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ABSTRACT The need for accurate, automated
protein classification methods continues to increase
as advances in biotechnology uncover new proteins.
G-protein coupled receptors (GPCRs) are a particu-
larly difficult superfamily of proteins to classify due
to extreme diversity among its members. Previous
comparisons of BLAST, k-nearest neighbor (k-NN),
hidden markov model (HMM) and support vector
machine (SVM) using alignment-based features have
suggested that classifiers at the complexity of SVM
are needed to attain high accuracy. Here, analogous
to document classification, we applied Decision Tree
and Naive Bayes classifiers with chi-square feature
selection on counts of n-grams (i.e. short peptide
sequences of length n) to this classification task.
Using the GPCR dataset and evaluation protocol
from the previous study, the Naive Bayes classifier
attained an accuracy of 93.0 and 92.4% in level I and
level II subfamily classification respectively, while
SVM has a reported accuracy of 88.4 and 86.3%. This
is a 39.7 and 44.5% reduction in residual error for
level I and level II subfamily classification, respec-
tively. The Decision Tree, while inferior to SVM,
outperforms HMM in both level I and level II subfam-
ily classification. For those GPCR families whose
profiles are stored in the Protein FAMilies database
of alignments and HMMs (PFAM), our method per-
forms comparably to a search against those profiles.
Finally, our method can be generalized to other
protein families by applying it to the superfamily of
nuclear receptors with 94.5, 97.8 and 93.6% accuracy
in family, level I and level II subfamily classification
respectively. Proteins 2005;58:955-970.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION
Classification of Proteins

Advances in biotechnology have drastically increased
the rate at which new proteins are being uncovered,
creating a need for automated methods of protein classifi-
cation. The computational methods developed to meet this
demand can be divided into five categories based on
sequence alignments (categories 1-3, Table I), motifs
(category 4) and machine learning approaches (category 5,
Table II).

© 2005 WILEY-LISS, INC.

The first category of methods (Table I-A) searches a
database of known sequences for the one most similar to
the query sequence and assigns its classification to the
query sequence. The similarity search is accomplished by
performing a pairwise sequence alignment between the
query sequence and every sequence in the database using
an amino acid similarity matrix. Smith-Waterman® and
Needleman-Wunsch? are dynamic programming algo-
rithms guaranteed to find the optimal local and global
alignment respectively, but they are extremely slow and
thus impossible to use in a database-wide search. A
number of heuristic algorithms have been developed, of
which BLAST? is the most prevalent.

The second category of methods (Table I-B) searches
against a database of known sequences by first aligning a
set of sequences from the same protein superfamily, family
or subfamily and creating a consensus sequence to repre-
sent the particular group. Then, the query sequence is
compared against each of the consensus sequences using a
pairwise sequence alignment tool and is assigned the
classification group represented by the consensus se-
quence with the highest similarity score. The third cat-
egory of methods (Table I-C) uses profile hidden Markov
model (HMM) as an alternative to consensus sequences
but is otherwise identical to the second category of meth-
ods. Table III shows some profile HMM databases avail-
able on the Internet.

The fourth category of methods searches for the pres-
ence of known motifs in the query sequence. Motifs are
short amino acid sequence patterns that capture the
conserved regions, often a ligand-binding or protein—
protein interaction site, of a protein superfamily, family or
subfamily. They can be captured by either multiple se-
quence alignment tools or pattern detection methods.*?

Alignment is a common theme among the first four
categories of classification methods. Yet alignment as-
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TABLE I. Tools Used in Common Protein Classification

Methods

A. Pair-wise Sequence Alignment Tools

Tool Reference
BLAST Altschul et al., 1990°
FASTA Pearson, 200037
ISS Park et al., 199738
Needleman-Wunsch Needleman and Wunsch, 19702
PHI-BLAST Zhang et al., 1998%°
PSI-BLAST Altschul et al., 19974°

Smith-Waterman Smith and Waterman, 19811

B. Multiple Sequence Alignment Tools

Tool Reference
BLOCKMAKER Henikoff et al., 1995%!
ClustalW Thompson et al., 1994*2

Morgenstern et al., 1998;*°
DIALIGN Morgenstern, 1999*
MACAW Schuler et al., 19914°
MULTAL Taylor, 198846
MULTALIGN Barton and Sternberg, 198747
Pileup Wisconsin Package, v. 10.348
SAGA Notredame et al., 1996*°
T-Coffee Notredame et al., 2000%°

C. Profile HMM Tools

Tool Reference
GENEWISE Birney et al., 200451
HMMER HMMER, 2003%2
META-MEME Grundy et al., 19974
PFTOOLS Bucher et al., 199652
PROBE Neuwald et al., 1997°°
SAM Krogh et al., 199457

sumes that order is conserved between homologous seg-
ments in the protein sequence,® which contradicts the
genetic recombination and re-shuffling that occur in evolu-
tion.”® As a result, when sequence similarity is low,
aligned segments are often short and occur by chance,
leading to unreliable alignments when the sequences have
less than 40% similarity® and unusable alignments below
20% similarity.'®!! This has sparked interest in methods
which do not rely solely on alignment, mainly machine
learning approaches'? (Table II) and applications of Kol-
mogorov complexity and Chaos Theory.®

There is a belief that classifiers with simple running
time complexity on alignment-based features are inher-
ently limited in performance due to unreliable alignments
at low sequence identity and that complex classifiers are
needed for better classification accuracy.'®'* Thus, while
classifiers at the higher end of running time complexity
are being explored, classifiers at the lower end are
neglected. To the best of our knowledge, the simplest
classifier attempted on protein classification is the
k-nearest neighbor (k-NN) classifier. Here we describe
the application of two classifiers simpler than k-NN that
performs comparably to HMM and support vector ma-
chine (SVM) in protein classification: Decision Trees and
Naive Bayes.

B.Y. CHENGET AL.

G-Protein Coupled Receptors

With the enormous amount of proteomic data now
available, there are a large number of datasets that can be
used in protein family classification. We have chosen the
G-protein coupled receptor (GPCR) superfamily in our
experiments because it is an important topic in pharmacol-
ogy research and it presents one of the most challenging
datasets for protein classification. GPCRs are the largest
superfamily of proteins found in the body;'® they function
in mediating the responses of cells to various environmen-
tal stimuli, including hormones, neurotransmitters and
odorants, to name just a few of the chemically diverse
ligands to which GPCRs respond. As a result, they are the
target of approximately 60% of approved drugs currently
on the market.!® Reflecting its diversity of ligands, the
GPCR superfamily is also one of the most diverse protein
families.’” Sharing no overall sequence homology,'® the
only feature common to all GPCRs is their seven transmem-
brane a-helices separated by alternating extracellular and
intracellular loops, with the amino terminus (N-terminus)
on the extracellular side and the carboxyl terminus (C-
terminus) on the intracellular side, as shown in Figure 1.

