
P R O D I G Y : An Integrated Archi tec ture for P lanning and Learning
J a i m e C a r b o n e l l , O r e n E t z i o n i * , Y o l a n d a G i l , R o b e r t J o s e p h

C r a i g K n o b l o c k , S t e v e M i n t o n ?, a n d M a n u e l a V e l o s o

School of C o m p u t e r Science
Carnegie Mellon Univers i ty

P i t t sburgh , PA 15213

t N A S A Ames Research Center
AI Research Branch, Mail Stop: 244-17

Moffett Field, CA 94035

*Depa r tmen t of C o m p u t e r Science
Univers i ty of Wash ing ton

Seattle, WA 98195

ABSTRACT

Artificial intelligence has progressed to the point where mul-
tiple cognitive capabilities are being integrated into compu-
tational architectures, such as SOAR, PRODIGY~ THEO, and
ICARUS. This paper reports on the PRODIGY architecture,
describing its planning and problem solving capabilities and
touching upon its multiple learning methods. Learning in
PRODIGY Occurs at all decision points and integration in
PRODIGY is at the knowledge level; the learning and reason-
ing modules produce mutually interpretable knowledge struc-
tures. Issues in architectural design are discussed, providing
a context to examine the underlying tenets of the PRODIGY
architecture.

1 I n t r o d u c t i o n

A common dream for many AI researches, present authors
included, is the construction of a general purpose learning
and reasoning system that given basic axiomatic knowledge
of a domain is capable of becoming an expert problem solver.

Our machine learning approach, implemented in PRODIGY [2],
starts with a general problem-solving engine based on a possi-
bly incomplete domain theory. The problem solver improves
its performance through experience by refining the initial do-
main knowledge and learning knowledge to control the search
process. The paper is divided into two parts. The first part
describes the basic architecture, including the problem solver
and the various learning modules. The second part discusses
the design issues in building an integrated architecture.

2 T h e PRODIGY A r c h i t e c t u r e

2.1 T h e P r o b l e m S o l v e r

PRODIGY'$ basic reasoning engine is a general-purpose prob-
lem solver and planner [10] that searches for sequences of op-
erators (i.e., plans) to accomplish a set of goals from a spec-
ified initial state description. Search in PRODIGY is guided
by a set of control rules that apply at each decision point.
Search control rules may be general or domain specific, hand-
coded or automatically acquired, and may consist of heuris-
tic preferences or definitive selections. In the absence of any
search control, PRODIGY defaults to depth-first means-ends
analysis. But, with appropriate search control knowledge it
can emulate other search disciplines, including breath-first
search, depth-first iterative-deepening, best-first search, and
knowledge-based plan instantiation.

2 .2 K n o w l e d g e R e p r e s e n t a t i o n

Each operator has a precondition expression that must be sat-
isfied before the operator can be applied, and a list of effects
that describe how the application of the operator changes the
world. Precondition expressions are well-formed formulas in
a form of predicate logic encompassing negation, conjunction,

disjunction, and existential and universal quantification. The
effects are atomic formulas that describe the facts that are
added or deleted from the current state when the operator
is applied. Operators may also contain conditional effects,
which represent changes to the world that are dependent on
the state in which the operator is applied.

2.3 P r o b l e m D e f i n i t i o n a n d P r o b l e m S o l v i n g

A problem consists of an initial state and a goal expression.
To solve a problem, PRODIGY must find a sequence of opera-
tors that, if applied to the initial state, produces a final state
satisfying the goal expression. The search tree initially starts
out as a single node containing the initial state and goal ex-
pression. The tree is expanded by repeating the following
two steps:

1. Dec i s ion phase : There are four types of decisions
that PRODIGY makes during problem solving. First, it
must decide what node in the search tree to expand
next, defaulting to a depth-first expansion. Each node
consists of a set of goals and a state describing the
world. After a node has been selected, one of the node's
goals must be selected, and then an operator relevant
to this goal must be chosen. Finally, a set of bindings
for the parameters of that operator must be decided
upon.

2. E x p a n s i o n phase : If the instantiated operator's pre-
conditions are satisfied, the operator is applied. Oth-
erwise, PRODIGY subgoals on the unmatched precondi-
tions. In either case, a new node is created with up-
dated information about the state or the subgoals.

The search terminates after creating a node whose state sat-
isfies the top-level goal expression.

