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1 Introduction 
Project Argus is focused on helping an analyst explore massive, structured data.  This 
exploration includes exact and partial match queries, monitoring hypotheses and discovery of 
new patterns in both static and streaming data. We provide these facilities within the context of a 
workbench interface, called Data Explorer. 
We support exploration of data that is a collection of records, each of which is structured as 
several distinct fields.  For instance, financial transfers are typically represented as structured 
records, with such fields as sending bank, sending account number, currency, amount, date, 
receiving account, etc.  Most fields are well-defined, like a date, a dollar amount, or the receiving 
bank.  Other fields may be longer and of more free-form content, like the body of an email 
message.  In Argus, we have focused exclusively on the well-defined, structured data.  As 
previously reported, we have been working on methods to retrieve such data flexibly to 
accommodate the lack of integrity and consistency in real-world data, to monitor it for watch 
patterns, and to identify novel and emerging trends as it accumulates over time. 
We deal with two kinds of massive data: 

• Static Data: massive numbers of previously collected data records.  We are targeting our 
efforts on data collections that are between 10 billion and 1 trillion records.  While there 
are even larger collections, this size range covers collections that are of practical interest 
to the Intelligence Community, but are not well served by current technology.   

• Streaming Data: the addition of new records to a collection at a massively high rate.  We 
are targeting a rate of arrival of thousands of records per second – several hundred 
million records per day.  The static collections we are targeting represent around 1 year of 
data at these rates of data increment. 

The kinds of records that we are addressing typically are between 100 and 1,000 bytes in size – 
uncompressed and unindexed.  This means that our target volume for static data collections is 
between a terabyte and a petabyte.  Whereas image data may range into the hundreds of 
petabytes or exabytes, most massive collections of structured data are within our range. Our 
methods rapidly index the data upon entry on multiple (potentially all) fields. For data that has a 
mixture of short structured fields and larger unstructured fields, our techniques can deliver 
searching and monitoring for collections with larger byte counts by indexing only the structured 
fields.   
The remainder of this paper discusses techniques we have developed to specify and execute 
flexible queries against such data, to cluster it, to detect novelty in the way clusters change over 
time, and to efficiently track profiles suggested by the novelties detected.  We also describe how 
these capabilities are packaged in a secure multi-analyst workbench environment, called Data 
Explorer that we are developing in conjunction with Breakaway Systems. 
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2 Data Matching and Retrieval 
A core capability for dealing with large volumes of structured data is to find records that match a 
query.  Moreover, given the poor data quality and consistency common in real-world data, it is 
very important to do the required matching in a flexible, approximate manner, not possible with 
any degree of efficiency in a conventional RDBMS.  Our work on rapid and efficient search for 
records that match or are close to an ad-hoc query is based on the DYNAMiX matching 
technology, which we have been extending under the NIMD program.  There are three different 
versions of this software to deal with different volumes of underlying data: 

• In-memory version: for moderate data volumes (up to 100 million records).  This 
version maintains all indexes within main memory for maximum performance.  It has 
been operating for well over a year now and is quite stable.  As described in papers 
presented in previous meetings, the time taken to perform a match is of the order of 
several milliseconds and grows only as the logarithm of the number of records to be 
searched.  The size of the data collection for this version is limited by the available 
memory.  The maximum number of records varies from a few million with typical 32-bit 
hardware to around 100 million with higher-end 64-bit machines. 

• Disk-based version: for much larger data volumes (up to 10 billion records).  This 
version uses the same algorithms as the in-memory version, but adapts the indexing 
structures to work on top of a collection of fixed-size memory pages.  Use of these 
structures with a specialized disk-paging scheme allows the size of the indexes to exceed 
main memory.  This version of the matcher is still undergoing development, but initial 
results [5] show time to match growing approximately as the square root of the number of 
records.  We hope to lower that rate of growth, but even at that rate, based on 
measurements with a few million records, we would predict approximate search times of 
a few seconds on 10 billion records. 