The GPCR protein superfamily is composed of five major
families (classes A—E) and several putative and “orphan”
families.'® Each family is divided into level I subfamilies
and then further into level II subfamilies based on pharma-
cological and sequence-identity considerations. The ex-
treme divergence among GPCR sequences is the primary
reason for the difficulty in classifying them, and this
diversity has prevented further classification of a number
of known GPCR sequences at the family and subfamily
levels; these sequences are designated “orphan” or “puta-
tive/unclassified” GPCRs.'” Moreover, since subfamily clas-
sifications are often defined chemically or pharmacologi-
cally rather than by sequence homology, many subfamilies
share strong sequence homology with other subfamilies,
making subfamily classification extremely difficult.'®

Classification of G-Protein Coupled Receptor
Sequences

A number of classification methods have been studied on
the GPCR dataset. Lapinsh et al.?® extracted physical
properties of amino acids and used multivariate statistical
methods, specifically principal component analysis, par-
tial least squares, autocross-covariance transformations
and z-scores, to classify GPCR proteins at the level I
subfamily level. Levchenko?! used hierarchical clustering
on similarity scores computed with the SSEARCH?? pro-
gram® to classify GPCR sequences in the human genome
belonging to the peptide level I subfamily into their level II
subfamilies. Liu and Califano®® used unsupervised, top-
down clustering in conjunction with a pattern-discovery
algorithm, a statistical framework for pattern analysis,
and HMMs to produce a hierarchical decomposition of
GPCRs down to the subfamily level.

A systematic comparison of the performance of different
classifiers ranging in complexity has been carried out
recently by Karchin et al.'® for GPCR classification at the
superfamily level (i.e., whether or not a given protein is a
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TABLE II. Some Machine-Learning Approaches to Protein Classification

Classifier

Features

Reference

Bayesian inference using
Gibbs sampling
Bayesian neural networks

motifs in them

Number of conserved columns, size and number of classes and

Bigram counts, presence and significance of motifs found

Qu et al., 199852

Wang et al., 20007°

using an automated tool Sdiscover

Yona et al., 19997

weight of each edge between two sequences is the similarity
score of the sequences from Smith—Waterman, BLAST and

Mitsuke et al., 200272
Kim et al., 200073

Clustering Digraph representation of the sequence space where the
FASTA
Sequence and topological similarity
Discriminant function Frequency of each amino acid, average periodicity of GES
analysis (non- hydropathy scale and polarity scale, variance of first
parametric, linear) derivative of polarity scale
Neural networks n-gram counts with SVD

Matrix patterns derived from bigrams
All subsequences of the protein inside a sliding window

Sparse Markov transducers

Support vector machines Fisher scores with Fisher kernel

Set of all possible k-grams (fixed %) with spectrum kernel and

mismatch kernels
String subsequence kernel

Wu et al., 19957

Ferran & Ferrara, 199275

Eskin et al., 200076 & 200377

Jaakkola et al., 199978 & 2000;"
& Karchin et al., 2002'2

Leslie et al., 20028° & 20045!
Vanschoenwinkel et al., 200252

TABLE III. Databases Providing Protein Family
Classification Information

Motifs / Profiles Databases

Database Reference

BLOCKS+ Henikoff et al., 1999;°® Henikoff et al., 2000°°
eMOTIF Huang and Brutlag, 2001°

PFAM Bateman et al., 200434

PRINTS Attwood et al., 200251

PRODOM Servant et al., 2002;>¢ Corpet et al., 2000%°
PROSITE Falquet et al., 2002;%2 Sigrist et al., 200253
SMART Ponting et al., 1999;%* Letunic et al., 2002%°
Superfamily Gough et al., 2001%¢

SWISSPROT  Apweiler et al., 1997;%” Boeckmann et al., 2003%®

GPCR) and level I and II subfamily levels. Note that
family-level classification was not examined by this study.
The methods tested include a simple nearest neighbor
approach (BLAST), a method based on multiple sequence
alignment generated by a statistical profile HMM, a
nearest-neighbor approach with protein sequences en-
coded into Fisher Score Vector space (kernNN) and SVM.
In the HMM method, a model is built for each class in
the classification, and a query sequence is assigned to the
class whose model has the highest probability of generat-
ing the sequence. Karchin et al. investigated two implemen-
tations of support vector machines, SVM and SVMtree,
where the latter is a faster approximation to a multi-class
SVM. Fisher Score Vectors were also used with SVM and
SVMtree. To derive the vectors, Karchin et al. built a
profile HMM model for a group of proteins and then
computed the gradient of the log likelihood that the query
sequence was generated by the model. A feature reduc-
tion technique based on a set of pre-calculated amino
acid distributions was used to reduce the number of
features from 20 components per matching state in the
HMM to nine components per matching state. Both SVM
and the kernNN method made use of radial basis kernel
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Extracellular
Loops
N-Terminus

Fig. 1. Schematic of a GPCR. The seven cylinders represent the
transmembrane a-helices. The membrane lipid environment is indicated
in gray.

functions. The results from this study are reproduced in
Table IV.

Karchin and coworkers’ study concluded that while
simpler classifiers (specifically HMM) perform better at
the superfamily level, the computational complexity of
SVM is needed to attain “annotation-quality classification”
at the subfamily levels. However, the simplest classifiers,
such as Decision Trees and Naive Bayes, have not been
applied in this context. In this study, we investigated in
further detail the performance of simple classifiers in the
task of GPCR classification at the family and subfamily
levels. We first optimized these simple classifiers using
feature selection and then compared our results to those
reported by Karchin et al.'® To our surprise, we found that
using only a simple classifier on counts of n-grams in
conjunction with a straightforward feature-selection algo-
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TABLE 1V. Classification Results Reported in Previous
Study on Complexity Needed for GPCR Classification

Superfamily Classification

Method Accuracy at MEP (%)
SAM-T99 HMM 99.96

SVM 99.78

FPS BLAST 93.18

Level I Subfamily Classification

Method Accuracy at MEP (%)
SVM 88.4

BLAST 83.3
SAM-T2K HMM 69.9
kernNN 64.0

Level II Subfamily Classification

Method Accuracy at MEP (%)
SVM 86.3
SVMtree 82.9

BLAST 74.5
SAM-T2K HMM 70.0
kernNN 51.0

Karchin et al. reported their results in terms of “average errors per
sequence” at the minimum error point (MEP). Through e-mail corre-
spondence with the first author, we verified that “average errors per
sequence” is equivalent to the error rate. Thus, the accuracy results
shown above are converted from those in their paper by the formula “1
- average errors per sequence.”

rithm, specifically chi-square, is sufficient to outperform
all of the classifiers in the previous study.'®

MATERIALS AND METHODS

In this study, we applied the Decision Tree and the
Naive Bayes classifier to the protein classification task.
Analogous to document classification in language technolo-
gies, each protein sequence is represented as a vector of
n-gram counts where n-grams are extracted from the
sequence at each of the n possible reading frames. For
instance, the sequence “ACWQRACW” has two counts
each of bigrams AC and CW, and one count each of bigrams
WQ, QR and RA. Instead of using only n-grams of a single
fixed length n, we used n-grams of lengths 1,2...n.

Decision Tree

Decision Tree is one of the simplest classifiers in ma-
chine learning. One of its advantages lies in its ease of
interpretation as to which are the most distinguishing
features in a classification problem. It has been used
previously with biological sequence data in classifying
gene sequences.?* We used the C4.5 implementation of
Decision Tree by J. R. Quinlan.?®

Given a dataset of training instances, each represented
by a vector of feature values, the Decision Tree algorithm
grows the tree downwards from the root utilizing the
information gain maximization criterion:

IG(C,H = H(C) — p(HDH(CIf) = p(hH(CIH (1)

B.Y. CHENGET AL.

where C is the class label variable, H(C|f) is the entropy of
C given having the feature f, H(C| f) is the entropy of C
given not having the feature f, and p(f) and p(f) are the
probability of having and not having the feature f respec-
tively. A feature is selected for each node in the tree where
the most discriminative features, as determined by the
above criterion, are located close to the root of the tree. For
example, the trigram DRY is one of the most discrimina-
tive features for Class A GPCR and would therefore be
located closer to the root of the tree than the unigram D,
which is a very common feature among all GPCRs.

