of a labeler. The state sequence
φt is an unobserved first-order Markov process. The
observation zt is dependent only on the current state φt

for all t = 1, 2,

We describe how to estimate Ê[φs
t−1] and P̂ (y) in the

next section. Here we focus on the state space model
and how it leads to an estimate of the posterior state
distribution p(φt | z1:t) at any given time t.

The true state sequence φt is modeled as an unob-
served Markov process that follows a first-order Markov
assumption. In other words, the current state is inde-
pendent of all earlier states given the immediately pre-
vious state.

p(φt | φ0, . . . , φt−1) = p(φt | φt−1)(3.6)

Similarly, the observation zt depends only on the current
state φt and is conditionally independent of all the
previous states given the current state.

p(zt | φ0, . . . , φt) = p(zt | φt)(3.7)

Figure 1 shows the graphical structure of this model.
As noted earlier, we are interested in constructing
p(φt | z1:t). It is generally assumed that the initial
state distribution p(φ0) is given. However, in this
paper, we do not make this assumption and simply
adopt a uniform (noninformative) prior for p(φ0) where
0.5 < φ0 < 1.1 Suppose that the state distribution
p(φt−1 | z1:t−1) at time t−1 is available. The prediction
stage obtains the pdf of the state at time step t via the
Chapman-Kolmogorov equation[1].

p(φt | z1:t−1) =

∫
φt−1

p(φt | φt−1)p(φt−1 | z1:t−1)dφt−1

(3.8)

1The results show that the estimation is very effective despite
the uninformative prior (See Section 4 for more details). However,

in cases where such information is available, we anticipate that
the results could be improved even further.

where p(φt | φt−1) is substituted with (3.2). Once a new
observation zt is made, then (3.8) is used as a prior to
obtain the posterior p(φt | z1:t) at the update stage via
Bayes rule.

p(φt | z1:t) =
p(zt | φt)p(φt | z1:t−1)

p(zt | z1:t−1)
(3.9)

where p(zt | φt) is substituted with (3.4) and p(zt |
z1:t−1) =

∫
φt

p(zt | φt)p(φt | z1:t−1)dφt. When the

posterior (3.9) at every time step t is assumed to be
Gaussian, then Kalman filters provide optimal solutions
to the state density estimation. In cases like ours where
the posterior density is not Gaussian, sequential particle
filtering methods are appropriate for approximating the
optimal solution. Next, we review the particle filtering
algorithm and describe how it is modified to tackle our
problem.

3.2 Particle Filtering for Estimating Time-

Varying Labeler Accuracy The particle filtering al-
gorithm is a technique for implementing sequential
Bayesian estimation by Monte Carlo simulations. The
underlying idea is to estimate the required posterior
density function with a discrete approximation using
a set of random samples (particles) and associated
weights.

p(φt | z1:t) ∼
N∑

i=1

wi
tδ(φt − φi

t)(3.10)

where N is the number of particles. As N increases, it
can be shown that the above approximation approaches
the true posterior density [7]. wi

t’s are called the
normalized importance weights, and δ is the Dirac delta
function2. The particle filtering algorithm estimates
these weights in a sequential manner. Weights in (3.10)
are approximated as

w̃i
t ≈

p(φi
1:t | z1:t)

π(φi
1:t | z1:t)

wi
t =

w̃i
t∑N

j=1 w̃j
t

(3.11)

where π is called the importance density from which the
samples φi are generated. This is because in general we
cannot directly sample from the posterior p(φ1:t | z1:t),

2

δ(x) = 0, if x 6= 0
Z

∞

−∞

δ(x)dx = 1

1. Sample from the initial distribution φi
0 ∼ p(φ0) for

i = 1, . . . , N and assign weights wi
0 = 1

N

2. For t > 0, and i = 1, . . . , N

• Draw φi
t ∼ p(φt | φt−1) using (3.2) and update

weights w̃i
t = p(zt | φi

t)w̃
i
t−1.