• Distributed matcher framework: for the higher end of our target data size (10 billion to 
1 trillion records).  This version is a framework that permits multiple matcher instances 
on different machines to operate together as a unit to increase the scale of data that they 
can deal with.  The framework can work with instances of either the in-memory matcher 
or the disk-based matcher, or combinations of both types since they have identical APIs.  
To increase the number of records handled, the framework can operate in a mode that 
distributes data across multiple matcher instances and integrates their independent 
responses to a given query.  A second mode of operation increases the number of 
simultaneous queries supported by duplicating data across matcher instances and 
distributing queries across different instances that share the same data.  We are currently 
starting to experiment with this framework in the context of a cluster of several four- and 
eight-way multiprocessors to determine how well the framework scales. We anticipate 
that number of records we can handle will scale linearly in the number of machines. 

Recent progress in matching has focused on integrating the distance model used for approximate 
matching with the distance model for clustering and novelty detection as described in Section 3.  
We have also integrated matching as a core facility of the data explorer described in Section . 
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3 Detecting Novelty in Massive Data 
Argus follows a hybrid model of new hypothesis formation, where the system offers its 
discovery of novel, potentially interesting patterns for analyst review, leading to new hypotheses 
being formed and tracked, or to discarding the novelty as coincidental or uninteresting.   For 
instance, if shipments of multiple multi-use precursor chemicals consistent with the production 
of nerve agents directed to a new location in a potentially hostile country start at a certain date 
and were not observed before, a hypothesis that something new, possibly of a nefarious or 
perilous nature, is being produced at that location needs to be considered.  In ARGUS this would 
be detected as a new emerging cluster distinct from background clusters in a data stream. In 
contrast, a single potential precursor chemical with a dual medical used shipped to a medical 
facility in small quantities similar to many such past shipments may not trigger an alert, as it is a 
habitual, rather than novel, happening. 

As a different example consider the outbreak of a disease like SARS, which the medical 
community was slow to recognize because SARS symptoms clusters were masked by similar 
common cold or influenza symptoms. In this case we need to detect a change in existing clusters 
– a much greater percentage of patients do not recover within the expected time frame, for 
instance.  This requires detection of change in the density function of a cluster, rather than the 
onset of a clear new one – i.e. we need to perform a de-convolution process to detect a new 
component in a mixture of observations. We believe that the second case may be more common, 
either though accidental masking (as in SARS) or intentional obfuscation, such as combining 
legitimate medical facilities with potential bio-weapon research lab or development facility.  
Note that nefarious terrorist preparatory activity may be intentionally masked as normal 
activities, but cause differences in the density functions of such activities over time – analogous 
to SARS masquerading as influenza or severe colds – and detectable by our methods given a 
sufficient signal-to-noise ratio. 

In ARGUS, we build on our earlier work on new topic detection in unstructured textual data 
[1][2], and develop techniques for detecting novel events from massive structured data. 

3.1 Basic Clustering Algorithm 
ARGUS focuses on new novelty detection technology built atop clustering techniques, so we use 
off-the-shelf clustering algorithms to build our background models. In particular, we use the 
standard leader-follower algorithm and the k-means algorithm [3]. The first is useful in forming 
an initial set of clusters and especially so because it can handle streaming data incrementally in 
linear time. The k-means algorithm is then applied to improve the quality of the clusters. 

The leader-follower algorithm iterates through the data set and for each record finds the nearest 
cluster to it. If the distance to this cluster is below a threshold, the record is added to the cluster 
and the cluster’s centroid is updated. Otherwise the record initiates a new cluster.  Once the 
initial set of centroids have been determined, the k-means algorithm makes multiple passes over 
the data set and, in each pass, re-assigns points to the best-refitting clusters. The passes are 
repeated until no points are moved between the clusters, i.e. until a clustering optimum is 
reached.  Typically only a few iterations suffice to reach a stable optimum.  

