
Incremental Aggregation
on Multiple Continuous Queries

Chun Jin and Jaime Carbonell

Language Technologies Institute, School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213 USA

{cjin, jgc}@cs.cmu.edu

Abstract. Continuously monitoring large-scale aggregates over data streams is
important for many stream processing applications, e.g. collaborative intelligence
analysis, and presents new challenges to data management systems. The first chal-
lenge is to efficiently generate the updated aggregate values and provide the new
results to users after new tuples arrive. We implemented an incremental aggrega-
tion mechanism for doing so for arbitrary algebraic aggregate functions including
user-defined ones by keeping up-to-date finite data summaries. The second chal-
lenge is to construct shared query evaluation plans to support large-scale queries
effectively. Since multiple query optimization is NP-complete and the queries
generally arrive asynchronously, we apply an incremental sharing approach to
obtain the shared plans that perform reasonably well. The system is built as a part
of ARGUS, a stream processing system atop of a DBMS. The evaluation study
shows that our approaches are effective and efficient on typical collaborative in-
telligence analysis data and queries.

1 Introduction

Aggregates are standard database operations and are widely used in data warehousing
applications. They have been studied and commercialized with great success. However,
recently, the emergence of the data stream processing presents new challenges to com-
pute multiple aggregates over ever-changing data streams.

Consider a collaborative environment for intelligence analysis. An analyst wants to
quickly respond to emergency situations, and discover unusual developments of spe-
cial events from structured data streams. For example, an analyst concerning terrorism
activities wants to detect signals of bio-terrorism attacks. So he sets up a set of con-
tinuous aggregate queries on the stream of hospital patient records to monitor possible
outbreaks of contagious diseases that are possibly transmitted by bio-attack agents.

Analysts with overlapping interests and expertise share resources, results, and opin-
ions to collaborate complex strategic and tactic tasks. In a collaborative environment,
multiple analysts may set up different monitoring queries at different times. New
queries are formulated when new patterns are identified as worth tracking by analysts or
automatic novel intelligence tools. We expect probably hundreds or thousands of such
queries to run concurrently.

Further, the wide varieties and complexity of tasks suggest the mighty richness and
complexity of expected aggregate queries, including the extensive applications of com-
plex user-defined aggregates, such as TrackClusterCenters. Tracking cluster centers is

F. Esposito et al. (Eds.): ISMIS 2006, LNAI 4203, pp. 167–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 C. Jin and J. Carbonell

an important novel intelligence tool [10] to monitor trends and event evolutions where
tuples are viewed as points in a n-dimension feature space and clustered, and the cluster
centers are updated when new points arrive.

Many aggregate functions, algebraic functions, including MIN, MAX, COUNT,
SUM, AVERAGE, STDDEV, and TrackClusterCenters, can be incrementally updated
upon data changes without revisiting the entire history of grouping elements; while
other aggregates, holistic functions, e.g. quantiles, MODE, and RANK, can not be done
this way. We implemented an efficient incremental aggregation mechanism for arbitrary
algebraic aggregate functions including user-defined ones. The system also supports
holistic functions by reaggregating the stream history.

Consider a query A monitoring the number of visits and the average charging fees
on each disease category in a hospital everyday, shown in Fig 1(a). When new tuples of
patient records from the stream S arrive, the aggregates COUNT(*) and AVERAGE(fee)
can be incrementally updated if COUNT(*) and SUM(fee) are stored. Our system will
generate a query plan (query network), shown in Fig 2(a), to efficiently update the
aggregate results.