• Normalize the weights wi
t =

w̃i
t−1

P

N
j=1 w̃

j

t−1

and

compute N̂e = 1
P

N
i=1(w

i
t)

2 .

• If N̂e < T , then resample φi
t ∼ pmf[{wt}] and

reassign wi
t = 1

N

• Update the posterior state density
p(φt | z1:t) =

∑N

i=1 wi
tδ(φt − φi

t)

3. Update t = t + 1 and go to step 2.

Figure 2: The pseudo-code for the basic filtering algo-
rithm

but rather use an importance density that we can easily
draw the samples from. The algorithm sequentially
samples φi

t, i = 1, 2, . . . , N , from the importance
density and updates the weights wi

t to approximate
the posterior state distribution. The choice of the
importance density is important and one commonly
used and convenient choice is to use the state transition
density p(φt | φt−1) (in our case given in (3.2)), i.e.
π(φt | φi

1:t−1, z1:t) = p(φt | φt−1). Then, the weight
update equation simplifies to

w̃i
t ≈

p(zt | φi
t)p(φi

t | φi
t−1)p(φi

1:t−1 | z1:t−1)

π(φi
t | φi

1:t−1, z1:t)π(φi
1:t−1 | z1:t−1)

=
p(zt | φi

t)p(φi
t | φi

t−1)

π(φi
t | φi

1:t−1, z1:t)
w̃i

t−1

= p(zt | φi
t)w̃

i
t−1 for t > 1(3.12)

where p(zt | φi
t) is substituted with (3.4). The pseudo-

code of the basic filtering algorithm is given in Figure 2.
The resampling step in Figure 2 happens only if the

vast majority of the samples have negligible weights; in
other words, the estimated effective sample size N̂e falls
below some predefined threshold. The exact value of the
threshold is not crucial, the idea is to detect significantly
small weights. This is called the degeneracy problem in
particle filters, and is resolved by resampling using a
probability mass function (pmf) over the weights. The
goal of resampling is to eliminate particles with small
weights and concentrate on large ones. It is shown that
it is possible to implement this resampling procedure in
O(N) time complexity using order statistics [10, 3]. We
do not provide more details on this since it is out of the

scope of the paper, but we note that in our simulations
the algorithm hardly needs to resample, largely because
the importance density we adopted (3.2) represents the
state transitions well.

3.3 Particle Filtering for Labeler Selection So
far, we have focused on estimating the posterior state
distribution at any given time t. Our problem, however,
consists of multiple labelers (annotators) where each
labeler’s time-varying accuracy is modeled as a separate
state sequence model. Hence, at any time t we may
have multiple noisy observations (labels) from multiple
labelers. In this section, we describe how to select which
labelers to query for the labels and how to utilize these
noisy labels to predict the true label and hence estimate
the marginal label distribution P (y).

Our aim is to select potentially the most accurate
labelers at each time step. The sequential estimation
framework provides us with an effective tool to achieve
this goal. First, we approximate the prior pdf of φj

t (3.8)
∀j by its discrete version

p(φj
t | Zj

t−h(j)) =
N∑

i=1

p(φj
t | φj,i

t−h(j))p(φj,i

t−h(j) | Zj

t−h(j))

(3.13)

where t − h(j) denotes the last time the labeler j is
selected, e.g. t−h(j) = t−1 if the labeler is queried for
labeling at the immediately previous time step. Zj

t−h(j)

denotes all the observations obtained from labeler j up
to time t − h(j). {φj,i

t−h(j)}
N
i=1 denotes the sampled

accuracy values for the j-th labeler at time t − h(j).
Furthermore, we formulate the change in the labeling
accuracy as a Gaussian random walk bounded between
0.5 and 1. More importantly, the true accuracy of a
labeler keeps evolving according to this random walk
regardless of whether it is selected by our method.
For computational expediency, we approximate the
state transition probability by truncating the Gaussian
distribution once after h(j) steps instead of after every
single step for an unxplored labeler. More formally,
recall (3.1) where the step size ∆t is drawn from a
Gaussian ∆t ∼ N (0, σ2). Hence,

φj
t = φj

t−1 + ∆t−1

= φj
t−2 + ∆t−2 + ∆t−1

...