A crucial part of any clustering algorithm is how distances between points and cluster centroids 
are computed.  We have recently unified the way we carry out distance calculations for 
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clustering with the method we use for approximate matching.  This allows us to present a unified 
method of distance measurement to users of our Data Explorer.  It also makes available to 
clustering applications the full range of flexible distance functions we have developed over time 
for our matching applications. 

3.2 Cluster Density Functions 
To detect changes in the shape and density of clusters, we analyze the density of points within a 
cluster as a function of the distance to the cluster’s centroid. More formally, we define the 
density function as f(r) = dM(r)/dV(r) where M(r) is the number of points within a sphere of 
radius r and V(r) is the volume of that sphere. Another way to view the density f(r) is as a 
spatial differential, i.e. the number of points per unit volume on the thin shell of a hollow, n-
dimensional sphere of radius r centered at the cluster centroid. In the two-dimensional case as 
seen in the examples in Figure 1 below, one can visualize dV(r) as a thin ring centered in the 
middle of the cluster, and dM(r) as the number of points lying on that ring. This gives us a way 
to approximate efficiently the density function: we quantize the sphere into a number of shells, 
count the number of points that fall into each shell and finally divide this count by the volume of 
the shell. The density function characterizes the shape and density of the cluster. The peaks and 
valleys of the density function correspond to dense and sparse regions within the cluster.  For 
example, the density function of a cluster whose points are uniformly distributed with a density 
of c within a sphere of radius r is simply f(x)=c for 0<=x<=r and f(x)=0 otherwise. 

By tracking changes in the density function over time, we can detect changes in both the shape 
and density of clusters. Figure 1 shows four different scenarios in the evolution of a cluster and 
the corresponding changes in the density functions. The graphs in the figure show the density 
function f(r) plotted against the distance r to the centroid. By far the most common of these is 
the constant event scenario, where the points in the cluster show the same random distribution 
over time (for example, flu cases over the flu season). Because the distribution of the points 
remains the same, we expect the density function to remain fairly stable over time as shown in 
the figure. Another scenario is where recent points cause a new cluster to form. In this case, we 
detect the formation of the new cluster and track its density function separately from the original 
cluster. An example for this scenario from the hospital admissions domain is the outbreak of an 
uncommon disease, e.g. anthrax. 

A variation of this scenario occurs when an existing cluster masks the new one. In this case, 
detecting the formation of new clusters is not enough to trigger an alert: The points from the 
novel event are clustered into an existing cluster, so no new clusters are created. In this case, we 
use the density function to detect the novel happening. If the new set of points is gathered in a 
small region within the existing cluster, the density of points in this region is higher than 
elsewhere. As a result, a peak forms in the density function. An example for this scenario is a 
SARS outbreak, where the symptoms of the disease are the same as that of common colds, so the 
outbreak is likely to be masked by an existing cluster of common cold patients. In the last case, 
the cluster grows in one or more directions. As a result, the density function extends and tapers 
off slowly as opposed to a fast drop at the original boundary of the cluster. The spreading of a 
contagious disease is an example of such an evolution. 
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Figure 1 – Cluster Evolution 

To detect changes in a cluster, we take a snapshot of the cluster’s density function, process new 
records, and compare the new density function with the snapshot we had taken. To compare 
density functions, we use the Lm-distance metric: 

m
m dxxdfxdf∫ − )()( 21  

When m=1, the distance between two density function becomes the area between the two curves. 
However, this metric is not very sensitive to large point-divergences, i.e., the shape of the curves 
can be significantly different before the metric exceeds the given threshold. In general, by fine-
tuning the value of m, we can trade-off between point-divergences and overall shape differences. 

Novelty detection results using this approach have been reported at an earlier NIMD meeting. 