When deciding on the label of a sequence in the test set,
the Decision Tree algorithm proceeds down the tree from
the root, taking the feature at each node in turn and
examining its value in the test sequence’s feature vector.
The value of the feature determines which branch of the
tree the algorithm takes at each step. The process contin-
ues until the algorithm reaches a leaf node in the Decision
Tree and assigns the test sequence the class label of the
leaf node.

To build the Decision Tree from the training set, the
algorithm computes the information gain of each feature
(i.e. n-gram count) with respect to the class label (i.e.
either the protein family or subfamily) using the above
formula. The most discriminating feature x, defined as the
one with the highest information gain, is taken to be the
root node of the Decision Tree, and the dataset is split into
subsets based on its value. For each subset, the informa-
tion gain of each of the remaining features is computed
using only the subset of data, and the feature x’ with the
highest information gain is taken as the root node of the
subtree represented by the subset of data (and thus a child
node of x). The subset is then further divided into smaller
subsets based on the value of x’, and the process repeats
until each training instance in the subset has the same
class label or each training instance is identical in all its
feature values.

Since our features, n-gram counts, lie on a continuous
range, information gain is also needed to determine the
most discriminative threshold for each feature. Using the
threshold, we can divide our dataset into two subsets
based on feature x by considering whether the value of x is
greater or less than that of y. Thus, we do not need to
divide the dataset into as many subsets as there are
different values of x in the data, thereby avoiding overfit-
ting our classifier to the training data. More detailed
information can be found in machine learning textbooks
such as refs. 26,27.

To further reduce overfitting of the Decision Tree, the
algorithm uses a confidence interval to prune away some
bottom portions of the tree once it has been fully built. The
confidence interval is used to give a pessimistic estimate of
the true error rate at each tree node from the training
data. If the estimated error rate at a node is lower than the
combined estimated error rate of its child nodes, then the
node is made into a leaf node by pruning its child nodes
away. We examined the effect of different confidence
intervals by repeating our cross-validation experiments
varying only the confidence interval. Since the difference
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in accuracy was not significant (1.2% at maximum) we
used the default 75% confidence level in the remainder of
our experiments.

Naive Bayes

Naive Bayes is the other simple machine learning
classifier used in this study. Its naive assumption that all
of its features are independent clearly did not hold when
we allowed overlaps in extracting n-grams of length greater
than 1 from a sequence. Nonetheless, the classifier worked
remarkably well in our task, as described below.

We used the Rainbow implementation of the Naive
Bayes classifier by Andrew K. McCallum. (The Rainbow
implementation is part of Bow,?® a toolkit for statistical
language modeling, text retrieval, classification and clus-
tering.) Given a test instance d;, the Naive Bayes algo-
rithm predicts the class é such that

, _ argmax _ argmaxw
where
P( .)Nrt
P(d]c) = P(d,d]! 11" u&iﬁ -
t=1 ite
4
‘dl| = ENit (4)

t=1

¢;is the j* protein family, d; is the i** sequence, w, is the ¢*»

n-gram in the set of all n-grams V and N,, is the count of w,
in d;. Thus, P(d,) is the prior probability that the sequence
is d; and P(c,) is the prior probability that the sequence
belongs to protein family c;. Likewise, P(c,|d,) represents
the probability that the sequence belongs to protein family
¢; given the sequence d;, and similarly, P(di|cj) is the
probability that the sequence is d; given that it belongs to
protein family c,. P(d,|c;) is estimated using a multinomial
distribution of n-grams trained specifically for the protein
family ¢; where P(w,|c;), the probability of the n-gram w,
occurring in the sequence given that the sequence belongs
to family c;, is computed from the training data as the
count of w, in all sequences belonging to c; divided by the
total number of n-grams in all sequences belonging to c;.
More details about the multinomial distribution model
used for the n-gram features can be found in ref. 29. To
prevent zero probabilities for P(w,|c,) from insufficient
data, LaPlace smoothing is used.

Since single amino acids (unigrams) are too short to be
motifs and occur too frequently to be good indicators of
motifs, we have excluded all unigrams as features in our
experiments with the Naive Bayes classifier. Thus, we
used only n-grams of lengths 2,3...n.

Chi-Square

Most machine-learning algorithms do not scale well to
high-dimensional feature spaces,*® and the Decision Tree
and Naive Bayes classifiers are no exceptions. Thus, it is
desirable to reduce the dimension of the feature space by
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removing non-informative or redundant features that
would hide the informative ones or otherwise confuse the
classifier.?! A large number of feature selection methods
have been developed for this task, including document
frequency, information gain, mutual information, chi-
square and term strength. These methods were used as a
pre-processing step on our data prior to applying the
classifiers. We chose to use chi-square in our study because
it is one of the most effective feature selection methods in
document classification,®! slightly surpassing information
gain (whose formula is given in the Decision Tree section).

The chi-square statistic measures the discriminating
power of a binary feature x in classifying a data point into
one of the possible classes. It quantifies the lack of
independence between a given binary feature x and a
classification category ¢ by computing the difference be-
tween the “expected” number of objects in ¢ with that
feature and the observed number of objects in ¢ actually
having that feature. By “expected,” we mean the number of
instances of ¢ we would find with feature x if the feature
were not dependent on the category and had a uniform
distribution over all the categories instead. Thus, the
formula for the chi-square statistic for each feature x is as
follows:

le(c,x) — o(c,x)]?

XX = X . (5)

e(e,x)
where C is the set of all categories in our classification
task, and e(c,x) and o(c,x) are the “expected” and observed
number of instances in category ¢ with feature x, respec-
tively.

The “expected” number e(c,x) is computed as

(6)

e(c,x) = n, N
where n, is the number of objects in category ¢, N is the
total number of objects and ¢, is the number of objects with
feature x.

To obtain binary features from counts of n-grams, we
divided each n-gram feature into 20 “derived” features
with binary values by considering whether the n-gram
occurs at least i times in the sequence, where i represents
the first 20 multiples of 5 (i.e., 5,10,15...100) for unigrams
and the first 20 multiples of 1 (i.e., 1,2,3...20) for all other
n-grams. Then we computed the chi-square statistic for
each of these binary features.

For instance, for the trigram DRY, we computed the
chi-square statistic for the 20 binary features of whether
DRY occurs at least 1,2,3...20 times. The expected number
of protein sequences in class ¢ having at least i occurrences
of the n-gram DRY is computed as

# of sequences in class ¢

# of sequences with at least i occurences of DRY
X
total # of sequences

The chi-square statistic for DRY occurring at least i times
is the square of the difference between the expected and
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TABLE V. Organization of Chi-Square Values for 20 Binary
Features Associated with Each rn-Gram

B.Y. CHENGET AL.

TABLE VL. Distribution of Classes in Dataset Used in
GPCR Family Classification

Unigram 4 5 10 15 e 100  Family # of Proteins % of Dataset
A Class A 1081 79.72%
C Class B 83 6.12%
e Class C 28 2.06%
. Class D 11 0.81%
n-Gram i 1 2 8 - 20 ClassE 4 0.29%
AA Class F - frizzled / smoothened family 45 3.32%
AC Drosophila odorant receptors 31 2.29%
e Nematode chemoreceptors 1 0.07%
AAA Ocular albinism proteins 2 0.15%
AAC Plant Mlo receptors 10 0.74%
e Orphan A 35 2.58%
Orphan B 2 0.15%
Bacteriorhodopsins 23 1.70%
Total 1356 100.00%

the observed number of sequences in each class having at
least i occurrences of DRY, normalized by the expected
number and summed over all classes.