= φj

t−h(j) +

h(j)∑
r=1

∆t−r

φj
t ∼ N (φj

t | φj

t−h(j), h(j)σ2, 0.5 < φj
t < 1)(3.14)

(3.14) captures our intuition that the more a labeler j
goes unexplored (h(j) increases), the further our belief
about its accuracy diverges from the last time it was
estimated (variance h(j)σ2 increases).

Next, we draw samples {φj,i
t }N

i=1 from the distribu-
tion given above in (3.14). We weight these samples
by their corresponding predicted probability (shown
in (3.13)) given what has been observed up to time t:

bj,i
t = p(φj

t | Zj

t−h(j))φ
j,i
t(3.15)

For each j, we sort the weighted samples bj,i
t in ascend-

ing order and find their 95th percentile. This represents
the value of the upper 95th confidence interval for la-
beler j. We then apply the IEThresh method from [5]
by selecting all labelers whose 95th percentile is higher
than a predefined threshold T . We denote the set of se-
lected labelers at time t by J(t). This selection allows us
to take the cumulative variance into account and select
the labelers with potentially high accuracies. We tuned
the parameter T on a separate dataset not reported in
this paper. It can be further adjusted according to the
budget allocated to label acqusition or to prevent unnec-
essary sampling especially when the number of labelers
is large.

After the committee J(t) of selected labelers is
identified, we observe their outputs zj

t and update the
weights wj,i

t using (3.12) and update the posterior p(φj
t |

Zj
t) using (3.10). Relying on the posterior accuracy dis-

tribution, we compute the estimated expected accuracy
as follows:

E
p(φj

t |Z
j
t)[φ

j
t] =

N∑
i=1

p(φj,i
t | Zj

t)φj,i
t(3.16)

Finally, we integrate the observed noisy labels from the
selected committee to predict the true label using a map
estimate of the estimated posterior distribution:

ŷmap
t = arg max

y∈Y
P (y | Z

J(t)
t)

= arg max
y∈Y

P̂t−1(y)
∏

j∈J(t)

p
E[φj

t]
(zj

t | y)

= arg max
y∈Y

P̂t−1(y)
∏

j∈J(t)

E[φj
t]

I(zj
t =y)

(1 − E[φj
t])

I(zj
t 6=y)(3.17)

We then use the predicted labels to update the marginal
label distribution:

P̂t(y = 1) =
1

t

t∑
s=1

ŷmap
s(3.18)

1. Sample from the initial distribution φi
0 ∼ p(φ0) for

i = 1, . . . , N and assign weights wi
0 = 1

N

2. For t = 1, initialize P̂1(y) = 0.5 and run a single
iteration of the basic filtering algorithm (Figure 2)
for j = 1, . . . ,K.

3. Initialize h(j) = 1 and Zj
1 = {zj

1} ∀j = 1, . . . ,K

4. For t > 1, and i = 1, . . . , N

• Compute P̂t(y) acc. to (3.18).

• Draw samples φj,i
t using (3.13) and estimate

the expected accuracy via (3.16) for j =
1, . . . ,K.

• Select the labelers J(t) to be queried

• For j ∈ J(t)

– Update weights w̃j,i
t = p(zj

t | φj,i
t)w̃j,i

t−h(j)

– Normalize the weights wj,i
t =

w̃
j,i

t−h(j)
P

N
l=1 w̃

j,l

t−h(j)

and compute N̂ej = 1
P

N
i=1(w

j,i
t)2

.

– If N̂ej is too small, then resample φj,i
t ∼

pmf[{wj
t}] and reassign wj,i

t = 1
N

.