2 .4 C o n t r o l R u l e s

As PRODIGY attempts to solve a problem, it must make de-
cisions about which node to expand, which goal to work on,
which operator to apply, and which objects to use. These
decisions can be influenced by control rules to increase the
efficiency of the problem solver's search and to improve the
quality of the solutions that are found.

PRODIGY's reliance on explicit control rules, which can be
learned for specific domains, distinguishes it from most do-
main independent problem solvers. Instead of using a least-
commitment search strategy, for example, PRODIGY expects
that any important decisions will be guided by the presence
of appropriate control knowledge. If no control rules are rel-
evant to a decision, then PRODIGY makes a quick, arbitrary
choice. If in fact the wrong choice is made, and costly back-
tracking proves necessary, an attempt will be made to learn
the control knowledge that must be missing. The rationale
for PRODIGY's casual commi tment strategy is that for any

51 S I G A R T Bullet in , Vol. 2, No. 4

decision with significant ramifications, control rules should
be present; if they are not, the problem solver should not
attempt to be clever without knowledge, rather, the clever-
ness should come about as a result of learning. Thus, our
emphasis is on an elegant and simple problem-solving archi-
tecture which can produce sophisticated behavior by learning
the appropriate, domain-specific control knowledge.

Control rules can be employed to guide the four decisions
described in Section 2.3. Each control rule has a left-hand
side condition testing applicability and a right-hand side in-
dicating whether to SELECT, REJECT, or PREFER a par-
ticular candidate. To make a control decision, given a de-
fault set of candidates (nodes, goals, operators, or bindings,
depending on the decision), PRODIGY first applies the appli-
cable selection rules to select a subset of the candidates. If
no selection rules are applicable, all the candidates are in-
cluded. Next rejection rules further filter this set by explicit
elimination of particular remaining candidates, and finally
preference rules are used to find the most preferred alterna-
tive. If backtracking is necessary, the next most preferred
candidate is attempted, and so on, until a global solution is
found, or until all selected and non-rejected candidates are
exhausted.

2.5 T h e L e a r n i n g M o d u l e s

PRODIGY~s general problem solver is combined with several
learning modules. The PRODIGY architecture was designed
both as a unified testbed for different learning methods and
as a general architecture to solve interesting problems in com-
plex task domains. Let us now focus on the architecture itself,
as diagrammed in Figure 1.

The problem solver produces a complete search tree, encap-
sulating all decisions - right ones and wrong ones - as well as
the final solution. This information is used by each learning
component in different ways. In addition to the central prob-
lem solver, PRODIGY has the following learning components:

A P P R E N T I C E : A user interface that can participate in
an apprentice-like dialogue [5], enabling the user to
evaluate and guide the system's problem solving and
learning. The interface is graphic-based and tied di-
rectly to the problem solver, so that it can both acquire
domain knowledge or accept advice as it is solving a
problem.

EBL: An explanation-based learning facility [9] for acquir-
ing control rules from a problem-solving trace. Expla-
nations are constructed from an axiomatized theory de-
scribing both the domain and relevant aspects of the
problem solver's architecture. Then the resulting de-
scriptions are expressed in control rule form, and con-
trol rules whose utility in search reduction outweighs
their application overhead are retained.

S T A T I C : A method for learning control rules by analyzing
PRODIGY's domain descriptions prior to problem solv-
ing. The STATIC program produces control rules with-
out utilizing any training examples. STATIC can be
viewed as a compiler for PRODIGY's domains [4]. In ex-
perimental tests, STATIC produced control knowledge
that was superior to that of EBL and did so one to two
orders of magnitude faster. However, not all problem
spaces permit purely static learning, requiring EBL's
dynamic capabilities. STATIC's design is based on a
detailed predictive theory of EBL, which is described
in [3].

A N A L O G Y : A derivational analogy engine [13] that uses
similar previously solved problems to solve new prob-
lems. The problem solver records the justifications for
each decision during its search process. These justi-
fications are then used to guide the reconstruction of
the solution for subsequent problem solving situations
where equivalent justifications hold true. Both anal-
ogy and EBL are independent mechanisms to acquire
domain-specific control knowledge.

A L P I N E : An abstraction learning and planning module [6].
The axiomatized domain knowledge is divided into mul-
tiple abstraction levels based on an analysis of the do-
main. Then, during problem solving, PRODIGY first
finds a solution in an abstract space and then uses the
abstract solution to guide the search for solutions in
more detailed problem spaces. This method is orthog-
onal to analogy and EBL, in that both can apply at
each level of abstraction.