SELECT dis cat, hospital, vdate,
COUNT (∗), AV ERAGE(fee)

FROM S
GROUP BY CAT (disease) AS dis cat

hospital,
DAY (visit date) AS vdate
(a) Query A

SELECT hospital, vdate,
AV ERAGE(fee)

FROM S
GROUP BY hospital,

DAY (visit date) AS vdate
(b) Query B

Fig. 1. Two Query Examples: A and B

S A

AVERAGE(fee)
AS AVGA

SUM(fee)
AS SUMA

COUNT(*)
AS COUNTA

vdatehospitaldis_cat

S A B

AVERAGE(fee)
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

vdatehospital

(a) Evaluate query A

(b) Evaluate query B from A

Fig. 2. Evaluating Queries A and B

Constructing the shared evaluation plan among multiple queries is necessary to sup-
port large-scale queries effectively. Since multiple query optimization (MQO), even on
the simple case of aggregating over single columns[7], is NP-complete[21,2,20,16], the
global optimization on large-scale queries is impractical. Further, queries generally ar-
rive intermittently in real applications, such as in intelligence monitoring. To make it
tractable, a natural solution is incrementally adding new queries to obtain a reasonably
good plan within a reasonable time. To do that, the system needs to record the com-
putations of the existing query plan R. Given a new query Q, the system searches the
common computations between Q and R, chooses the optimal sharing path, and expand
R with new computations to obtain Q’s final results.

Incremental Aggregation on Multiple Continuous Queries 169

Assume R contains just query A. Now consider that a new query B arrives. It moni-
tors the daily average fees in a hospital, shown in Fig 1(b). B groups can be obtained by
compressing A groups on the CAT (disease) dimension. Further, B’s aggregates can
be obtained from A as well. Thus the system shares A’s results to evaluate B, as shown
in Fig 2(b). This sharing process is called vertical expansion in this paper.

We implemented two sharing strategies. The first one is to choose the optimal shar-
ing node when there are multiple sharable ones. And the second is rerouting. After a
new node B is created, the system checks if any existing nodes can be improved by
being evaluated from B. These nodes are disconnected from their original parents and
connected to B by vertical expansion. If the two queries A and B mentioned above
arrive in the reverse order, the sharing can still be achieved by applying rerouting.

The system is built as a part of ARGUS[15,14], a stream processing system atop of
a DBMS (Oracle) for immediate practical stream processing functionalities to existing
database applications. Besides aggregations, ARGUS also supports selections, joins, set
operators, and view references with the incremental evaluation and sharing approaches.

The evaluation study shows that the execution time of incremental aggregation grows
much slower than the naive regrouping method as the aggregation size increases, and
is up to 10 times faster in our experiments. The study also shows that the incremen-
tal sharing provides significant improvement on large-scale queries, and that vertical
expansion provides significant improvement on typical data increment sizes.

2 Related Work

Efficient aggregations have been studied widely for data warehousing applications. The
CUBE[11], ROLLUP, and GROUPING SETS[2,13,19] generate multiple aggregates
by grouping on different sets of aggregating columns (dimensions), and are imple-
mented in commercial DBMS’s. These operators allow the query optimizer to share
computations among multiple aggregates. [7] proposed a hill-climbing approach to
search for efficient shared plans on a large number of GROUPING SETS queries. [22]
showed how to choose finer-granularity yet-not-requested aggregates to be shared by
multiple aggregates to improve computation efficiency. While these OLAP-oriented ap-
proaches consider sharing among multiple aggregates, they assume all queries are avail-
able at the time and perform the optimization as an one-shot operation. However, many
stream applications, e.g. intelligence monitoring, request registering intermittently ar-
rived queries on an one-by-one basis. Our system accommodates this by recording and
searching existing computations to incrementally construct the query plan.

Our work is also relevant to view-based query optimization [9] in terms of search-
ing common computations. However, the optimization only involves identifying the
sharable computations without dynamic construction of new computations, and do not
concern with incremental aggregations upon data changes. While automatic view main-
tenance is related to incremental aggregation, previous works[4][12] focus on selection-
join queries, not on aggregate queries.

Aggregations over data streams have also been studied. Window aggregates[17] ex-
plore stream/query time constraints to detect the aggregating groups that no longer grow
and thus avoid unnecessary tuple buffering. Continuously estimating holistic functions,

170 C. Jin and J. Carbonell

i.e. quantiles and frequent items, in distributed streams [8,18] is another important prob-
lem. Since incremental aggregation is not applicable, the approaches focus on approx-
imate techniques and models to bound errors and to minimize communication cost.
Orthogonal to these efforts, our work focuses on incremental aggregations for general
algebraic functions and support large-scale query systems.