Next, for each n-gram j, we found the value i, such
that the binary feature of having at least i,,,, occurrences
of n-gram j has the highest chi-square statistic out of the
20 binary features associated with n-gram j. This is
equivalent to finding the column i, where the maximum
value in each row occurs as shown in Table V. Note that
the selected column for each n-gram could be different. The
n-grams were then sorted in decreasing order according to
the maximum chi-square value in their row, that is, the
chi-square value in their i,,,, column. The top K n-grams
were selected as input to our classifiers, where K is a
parameter that was tuned to achieve maximum accuracy.
Each protein sequence was represented as a vector of
length K where the elements in the vector were the counts
of these top K n-gram features. We also investigated the
effect on accuracy of having each vector component be the
binary feature of having at least i,,,, occurrences of the
selected n-gram j versus being the count of n-gram j. The
vectors with chi-square selected features (n-gram counts
or binary values) were used in the classification proce-
dures for Naive Bayes and Decision Trees in an identical
fashion to that described above for the entire set of
n-grams without chi-square selection.

Dataset Used for GPCR Family-Level Classification

In family-level classification, we gathered our own data-
set by taking all GPCR sequences and bacteriorhodopsin
sequences with SWISS—PROT entries found in the Septem-
ber 15, 2002 release of GPCRDB.'® GPCRDB is an informa-
tion system specifically for GPCRs, containing all known
GPCR sequences, classification information, mutation data,
snake-plots, links to various tools for GPCRs and other
GPCR-related information. It contains both sequences
with SWISS-PROT entries and those with TREMBL
entries. These entries contain important information such
as the protein’s classification, function and domain struc-
ture. SWISS—PROT entries are computer-generated anno-
tations that have been reviewed by a human, while
TREMBL entries have not yet been reviewed. For this
reason, we have chosen to use only those sequences with
SWISS-PROT entries in our evaluation.

Notice the majority class, Class A, comprises almost 80% of the
dataset.

According to GPCRDB, the GPCR superfamily is divided
into 12 major and putative families. Bacteriorhodopsin is a
non-GPCR family of proteins that is often used as a
structural template for modeling three-dimensional struc-
tures of GPCRs.32 Thus, we have decided to include them
in our dataset as a control. Hence, there were 13 classes in
our family classification dataset, 12 GPCR families and
one non-GPCR family, as shown in Table VI. A ten-fold
cross-validation was used as our evaluation protocol.

Datasets Used for GPCR Level I Subfamily
Classification

Since we used the results of the various classifiers
studied by Karchin et al.'® as the baseline for our subfam-
ily classifications, we used the same datasets and evalua-
tion protocol in our experiments at the level I and II
subfamily classification. This is independent of the dataset
and the process used to create the dataset in family-level
classification. In level I subfamily classification, shown in
Table VII, there were 1269 sequences from subfamilies
within Classes A and C, as well as 149 non-GPCR se-
quences from archaea rhodopsins and G-alpha proteins.
Note that subfamilies not in Class A and C are not
included. The non-GPCR sequences were grouped together
as a single class of negative examples for our classifier
evaluation. We performed a two-fold cross-validation us-
ing the same training—testing data split as in the study by
Karchin et al.’® The dataset and training-testing data split
are available at www.soe.ucsc.edu/research/compbio/gpcr/
subfamily_seqs.

Datasets Used for GPCR Level II Subfamily
Classification

In level II subfamily classification (Table VIII), we used
1170 sequences from Classes A and C and 248 sequences
from archaea rhodopsins, G-alpha proteins and GPCRs
with no level II subfamily classification or those in a level
IT subfamily containing only one protein. As before, the
248 sequences were grouped together as a single class of



PROTEIN CLASSIFICATION

TABLE VIL. Distribution of Level 1 GPCR Subfamilies in
Classes A and C Used in Level 1 GPCR Subfamily

Classification Dataset
Level I Subfamily # of Proteins % of Dataset
Class A 1207 85.12%
Amine 221 15.59%
Cannabis 11 0.78%
Gonadotropin releasing hormone 10 0.71%
Hormone protein 25 1.76%
Lysosphingolipid and LPA_EDG 17 1.20%
Melatonin 13 0.92%
Nucleotide-like 48 3.39%
Olfactory 87 6.14%
Peptide 381 26.87%
Platelet activating factor 4 0.28%
Prostanoid 38 2.68%
Rhodopsin 183 12.91%
Thyrotropin releasing hormone
and secretagogue 13 0.92%
Viral 17 1.20%
Class C 62 4.37%
Extracellular calcium sensing 5 0.35%
GABA B 16 1.13%
Metabotropic glutamate 21 1.48%
Putative pheromone 20 1.41%
Other Sequences 149 10.51%
Total 1418 100.00%

The total number of sequences in Class A and C (bold rows) are
included here to show the relationships among the level I subfamilies.
Notice the majority class, peptide subfamily in Class A, comprises 27%
of the dataset.

negative examples, and a two-fold cross-validation was
performed using the same training—testing data split as in
the study by Karchin et al.*®

Datasets Used for Nuclear Receptor Family, Level I
Subfamily and Level IT Subfamily Classification

The superfamily of nuclear receptors is divided into
families, then into level I subfamilies, and finally into level
I subfamilies. Tables IX, X and XI show the distribution of
the datasets used in our classification at these three levels.
The datasets consist of all the full sequences with SWISS—
PROT entries from all the families and subfamilies in the
March 2004 release (4.0) of the NucleaRDB database,>?
excluding those families and subfamilies with two or fewer
members.

RESULTS

We examined classification of GPCRs at the family level
and at the level I and II subfamily levels. GPCR family-
level classification was used to develop our classification
protocol, while the GPCR subfamily-level classifications
were used to compare the performance of our protocol to
that of other classifiers, particularly SVM, studied by
Karchin et al.'® Finally, a separate protein family dataset
was investigated, that of nuclear receptors, to demonstrate
the general nature of our findings for classification of other
protein families.
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GPCR Family-Level Classification without Feature
Selection

The Decision Tree and the Naive Bayes classifiers were
used in a ten-fold cross-validation experiment using as
features all the amino acid n-grams of a specified size,
1,2...n for Decision Tree and 2,3...n for Naive Bayes. The
dataset was split into 10 equal subsets, referred to as folds.
The classifiers were tested on each fold independently
while training on the remaining nine folds each time. The
maximum n value for the Decision Tree was 3 (“trigrams”),
since the addition of larger n-grams as features had little
effect on its accuracy. In contrast, the Naive Bayes classi-
fier performed significantly better with bigrams and tri-
grams together than with bigrams alone. Thus we tested
different values of n up to 5 for the Naive Bayes classifier.
However, the addition of n-grams of length greater than 3
decreased the accuracy. The results are shown in Table
XII.

GPCR Family-Level Classification with Feature
Selection

Next we investigated the effect of reducing the number
of features on classification accuracy. Based on the results
obtained without feature selection, we applied the chi-
square feature selection algorithm to the set of all uni-
grams, bigrams and trigrams in the case of the Decision
Tree classifier and to the set of all bigrams and trigrams in
the case of the Naive Bayes classifier.

To determine the optimal number of features, K, the
chi-square algorithm needs to select for each classifier. We
measured the accuracy of the classifier on the validation
set as a function of K. Specifically, we divided our dataset
into 10 folds, and in each experiment we reserved one fold
as the test set and one fold as the validation set to tune the
parameter K while training on the remaining eight folds.
This ensured that any improvements observed in the
results were not due to overfitting the classifier to the
dataset. Note that this requires each family in the dataset
to have at least three members so that the training set is
guaranteed to have at least one member of that family.
Thus, the three families with fewer than three members
each (Nematode Chemoreceptors, Ocular Albinism Pro-
teins, Orphan B) were removed from the dataset for our
family-level classification experiments with chi-square
feature selection.