– Update h(j) = t and Zj
t = Zj

t−h(j) ∪{zj
t }.

– Update the posterior state density
p(φj

t | Zj
t) =

∑N

i=1 wj,i
t δ(φj

t − φj,i
t).

5. Update t = t + 1 and go to step 4.

Figure 3: Outline of the SFilter algorithm.

where ŷmap ∈ {0, 1}. Initially, we start with a uniform
marginal label distribution.

See Figure 3 for an outline of our algorithm, which
we name SFilter.

4 Evaluation

In this section, we describe the experimental evaluation
and offer our observations. We have tested SFilter from
many different perspectives. The labelers are simulated
in such a way that they have different initial labeling
accuracies but share the same σ. Furthermore, each
instance that we seek to label corresponds to a single
time step; hence, the accuracy transitions to the next
state at every instance. These conditions are true for
all experiments unless otherwise noted.

First, we conducted an evaluation to test how the
proposed model behaves with respect to various degrees
of change in accuracy. The degree of this change
depends on the variance of the Gaussian distribution

Table 1: Performance measurement of SFilter w.r.t
increasing σ values.

σ %-correct # queries # instances
0.02 0.858 975 500
0.04 0.846 1152 500
0.06 0.834 1368 500

Table 2: Robustness analysis of SFilter against small
perturbations in estimated vs. true σ when the true
σ is equal to 0.02. The analysis is performed over 500
instances drawn from P (y = 1) = .75

σ %-correct # queries
0.02 0.858 975
0.022 0.854 1015
0.018 0.854 1027
0.016 0.845 1031
0.024 0.848 1082

that controls the width of the step size in (3.1). We
analyzed how σ affects the estimation process in terms
of the overall quality of the integrated labels and the
total labeling effort. We simulated 10 labelers with
varying initial accuracies but with the same σ for
500 instances. The accuracy of each labeler evolves
according to (3.2) and every selected labeler j ∈ Jt

outputs a noisy label zj
t . We integrate these labels

to predict the true label via (3.17). Table 1 shows
the ratio of correct labels predicted and the number
of total labeler queries with the corresponding σ. %-
correct represents the ratio of the correct labelings
among all instances m = 500, i.e. % − correct =
Pm

t=1 I(ŷmap
t =ytrue

t)

m
where ytrue

t is drawn from P (y =
1) = 0.75. Among the 10 labelers the highest average
accuracy is 0.81 whereas the percentage of correct
labels integrated by SFilter is significantly higher, i.e.
85%. As the variance increases, the total number of
queries also increases and there is a slight decay in
the ratio of correct labelings. The relatively rapid
change of labeler qualities leads to more extensive
exploration to catch any drifts without compromising
the overall performance too much. We have also tested
the robustness of the proposed algorithm against small
perturbations in σ. We repeated the above analysis
using σ = 0.02 to generate the accuracy drift, but
executed SFilter using slightly different σ values in order
to test perturbational robustness. Table 2 indicates that
SFilter is robust to small noise in σ. The %-correct
remains relatively stable as we add noise to the true σ
while the total amount of labeling is only slightly larger.

Next, we analyzed how the variations among the

Table 3: Performance measurement of SFilter for vari-
ous quality labelers. Uniform denotes the labelers’ ini-
tial accuracies are uniformly distributed. Skewed de-
notes there are only a few good labelers while the ma-
jority are highly unreliable.