Recent stream processing systems, such as STREAM[3], TelegraphCQ[5], and
Aurora[1], are general-purpose Data Stream Management Systems focusing on system-
level problems, such as storage, scheduling, approximate techniques, query output re-
quirements, and window join methods. To our knowledge, however, techniques toward
incremental aggregation for large-scale queries are not discussed. Our work is orthogo-
nal to these efforts and can be applied as part of the optimizer on such systems.

NiagaraCQ[6] is the closest system to ours. It monitors large-scale continuous quer-
ies with incremental query evaluation methods, and registers new queries incrementally
with periodical regrouping optimization. However, the system focuses on queries with
joins and selections, not on aggregate functions.

3 System Design

In this section, we present the system architecture, incremental aggregation, vertical
expansion, and sharing strategies.

3.1 System Architecture and System Catalog

The system builds a shared query network. Each network node, presenting a data stream
S, is associated with two tables, the historical table SH to materialize the historical data
part, and the temporary table SN to materialize the new data part which will be flushed
and appended to the historical table later. At any time, S = SH ∪ SN . An aggregate
query may have a GROUPBY clause to specify a set of grouping expressions which is
called dimension set D. A group value is denoted as gD.

Incremental aggregation on an aggregate node is realized by PL/SQL code blocks
instantiated from code templates. The whole query network evaluation is realized by a
set of stored procedures that wrap up the code blocks in the order the nodes appear in
the network. The stored procedures run periodically on the new data, and incrementally
update aggregate results.

Fig 3 and 4 show the system architecture and the system catalog. System catalog
is a set of system relations to record the topological and node-specific information of
the shared query network to allow common computation search, network expansion,
and reoptimization. GroupExprIndex records all canonicalized group expressions[14],
GroupExprSet records the dimension sets, and GroupTopology records the topological
connections of the aggregate nodes. Each dimension set has a GroupID, is uniquely as-
sociated with an aggregate node in GroupTopology, and contains one or more GroupEx-
pressions recorded in GroupExprIndex. Each node has a unique entry in GroupTopology
which records the node name, its direct parent (the node from which the results are com-
puted), its original stream table, and the GroupID. GroupColumns records the projected
group expressions and aggregate functions for each node.

Incremental Aggregation on Multiple Continuous Queries 171

Query
Network

Query Coordinator

System
Catalog

Common
Computation Identifier

(CCI)

Network Operation
Manager (NOM)

Code Assembler

Sharing Optimizer
(SO)

Projection Manager
(PM)

Fig. 3. System Architecture

GroupIDNodeNameDirectParentOriginal

NodeNameColumnNameExprCanonicalOriginal

GroupExprIDGroupExprCanonicalOriginal

GroupIDGroupExprID

GroupTopology

GroupExprSet

GroupExprIndex

GroupColumns

Fig. 4. System Catalog

Given a new query B, the system takes a few steps to expands the existing query
network R, so R also evaluates B. First, the common computation identifier identifies
the common computations between B and R. Particularly, it identifies all dimension
sets {DA} that are supersets of DB , identifies the nodes {A} associated with {DA},
and then checks whether the nodes in {A} contain all columns needed for query B.
Second, the sharing optimizer chooses the optimal sharing path, particularly the optimal
node A for vertical expansion. Third, the network operation manager and the projection
manager expand R and record the changes in the system catalog. And finally, the code
assembler assembles code blocks into executable stored procedures.

3.2 Incremental Aggregation

Aggregate functions can be classified into three categories[11]:

Distributive: Aggregate function F is distributive if there is a function G such that
F (S) = G(F (Sj)|j = 1, ..., K). COUNT, MIN, MAX, SUM are distributive.