For each classifier in each experiment, we set K to
represent the number of features at which the validation
set accuracy is maximized and reported the test set
accuracy at that point. (Thus the value of K differs from
fold to fold.) In addition, we also investigated whether
there is a difference between using the binary features of
having at least i,,,,, occurrences of each selected n-gram j
and using the counts of the selected n-grams as continuous
or multinomial attributes in the Decision Tree and the
Naive Bayes classifier, respectively. The results for one of
the folds are plotted in Figure 2. The accuracy of the
classifier increases with K until a maximum accuracy is
reached, after which the accuracy drops as K continues to
increase. Using the counts of the selected n-grams instead
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TABLE VIIL. Distribution of Level II GPCR Subfamilies in TABLE VIIL. (Continued)
Classes A and C Used in Level I GPCR Subfamily
Classification Dataset ) #of % of
Fof % of Level II Subfamily Proteins Dataset
Level II Subfamily Proteins Dataset Thrombi.n 6 0.42%
Class A 1133 79.90% rotensin 1 o P
Amine 21 1559% ol 38 2.68%
Adrenergic 66 4.65% Pr " 4 0.28‘7
Dopamine 43 3.03% ostacyclin 28%
Histamine 10 0.71% Prostaglandin 28 1.97%
.. ) Thromboxane 6 0.42%
Muscarinic 23 1.62% .
Octopamine 12 0.85% Rhodopsin 183 12.91%
Serotonin 67 479% RhodopS}n arthropod 33 2.33%
Class A Orphan 133 9.38% Rhodopsin mollusk 6 0.42%
Bonzo 4 0.98% Rhodopsm other 12 0.85%
Chemokine receptor like 2 3 0.21% RhOdOPSH.l vertebrat?e 132 9.31%
ptorfike Thyrot Releasing Hormone
G10D 3 0.21% yrotropin g
GP40 like 4 0.28% (nd Secretagogue 2 P
TO ormone secretagogue .28%
f/Izls:{pro to-oncogene 32 gggj Growth hqnnone sgcretagogue-]ike 2 0.14%
Other 7 5: 43% a Tléyrotropm releasing hormone 3; (2)35:3
ass o 4
RDC 1 . 4 0.28% Metabotropic Glutamate 21 1.48%
Hormone Protein 25 1.76% Metabotropic glutamate I 4 0.28%
Follicle stimulating hormone 10 0.71% Moetabotropic alut. to 11 5 0‘350/
Lutropin choriogonado-tropic etabotropic g utamate g
hormone 8 0.56% Metabotrop}c glutamate IIT 10 0.71%
Thyrotropin 7 0: 49% Gidgfl)Botroplc Glutamate Other 1(2; (l)igz
Nucleotide Like 48 3.39% y el
Adenosine 23 1.62% ggﬁ—g; 12 SZ;Z;
Purinoceptors 25 1.76% Other Seque 248 1,7' 49
er Sequences 49%
Olfactory 87 6.14%  mial 1418 100.00%
Gustatotory odorant 2 0.14% :
Olfactory type 1 9 0.63% The number of sequences in Classes A and C and each of their level I
Olfactory type 2 6 0.42% subfamily (bold rows) have been included here to show the relation-
Olfactory type 3 6 0.42% ships among the level I_I subfamilies. Note that the majority class,
Olfactory type 4 9 0.63% Other Sequences, comprises 17.5% of the dataset.
Olfactory type 5 18 1.27%
Olfactory type 6 10 0.71% TABLE IX. Distribution of Nuclear Receptor Family Level
Olfactory type 7 3 0.21% Classification Dataset
Olfactory type 8 2 0.14% ) )
Olfactory type 9 4 0.28% Family # of Proteins % of Dataset
Olfactory type 10 9 0.63%  0A Knirps-like 7 2.13%
Olfactory type 11 9 0.63% 0B DAX-like 6 1.82%
Peptide 385 27.15% 1 Thyroid hormone like 117 35.56%
Angiotensin 21 1.48% 2 HNF4-like 54 16.41%
APJ like 5 0.35% 3 Estrogen-like 72 21.88%
Bombesin 11 0.78% 4 Nerve growth factor IB-like 13 3.95%
Bradykinin 10 0.71% 5 Fushi tarazu-F1 like 13 3.95%
C5a anaphyla-toxin 9 0.63% Unclassified 47 14.29%
CCK 14 0.99% Total 329 100.00%
gﬁgﬁgﬁz chemotactic factors-like 8; g%ggz g;easrg:jority class, I thyroid hormone like, comprises 35.6% of the
Endothelin 14 0.99% )
Fmet-Leu-Phe 10 0.71%
Galanin 9 0.63% of their binary features resulted in a higher accuracy using
Gpr37-like peptide receptor 4 028%  the Decision Tree, while no significant difference was
Interleukin-8 13 0.92%  ohserved for the Naive Bayes classifier.
11\\1/1e1anoco¢gl v g‘i g‘llgz,” The validation set and test set accuracy with feature
Ngﬁgf;?;lne 6 0' 42(72 selection of the top K features averaged across the 10 folds
Opioid 19 1:3 49,  at their respective optimal value K, determined from the
Orexin 5 0.35%  validation set accuracy curve, is compared against the
Proteinase activated 7 049%  validation set and test set accuracy without feature selec-
Somatostatin 17 1.20% tion in Table XIII. While chi-square feature selection

Tachykinin 21 1.48%  improved the accuracy of the Decision Tree with unigrams,
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TABLE X. Distribution of Nuclear Receptor Level I
Subfamily Classification Dataset
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TABLE XI. Distribution of Level II Nuclear Receptor
Subfamily Classification Dataset

Level I Subfamily # of Proteins % of Dataset
0B1 DAX 4 1.27%
1A Thyroid hormone 26 8.28%
1B Retinoic acid 17 5.41%
1C Peroxisome proliferator activated 19 6.05%
1D REV-ERB 12 3.82%
1F RAR-related orphan receptor 10 3.18%
1H Ecdysone-like 16 5.10%
11 Vitamin D3-like 13 4.14%
2A Hepatocyte nuclear factor 4 10 3.18%
2B Retinoic acid X 15 4.78%
2C Orphan nuclear receptors TR2, TR4 4 1.27%
2K Tailless-like 9 2.87%
2F COUP-TF-like 15 4.78%
3A Estrogen 36 11.46%
3B Estrogen-related 5 1.59%
3C Glucocorticoid-like 31 9.87%
4A NGFI-B-like 13 4.14%
5A Fushi tarazu-F1 like 12 3.82%
Unclassified nematode 47 14.97%
Total 314 100.00%

The majority class, unclassified nematode, comprises 15% of the
dataset.

bigrams and trigrams, it had little effect on the Naive
Bayes classifier with bigrams and trigrams. Despite the
improvement in accuracy of the Decision Tree, its accuracy
is still lower than the accuracy of the Naive Bayes classi-
fier. With both classifiers, chi-square feature selection
reduces the number of features needed to achieve their
respective optimal accuracy.