distribution %-correct # queries P̂ (y = 1)
uniform 0.858 975 0.768
skewed 0.855 918 0.773

individual labeler qualities affect the estimation and
selection. The first experiment uses the same committee
of labelers (k = 10) as above whose qualities are
uniformly distributed between 0.5 and 1. The second
experiment uses a committee where only a few good
labelers exists (only 3 labelers with initial accuracy
above 0.8 and the rest below 0.65). We used a fixed σ =
0.02 for both cases. Table 3 shows the effectiveness of
SFilter to make correct label predictions with moderate
labeling effort in both cases. The last column in Table 3
shows the average estimated marginal label distribution
P̂ (y = 1) where the true marginal is P (y = 1) =
0.75. Our algorithm is very effective for estimating the
unknown label distribution and also for exploiting the
labelers only when they are highly reliable as shown in
Figure 4. Figure 4 displays the true source accuracy
over time and the times the source is selected by SFilter
(denoted by red circles) and when otherwise (denoted by
blue circles). We only report a representative subset out
of 10 total sources. Note that SFilter selects the highly
reliable sources in this skewed set at the beginning.
When these sources become less reliable, SFilter finds
other sources that have become more favorable over
time (i.e. lower left corner in Figure 4). Moreover,
sources that have relatively low quality throughout the
entire time are hardly selected by SFilter except a few
exploration attempts. This is a desirable behaviour of
the algorithm and certainly reduces the labeling effort
without hurting overall performance even with skewed
distributions of source accuracies.

We further challenged SFilter with a pathological
example to test its robustness against how the labelers’
accuracies change. We simulated k = 10 labelers with
initial accuracies ranging from 0.51 to 0.94. All the la-
belers except the best (0.94 accuracy) and the worst
(0.51 accuracy) follow a random walk with the step size
drawn from N (0, σ2) where σ = 0.02. The best labeler
consistently gets worse and the worst consistently im-
proves, both staying within 0.5 and 1 range. As before,
P (y = 1) = 0.75. Figure 5 displays the accuracy change
of the two labelers with respect to time. The red dots
indicate the times that the corresponding labeler is se-

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

Figure 4: SFilter selects the sources when they are relatively highly accurate even in the skewed case where
there are only a few good sources to begin with. SFilter also detects when the initially bad sources become more
favorable later and begins exploiting them.

lected and the blue dots indicate otherwise. Clearly,
SFilter is able to detect the consistent change in the
accuracies. We also note that the most frequently cho-
sen labelers are the ones with relatively high average
accuracies. There are occasional exploration attempts
at the low accuracies, but the algorithm detects this
and is able to recover quickly. As a result, the algo-
rithm chooses any undesirable labeler(s) with very low
frequency. Please note that there are times when nei-
ther 4 of labelers is selected. This corresponds to the
situations where the remaining labelers are selected.

Additionally, we tested the ability of SFilter to track
the true accuracy. We tested SFilter using 4 labelers
with the rate of change σ = 0.01 on 1000 instances
drawn from a true label distribution of P (y = 1) = 0.8.
We used 5000 particles and we constrained SFilter to
choose all 4 labelers per instance (only for this experi-
ment) to monitor the true and the estimated accuracy
of each labeler at every time step. Figure 6 demon-
strates how the estimate of the marginal label distribu-
tion P̂ (y = 1) improves over time. Figure 7 compares
the true and the estimated accuracy of each labeler.
The dotted blue line in each graph corresponds to the

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

es
tim

at
e

of
 P

(y
=1

)

Figure 6: SFilter’s estimate of the true marginal label
distribution P (y = 1) = 0.8 improves over time. In fact,
it converges to the true distribution with more samples.

estimated expected accuracy while the solid red line cor-
responds to the true accuracy. The black line in each
graph shows the result of using maximum likelihood es-
timation to infer the accuracy assuming accuracy is sta-

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tr
ue

 s
ou

rc
e

ac
cu

ra
cy

selected
not selected

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tr
ue

 s
ou

rc
e

ac
cu

ra
cy

selected
not selected

Figure 5: SFilter is able to detect the consistent increase or decrease in any quality and adopts quickly by choosing
the labelers when they are reliable, though with occasional exploration attempts.

tionary. This inference technique proposed in [6] shows
very promising results on various test scenarios. How-
ever, it is designed to estimate stationary source accu-
racies. SFilter, on the other hand, manages to track the
trends in the true accuracy quite well, sometimes with a
lag. This is remarkable since neither the initial qualities
nor the true label distribution are known in advance.

