
P R O D I G Y :  An Integrated Archi tec ture  for P lanning  and Learning 
J a i m e  C a r b o n e l l ,  O r e n  E t z i o n i * ,  Y o l a n d a  G i l ,  R o b e r t  J o s e p h  

C r a i g  K n o b l o c k ,  S t e v e  M i n t o n  ?, a n d  M a n u e l a  V e l o s o  

School of C o m p u t e r  Science 
Carnegie Mellon Univers i ty  

P i t t sburgh ,  PA 15213 

t N A S A  Ames  Research Center  
AI Research Branch,  Mail  Stop: 244-17 

Moffett Field, CA 94035 

*Depa r tmen t  of C o m p u t e r  Science 
Univers i ty  of Wash ing ton  

Seattle,  WA 98195 

ABSTRACT 

Artificial intelligence has progressed to the point where mul- 
tiple cognitive capabilities are being integrated into compu- 
tational architectures, such as SOAR, PRODIGY~ THEO, and 
ICARUS. This paper reports on the PRODIGY architecture, 
describing its planning and problem solving capabilities and 
touching upon its multiple learning methods. Learning in 
PRODIGY Occurs at all decision points and integration in 
PRODIGY is at the knowledge level; the learning and reason- 
ing modules produce mutually interpretable knowledge struc- 
tures. Issues in architectural design are discussed, providing 
a context to examine the underlying tenets of the PRODIGY 
architecture. 

1 I n t r o d u c t i o n  

A common dream for many AI researches, present authors 
included, is the construction of a general purpose learning 
and reasoning system that given basic axiomatic knowledge 
of a domain is capable of becoming an expert problem solver. 

Our machine learning approach, implemented in PRODIGY [2], 
starts with a general problem-solving engine based on a possi- 
bly incomplete domain theory. The problem solver improves 
its performance through experience by refining the initial do- 
main knowledge and learning knowledge to control the search 
process. The paper is divided into two parts. The first part 
describes the basic architecture, including the problem solver 
and the various learning modules. The second part discusses 
the design issues in building an integrated architecture. 

2 T h e  PRODIGY A r c h i t e c t u r e  

2.1 T h e  P r o b l e m  S o l v e r  

PRODIGY'$ basic reasoning engine is a general-purpose prob- 
lem solver and planner [10] that searches for sequences of op- 
erators (i.e., plans) to accomplish a set of goals from a spec- 
ified initial state description. Search in PRODIGY is guided 
by a set of control rules that apply at each decision point. 
Search control rules may be general or domain specific, hand- 
coded or automatically acquired, and may consist of heuris- 
tic preferences or definitive selections. In the absence of any 
search control, PRODIGY defaults to depth-first means-ends 
analysis. But, with appropriate search control knowledge it 
can emulate other search disciplines, including breath-first 
search, depth-first iterative-deepening, best-first search, and 
knowledge-based plan instantiation. 

2 .2  K n o w l e d g e  R e p r e s e n t a t i o n  

Each operator has a precondition expression that must be sat- 
isfied before the operator can be applied, and a list of effects 
that describe how the application of the operator changes the 
world. Precondition expressions are well-formed formulas in 
a form of predicate logic encompassing negation, conjunction, 

disjunction, and existential and universal quantification. The 
effects are atomic formulas that describe the facts that are 
added or deleted from the current state when the operator 
is applied. Operators may also contain conditional effects, 
which represent changes to the world that are dependent on 
the state in which the operator is applied. 

2.3 P r o b l e m  D e f i n i t i o n  a n d  P r o b l e m  S o l v i n g  

A problem consists of an initial state and a goal expression. 
To solve a problem, PRODIGY must find a sequence of opera- 
tors that, if applied to the initial state, produces a final state 
satisfying the goal expression. The search tree initially starts 
out as a single node containing the initial state and goal ex- 
pression. The tree is expanded by repeating the following 
two steps: 

1. Dec i s ion  phase :  There are four types of decisions 
that PRODIGY makes during problem solving. First, it 
must decide what node in the search tree to expand 
next, defaulting to a depth-first expansion. Each node 
consists of a set of goals and a state describing the 
world. After a node has been selected, one of the node's 
goals must be selected, and then an operator relevant 
to this goal must be chosen. Finally, a set of bindings 
for the parameters of that operator must be decided 
upon. 

2. E x p a n s i o n  phase :  If the instantiated operator's pre- 
conditions are satisfied, the operator is applied. Oth- 
erwise, PRODIGY subgoals on the unmatched precondi- 
tions. In either case, a new node is created with up- 
dated information about the state or the subgoals. 

The search terminates after creating a node whose state sat- 
isfies the top-level goal expression. 