Algebraic: Aggregate function F is algebraic if there is a function G and a multiple-
valued function F ′ such that F (S) = G({F ′(Sj)}|j = 1, ..., K). AVERAGE is al-
gebraic with F ′(Sj) = (SUM(Sj), COUNT (Sj)) and G(F ′(Sj)|j = 1, ..., K) =
�

F ′
1(Sj)�

F ′
2(Sj)

where F ′
i is F ′’s ith value.

Holistic: Aggregate function F is holistic if there is no constant bound on storage for
describing F ′. Quantiles are holistic.

Distributive and algebraic functions can be incrementally updated with finite data
statistics while holistic functions can not. In this paper, we also refer distributive func-
tions as algebraic, since they are special cases of algebraic functions.

To perform incremental aggregation for arbitrary algebraic functions including user-
defined ones, we use two system catalog tables to record the types of the necessary
statistics and the updating rules, shown in Tables 1 and 2. Table AggreBasics records
the necessary bookkeeping statistics for each algebraic function. Argument X in

172 C. Jin and J. Carbonell

BasicStatistics indicates the exact match when binding with the actual value while W
indicates the wild-card match. Table AggreRules records incremental aggregation rules.
The rule of a distributive function specifies how the new aggregate is computed from
SH and SN ; and the rule of an algebraic function specifies how the new aggregate is
computed from the basic statistics.

Incremental aggregation is shown in Algorithm 1 and is illustrated by Fig 5 on
AV ERAGE(fee) for query A. Algorithm 1 also shows the time complexity Ti of
each step. The merge step is realized with a hash join on AH and AN with Thash2 =
O(|AH | + |AN |). If the AH hash is precomputed and maintained in RAM or on disk
with perfect prefetching, the time complexity is Tprefetch2 = O(|AN |). The duplicate-
drop step is realized by a set difference AH − AN , which can be achieved by hashing
with Thash4 = O(|AH |+ |AN |) or by prefetched hashing with Tprefetch4 = O(|AN |).
However, we observed that it took Tcurr4 = O(|AN | ∗ (|AH

N |)) = O(|AN |2) on the
DBMS, where |AH

N | is the number of the groups in SH to be dropped. If the incre-
mental aggregation is implemented in a DBMS or a DSMS as a built-in operator, both
merge and duplicate-drop steps can be achieved with hashing. With the prefetching, the
complexity will be linear to |AN |. Therefore, the time complexities on the current im-
plementation, build-in operator with hashing, and with prefetch are following:

Tcurr = O(|S2
N | + |AH |), Tbuilt−in = O(|SN | + |AH |), and Tprefetch = O(|SN |).

Algorithm 1. Incremental Aggregation
0. PredUpdate State. AH contains update-to-date aggregates on SH .
1. Aggregate SN , and put results into AN . T1 = O(|SN |)
2. Merge groups in AH to AN . Thash2 = O(|AH | + |AN |), Tprefetch2 = O(|AN |)
3. Compute algebraic aggregates in AN from basic statistics

(omitted for distributive functions). T3 = O(|AN |)
4. Drop duplicates in AH that have been merged into AN .

Tcurr4 = O(|AN | ∗ |AH
N |) = O(|AN |2),

Thash4 = O(|AH | + |AN |), Tprefetch4 = O(|AN |)
5. Insert new results from AN to AH , preferably after AN has been sent to the users.

T5 = O(|AN |)
Fig 6 shows the procedure to instantiate the incremental aggregation code for func-

tion AV ERAGE(fee) in query A. 1. The function is parsed to obtain the function
name and the list of the actual arguments. 2. The basic statistics and updating rules are
retrieved. 3. The statistics are parsed and their formal arguments are substituted by the
actual arguments. 4. The statistics are renamed and stored in GroupColumns. 5. The
name mapping is constructed based on above information. 6. The updating rules are
instantiated by substituting formal arguments with the renamed columns.