Next, we tested SFilter in terms of its effectiveness
to create a high quality labeled data for training a
classifier. We took 4 benchmark datasets from the
UCI repository[2]. We simulated k = 10 different
labelers and executed SFilter on each dataset with
these labelers and integrated their output for a final
labeling. Later, we trained a logistic regression classifier
on this labeled set and tested the resulting classifier on
a separate held-out data. The gold standard labels for
the held-out set are known but used solely to test the
classifier not to adjust the estimation model in any way.
We compared the proposed approach with two strong
baselines. One is majority voting (denoted as Majority)
where we used all labelers per instance and assigned
the majority vote as the integrated label. The other
is a technique proposed in [5] (denoted as IEThresh).
IEThresh selects a subset of labelers based on an interval
estimation procedure and takes the majority vote of
only the selected labelers. We report on the held-out set
the accuracy of the classifier trained on the data labeled
by each method. We report the classifier performance
with respect to the number of queries. Hence, the
corresponding size of the labeled examples differs for
each method since each method uses different amount
of labeling per instance, i.e. majority voting uses all
annotators to label each instance. The total training
size is fixed at 500 examples for each dataset. The

Table 4: Properties of the UCI datasets. All are binary
classification problems.

dataset test size dimension +/- ratio
phoneme 3782 5 0.41
spambase 3221 57 0.65
ada 4562 48 0.33
image 1617 18 1.33

other properties of the datasets are given in Table 43.
Figure 8 displays the performance of our algorithm

SFilter and two baselines on four UCI datasets. The
initial labeler accuracies range from as low as 0.53
to as high as 0.82. SFilter is significantly superior
over the entire operating range; i.e. from small to
large numbers of labeler queries. The differences are
statistically significant based on a two-sided paired t-
test (p < 0.001). The horizontal black line in each plot
represents the test accuracy of a classifier trained with
the gold standard labels. SFilter eventually reaches the
gold standard level, suggesting that it generates a clean
training data with minimal noise. Majority voting is
the worst performer since it uses all labelers for every
single instance; thus makes a larger number of labeling
requests even for a small number of instances. IEThresh
is the second best performer after SFilter. However,
neither baselines take the time-varying accuracy into
account and wastes labeling effort due to low quality
labelers. Our method adapts to the change in labeler
accuracies and filters the unreliable ones leading to a

3‘ada’ is a different version of the ‘adult’ dataset
at UCI repository. This version is generated for the

agnostic learning workshop at IJCNN ’07, available at

http://clopinet.com/isabelle/Projects/agnostic/index.html

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
be

lin
g

ac
cu

ra
cy

predictor 1

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
be

lin
g

ac
cu

ra
cy

predictor 2

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
be

lin
g

ac
cu

ra
cy

predictor 3

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

la
be

lin
g

ac
cu

ra
cy

time t

predictor 4

SFilter
True
MLE

Figure 7: Shows how SFilter tracks the true labeler accuracy. Each graph corresponds to a different labeler. The
solid red line indicates the true accuracy of the labeler whereas the dotted blue line shows the expected accuracy
estimated by SFilter. This is the result of a single run, though highly typical. SFilter is able to track the tendency
of the true accuracy quite well with occasional temporal lags.

more effective estimation.
Finally, we are interested in testing the proposed

framework on a different situation. It is often problem-
atic to estimate the error rate (or accuracy) of a clas-
sifier in the absence of gold standard labels. Consider
classifiers that are re-trained (or modified) as additional
instances become available. This situation might arise
in a number of real-life scenarios. Consider spam fil-
ters. They need to be re-trained in an online fashion as
new emails arrive. Web pages or blogs are other good
examples of constantly growing databases. Any web
page classifier needs to be modified to accomodate for
the newly created web pages. Another example is au-
tonomous agents that need to learn continuously from
their environments and their performance will be chang-
ing with new discoveries of their surroundings. However,
such learners might not always improve with additional
data. The new stream of data might be noisy, gener-
ating confusion for the learners and causing a perfor-

mance drop. Hence, capturing the time-varying quality
of a learner while maintaining flexibility in terms of the
direction of the change becomes crucial to adopt to this
non-stationary environment.