2 .4  C o n t r o l  R u l e s  

As PRODIGY attempts to solve a problem, it must make de- 
cisions about which node to expand, which goal to work on, 
which operator to apply, and which objects to use. These 
decisions can be influenced by control rules to increase the 
efficiency of the problem solver's search and to improve the 
quality of the solutions that are found. 

PRODIGY's reliance on explicit control rules, which can be 
learned for specific domains, distinguishes it from most do- 
main independent problem solvers. Instead of using a least- 
commitment search strategy, for example, PRODIGY expects 
that any important decisions will be guided by the presence 
of appropriate control knowledge. If no control rules are rel- 
evant to a decision, then PRODIGY makes a quick, arbitrary 
choice. If in fact the wrong choice is made, and costly back- 
tracking proves necessary, an attempt will be made to learn 
the control knowledge that must be missing. The rationale 
for PRODIGY's casual commi tment  strategy is that for any 
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decision with significant ramifications, control rules should 
be present; if they are not, the problem solver should not 
attempt to be clever without knowledge, rather, the clever- 
ness should come about as a result of learning. Thus, our 
emphasis is on an elegant and simple problem-solving archi- 
tecture which can produce sophisticated behavior by learning 
the appropriate, domain-specific control knowledge. 

Control rules can be employed to guide the four decisions 
described in Section 2.3. Each control rule has a left-hand 
side condition testing applicability and a right-hand side in- 
dicating whether to SELECT, REJECT, or PREFER a par- 
ticular candidate. To make a control decision, given a de- 
fault set of candidates (nodes, goals, operators, or bindings, 
depending on the decision), PRODIGY first applies the appli- 
cable selection rules to select a subset of the candidates. If 
no selection rules are applicable, all the candidates are in- 
cluded. Next rejection rules further filter this set by explicit 
elimination of particular remaining candidates, and finally 
preference rules are used to find the most preferred alterna- 
tive. If backtracking is necessary, the next most preferred 
candidate is attempted, and so on, until a global solution is 
found, or until all selected and non-rejected candidates are 
exhausted. 

2.5 T h e  L e a r n i n g  M o d u l e s  

PRODIGY~s general problem solver is combined with several 
learning modules. The PRODIGY architecture was designed 
both as a unified testbed for different learning methods and 
as a general architecture to solve interesting problems in com- 
plex task domains. Let us now focus on the architecture itself, 
as diagrammed in Figure 1. 

The problem solver produces a complete search tree, encap- 
sulating all decisions - right ones and wrong ones - as well as 
the final solution. This information is used by each learning 
component in different ways. In addition to the central prob- 
lem solver, PRODIGY has the following learning components: 

A P P R E N T I C E :  A user interface that can participate in 
an apprentice-like dialogue [5], enabling the user to 
evaluate and guide the system's problem solving and 
learning. The interface is graphic-based and tied di- 
rectly to the problem solver, so that it can both acquire 
domain knowledge or accept advice as it is solving a 
problem. 

EBL:  An explanation-based learning facility [9] for acquir- 
ing control rules from a problem-solving trace. Expla- 
nations are constructed from an axiomatized theory de- 
scribing both the domain and relevant aspects of the 
problem solver's architecture. Then the resulting de- 
scriptions are expressed in control rule form, and con- 
trol rules whose utility in search reduction outweighs 
their application overhead are retained. 

S T A T I C :  A method for learning control rules by analyzing 
PRODIGY's domain descriptions prior to problem solv- 
ing. The STATIC program produces control rules with- 
out utilizing any training examples. STATIC can be 
viewed as a compiler for PRODIGY's domains [4]. In ex- 
perimental tests, STATIC produced control knowledge 
that was superior to that of EBL and did so one to two 
orders of magnitude faster. However, not all problem 
spaces permit purely static learning, requiring EBL's 
dynamic capabilities. STATIC's design is based on a 
detailed predictive theory of EBL, which is described 
in [3]. 

A N A L O G Y :  A derivational analogy engine [13] that uses 
similar previously solved problems to solve new prob- 
lems. The problem solver records the justifications for 
each decision during its search process. These justi- 
fications are then used to guide the reconstruction of 
the solution for subsequent problem solving situations 
where equivalent justifications hold true. Both anal- 
ogy and EBL are independent mechanisms to acquire 
domain-specific control knowledge. 

A L P I N E :  An abstraction learning and planning module [6]. 
The axiomatized domain knowledge is divided into mul- 
tiple abstraction levels based on an analysis of the do- 
main. Then, during problem solving, PRODIGY first 
finds a solution in an abstract space and then uses the 
abstract solution to guide the search for solutions in 
more detailed problem spaces. This method is orthog- 
onal to analogy and EBL, in that both can apply at 
each level of abstraction. 