Table 1. AggreRules Table 2. AggreBasics

AGGREGATE AGGREGATE INCREMENTAL AGGREGATION VERTICAL EXPANSION
FUNCTION CATEGORY RULE RULE
AVERAGE A SUMX/COUNT W SUMX/COUNT W

SUM D SUMX(H) + SUMX(N) SUM(SUMX)
MEDIAN H NULL NULL
COUNT D COUNT W (H) + COUNT W (N) SUM(COUNT W)

AGGREGATE BASIC BASIC
FUNCTION STATISTICS STATID
AVERAGE COUNT (W) COUNT W

AVERAGE SUM(X) SUMX

SUM SUM(X) SUMX

COUNT COUNT (W) COUNT W

Incremental Aggregation on Multiple Continuous Queries 173

3.3 Vertical Expansion and Sharing Strategies

Vertical expansion is not applicable to holistic queries. However, holistic queries can
still be shared if they share the same dimension sets. In following discussion, we focus
on sharing among distributive and algebraic functions.

AVERAGE(fee)

AS AVGA

SUM(fee)

AS SUMA

COUNT(*)

AS COUNTA

GID

SUM(fee)

AS SUMA

AVERAGE(fee)

AS AVGA

COUNT(*)

AS COUNTA

GID

0: PreUpdate State

1: Aggregate AN

t1: AH

t2: AN

SH

SN

2: Merge Groups
t2.COUNTA = t1.COUNTA + t2.COUNTA
t2.SUMA = t1.SUMA + t2.SUMA

3: Compute Algebraic Aggregate

COUNTAt

SUMAt
AVGAt

.2

.2
.2 =

4: Drop Duplicates

5: Insert New Results

Fig. 5. Incremental Aggregation

COUNTW

SUMX
AVERAGE =)()()(

)()()(

NCOUNTWHCOUNTWNCOUNTW

NSUMXHSUMXNSUMX

+=
+=

AggreRules:AggreBasics:
AVERAGE: SUM(X): SUMX
AVERAGE: COUNT(W): COUNTW

New Query A:
AVERAGE(fee)

GroupColumns:
SUM(fee): SUMA
COUNT(*):COUNTA
AVERAGE(fee): AVGA

AVERAGE fee

COUNTA

SUMA
AVGA=

COUNTW

SUMX
feeAVERAGE =)(

COUNTW

SUMX
AVGA=

COUNTAt

SUMAt
AVGAt

.2

.2
.2 =

)()()(

)()()(

NCOUNTAHCOUNTANCOUNTA

NSUMAHSUMANSUMA

+=
+=

COUNTAtCOUNTAtCOUNTAt

SUMAtSUMAtSUMAt

.2.1.2

.2.1.2

+=
+=

SUM(X) SUMX
COUNT(W) COUNTW

SUM(fee) SUMX
COUNT(*) COUNTW

parse

retrieve rules

substitute

insert columns

substitute

SUM(fee)
SUMX

SUMA

COUNT(*)
COUNTW

COUNTA
AVERAGE(fee) AVGA

Name Mapping:

Fig. 6. Incremental Aggregagtion Instantiation

Rest
ID

AVERAGE(fee)
AS AVGA

SUM(fee)
AS SUMA

COUNT(*)
AS COUNTA

BID

AH

1: Further Aggregate:
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

2:

COUNTB

SUMB
AVGB =

AVERAGE(fee)
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BID

BH

1: Further Aggregate
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

A B

Vertical Expansion

����

����

����

����

Fig. 7. Vertical Expansion

SUM(fee)
AS SUMA

Rest ID …COUNT(*)
AS COUNTA

BID

AN

A B
Rest ID …BID

AH

AVERAGE(fee)
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BID

BH

2: Merge Groups
t2.COUNTA = t1.COUNTA + t2.COUNTA
t2.SUMA = t1.SUMA + t2.SUMA

1: Further Aggregate
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

Vertical Expansion

3: Compute Algebraic Aggregate

COUNTB

SUMB
AVGB =

AVERAGE(fee)
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BID

BN

4: Drop Duplicates

5: Insert New Results

Fig. 8. Incremental Aggregation on Vertical Ex-
pansion

Section 1 showed that the query B can be evaluated from the query A (see Fig 2).
Fig 7 shows how the vertical expansion creates and initiates B from A. The process is
comprised of two steps and takes time of T V Init = O(|AH |). The further-aggregate
step executes the code instantiated from the vertical expansion rules stored in the Ag-
greRules, and the algebraic-computing step is applicable only to algebraic functions.

