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Abstract

Learning-to-refer is a challenge in expert referral networks, wherein Active Learning helps
experts (agents) estimate the topic-conditioned skills of other connected experts for prob-
lems that the initial expert cannot solve and therefore must seek referral to experts with
more appropriate expertise. Recent research has investigated different reinforcement action
selection algorithms to assess viability of the learning setting both with uninformative priors
and with partially available noisy priors, where experts are allowed to advertise a subset of
their skills to their colleagues. Prior to this work, time-varying expertise drift (e.g., experts
learning with experience) had not been considered, though it is an aspect that may often arise
in practice. This paper addresses the challenge of referral learning with time-varying exper-
tise, proposing Hybrid, a novel combination of Thompson Sampling and Distributed
Interval Estimation Learning (DIEL) with variance reset, first proposed in this paper. In our
extensive empirical evaluation, considering both biased and unbiased drift, the proposed algo-
rithm outperforms the previous state-of-the-art (DIEL) and other competitive algorithms e.g.,
Thompson Sampling and Optimistic Thompson Sampling. We further show
that our method is robust to topic-dependent drifts and expertise level-dependent drifts, and
the newly-proposed DIEL,.s.; can be effectively combined with other Bayesian approaches
e.g., Optimistic Thompson Sampling and Dynamic Thompson Sampling
and Discounted Thompson Sampling for improved performance.

Keywords Active Learning - Referral networks - Expertise drift

A preliminary version of this work appeared in [39]. The previous version contained an experimental bug
due to an inadvertent error in our random sequence generation which we fixed and re-designed Hybrid
accordingly. Our new design of Hybrid is more elegant and capable of producing qualitatively similar results
to our previously published results. Additionally, this version contains a thorough robustness analysis
considering topic-dependent drifts, expertise-level-dependent drifts, and combined topic-and-expertise drift.
Extending our results to effectively combining other Thompson Sampling variants such as Dynamic
Thompson Sampling [28], Discounted Thompson Sampling [54] and Optimistic
Thompson Sampling [52], is also new. We also provide an extensive design-component analysis of
Hybrid showing empirical evidence that any simpler design of Hybrid cannot match our current design’s
performance.
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1 Introduction

Learning-to-refer in agent or human referral networks is a recently proposed Active Learn-
ing challenge where experts (humans or autonomous agents) can redirect difficult instances
(or problems) to more appropriate colleague experts based on estimates of the colleagues’
topic-conditioned skills. Referral networks are common in human professional networks
such as in clinical contexts and consultancy firms. Recent work [44,45] has compared a wide
variety of referral learning algorithms in the stationary-expertise setting, i.e., where distribu-
tional parameters of expertise do not change over time. In that setting, Distributed Interval
Estimation Learning (DIEL), a simple yet effective algorithm, was found to outperform
other reinforcement learning methods, including: UCB variants [6,7], Q-Learning [32,61],
Thompson Sampling variants [52,59], and e-Greedy algorithms on both real and syn-
thetic data [44]. A different direction along the lines of adversarial Machine Learning
research [9,34,40—42] has proposed algorithms to work with partially available noisy priors
and mechanisms to truthfully elicit such priors. Previous literature also considered robust-
ness criterion such as capacity constraints and evolving networks where old experts leave
the network and new experts join in at regular interval [40,44]. However, none of the past
work addressed time-varying expertise that often arises in real world settings; expertise may
change via refinement of existing skills with practice, acquisition of newer skills, decay of
unpracticed skills, and could possibly depend on practical factors like fatigue, workload etc.
Learning to track drifting expertise of colleagues in a referral network and thereby improve
referrals is the primary focus of this paper.

The partial information [16] or the information obstacle [9] approches present in multi-
armed bandit (MAB) settings (a gambler trying to maximize the total reward she receives
by pulling one of the k arms at a time, where each arm has an unknown reward distribution)
is a key perspective in referral networks too. When an expert refers a task to a colleague,
there is no way to know how other colleagues would have performed on the same task.
Moreover, local visibility of rewards, and the distributed nature of learning, i.e., each expert
is independently estimating topical expertise of her colleagues, contributes to the challenges
in learning-to-refer. For practical viability, early-learning-phase performance gain is crucial
even over a large network, as we cannot afford an unbounded number of samples to estimate
topical expertise. Understandably, learning-to-refer becomes even more challenging with
non-stationary expertise since initially-weak experts who were discarded for future consid-
eration on any given topic, could gain expertise over time, becoming real contenders who
should not be ignored at a later time in optimizing referral decisions.