E X P E R I M E N T :  A learning-by-experimentation module 
for refining domain knowledge that is incompletely or 
incorrectly specified [1]. Experimentation is triggered 
when plan execution monitoring detects a divergence 
between internal expectations and external observa- 
tions. The main focus of experimentation is to refine 
the factual domain knowledge, rather than the control 
knowledge. 

All of the learning modules are loosely integrated in that they 
are all given the same domain definition and share the same 
basic problem solver and data structures. The knowledge 
learned by each module is then incorporated back into the 
knowledge base, but this knowledge is not yet fully exploited 
by the other modules. 

We are currently investigating tighter integration of the learn- 
ing modules. For example, the EBL and abstraction modules 
can be combined such that  the control rule learning is applied 
within each abstraction space. This simplifies the learning 
process and results in more general control rules since the 
proofs in an abstract space contain fewer details [7]. Simi- 
larly, abstraction and analogy can be integrated by applying 
analogy in the abstract problem spaces. The analogy module 
will then learn skeletal plans, which should apply in a wider 
variety of situations. 

3 D i m e n s i o n s  o f  t h e  A r c h i t e c t u r e  

We now characterize PRODIGY along some of the proposed 
dimensions. 

G e n e r a l i t y :  PRODIGY has been applied to a wide range of 
planning and problem-solving tasks: robotic path plan- 
ning, the blocksworld, an augmented version of the 
STRIPS domain, matrix algebra manipulation, discrete 
machine-shop planning and scheduling, process plan- 
ning, computer configuration, logistics planning, and 
several others. 

Ver sa t i l i t y :  Because of the modularity of PRODIGY'S struc- 
ture, it can support different types of tasks, goals, and 
methods. As a simple example, the clear separation be- 
tween domain and control knowledge enables PRODIGY 
to employ different search strategies, e.g. breadth-first, 
depth-first, or best-first search. The modularity of 
PRODIGY permits extensions with additional learning 

S IGART Bul le t in ,  Vol. 2, No. 4 52 



] I 
C o n t r o l  

K n o w l e d g e  

• [ EBL , 

Plan 
Library ) " " " "  

l 
Derivation 1 
Extractor ' 

STATIC ] , 

( ( P r o b l e m )  /W D ° m a i n  

1 / 
User  

In t e r f ace  

P R O B L E M  
S O L V E R  

Linear/Nonfinear 

Deriv. Multi- 
Replay Level 

1 

(Solu,,oo) 

Abstraction 
Learner 

-4--- ( Abstraction 
Hierarchy ) 

Experimenter - -  

t 
External 
Processes ) 

Figure 1: The PRODIGY Architecture 

or task modules. The integration focuses on estabfish- 
ing the channels of communication among the different 
modules. 

R a t i o n a l i t y :  The reasoning cycle of the general problem 
solver of PRODIGY assumes that the domain specifi- 
cation is correct and complete. Solutions produced 
to given problems are therefore always consistent with 
PRODIGY's knowledge and goals. The experimentation 
work in progress relaxes the assumption that the do- 
main knowledge is correct and complete and allows the 
architecture to show increasing rationality by refining 
its knowledge through interaction with a simulated out- 
side world. 

Ab i l i t y  to  a d d  n e w  knowledge :  The modularity of the 
domain and control languages in PRODIGY make it easy 
to add new domain and control knowledge. PRODIGY 
also provides a powerful user interface that simpfifies 
the task of debugging and refining both domain and 
control knowledge. 

Ab i l i t y  to  l ea rn :  The different learning modules incor- 
porate new knowledge into PRODIGY. The knowl- 
edge includes control knowledge in the form of con- 
trol rules (EBL and STATIC), abstraction hierarchies 
(ALPINE), or past problem solving episodes (ANAL- 
OGY). Knowledge acquisition (APPRENTICE)  and 
experimentation (EXPERIMENT) techniques refine 
and extend the domain definition. 

Scalabi l i ty :  Any integrated architecture must address in- 
creasingly large tasks, whether its objective is to model 
human cognition or to build useful knowledge-based 

systems for complex tasks. Scalability can be calibrated 
in multiple ways, but all relate to efficient behavior with 
increasing complexity, as measured by: 

• Size of the domain: total number of objects, at- 
tributes, relations, operators, inference rules, etc. 

• Size of the problem: number of steps in the so- 
lution plan, number of conjuncts in the goal ex- 
pression, size of the visited search space, etc. 

• Variety: number of qualitatively different actions 
and object types in the domain. 

• Perplexity: average fan-out at every decision 
point in the search space (with and without 
learned control knowledge). 

In PRODIGY we seek to achieve a reasonable measure of 
scalability in all these dimensions. The learning tech- 
niques strive to reduce the visited search space in future 
problems with respect to the virtual (complete) search 
space. 

Reac t i v i t y :  Within the class of defiberative reasoning, one 
can distinguish real-time decision making and long- 
term planning. PRODIGY models only deliberative plan- 
ning and problem-solving, albeit in resource-limited do- 
mains. 