Fig 8 shows the incremental aggregation for AV ERAGE(fee) in query B. It is
the same to the procedure shown in Fig 5 except the first step which performs further
aggregation from AN instead of from SN . The time complexities are following:

174 C. Jin and J. Carbonell

T V
curr = O(|A2

N | + |BH |), T V
built−in = O(|AN | + |BH |), and T V

prefetch = O(|AN |).
Given the new query B, there may be multiple nodes from which a vertical expansion

can be performed. According to the time complexity analysis, the optimal choice is the
node A such that |AH | is the smallest. If A does not contain all aggregate functions or
bookkeeping statistics needed by query B, a horizontal expansion is performed to add
necessary aggregate functions to A.

After the new node B is created, the system invokes the rerouting procedure. It
checks if any existing node C can be sped up by being evaluated from B. We apply
a simple cost model to decide such rerouting nodes. If 1. B contains all the aggregate
functions needed by C, and 2. |BH | < |PC

H | where PC is C’s current parent node,
then C will be rerouted to B. The system applies a simple pruning heuristic. If a node
C satisfies both conditions, and a set of nodes {Ci} satisfying the first condition are
descendants of C, then any node in {Ci} should not be rerouted, and so are dropped
from consideration.

4 Evaluation Study

We conduct experiments to show: 1. effect of incremental aggregation (IA) vs. the naive
reaggregation approach (NIA), 2. effect of shared incremental aggregation (SIA) vs. un-
shared incremental aggregation (NS-IA), 3. performance changes of vertical expansion
(VE) and non-vertical expansion (NVE) with regard to |SN |. The experiments were con-
ducted on an HP PC computer with Pentium(R) 4 CPU 3.00GHz and 1G RAM, running
Windows XP.

Two databases are used. One is the synthesized FedWire money transfer transaction
database (Fed) with 500000 records. And the other is the Massachusetts hospital patient
admission and discharge record database (Med) with 835890 records. Both databases
have a single stream with timestamp attributes. To simulate the streams, we take earlier
parts of the data as historical data, and simulate the arrivals of new data incrementally.
Table 3 shows the historical and new data part sizes used in the experiments.

Table 3. Evaluation Data

Fed Med
|SH | 300000 600000
|SN | 4000 4000

Table 4. Total execution time
in seconds

Fed Med
350Q 450Q

IA 662 316
NIA 6236 938

Table 5. Vertical expansion
statistics

Pair1 Pair2
|SH | 300000 300000
|AH | 95050 94895
|BH | 10000 10000

We use 350 queries on Fed and 450 queries on Med. These queries are generated
systematically. Interesting queries arising from applications are formulated manually.
Then more queries are generated by varying the parameters of the seed queries. Some
of these queries aggregate on selection and self-join results.

Fig 9 shows the execution times of IA and NIA on each single query, and the ratio
between them, NIA/IA. A NIA/IA ratio above 1 indicates better IA performance. Since

Incremental Aggregation on Multiple Continuous Queries 175

there are more fluctuations on diversified Med queries, we show running averages over
20 consecutive queries in Fig 9(b) to make the plot clear. The queries are sorted in
the increasing order of AggreSize = |SH(A)| ∗ |AH |, shown on the second Y axis.
|SH(A)| is the actual aggregation data size of the historical part after possible selections
and joins. We experimented with two other metrics, |SH(A)|, |SH(A)| + |AH |, which
show less consistent trends to the time growth and the NIA/IA ratio. This indicates that
the DBMS aggregation operator on SH has time complexity of |SH(A)| ∗ |AH |.