Our contributions are the following: First, we introduce time-varying expertise in referral
networks, a practical consideration not previously addressed in the literature to the best of our
knowledge. Second, in addition to bidirectional drift, the typical drift model in the literature,
we also consider drift with a positive bias, where agents mostly improve with practice. Third,
we propose Hybrid, a novel combination of Thompson Sampling (TS) and DIEL
with variance reset. There is little established theoretical basis for the dynamic MAB setting
(for example, Dynamic Thompson Sampling [30] has no known finite-horizon regret
bound and DIEL (which outperforms UCB variants) is based on earlier algorithms with no
known finite-horizon regret bound even in the static case). However, this paper is geared
towards the design of a learning algorithm robust to expertise drift in referral networks, a
challenging problem not previously studied, rather than a theoretical-bound analysis. Our
empirical evaluation indicates that our proposed hybrid algorithm is more robust to exper-
tise drift and tracks drift better than any existing method, including DIEL or Thompson
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Sampling at the network level, improving overall referral accuracy. Additionally, we per-
form a design analysis establishing that both our proposed novelties: variance reset in DIEL
and randomizing between DIEL and TS, are necessary for superior drift-tracking perfor-
mance. Moreover, we show that other TS variants can be used to design similar hybrid
algorithms with improved performance, a case which needs deeper exploration. Although
our primary focus is on referral networks where aggregate task performance of the network
is the performance measure, Hybrid’s strong network-level performance encourages us to
believe our work is applicable to the broader and more general context of multi-armed bandit
setting with non-stationary reward distributions.

The rest of the paper is organized as follows. Previous work is summarized in Sect. 2.
Section 3 lists the key research questions we focus on this paper. Section 4 presents our
preliminaries on referral networks, key assumptions, and modeling choices for expertise
drift. Sections 5, 6 and 7 describe the distributed learning algorithms we used for comparison,
our experimental setup, and the results. We conclude by revisiting the research questions,
presenting our main takeaways and outlining possible lines of future research in Sect. 8.

2 Related work

The referral framework draws inspiration from referral chaining, first proposed in [38] and
subsequently extended in [22,26,67-70]. Referral learning in the context of an Active Learn-
ing framework was first proposed in [45], and subsequently extended [44] with performance
comparisons over of a wide range of competing algorithms, multi-hop referrals, and consid-
eration of practical factors such as capacity constraints and evolving networks. Most prior
work considers non-informative priors [44,45]. In an augmented setting [40,41], similar to
the line of research in multi-armed bandits with history where algorithms do not start from
scratch [14,48,55], experts are allowed a one time local network advertisement of a subset
of their skills which essentially extends the setting to partially available noisy priors where
eliciting truthful advertisements and effectively initializing with the available priors are the
primary challenges. In this paper, we work with the uninformative prior setting and consider
time-varying expertise which none of the previous works in referral networks has addressed.
Our results expose DIEL’s, the state-of-the-art referral learning algorithm’s susceptibility to
expertise drift as we propose new algorithms that demonstrate superior tracking of drifting
experts.

Our work on expertise drift fits in the broader context of multi-agent learning in non-
stationary settings [1,15,36,53,56]. In the context of Proactive Learning, prior work on
Interval Estimation Learning (the basic building block of DIEL) to track time-varying accu-
racy [19] used a particle filtering approach. Whereas this approach is elegant, it is infeasible
in our case because it requires a large number of samples even for a single central learner, and
the distributed nature of learning by each member of the referral network only exacerbates
the problem.