To study this phenomenon, we evaluated the per-
formance of SFilter on a face recognition dataset intro-
duced in [8]. The total size of the face data is 2500 with
400 dimensions and P (y = face) = 0.66. We randomly
divided the whole dataset into 3 mutually exclusive sub-
sets. One contains 100 labeled images to train the clas-
sifier. The other subset contains 500 unlabeled images
to test the classifiers. The last subset is held out for val-
idation. We trained 5 linear SVM classifiers as follows.
For each classifier, we used a separate randomly chosen
subset of 100 images as the initial training set. We sys-
tematically increased each training set size to 100, by
adding random label noise so that the classifiers do not
necessarily improve with more data. The average ac-
curacy of classifiers are {0.70, 0.73, 0.78, 0.83, 0.84}. We

200 400 600 800 1000 1200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

number of labelings

te
st

 a
cc

ur
ac

y
ada

SFilter
IEThresh
Majority
Gold

200 400 600 800 1000 1200

0.65

0.7

0.75

0.8

0.85

number of labelings

te
st

 a
cc

ur
ac

y

image

SFilter
IEThresh
Majority
Gold

200 300 400 500 600 700 800 900 1000 1100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

number of labelings

te
st

 a
cc

ur
ac

y

phoneme

SFilter
IEThresh
Majority
Gold

200 400 600 800 1000 1200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of labelings

te
st

 a
cc

ur
ac

y

spambase

SFilter
IEThresh
Majority
Gold

Figure 8: Measuring predicted label quality by training and testing a classifier on 4 UCI datasets by all three
methods. The y-axis indicates the accuracy of the classifier on the test set, and the x-axis indicates the number
of labeler queries. The horizontal line shows the performance of a classifier trained on the gold standard labels.

executed SFilter, IEThresh and Majority voting on 500
test images to predict their labels. We then trained an-
other classifier on the predicted labels by each method.
Figure 9 compares the performance of SFilter against
Majority voting. SFilter significantly outperforms other
baselines in this task and reaches a level of performance
close to that of using gold standard labels. Again, gold
labels are solely used to measure the performance of
classifiers, and not for learning.

5 Discussion and Future Work

This paper addresses the challenging problem of esti-
mating time-varying accuracy of multiple sources and
selecting the most reliable ones for querying. The pro-
posed framework constantly monitors and estimates the
expected behaviour of each predictor while simultane-
ously choosing the best possible predictors for label-
ing each instance. The framework relies on a Hidden
Markov Model (HMM) structure to represent the un-

known sequence of changing accuracies and the corre-
sponding observed predictor outputs. We adopted the
Bayesian particle filtering to make inference in such
a dynamic system. Particle filters estimate the state
distribution by sets of weighted samples and perform
Bayes filter updates according to a sequential sampling
procedure. The key advantage of particle filters is
their capacity to represent arbitrary probability densi-
ties whereas other Bayesian filters such as Kalman filters
can only handle unimodal distributions and hence not
well-suitable for our problem. Furthermore, we have
proposed a variant of the basic filtering method to infer
the expected accuracy of each predictor and use it as a
guide to decide which ones to query at each time step.
The proposed approach, SFilter, chooses the potentially
good predictors based on their expected accuracies at
each time step. In general high quality labelers are
queried more frequently than the low-quality labelers.
Moreover, it tracks reliably the true labeling accuracy
over time.