E X P E R I M E N T : A learning-by-experimentation module
for refining domain knowledge that is incompletely or
incorrectly specified [1]. Experimentation is triggered
when plan execution monitoring detects a divergence
between internal expectations and external observa-
tions. The main focus of experimentation is to refine
the factual domain knowledge, rather than the control
knowledge.

All of the learning modules are loosely integrated in that they
are all given the same domain definition and share the same
basic problem solver and data structures. The knowledge
learned by each module is then incorporated back into the
knowledge base, but this knowledge is not yet fully exploited
by the other modules.

We are currently investigating tighter integration of the learn-
ing modules. For example, the EBL and abstraction modules
can be combined such that the control rule learning is applied
within each abstraction space. This simplifies the learning
process and results in more general control rules since the
proofs in an abstract space contain fewer details [7]. Simi-
larly, abstraction and analogy can be integrated by applying
analogy in the abstract problem spaces. The analogy module
will then learn skeletal plans, which should apply in a wider
variety of situations.

3 D i m e n s i o n s o f t h e A r c h i t e c t u r e

We now characterize PRODIGY along some of the proposed
dimensions.

G e n e r a l i t y : PRODIGY has been applied to a wide range of
planning and problem-solving tasks: robotic path plan-
ning, the blocksworld, an augmented version of the
STRIPS domain, matrix algebra manipulation, discrete
machine-shop planning and scheduling, process plan-
ning, computer configuration, logistics planning, and
several others.

Ver sa t i l i t y : Because of the modularity of PRODIGY'S struc-
ture, it can support different types of tasks, goals, and
methods. As a simple example, the clear separation be-
tween domain and control knowledge enables PRODIGY
to employ different search strategies, e.g. breadth-first,
depth-first, or best-first search. The modularity of
PRODIGY permits extensions with additional learning

S IGART Bul le t in , Vol. 2, No. 4 52

] I
C o n t r o l

K n o w l e d g e

• [EBL ,

Plan
Library) " " " "

l
Derivation 1
Extractor '

STATIC] ,

((P r o b l e m) /W D ° m a i n

1 /
User

In t e r f ace

P R O B L E M
S O L V E R

Linear/Nonfinear

Deriv. Multi-
Replay Level

1

(Solu,,oo)

Abstraction
Learner

-4--- (Abstraction
Hierarchy)

Experimenter - -

t
External
Processes)

Figure 1: The PRODIGY Architecture

or task modules. The integration focuses on estabfish-
ing the channels of communication among the different
modules.

R a t i o n a l i t y : The reasoning cycle of the general problem
solver of PRODIGY assumes that the domain specifi-
cation is correct and complete. Solutions produced
to given problems are therefore always consistent with
PRODIGY's knowledge and goals. The experimentation
work in progress relaxes the assumption that the do-
main knowledge is correct and complete and allows the
architecture to show increasing rationality by refining
its knowledge through interaction with a simulated out-
side world.

Ab i l i t y to a d d n e w knowledge : The modularity of the
domain and control languages in PRODIGY make it easy
to add new domain and control knowledge. PRODIGY
also provides a powerful user interface that simpfifies
the task of debugging and refining both domain and
control knowledge.

Ab i l i t y to l ea rn : The different learning modules incor-
porate new knowledge into PRODIGY. The knowl-
edge includes control knowledge in the form of con-
trol rules (EBL and STATIC), abstraction hierarchies
(ALPINE), or past problem solving episodes (ANAL-
OGY). Knowledge acquisition (APPRENTICE) and
experimentation (EXPERIMENT) techniques refine
and extend the domain definition.

Scalabi l i ty : Any integrated architecture must address in-
creasingly large tasks, whether its objective is to model
human cognition or to build useful knowledge-based

systems for complex tasks. Scalability can be calibrated
in multiple ways, but all relate to efficient behavior with
increasing complexity, as measured by:

• Size of the domain: total number of objects, at-
tributes, relations, operators, inference rules, etc.

• Size of the problem: number of steps in the so-
lution plan, number of conjuncts in the goal ex-
pression, size of the visited search space, etc.

• Variety: number of qualitatively different actions
and object types in the domain.

• Perplexity: average fan-out at every decision
point in the search space (with and without
learned control knowledge).