From each expert’s point of view, the core problem of learning appropriate referrals for
a given topic can be viewed as a mutli-armed bandit (MAB) problem where referral choices
are the arms. In the MAB literature, [25,65] are the first few seminal papers where time-
varying reward distributions were introduced, which led to several contributions further
addressing various nuances of the challenge (see, e.g., [13,29,31,50,63,71]). A wide range
of subtleties like time instants when distributions change (at every step or at a smaller subset
of steps), the fraction of arms whose distributions change (either every arm or the arm being
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pulled), the nature of distributional change (monotonically decreasing [49] or arbitrary [57],
adversarial [5,8,17] or non-adversarial) etc. have given rise to several existing settings (e.g.,
restless bandits [65], rested bandits [58], rotting bandits [49] etc.). Similar to [24], we
consider the expertise distributions remain constant over epochs with unknown, arbitrary
epoch lengths. However, our work is different from previous non-stationary bandits literature
by introducing richer algorithm and operating in scale, with multiple agents learning several
threads of referral policies for each topic. Moreover, standard Brownian perturbation, an
often-adopted design choice [30,57] for modeling random drift is insufficient for capturing
human expertise change, as it often improves with time and hence requires considering
positively biased drifts. We also present a less common approach in tackling drift including
concept drift [23,60] where the most popular approaches are window-based [24,30]. A related
problem is that of fault detection-isolation [46]. However, the goals are different; as opposed
to detecting the change and classifying the post-change distribution within a finite set of
possibilities, we are primarily concerned with addressing the drift by incurring minimum
possible regret. Our setting is also more complex with several possible change points; a
similar problem is addressed in [4].

For expertise drift, we propose a hybrid algorithm that combines Thompson Sampling,
and DIEL, s, also proposed first in this paper. In order to switch between the same algo-
rithm with different parameterizations, meta-bandits were proposed in [31]. We are unaware
of any previous work in the MAB context where a Bayesian and a frquentist approach are
randomized to obtain improved empirical performance. However, several lines of work in
the past have studied adaptive strategies in algorithm design in other contexts. For instance,
in the Active Learning literature, [20] obtained performance improvement over static strate-
gies by adaptively updating strategy selection parameters. In a similar vein, [11] cast the
problem of algorithm selection as an MAB problem and proposed a maximum entropy semi-
supervised criterion to select between two high-performance Active Learning algorithms. In
a completely different domain, Hybrid has its namesake in the form of a stochastic local
search (SLS) solver of propositional satisfiability (SAT) instances. Similar to addressing our
current challenge of balancing the trade-off between exploration and exploitation, in [64], a
hybrid stochastic local search SAT solver that switches between two well-known SLS solvers
is proposed to strike a balance between search diversification and intensification.

Previous research on referral networks considered a wide range of algorithms on sta-
tionary setting that includes IEL-based algorithm (Interval Estimation Learning) [35], UCB
(Upper Confidence Bound) class of algorithms [2,6,7,47], e-Greedy and its variants [7,43],
Q-Learning algorithms [32,61] and Thompson Sampling variants [52,59]. In this
work, we focus on two high-performance referral-learning algorithms: DIEL, the state-
of-the-art in stationary setting and Thompson Sampling, an algorithm with a long
history [59] that has received a recent surge of interest with proofs on finite-horizon
bounds [3,37], empirical evidence of strong performance [18,44] in practical applications, and
several recently-proposed algorithmic modifications to Thompson Sampling address the
non-stationary setting [28,51,54]. Apart from randomizing between two MAB algorithms,
our other novel contribution in this paper is DIEL;.s.s, an algorithm that resets its variance
at regular intervals for superior drift-tracking. Our proposed variance reset is inspired by
proactive-DIEL’s success in dealing with noisy partially available prior [41]. Variance to
detect distributional change has been used in recent Thompson Sampling literature [51].
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3 Research questions and challenges

In this paper, we focus on the following research questions:

1.

Are existing high-performance learning-to-refer algorithms vulnerable to time-
varying expertise? If yes, how to track expertise drift in referral networks?

In [44], as the number of hops increased in a multi-hop referral setting, the perfor-
mance gap between DIEL and Optimistic Thompson Sampling decreased with
eventually Optimistic Thompson Sampling marginally outperforming DIEL,
which indicates DIEL’s vulnerability to non-stationary expertise. DIEL’s. In this paper,
we aim to conduct extensive experiments considering a wide range of drift scenarios to
assess the extent of DIEL’s vulnerability to expertise drift.