AggreSize indicates the query characteristics. There are about 250 queries in both
Fed and Med whose |SH(A)| is 0, shown to the left of the vertical cut lines and are
sorted by the NIA/IA ratio. Unsurprisingly, their execution times are very small. The
small time fluctuations are caused by the DBMS file caching.

For the remaining queries, incremental aggregation is better than non-incremental
aggregation. Particularly, it gains more significant improvements when the aggregation
size is large. These large-size queries dominate the execution time in multiple-query
systems. Thus significant improvements on such queries are significant to the whole
system performance, as shown in Table 4.

Fig 10 shows the total execution times of SIA and NS-IA by scaling over the number
of queries. Clearly, incremental sharing provides improvements, particularly on Fed
where queries share more overlap computations.

0.1

1

10

100

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

FED Query IDs

E
xe

cu
tio

n
T

im
e

R
at

io
: N

IA
/IA

Ratio

IncreAggre

NonIncreAggre

E
xe

cu
tio

n
T

im
e

(s
):

 In
cr

eA
gg

re
(N

IA
)

N
on

In
cr

eA
gg

re
(I

A
)

A
gg

re
ga

tio
n

S
iz

e:
 lo

g(
|S

H
(A

)|
*|

A
H
|)

AggreSize

0 AggreSize

(a) Fed

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400
1

100

10000

1000000

100000000

10000000000

MED Query IDs

E
xe

cu
tio

n
tim

e
ru

nn
in

g
av

g
(s

):
 N

IA
 a

nd
IA

R
at

io
: N

IA
/IA

Ratio

IncreAggre(IA)NonIncreAggre(NIA)
A

gg
re

ga
tio

n
S

iz
e:

 |S
H
(A

)|
*|

A
H
|

AggreSize

0 AggreSize

(b) Med

Fig. 9. Sharing

To study how the incremental size |SN | influences the vertical expansion perfor-
mance, we select two Fed query pairs and compare vertical expanded plans (VE) and
non-vertical expanded plans (NonVE) on them by varying the incremental sizes from 1
to 30000 tuples in exponential scale, as shown on the X axis in Fig 11. In each query
pair, one query B can be shared by vertical expansion from another query A, and their
data sizes are shown in Table 5. Fig 11 shows two types of execution times, IBT and
ITT. IBT is the time to update the whole incremental batch SN , indicated on the left
Y axis, and ITT is the average time to update an individual tuple in each incremental
batch, ITT = IBT/|SN |, indicated on the right Y axis. The VE performance gets close
to NVE as |SN | gets larger, since |SN |2 in Tcurr becomes dominant and dims the VE
advantage. We expect that this situation can be avoided with the hasing implementation.

176 C. Jin and J. Carbonell

Number of FED queries

E
xe

cu
tio

n
T

im
e

(s
)

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

SIA NS-IA

(a) Fed

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450

SIA NS-IA

Number of MED queries

E
xe

cu
tio

n
T

im
e

(s
)

(b) Med

Fig. 10. Sharing

0.01

0.1

1

10

100

1 3 10 33 100 333 1000 3333 10000 30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incremental Size: |SN|

NonVE ITT
VE ITT

Non-VE IBT
VE IBT

IB
T

: I
nc

re
m

en
ta

l-B
at

ch
 E

xe
cu

tio
n

T
im

e
(s

)

IT
T

: A
ve

ra
ge

 In
di

vi
du

al
-T

up
le

E
xe

cu
tio

n
T

im
e

(s
)

FED Query Pair 1

(a) Pair 1

0.1

1

10

100

1 3 10 33 100 333 1000 3333 10000 30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incremental Size: |SN|

NonVE ITT
VE ITT

Non-VE IBT
VE IBT

IB
T

: I
nc

re
m

en
ta

l-B
at

ch
 E

xe
cu

tio
n

T
im

e
(s

)

IT
T

: A
ve

ra
ge

 In
di

vi
du

al
-T

up
le

E
xe

cu
tio

n
T

im
e

(s
)