Protein Length as a Feature for Classification

GPCR sequences vary significantly in length. For ex-
ample, the rhodopsin sequence in Class A is one of the
shortest GPCR sequences, with 348 amino acids, while the
longest GPCR sequences, having several thousand amino
acids, belong to Class B. Thus there may be a correlation
between sequence length and GPCR family. We therefore
investigated whether the protein sequence length is a
useful feature in GPCR classification. Figure 3 shows a
logarithmic plot of the counts of a given protein sequence
length versus the sequence length, for each GPCR family
and the control group bacteriorhodopsins. While this plot
confirms that there is significant variation in sequence
length providing some information for family classifica-
tion, it also shows that the range of sequence lengths
within each GPCR family overlaps significantly, poten-
tially confusing the classifier. We confirmed this hypoth-
esis by training a Decision Tree using the sequence length
as a feature in addition to the counts of all unigrams,
bigrams and trigrams. The resulting tree gave an insignifi-
cant improvement of 0.1% in test set accuracy over using
the Decision Tree with only n-grams. Moreover, the se-
quence length appeared as a node of the Decision Tree in
only one of the 10 trials in a ten-fold cross validation, and
the node was at the 11'® level. Both histogram and

#of % of
Level II Subfamily Proteins Dataset
1A1 Thyroid hormone alpha 14 5.96%
1A2 Thyroid hormone beta 12 5.11%
1B1 Retinoic acid alpha 6 2.55%
1B2 Retinoic acid beta 4 1.70%
1B3 Retinoic acid gamma 7 2.98%
1C1 PPAR alpha 7 2.98%
1C2 PPAR beta 3 1.28%
1C3 PPAR gamma 9 3.83%
1D2 REV-ERB beta 3 1.28%
1D3 E75 7 2.98%
1F4 HR3, CHR3 4 1.70%
1H1 Ecdysone 7 2.98%
1H2 Oxysterol LXR beta 3 1.28%
1H3 Oxysterol LXR alpha 3 1.28%
1H4 Farnesoid FXR 3 1.28%
111 Vitamin D3 7 2.98%
112 Pregnane X 3 1.28%
113 Constitutive androstane alpha 3 1.28%
2A1 HNF4 alpha 4 1.70%
2B1 RXR alpha 5 2.13%
2B3 RXR gamma 4 1.70%
2B4 USP 4 1.70%
2C2 TR4 3 1.28%
2E1 Tailless homolog 5 2.13%
2F1 COUP-TFI 4 1.70%
2F2 COUP-TFII 5 2.13%
2F6 V-erbA related protein 3 1.28%
3A1 ER alpha 17 7.23%
3A2 ER beta 19 8.09%
3B2 ERR beta 3 1.28%
3C1 Glucocorticoid-like 13 5.53%
3C2 Mineralocorticoid 5 2.13%
3C3 Progesterone 5 2.13%
3C4 Androgen 8 3.40%
4A1 NGFI-B 4 1.70%
4A2 NURR1 4 1.70%
4A3NOR1 3 1.28%
5A1 Steroidogenic factor-1 5 2.13%
5A2 Fetoprotein TF 3 1.28%
5A3 Fushi tarazu-F1 4 1.70%
Total 235 100.00%

The majority class, 3A2 ER beta, comprises 8.09% of the dataset.

TABLE XII. Result of Ten-Fold Cross-Validation on GPCR
Classification at Family Level Using Decision Tree and
Naive Bayes Classifier on All n-Grams of Specified Sizes

Decision Tree Naive Bayes
N-grams Used Accuracy N-grams Used Accuracy
1-gram 89.4% 2-grams 80.7%
1,2-grams 89.5% 2,3-grams 96.3%
1,2,3-grams 89.3% 2,3,4-grams 95.6%
2,3,4,5-grams 94.8%

experimental results therefore suggest that sequence
length does not provide any information on the GPCR
family classification task that is not already encoded in the
n-gram counts.
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Fig. 2. Validation set (solid line) and test set (dotted line) accuracy of (a) the Decision Tree and (b) the Naive Bayes classifier in GPCR family-level
classification plotted as a function of the number of binary features (Panels 1) or n-gram counts (Panel Il), K, given to the classifier. The point at which the
validation set accuracy reaches the maximum in each plot has been labeled with (number of features, validation set accuracy %, test set accuracy %).

TABLE XIII. Comparison of Performance of Classifiers with and without Feature
Selection in GPCR Family Classification

Accuracy
Classifier # of Features Type of Features Validation Testing
Decision Tree All (9723) N-gram counts 89.00%
100-3300 Binary 90.75% 88.68%
100-900 N-gram counts 92.15% 90.61%
Naive Bayes All (9702) N-gram counts 94.89%
600-7100 Binary 95.41% 93.85%
600-3300 N-gram counts 95.93% 94.30%

Unigrams, bigrams and trigrams were used with the Decision Tree, while bigrams and trigrams were
used with the Naive Bayes classifier. Note that the accuracy without feature selection here is different
from that in Table XII because it came from training on eight folds as opposed to nine, to remain
consistent with the other results in the table. The range of optimal values for K in the ten folds is shown in

the “# of Features” column.

Comparison of GPCR Family Classification Against
PFAM Baseline

To evaluate the performance of our classifier against
that of the current state-of-the-art models, we compared
our classifier against the profile HMMs in the PFAM
database.>* The PFAM database is divided into two parts,
PFAM-A and PFAM-B. PFAM-A contains the curated

families in PFAM, while PFAM-B contains the families
automatically generated from the PRODOM?®>-36 database
to give PFAM a more comprehensive coverage. Thus,
PFAM-A is of a higher quality than PFAM-B and is the
focus of this evaluation. Since our ten-fold cross validation
results (Table XIII) show the Naive Bayes classifier to be
better than the Decision Tree at the family-level classifica-
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Fig. 3. Histogram of sequence length in GPCR family-level classification dataset, by class or GPCR family, on a log—log plot. Notice that, with the
exception of bacteriorhodopsins, all of the curves overlap in the range between 5.75 and 7.2, suggesting that the sequence length is not a very useful
indicator of the proteins membership in a particular GPCR family or a subset of GPCR families.

tion task and indicate little difference in performance from
chi-square feature selection, this evaluation against PFAM
focuses on the Naive Bayes classifier without chi-square.

Each of the curated families in PFAM-A has a profile
HMM created from a human-edited multiple sequence
alignment, called the seed alignment, of representative
sequences from that family. We take PFAM’s family
prediction for a given sequence as the family whose HMM
model returns the highest probability for the sequence.
Because of the huge effort required in building these
HMMs, only four of the GPCR families are contained
within PFAM-A, Classes A, B, C and Drosophila Odorant
Receptors. Thus, only these four families are considered in
the evaluation.

The training set consisted of the sequences in the seed
alignment, while the test set consisted of the SWISSPROT
sequences in these four families as classified by GPCRDB
(September 2002 release)'® that are not part of the seed
alignment. Note that TREMBL sequences were not in-
cluded in the training set for the Naive Bayes classifier but
were used in constructing the seed alignments of the
profile HMMs. The test sets for the Naive Bayes classifier
and PFAM were identical and did not contain any TREMBL
sequences. The distribution of the dataset in this evalua-
tion is shown in Table XIV.

Out of 1100 test sequences, PFAM classified three
sequences into non-GPCR families and was unable to
classify six sequences into any PFAM-A families. This
corresponds to an accuracy of 94.91%. If a constraint is
placed upon PFAM to classify into a GPCR family, the
accuracy increases to 99.18%. The Naive Bayes classifier
(which is constrained to classify into a GPCR family by
default) has an accuracy of 97.64%. Thus, our classifier’s

TABLE XIV. Distribution of GPCR Family Classification
Dataset in Evaluation Against PFAM Baseline

PFAM-A Naive Bayes
Class Training Seq. Training Seq. Testing Seq.
Class A 64 62 1019
Class B 36 26 57
Class C 30 12 16
Drosophila odorant
receptors 40 23 8

performance is comparable to PFAM but does not require
the human intervention involved in creating the PFAM
database.