All high-performance referral algorithms presented in the stationary expertise setting,
such as DIEL or Thompson Sampling, will be able to detect an initially good expert
whose performance deteriorates. However, if an expert initially exhibits low performance
and then improves, designing referral algorithms that quickly detect such expertise shifts
could be a challenging task, given that previously dismissed low performers would have
a low probability of being sampled by the current algorithms.

Previous literature provides experimental evidence of DIEL’s early learning advan-
tage and Thompson Sampling’s (TS) competitive performance due to Bayesian
exploration. Can DIEL or a variant of DIEL be effectively combined with TS vari-
ants for superior drift-tracking?

Algorithms exhibit a varying range of approaches to strike a balance between exploration
and exploitation. Combining multiple algorithms could prove beneficial in tackling exper-
tise drift.

Is the newly-proposed Hybrid algorithm robust to both topic-dependent drifts and
expertise-level-dependent drifts?

In real world, some topics may be prone to rapid skills change, whereas others are more
stable. Also, certain experts may have natural abilities to learn some topics faster than
others. Also, a strong expert is unlikely to lose or improve her skill rapidly, whereas a
weak expert may be more likely to substantially improve in a short span of time, e.g., a
student rapidly learning to become a true expert. Hence robustness to topic-dependent
drifts and expertise-level-dependent drifts is crucial for practical performance.

How crucial is the variance reset for improved performance?

The novelty in our proposed Hybrid algorithm is twofold: randomizing between a
frequentist (DIEL,.s.;) and a Bayesian approach (TS), and performing a variance reset
to facilitate exploitation. We seek to analyze the role of each design novelty in isolation
and evaluate if Hybrid’s design can be made any simpler without losing performance.

. Can DIEL with variance reset be combined with other Bayesian approaches for

improved performance?
Finally, we are interested in exploring the generalizability of our approach through com-
bining DIEL, 5. With other Thompson Sampling variants.
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Fig.1 A referral network with
five experts
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4 Referral networks
4.1 Motivation

We first illustrate how appropriately-targeted referrals can improve the overall performance
of a network with a small simplified example of a referral network with five experts shown in
Fig. 1 (this example is taken from [44]). Each node in the graph represents an expert, and the
figures in brackets indicate an expert’s topical expertise (probability of solving a given task)
in three topics — t1, f2, and 3. The bi-directional edges indicate a potential referral link, i.e.,
the experts ‘know’ each other and can send or receive referrals and communicate results.

Consider a query belonging to t,, and without any referral, the client consults first e> and
then es. In that case, the solution probability is 0.2 4 (1 — 0.2) x 0.2 = 0.36. With referrals,
an expert handles a problem she knows how to answer, and otherwise if she had knowledge
of all the other connected colleagues® expertise, e> could refer to e3 for the best skill in 7,
leading to a solution probability of 0.2 4+ (1 — 0.2) x 0.8 = 0.84.

In an uninformed prior setting, the true topic-conditioned skills of the experts in the
network are initially unknown and the learning-to-refer challenge is to estimate topical skills
of colleagues in a distributed setting with each expert independently estimating colleagues’
topical expertise. Time-varying expertise poses an additional challenge to such estimation
tasks as experts who may have been dismissed as weak can improve their skill over time, or
other experts degrade their skills through disuse, requiring the referral learning algorithms
to have a balanced re-sampling and re-estimation approach.

4.2 Preliminaries

Essentially, a referral network is a graph (V, E) of size k; each vertex v; corresponds to an
experte; (1 <i < k) and each bidirectional edge (v;, v;) represents a referral link indicating
e; and e; can refer problem instances to each other. A subnetwork of expert e; is the set of
her colleagues, i.e., the set of experts linked to an expert ¢; by a referral link. A referral
scenario consists of a set of m instances (q1, . .., g,) belonging to n topics (1, ..., t,) are
to be addressed by the k experts (e, ..., e).

For a per-instance query budget of O = 2, the referral mechanism for a task (we use task
and instance interchangeably) g; consists of the following steps.

1. A user (learner) issues an initial query to an expert e; (initial expert) chosen uniformly
at random from the network.
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2. Expert ¢; examines ¢ and solves it if able and communicates the solution to the learner.
This depends on the expertise (defined as the probability that e; can solve g; correctly)
of e; wrt. g;.