100 200 300 400 500 600 700 800 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of labelings

te
st

 a
cc

ur
ac

y
face recognition

SFilter
IEThresh
Majority
Gold

Figure 9: Results using 5 actual classifiers as labelers.
The performance of each classifier varies over time.
Their outputs on a test set are used to predict the true
labels. A meta-classifier is trained using these labels and
tested on a held-out set for performance evaluation. The
predicted labels obtained by SFilter are significantly
more effective in improving the data quality.

The effectiveness of the proposed framework is
demonstrated by thorough evaluation. For instance, we
have shown that our data labeling process is robust to
the choice of σ which governs the rate of the accuracy
change. We have further shown that it is also robust to
the distribution of the initial predictor accuracies. The
algorithm is able to detect the most reliable predictors
regardless of the reliability distribution. Additionally,
our analysis demonstrates the ability of SFilter to
generate high quality labels for a training data for
which only multiple noisy annotations exist. This result
is powerful in the sense that even though SFilter is
provided with noisy labels generated from dynamically
changing sources, it can label the data with high
reliability. This is particularly useful for many data
mining applications where labeled data with minimal
noise is essential to build reliable software and services.

There are a number of potential future directions
that open interesting new challenges. In this work,
we assumed the rate of change (σ) of the state (or at
least its bound) is known and it is the same for all
predictors. It is likely that this assumption may not
hold for some cases. Then, one should also estimate
σ for each predictor to estimate the expected state at
each time step. This is a harder problem but definitely
a necessary one to solve to make the method applicable
to a wider range of data mining scenarios. Another
point is that in this work we deal with predictors whose
accuracies change based on external factors such as

fatigue, learning, etc. The existing framework can be
formulated in a way to allow the accuracy to shift based
on the instance such as the difficulty, ambigiuity, out-of-
expertise, and so on. This introduces further challenges
in terms of formulating the state transition density and
the observation likelihood. We plan to investigate these
extensions in the future.

References

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp.
A tutorial on particle filters for on-line non-linear/non-
gaussian bayesian tracking. IEEE Transactions on
Signal Processing, 50:174–188, 2001.

[2] Blake and C. J. Merz. UCI repository of machine
learning databases, 1998.

[3] J. Carpenter, P. Clifford, and P. Fearnhead. Improved
particle filter for non-linear problems. In IEEE Pro-
ceedings on Radar and Sonar Navigation, 1999.

[4] O. Dekel and O. Shamir. Good learners for evil
teachers. In Proceedings of the 26th International
Conference on Machine Learning, June 2009.

[5] P. Donmez, J. G. Carbonell, and J. Schneider. Ef-
ficiently learning the accuracy of labeling sources for
selective sampling. In Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’09), pages 259–268, 2009.

[6] P. Donmez, G. Lebanon, and K. Balasubramanian.
Unsupervised estimation of classification and regres-
sion error rates. Technical Report CMU-LTI-09-15,
Language Technologies Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

[7] A. Doucet and D. Crisan. A survey of convergence
results on particle filtering for practitioners. IEEE
Transactions on Signal Processing, 2002.

[8] T. Pham, M. Worring, and A. Smeulders. Face
detection by aggregated bayesian network classifiers.
Pattern Recognition Letters, 23.

[9] V. C. Raykar, S. Yu, L. Zhao, A. Jerebko, C. Florin,
G. Valadez, L. Bogoni, and L. Moy. Supervised learn-
ing from multiple experts: Whom to trust when every-
one lies a bit. In Proceedings of the 26th International
Conference on Machine Learning, pages 889–896, June
2009.

[10] B. Ripley. Stochastic Simulation. Wiley, New York,
1987.

[11] V. Sheng, F. Provost, and P. G. Ipeirotis. Get another
label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’08), pages
614–622, 2008.

[12] R. Snow, O’Connor, D. Jurafsky, and A. Ng. Cheap
and fast—but is it good? evaluating non-expert an-
notations for natural language tasks. In Proc. of the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2008.