Eff ic iency:  As in any planning system the search space is 
highly explosive. The purpose of most of the learning 
modules is to improve the efficiency of the system. 

P s y c h o l o g i c a l  Val id i ty :  
As mentioned earlier, the PRODIGY project strives to 
produce a useful, scalable, and maintainable reasoning 
and learning architecture. Where this matches human 
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cognition, it is so by accident, by the limited imagina- 
tion of the PRODIGY designers, or perhaps because the 
human mind has indeed optimized such aspects of cog- 
nition. In all other aspects, the goal is at reengineering 
cognition the way it ought to be, in order to be most 
useful in problem solving, planning, and learning. Here 
we enumerate a few additional ways in which PRODIGY 
differs from human thought and from other cognitive 
architectures: 

• PRODIGY forgets when it chooses to do so. For 
instance, a control rule whose testing and appli- 
cation overhead is greater than the search reduc- 
tion benefits accrued over time may be discarded. 
Minton [9] demonstrated that the effectiveness of 
explanation-based learning is improved by mea- 
suring the utility of acquired knowledge and re- 
taining only those rules with positive utility. 

• PRODIGY deliberates on any and all decisions: 
which goal to work on next, which operator to ap- 
ply, what objects to apply the operator to, where 
to backtrack given local failure, whether to re- 
member newly acquired knowledge, whether to 
refine an operator that makes inaccurate predic- 
tions, and so on. It can introspect fully into its 
decision cycle and thus modify it at will. This is 
not consistent with the human mind, yet it is an 
extremely useful faculty for rapid learning. 

• PRODIGY's knowledge acquired in one module is 
open to inspection and interpretation by other 
modules. Abstracted operators can be used to 
plan, to drive EBL, to analogize with past mem- 
ory, and so forth. The compartmentalization is 
at the level of learning methods, and the sharing 
is at the level of all knowledge acquired. 

4 Comparison with Other Architectures 

There are multiple dimensions one can use to contrast and 
compare different integrated architectures. We list each di- 
mension, situating PRODIGY and contrasting it to SOAR [12], 
THEO [11], and occasionally ICARUS [8]. Each dimension in 
the design space addresses a major component of the archi- 
tecture: 

C e n t r a l  P r o b l e m  S o l v e r -  Each architecture relies on 
problem solving. Whereas THEO has no general 
problem solver (it is guided by the acquisition of 
domain-specific methods, overriding more general 
ones), PRODIGY and SOAR each have an architecturally 
defined general problem solver whose performance im- 
proves incrementally through the acquisition of factual 
and control knowledge for each domain. 

D e l i b e r a t i v e  vs. Ref lex ive  L e a r n i n g  
- PRODIGY acquires new knowledge only when it be- 
lieves that knowledge will be useful; learning is a delib- 
erate meta-reasoning process. SOAR, on the other hand, 
cannot help but learn; chunking is a reflex process in 
the architecture. THEO's caching mechanism is closer 
to SOAR's chunking, but more recent developments in- 
dicate some motion towards the PRODIGY philosophy. 
ICARUS grows its decision trees as an incremental reflex 
process, much like SOAR's chunking philosophy. 

M u l t i p l e  vs. S ing l e  L e a r n i n g  S t r a t e g i e s  - PRODIGY 
employs multiple learning strategies: explanation- 
based learning, analogy, abstraction, experimentation, 

static analysis, tutoring, and so on. SOAR employs only 
chunking, through which it attempts to emulate some 
of the other learning methods. THEO takes an interme- 
diate position with two learning mechanisms: caching 
and explanation-based learning. 

I n d u c t i v e  vs. A n a l y t i c a l  L e a r n i n g -  Only ICARUS em- 
ploys purely inductive learning techniques. PRODIGY, 
SOAR and THEO combine both, relying more heavily on 
the EBL-like deductive methods for acquiring control 
knowledge. In PRODIGY, induction is employed in the 
experimentation techniques and in extensions to purely 
deductive derivational analogy. 

M o d u l a r  vs. M o n o l i t h i c  A r c h i t e c t u r e  - We do not 
know whether the human mind compartmentalizes dis- 
tinct cognitive abilities, or distinct methods of achiev- 
ing similar ends (such as our multiple learning meth- 
ods). However, modularization at this level is a sound 
engineering principle, and therefore we have adhered 
to it. Integration is brought about by sharing both 
a uniform knowledge representation, and a common 
problem-solving and planning engine. Other systems, 
such as SOAR, take on a monolithic structure. There 
is only one learning mechanism, chunking, which can 
never be turned off or even modulated. Which is bet- 
ter? Clearly, we believe the former to be superior - but 
only from engineering principles rather than psycholog- 
ical ones. 
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