In PRODIGY we seek to achieve a reasonable measure of
scalability in all these dimensions. The learning tech-
niques strive to reduce the visited search space in future
problems with respect to the virtual (complete) search
space.

Reac t i v i t y : Within the class of defiberative reasoning, one
can distinguish real-time decision making and long-
term planning. PRODIGY models only deliberative plan-
ning and problem-solving, albeit in resource-limited do-
mains.

Eff ic iency: As in any planning system the search space is
highly explosive. The purpose of most of the learning
modules is to improve the efficiency of the system.

P s y c h o l o g i c a l Val id i ty :
As mentioned earlier, the PRODIGY project strives to
produce a useful, scalable, and maintainable reasoning
and learning architecture. Where this matches human

53 S I G A R T R,11min. Vol. 2, No. 4

cognition, it is so by accident, by the limited imagina-
tion of the PRODIGY designers, or perhaps because the
human mind has indeed optimized such aspects of cog-
nition. In all other aspects, the goal is at reengineering
cognition the way it ought to be, in order to be most
useful in problem solving, planning, and learning. Here
we enumerate a few additional ways in which PRODIGY
differs from human thought and from other cognitive
architectures:

• PRODIGY forgets when it chooses to do so. For
instance, a control rule whose testing and appli-
cation overhead is greater than the search reduc-
tion benefits accrued over time may be discarded.
Minton [9] demonstrated that the effectiveness of
explanation-based learning is improved by mea-
suring the utility of acquired knowledge and re-
taining only those rules with positive utility.

• PRODIGY deliberates on any and all decisions:
which goal to work on next, which operator to ap-
ply, what objects to apply the operator to, where
to backtrack given local failure, whether to re-
member newly acquired knowledge, whether to
refine an operator that makes inaccurate predic-
tions, and so on. It can introspect fully into its
decision cycle and thus modify it at will. This is
not consistent with the human mind, yet it is an
extremely useful faculty for rapid learning.

• PRODIGY's knowledge acquired in one module is
open to inspection and interpretation by other
modules. Abstracted operators can be used to
plan, to drive EBL, to analogize with past mem-
ory, and so forth. The compartmentalization is
at the level of learning methods, and the sharing
is at the level of all knowledge acquired.

4 Comparison with Other Architectures

There are multiple dimensions one can use to contrast and
compare different integrated architectures. We list each di-
mension, situating PRODIGY and contrasting it to SOAR [12],
THEO [11], and occasionally ICARUS [8]. Each dimension in
the design space addresses a major component of the archi-
tecture:

C e n t r a l P r o b l e m S o l v e r - Each architecture relies on
problem solving. Whereas THEO has no general
problem solver (it is guided by the acquisition of
domain-specific methods, overriding more general
ones), PRODIGY and SOAR each have an architecturally
defined general problem solver whose performance im-
proves incrementally through the acquisition of factual
and control knowledge for each domain.

D e l i b e r a t i v e vs. Ref lex ive L e a r n i n g
- PRODIGY acquires new knowledge only when it be-
lieves that knowledge will be useful; learning is a delib-
erate meta-reasoning process. SOAR, on the other hand,
cannot help but learn; chunking is a reflex process in
the architecture. THEO's caching mechanism is closer
to SOAR's chunking, but more recent developments in-
dicate some motion towards the PRODIGY philosophy.
ICARUS grows its decision trees as an incremental reflex
process, much like SOAR's chunking philosophy.

M u l t i p l e vs. S ing l e L e a r n i n g S t r a t e g i e s - PRODIGY
employs multiple learning strategies: explanation-
based learning, analogy, abstraction, experimentation,

static analysis, tutoring, and so on. SOAR employs only
chunking, through which it attempts to emulate some
of the other learning methods. THEO takes an interme-
diate position with two learning mechanisms: caching
and explanation-based learning.

I n d u c t i v e vs. A n a l y t i c a l L e a r n i n g - Only ICARUS em-
ploys purely inductive learning techniques. PRODIGY,
SOAR and THEO combine both, relying more heavily on
the EBL-like deductive methods for acquiring control
knowledge. In PRODIGY, induction is employed in the
experimentation techniques and in extensions to purely
deductive derivational analogy.