3. If not, she issues a referral query to a referred expert within her subnetwork. The
Learning-to-refer challenge is improving the estimate of who is most likely to solve
the problem.

4. If the referred expert succeeds, she communicates the solution to the initial expert, who
in turn, communicates it to the user.

The first two steps in our referral network are identical to Active Learning. Steps 3 and 4
are the extension to the Active Learning setting. Understandably, with a higher per-instance
query budget Q > 2, step 4 can loop back to step 2 and the referred expert can re-refer
instances to other experts as long as budget permits. Following [39,41,45], we set O = 2 in
all our experiments (we relax this assumption in Sect. 7.3.1).

We follow the same set of assumptions made in [45] a detailed description of which can be
found in [41], but we remove the stationarity assumption on individual expert skills per topic.
The more important assumptions are: the network connectivity depends on (cosine) similarity
between the topical expertise, and the distribution of topical-expertise across experts can be
characterized by a mixture of Gaussian distributions. We made the modeling choice regard-
ing network connectivity because of the general observation that people sharing common
expertise areas are more likely to know each other. Gaussian distributions are widely used
to model real-valued random variables (e.g., height, weight, expertise) in natural and social
sciences. For topical-expertise distribution, we considered a mixture of two Gaussians (with
parameters A = {w!, ul, o/}, i = 1,2.). One of them (N (ub,0})) has a greater mean
(uh > w}), smaller variance (03 < o) and lower mixture weight (w}, << w}). Intuitively,
this represents the expertise of experts with specific training for the given topic, contrasted
with the lower-level expertise of the layman population.

4.3 Expertise drift

In previous work, [43,45], the expertise of an expert e¢; on topic, was modeled as a truncated
Gaussian distribution with small variance:

expertise(ei» qj € tOpiCp) ~ N(Mlopicp,e,- ’ O'mpicp,el-)7

Vp,i: Otopicy,e; <02,0=< Hropicy.e; <1

We use a truncated Gaussian since expertise is a probability, it must remain within [0, 1].
Small variance implies an expert’s within-topic expertise does not vary by a large amount.
In a time-varying expertise setting, expertise of an expert e; on topic), is expressed as

expertise(e;, q; € IOPiCp) ~ N(Mtopic'p,ei,epochk, Utopicl,,ei)7
Ktopicp,ej,epochiyy = Mtopicy,,ei,epochy + N(ﬂdrift, Udrift)

For convenience, we assume discrete changes at epoch boundaries, and within a given
epoch, we assume the distributional parameters on expertise do not change appreciably. The
epochs can be small, approximating continuous change. When 14, is 0, the unbiased drift
is similar to the Brownian perturbation previously considered in [30]. The epochs can have
arbitrary length and an expert has no knowledge of the epoch-lengths of their colleagues.
After every discrete change, we ensure that Ktopicp.eiepochis always remains within [0, 1]
by setting it to O (or 1) if it is less than O (or greater than 1). Once Ktopicy.ei epochisy reaches
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the boundary (0 or 1), we assume that it remains there until drift in the opposite direction
moves it away from the boundary.

The expertise of people often improve over time by acquiring a new skill, explicit learning
on how to improve a skill, or just practice through solving more problems. We consider this
case in our positive-bias drift (with w4, r, > 0), where the overall expertise of the experts in
the network improves on certain topics over time.

4.4 Reward assumptions

From the point of view of a single expert, for a given topic, learning a referral policy maps
to the classic multi-armed bandit setting where each arm corresponds to a referral choice,
and, similar to the unknown reward distributions of the arms, the expertise of the colleagues
is not known. In order to learn an effective referral strategy, whenever an expert refers a
task to her colleague, she assigns a reward to the referred colleague depending on whether
the task was successfully completed. Computational aspects (e.g., what type of information
regarding the sequence of rewards is necessary?, how to score an expert depending on her
past performance?) of the referral decision are described in the following section; here we
outline the main assumptions related to rewards.

— bounded All our rewards are bounded within the the range [0, 1]. In all our experiments,
we considered binary rewards, with a failed and successful task receiving a reward of 0
and 1, respectively.