4 Monitoring of Streaming Data 
After a novel event is detected, the analyst needs a way of tracking it going forward.  For 
instance, in the above example of novelty detection, the system generated the hypothesis that 
there is a new disease outbreak whose symptoms might be masked by those of influenza.  If the 
analyst is not interested – e.g. it is off-topic, or already known via other means – then no further 
action is taken.  However, if the new event generates a hypothesis of direct or potential interest, 
then a new persistent hypothesis tracker is generated, and the input streams are filtered for 
information pertinent to this hypothesis using the Rete algorithm [6] to correlate data efficiently. 
Hence, novel event detection adds a new dimension by providing hypothesis genesis in a semi-
automated manner – where the analyst remains in the driver’s seat to guide which hypotheses are 
tracked, which are promoted, and which are eliminated due to lack of supporting data or lack of 
topical pertinence. 

The Rete-based approach has been described in earlier papers [4][5].  In brief, the approach 
avoids recomputation of joins of unchanged data when new data is added.  The figure to the right 
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Because Rete networks perform incremental query evaluation over the delta part (new stream 
data) and materialized intermediate results, they can execute much faster than a traditional 
RDBMS in many cases. However, if materialized intermediate tables become very large, 
performance can deteriorate severely. Only when the intermediate tables are fairly small, can the 
incremental evaluation scheme work to best advantage. Fortunately, when monitoring queries are 
not satisfied frequently, there are usually highly selective conditions that make the intermediate 
tables fairly small naturally. 

To minimize the intermediate tables, we can apply following techniques: 

• Transitivity inference 

• Single query optimization 

• Computation sharing among multiple queries 

• Incremental aggregation 

Applying these techniques leads to significant performance improvement. Transitivity inference, 
described in the earlier paper [4], infers hidden conditions from a given query. If inferred 
conditions are highly selective, performance can be improved significantly. We also 
implemented single query optimization and computation sharing. And we will work on 
incremental aggregation soon. Single query optimization is similar to traditional database query 
optimization. Computation sharing is described in a recent submitted paper [7]. In the following 
sections, we will recount the computation sharing. 

4.1 Query sharing in Rete Networks 
Computation sharing among multiple queries is important when we are monitoring many 
thousands or tens of thousands of watch patterns simultaneously.  Since there are often overlaps 



Exploring Massive Structured Data with Argus            7                 Carnegie-Mellon /DYNAMiX  

between queries, including many queries in the same Rete network and avoiding duplication of 
shared computation can greatly reduce the total overall effort and make the growth of time to 
perform the monitoring less than linear in the number of queries. 

For example, on a medical database of in-patient admission and discharge records, assume an 
analyst wants to check patients who had liver diseases and developed liver cancer later. This 
query Q1 can be formulated as a self-join on the stream table. Assume the analyst also wants to 
check the patients who then further developed a secondary cancer. The result of the first query 
can be used to compute the result of the second query. See following Figure. 

 
Our recent work on profile matching has focused on the issue of how to incorporate new queries 
into such a shared Rete network.  This is particularly important for intelligence applications 
where the new queries are constantly being added.  Recomputation of the entire Rete network 
every time a new query is added is computationally quite expensive and would be impractical.  
So, we need a way to add new queries individually into an existing Rete network that performs 
reasonably well. To perform such incremental sharing, the system needs to identify the common 
computations between the new query and the existing network, choose optimally among multiple 
sharing paths, and add unshareable new computations to the network. 

Identifying general common computations is not trivial because of the rich syntax to present 
query predicates. In practice, exhaustive matching may not be necessary after all. However, a 
sharing framework should be easy to extend to more complex implementations that lead to more 
general identification power. In our system, common computations are defined as relationship 
between predicate sets. For example, two predicate sets are equivalent, or one is stronger than the 
other. For example, t1.a>2 is stronger than t1.a>1. All predicates of the new query are 
canonicalized by applying various transformation rules, and grouped to predicate sets based on 
the tables they refer. Then they are matched against the database that stores canonicalized 
predicates and predicate sets in the existing query network. 