M o d u l a r vs. M o n o l i t h i c A r c h i t e c t u r e - We do not
know whether the human mind compartmentalizes dis-
tinct cognitive abilities, or distinct methods of achiev-
ing similar ends (such as our multiple learning meth-
ods). However, modularization at this level is a sound
engineering principle, and therefore we have adhered
to it. Integration is brought about by sharing both
a uniform knowledge representation, and a common
problem-solving and planning engine. Other systems,
such as SOAR, take on a monolithic structure. There
is only one learning mechanism, chunking, which can
never be turned off or even modulated. Which is bet-
ter? Clearly, we believe the former to be superior - but
only from engineering principles rather than psycholog-
ical ones.

A c k n o w l e d g e m e n t s

The authors gratefully acknowledge the contributions of the
other members of the P R O D I G Y project: Jim Blythe, Daniel
Borrajo, Jose Brustoloni, Dan Kahn, Dan Kuokka, Alicia
Perez, William Reilly, Santiago Rementeria, and Xuemei
Wang. Other research directions in PRODIGY include meta
reasoning, multi-agent planning, and interactive fiction plan-
ning.

This research was sponsored in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976,
Amendment 20, under contract number F33615-87-C-1499,
monitored by the Air Force Avionics Laboratory, in part by
the Office of Naval Research under contracts N00014-84-K-
0345 (N91) and N00014-86-K-0678-N123, in part by NASA
under contract NCC 2-463, in part by the Army Research
Institute under contract MDA903-85-C-0324, and in part by
small contributions from private institutions. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of DARPA, ONR,
NASal, ARI, or the US Government.

R e f e r e n c e s

[1] J. G. Carbonell and Y. Gil. Learning by experimen-
tation: The operator refinement method. In Machine
Learning, An Artificial Intelligence Approach, Volume
Ill, pages 191-213. Morgan Kaufman, San Mateo, CA,
1990.

[2] Jaime G. Carbonell, Craig A. Knoblock, and Steven
Minton. PRODIGY: An integrated architecture for plan-
ning and learning. In Kurt VanLehn, editor, Archi-
tectures for Intelligence. Erlbaum, Hillsdale, N J, 1990.
Available as Technical Report CMU-CS-89-189.

S IGART Bul le t in , Vol. 2, No. 4 54

[3] Oren Etzioni. A Structural Theory of Explanation-Based
Learning. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1990. Available as Tech-
nical Report CMU-CS-90-185.

[4] Oren Etzioni. STATIC: A problem-space compiler for
PRODIGY. In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, Anaheim, CA, 1991.

[5] Robert L. Joseph. Graphical knowledge acquisition. In
Proceedings of the Fourth Knowledge Acquisition For
Knowledge-Based Systems Workshop, Banff, Canada,
1989.

[6] Craig A. Knobtock. Automatically Generating Abstrac-
tions for Problem Solving. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, 1991. Avail-
able as Technical Report CMU-CS-91-120.

[7] Craig A. Knoblock, Steven Minton, and Oren Etzioni.
Integrating abstraction and explanation-based learning
in PRODIGY. In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, Anaheim, CA, 1991.

[8] Pat Langley, Kevin Thompson, Wayne Iba, John H.
Gennari, and John A. Allen. An integrated cognitive
architecture for autonomous agents. Technical Report
89-28, Department of Information and Computer Sci-
ence, University of California, Irvine, 1989.

[9] Steven Minton. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. PhD the-
sis, Computer Science Department, Carnegie Mellon
University, 1988.

[10] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock,
Daniel R. Kuokka, Oren Etzioni, and Yolanda Gil.
Explanation-based learning: A problem solving perspec-
tive. Artificial Intelligence, 40(1-3):63-118, 1989.

[11] Tom M. Mitchell, John Allen, Prasad Chalasani, John
Cheng, Oren Etzioni, Marc Ringuette, and Jeffrey C.
Schlimmer. Theo: A framework for self-improving sys-
tems. In Kurt VanLehn, editor, Architectures for Intel-
ligence. Erlbaum, Hillsdale, N J, 1990.

[12] Paul S. Rosenbloom, Allen Newell, and John E. Laird.
Towards the knowledge level in SOAR: The role of the
architecture in the use of knowledge. In Kurt Van-
Lehn, editor, Architectures for Intelligence. Erlbaum,
Hillsdale, N J, 1990.

[13] Manuela M. Veloso and Jaime G. Carbonell. Integrating
analogy into a general problem-solving architecture. In
Intelligent Systems. Ellis Horwood Limited, West Sus-
sex, England, 1990.

55 SIGART Bulletin, Vol. 2, No. 4