FED Query Pair 2

(b) Pair 2

Fig. 11. Vertical expansion

5 Conclusion and Future Work

We implemented a prototype system that supports incremental aggregation and incre-
mental sharing for efficient monitoring of large-scale aggregates over data streams. It
also supports incremental aggregation on user-defined functions, which are critical to
real-world applications. The evaluation showed that the incremental aggregation im-
proves the performance significantly on dominant queries, and so the incremental shar-
ing over a large number of queries, and that vertical expansion is effective in typical
data increment sizes. We plan to migrate the prototype onto an open-source DSMS and
implement the algorithms as built-in operators.

Acknowledgements. This work was supported in part by ARDA, NIMD program un-
der contract NMA401-02-C-0033. The views and conclusions are those of the authors,
not of the U.S. government or its agencies. We thank Christopher Olston, Phil Hayes,
Santosh Ananthraman, Bob Frederking, Eugene Fink, Dwight Dietrich, Ganesh Mani,
and Johny Mathew for helpful discussions.

Incremental Aggregation on Multiple Continuous Queries 177

References

1. D. J. Abadi and et al. Aurora: a new model and architecture for data stream management.
VLDB J., 12(2):120–139, 2003.

2. S. Agarwal and et al. On the computation of multidimensional aggregates. In VLDB, pages
506–521, 1996.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In PODS, pages 1–16, 2002.

4. J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating derived relations: Detecting irrelevant
and autonomously computable updates. ACM Trans. Database Syst., 14(3):369–400, 1989.

5. S. Chandrasekaran and et al. TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World. In CIDR, January, 2003.

6. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query system
for internet databases. In SIGMOD Conference, pages 379–390, 2000.

7. Z. Chen and V. R. Narasayya. Efficient computation of multiple group by queries. In SIG-
MOD Conference, pages 263–274, 2005.

8. G. Cormode and et al. Holistic aggregates in a networked world: Distributed tracking of
approximate quantiles. In SIGMOD Conference, pages 25–36, 2005.

9. D. DeHaan, P.-Å. Larson, and J. Zhou. Stacked indexed views in Microsoft SQL Server. In
SIGMOD Conference, pages 179–190, 2005.

10. C. Gazen, J. Carbonell, and P. Hayes. Novelty Detection in Data Streams: A Small Step
Towards Anticipating Strategic Surprise. In NIMD PI Meeting, Washington, DC, 2005.

11. J. Gray and et al. Data cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. J. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

12. A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable views.
In EDBT, pages 140–144, 1996.

13. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In
SIGMOD Conference, pages 205–216, 1996.

14. C. Jin and J. Carbonell. Toward Incremental Sharing On Continuous Queries. Tech. Report
available upon request from authors, Carnegie Mellon Univ, 2005.

15. C. Jin, J. Carbonell, and P. Hayes. ARGUS: Rete + DBMS = Efficient Continuous Profile
Matching on Large-Volume Data Streams. In ISMIS, pages 142–151, 2005.

16. A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views.
In PODS, pages 95–104, 1995.

17. J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation tech-
niques for window aggregates in data streams. In SIGMOD Conf, pages 311–322, 2005.

18. C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed
data streams. In SIGMOD Conference, pages 563–574, 2003.

19. K. A. Ross and D. Srivastava. Fast computation of sparse datacubes. In VLDB, pages 116–
125, 1997.

20. W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans with cross
products. In PODS, pages 238–248, 1997.

21. T. K. Sellis and S. Ghosh. On the multiple-query optimization problem. IEEE Trans. Knowl.
Data Eng., 2(2):262–266, 1990.

22. M. Zhang, B. Kao, D. W.-L. Cheung, and K. Yip. Mining periodic patterns with gap require-
ment from sequences. In SIGMOD Conference, 2005.

	Introduction
	Related Work
	System Design
	System Architecture and System Catalog
	Incremental Aggregation
	Vertical Expansion and Sharing Strategies

	Evaluation Study
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