The simplest method for choosing optimal sharing paths is to first create an optimized network 
for the new query and then merge it with the existing query network bottom-up.  This strategy 
(match-plan) may fail to identify certain sharable computations by fixing the sharing path to the 

SELECT * 

FROM MEDTable t1, MEDTable t2 

WHERE t1.PatientID = t2.PatientID 

  AND t1.ADate < t2.ADate 

  AND t1.DXS_01 IS LiverDisease 

  AND t2.DXS_01 IS LiverCancer 

Query Q1 

SELECT * 

FROM MEDTable t1, MEDTable t2, MEDTable t3 

WHERE t1.PatientID = t2.PatientID 

  AND t1.ADate < t2.ADate 

  AND t1.DXS_01 IS LiverDisease 

  AND t2.DXS_01 IS LiverCancer 

  AND t2.PatientID = t3.PatientID 

  AND t2.ADate < t3.ADate 

  AND t3.DXS_01 IS SecondaryCancer 

Query Q2 

Q1 M Q2 

Shared Query Network 
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pre-optimized plan.  Different from match-plan, our approach (sharing-selection) identifies 
multiple sharable paths and chooses optimally among them from the existing query network. 

Figures 1 and 2 illustrate the difference between sharing-selection and match-plan. Assume the 
existing query network R performs a join on table B1 and B2, and the results are materialized in 
table J1. Assume the new query Q performs two joins, B1 <> B2 and B2 <> B3, and its optimal 
plan performs B2 <> B3 first (see Figure 1). From the viewpoint of match-plan, the bottom join 
B2 <> B3 is not available in R, thus no sharing is available. It expands R to a new query network 
Rm (Figure 1).  
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With sharing-selection (Figure 2), both of the joins are matched against R to see whether it has 
been computed in R. In this example, B1 <> B2 has, while B2 <> B3 has not. Sharing the results 
of J1 with B1 <> B2, the network is expanded to Rs which has fewer nodes. In general, sharing-
selection identifies more sharable paths than match-plan, and constructs more concise query 
networks, which run faster.  Actually, the match-plan method can be viewed as a special case of 
sharing-selection by applying a constraint: always select from bottom-level predicate sets. 

The details of the sharing-selection approach together with other optimizations we have been 
developing for shared Rete network construction are described in [7], along with strong 
performance results that demonstrate the significant efficiency advantages of this approach. 
Figure 3 shows the performance in seconds on two databases (Medical and Fedwire Money 
Transfers). The horizontal dimensions show the number of queries in the query network scaling 
from 100 queries to 565 or 768, respectively. The curves are for our method (AllSharing), using 
match-plan without predicate canonicalization (MatchPlan+NCanon), and not using join sharing 
(NonJoinS). 

 

5 Data Explorer 
To make the facilities described above accessible to an analyst for work on structured data sets, 
we have been developing an integrated environment called Data Explorer.  This environment 
permits analysts to identify various subsets of structured data sources using querying, clustering, 
and novelty detection.  These methods can be combined by applying one method to the results of 
another; along with standard set operations (union, intersection, difference), these facilities 
provide analysts with great flexibility in working with structured data, intended to convey a 
sense of “rolling around in” the data.  Access to data sources and the results of data manipulation 
operations can be shared between analysts subject to a fine-grained security system.  These 
facilities are all packaged through a graphical user interface being developed in conjunction with 
Breakaway Systems.  
The screenshot above illustrates some of the operation of the interface.  A Windows Explorer 
type bar on the left hand side of the screen keeps track of all the data sets and subsets that the 
user has chosen or created.  The tree structure visually conveys the derivation history of each 
subset in the tree, and the tree can be expanded or collapsed as the analyst finds helpful, in 
particular allowing the analyst to focus on one part of the analysis without being swamped with 
full detail on all data subsets created during the course of a session.   
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The right-hand side of the screen is available for various views of the data.  The screen as 
configured above combines a tabular view with a clustered image and a map of cluster density 
function changes. 
Data Explorer is still under development, but is scheduled to start deployment into the first stage 
of the RDEC environment early in 2006. 
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