GPCR Level I Subfamily Classification

The ten-fold cross-validation experiments on family-
level classification described above demonstrate that chi-
square feature selection is beneficial, not only in reducing
the number of features needed but also in improving the
classification accuracy. We therefore tested whether a
similar improvement could be obtained at the subfamily
level. As before, we measured the classification accuracy
as a function of the number of features, K, using unigrams,
bigrams and trigrams with the Decision Tree and bigrams
and trigrams with the Naive Bayes classifier. The accuracy
was computed from a two-fold cross-validation using the
same dataset and training-testing data split as in the
study by Karchin et al.'® for ease of comparison to the
classifiers presented in their study.

To prevent our results from being an effect of overfitting
the classifier to the dataset, we divided the testing fold in
half, using one half as a validation set to tune K and the
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TABLE XV. Comparison of Accuracy of Various Classifiers at GPCR Level I Subfamily Classification

Accuracy
Classifier # of Features Type of Features Validation Testing
Decision Tree All (9723) n-Gram counts 77.2%
9002800 Binary 79.9% 77.3%
700-5600 n-Gram counts 80.2% 77.3%
Naive Bayes All (9702) n-Gram counts 90.0%
55007700 Binary 93.5% 93.0%
3300-6900 n-Gram counts 91.3% 90.6%
SVM Nine per match state in the HMM Gradient of the log-likelihood 88.4%
that the sequence is
generated by the given
HMM model
BLAST Local sequence alignment 83.3%
SAM-T2K HMM A HMM model built for each protein subfamily 69.9%
kernNN Nine per match state in the HMM Gradient of the log-likelihood 64.0%
that the sequence is
generated by the given
HMM model

Unigrams, bigrams and trigrams are used with the Decision Tree, while bigrams and trigrams are used with the Naive Bayes classifier. Results of
SVM, BLAST, HMM and kernNN from the study by Karchin et al.'® are reproduced above for ease of comparison.

other half as a test set. Specifically, we ran the following
four experiments. First, we trained the classifier on one of
the two folds and divided the other fold into halves A and
B. We used A to tune the parameter K and B to test the
classifier. In the second experiment, we reversed the roles
of A and B while keeping the same training set. The third
and fourth experiments were the same as the first and
second but with the roles of the two folds reversed.

Similar to the family-level classification, a graph of the
accuracy plotted against K (data not shown) showed that
accuracy increases as K increases until a maximum is
reached, after which the accuracy decreases. Therefore, an
improvement can be obtained by using only a subset of the
features selected by chi-square. The accuracy of each
classifier is shown in Table XV, along with a reproduction
of the results reported by Karchin et al.'® on the same
dataset and using the same evaluation procedure.

Table XV shows that chi-square feature selection can
improve the accuracy of the Naive Bayes classifier while
not harming the performance of the Decision Tree in level I
subfamily classification. In either case, the optimal num-
ber of features selected by chi-square is much lower than
the full set of all n-grams. Using the binary features as
opposed to the n-gram counts seemed to be more beneficial
to the Naive Bayes classifier. The Naive Bayes classifier
outperforms all other classifiers in level I subfamily classi-
fication, achieving an accuracy of 93.0%. This is a 39.7%
reduction in residual error from the reported 88.4% accu-
racy of SVM, a much more complicated classifier whose
computational complexity was previously believed to be
needed to achieve “annotation-quality” accuracy in GPCR
subfamily classification.®

GPCR Level II Subfamily Classification

Next, using the Decision Tree and the Naive Bayes
classifier, we repeated the two-fold cross-validation evalu-
ation with the same training—testing data split on the level

II subfamily classification used by Karchin et al.*® Ideally,
the study would use independent training, validation and
testing sets, as in level I subfamily classification. Unfortu-
nately, this was not possible because some level II subfami-
lies have only two sequences. However, since we were
using the averaged accuracy from a cross-validation to
tune K, the effect from overfitting our classifiers to the
dataset should be minimal.

Plotting the accuracy of the Decision Tree and the Naive
Bayes classifier as a function of the number of features K
produced graphs similar to those in family-level classifica-
tion (data not shown). The accuracy of our classifiers with
and without chi-square feature selection is shown in Table
XVI, along with a reproduction of the results reported by
Karchin et al.

Here, using binary features selected by chi-square with
the Naive Bayes classifier was more effective than using
the counts of the corresponding n-grams, giving an improve-
ment of 10.5% in accuracy. Comparison to the previously
studied classifiers shows that the Naive Bayes classifier
with its accuracy rate of 92.4% gave a 44.5% reduction in
residual error compared to the SVM, whose reported
86.3% accuracy made it the best of the previously studied
classifiers. Although the Decision Tree did not perform as
well as SVM, it still outperformed HMM and kernNN with
the aid of chi-square feature selection. This result shows
that the computational complexity of SVM, which has been
considered to be necessary for high accuracy in GPCR level
II subfamily classification,'® can be avoided by using the
simple feature selection algorithm, chi-square, on a differ-
ent feature set, the n-grams.

Generalizing to a Different Dataset: Classification
of the Nuclear Receptor Superfamily

To show that our method can be applied to other protein
classification problems, we applied the Naive Bayes classi-
fier with chi-square feature selection to the superfamily of
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TABLE XVI. Comparison of Accuracy of Various Classifiers at GPCR Level II Subfamily Classification

Classifier # of Features Type of Features Accuracy
Decision Tree All (9723) n-Gram counts 66.0%
2300 Binary 70.2%
1200 n-Gram counts 70.8%
Naive Bayes All (9702) n-Gram counts 81.9%
8100 Binary 92.4%
5600 n-Gram counts 84.2%
SVM 9 per match state Gradient of the log-likelihood that the sequence 86.3%
in the HMM is generated by the given HMM model
SVMtree 9 per match state Gradient of the log-likelihood that the sequence 82.9%
in the HMM is generated by the given HMM model
BLAST Local sequence alignment 74.5%
SAM-T2K HMM HMM model built for each protein subfamily 70.0%
kernNN 9 per match state Gradient of the log-likelihood that the sequence 51.0%
in the HMM is generated by the given HMM model

Unigrams, bigrams and trigrams were used with the Decision Tree, while bigrams and trigrams were used with the Naive Bayes classifier.
Results of SVM, BLAST, HMM and kernNN from the study by Karchin et al.'® are reproduced above for ease of comparison.

TABLE XVII. Results of Naive Bayes Classifier with Chi-Square Feature Selection
Applied to Nuclear Receptor Classification

Accuracy
Dataset Feature Type # of Features Validation Testing
Family Binary 15004200 96.96% 94.53%
n-Gram counts 4004900 95.75% 91.79%
Level I subfamily Binary 1500-3100 98.09% 97.77%
n-Gram counts 500-1100 93.95% 91.40%
Level II subfamily Binary 1500-2100 95.32% 93.62%
n-Gram counts 3100-5600 86.39% 85.54%

nuclear receptors to family-level as well as level I and level
II subfamily classification. Nuclear receptors were chosen
because of their immense influence on the metabolic
pathways of diseases such as diabetes, heart diseases and
cancer.

In level I and level II subfamily classification, we
performed a three-fold cross-validation in which one fold
was used for training, another for tuning K and the third
for testing. Table XVII shows the results of the experi-
ments.

Table XVII clearly illustrates that using the binary
features as opposed to their associated n-gram counts is
more effective in boosting the accuracy of the classifier on
all three levels of classification. The testing set accuracy
for all three datasets falls in the mid-90% range, support-
ing our hypothesis that a simple classifier like the Naive
Bayes can give “annotation-quality” classification for pro-
tein sequences in general.

DISCUSSION

In this study, we evaluated the performance of simple
classifiers in conjunction with feature selection against
more complex classifiers in terms of running time complex-
ity on the task of protein sequence classification. We chose
to use the superfamily of GPCRs as our dataset because of
its biological importance, particularly in pharmacology,
and the known difficulty it presents in the classification
task due to the extreme diversity among its members. Our

method, analogous to document classification in the hu-
man language technologies domain, used the Decision
Tree and Naive Bayes classifiers on n-gram counts.

We optimized our classification procedure with feature
selection using classification at the family level. In docu-
ment classification, chi-square feature selection has proven
to be highly successful,®! not only in reducing the number
of features necessary for accurate classification, but also in
increasing classification accuracy via the elimination of
“noisy features.” We applied chi-square feature selection to
the GPCR family classification task and found it to be
successful in this task as well. Specifically, using chi-
square feature selection, the accuracy increased with the
number of features until a maximum accuracy was reached,
after which the accuracy dropped. Thus, an improvement
in accuracy can be attained by using chi-square to reduce
the dimensionality of the feature space to the point at
which maximum accuracy occurs.

We then applied our method to the GPCR level I and
level II subfamily classification tasks studied previously
by Karchin et al.'® in a systematic comparison of classifi-
ers of varying complexity. For comparability, we used the
same dataset and evaluation procedure as published in the
previous study. First, we noted that subfamily classifica-
tions are much more difficult to predict than family level
classifications, as shown by the decrease in accuracy of
both the Decision Tree and the Naive Bayes classifier. This
observation is consistent with the fact that subfamilies are
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defined to a greater extent than families are by chemical
and pharmacological criteria as opposed to sequence homol-
ogy.

Because of these difficulties, the previous study con-
cluded that at the subfamily levels, more complex classifi-
ers are needed to maintain high classification accuracy. In
particular, the accuracies of BLAST, k-nearest neighbors
in conjunction with Fisher Score Vector space, profile
HMM and SVM in level I and level II subfamily classifica-
tion were studied with alignment-based features, and
SVM was found to perform best. Using SVM, accuracy
values of 88.4% and 86.3% were achieved in level I and
level II subfamily classification'® (see Tables XV and XVI,
respectively).

In level I subfamily classification, we found that the
Naive Bayes classifier using the counts of all bigrams and
trigrams can reduce the residual error from SVM by
13.8%. Moreover, a greater reduction of 39.7% can be
achieved if chi-square feature extraction is used in conjunc-
tion with the Naive Bayes classifier, leading to a final
accuracy of 93.0%. In level II subfamily classification, the
Naive Bayes classifier with the aid of chi-square feature
selection reduced the residual error from SVM by 44.5%
and achieved an accuracy of 92.4%. Thus, contrary to the
conclusion of the previous study,'® our study shows that
classifiers of the complexity of SVM are not needed to
attain “annotation-quality” accuracy.

The comparison of our results to those of Karchin et a
also shows that the Decision Tree cannot match the
performance of the Naive Bayes classifier and SVM in
either level I or II subfamily classification. However,
chi-square improves the accuracy of the Decision Tree to
the extent that it outperforms HMM in both of these tasks.

One interesting observation in our level I subfamily
classification results (Table XV) is that, while the Naive
Bayes classifier performed better with the help of chi-
square feature selection, it also outperformed all other
classifiers even on its own using counts of all bigrams and
trigrams. This suggests that the difference in performance
between the Naive Bayes classifier and SVM may be due to
the different features used. It is known that alignment-
based methods have limitations® because of their assump-
tion that contiguity is conserved between homologous
segments which may not be true in genetic recombination
or horizontal transfer.”® As a result, alignments become
ambiguous when sequence similarity drops below 40%°
and unusable below 20%.'%'! A number of approaches to
alignment-free sequence comparisons have been explored
(see Introduction and ref. 6). The high accuracy we achieved
in protein classification using n-gram features suggests
that for protein classification, n-grams may be a better set
of features than alignment-based features. In contrast to
the requirement by sequence alignment that ordering of
homologous segments be conserved, the use of n-gram
counts can capture the presence of small conserved peptide
fragments without posing any requirements on their se-
quential arrangement.

Although sequence alignment has dominated the field
for many years because of its intuitive nature in under-
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standing the evolutionary origin of protein families and
subfamilies, relaxing the requirement for consecutive ho-
mologous segments is more in tune with the hallmark of
protein structures. Protein structures are functional be-
cause of their arrangement in three-dimensional space,
bringing about important contacts between amino acids
that may be far apart in the linear amino acid sequence.
These amino acids form structural motifs that are con-
served but rearranged in their order through evolution.
n-Gram counts may be able to capture the presence of
these motifs when alignments cannot, as in cases in which
sequence similarity is too low. Thus, an important future
goal is to discriminate high classification accuracy due to
suitable classifiers from that due to informative features.
From our current experiments, we cannot determine
whether the type of features, the feature selection process
or the different classifiers used has caused the significant
improvement of our simple Naive Bayes classifier over the
SVM classifier. To address this question, future work
should combine strong classifiers such as SVM and boost-
ing with well-selected n-gram vocabularies to see if further
predictive accuracy can be attained.

CONCLUSIONS

From the study presented here, we conclude that compli-
cated classifiers with the running time complexity of SVM
are not necessary to attain high accuracy in protein
classification, even for the particularly challenging GPCR
subfamily classification task. A simple classifier, the Naive
Bayes classifier, in conjunction with chi-square feature
selection, applied to n-gram counts performs soundly
better than a computationally complex and generally
better classifier (SVM) on alignment-based features with-
out feature selection in GPCR family, level I subfamily and
level II subfamily classification. Another simple classifier,
Decision Tree with chi-square feature selection, while not
as powerful as either Naive Bayes or SVM, can still
outperform profile HMM. These classifiers perform compa-
rably to profile HMMs created from human-curated align-
ments. We also show that the strong classification results
can be extended to other protein families by their success-
ful application to the superfamily of nuclear receptors with
accuracies in the mid-90% range. Furthermore, we show
that the accuracies achieved with our automated classifi-
ers perform comparably to the current state-of-art hand-
edited protein family HMM’s stored in the PFAM data-
base. Thus, given the right features, complicated classifiers
with the running time complexity of SVM are not neces-
sary to attain high accuracy in protein classification.
Automatically formulating the right vocabulary via n-
grams and chi-square feature selection is more important
than the choice of classifier in achieving high accuracy.
Using simple machine learning classifiers and feature
selection techniques, we have created a reliable and auto-
matic tool for general protein family classification.

All of the methods presented here were originally ap-
plied to the text document classification task in the human
language technologies domain. The successful application
of document classification techniques to the protein classi-



PROTEIN CLASSIFICATION

fication task, together with the conclusion that simple
classifiers can outperform complicated classifiers in this
task as a result, have important implications. There are
many problems in the biology domain that can be formu-
lated as a classification task. Many of these are considered
to be more challenging by biologists than the protein
classification task. This includes predicting folding, ter-
tiary structure and functional properties of proteins, such
as protein—protein interactions. Thus, these important
classification tasks are potential areas for applications of
human language technologies in modern proteomics.
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