— 1.i.d The reward for a given expert on a specific instance belonging to a topic is inde-
pendent of any reward observed from any other experts and any reward or sequence of
rewards belonging to that topic or any other topic by the same expert.

— locally assigned and locally visible Rewards are both locally assigned and locally visible.
For example, reward(e;, t, e;), a function of initial expert e;, referred expert ¢ and topic
t, is assigned by e; and visible to e; only.

5 Distributed referral learning

As previously mentioned, considering a single expert and a given topic, learning-to-refer
is an action selection problem (the problem of selecting an appropriate referral maps to
selecting an effective arm in the multi-armed bandit setting). In a distributed setting, each
expert maintains an action selection thread for each topic in parallel. In order to describe an
action selection thread, we first fix topic to T and expert to e.

Let g1, ..., gy be the first N referred queries belonging to topic T issued by expert e
to any of her K colleagues denoted by ey, ..., ex. For each colleague e;, e maintains a
reward vector Tjn,, where Tjne, = (Tja, .-y Tjmne, ), 1.e., the sequence of rewards observed

from expert e; on issued Ne; referred queries. Hence, N = Zf: 1 e, - Let m(e;) and s(e;)
denote the sample mean and sample standard deviation of these reward vectors. Some of the
algorithms we consider require initializing these reward vectors; we will explicitly mention
any such initialization. In addition to the reward vectors, for each colleague ¢}, e maintains
Se_,. and Fe, where Se]. denotes the number of observed successes (reward = 1) and F, j denotes
the number of observed failures (reward = 0). Clearly, without any initialization of the reward

Sei . .. . .
vectors, V(Se; + Fe;) > 0,m(e;) = ﬁ (i.e., empirical mean is the ratio of total number
J

of observed successes and total number of observations).
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Like any other action selection problem, learning-to-refer also poses the classic
exploration-exploitation trade-off: on one hand, we would like to refer to an expert who has
performed well in the past on this topic (exploitation), and on the other hand we want to per-
form enough exploration to make sure we are not missing out on stronger experts for the topic.
In the next subsection, we provide a short description of different action selection algorithms.
We first describe three existing algorithms from the literature: DIEL, the state-of-the-art in
the stationary, uninformed prior setting; Thompson Sampling, an important component
of our proposed algorithm—Hybrid; Optimistic Thompson Sampling, a well-
known variant with theoretical guarantees in the stationary setting [52]. Next, we present
DIELjeser, @ DIEL variant first proposed in this paper which is a key building block of
Hybrid. Finally, we present Hybrid, our main new contribution. At a high level, each of
the algorithms computes a score for every expert ¢; (denoted by score(e;)) and selects the
expert with the highest score breaking any remaining ties randomly. In our algorithm descrip-
tion, we chose a simplified notation and implicitly included topic 7' as an input, noting T
explicitly only to indicate that all referral queries are on instances belonging to topic 7" and
we are describing the learning thread for expert—topic pair (e, T').

5.1 Action selection algorithms

DIEL: Distributed Interval Estimation Learning (DIEL) is the known state-of-the-art referral
learning algorithm [44,45] in the stationary, uninformed prior setting. DIEL is based on
Interval Estimation Learning which was first proposed in [35] and has been extensively
used in stochastic optimization [21] and action selection problems [12,66]. As described in

Algorithm 1, at each step, DIEL [41] selects the expert e; with highest m(e;) + S(Z )_ .
Every action is initialized with two rewards of 0 and 1, allowing us to initialize the mean ajnd
variance.

The intuition behind selecting an expert with a high expected reward (m(e;)) and/or a
large amount of uncertainty in the reward (s(e;)) is the following. A large variance implies
greater uncertainty, indicating that the expert has not been sampled with sufficient frequency
to obtain reliable estimates. Selecting such an expert is an exploration step which will increase
the confidence of e in her estimate. Such exploration steps have the potential of identifying a
highly skilled expert. Selecting an expert with a high m (e ;) amounts to exploitation. Initially,
the choices made by e tend to be explorative since the intervals are large due to the uncertainty
of the reward estimates. With an increased number of samples, the intervals shrink and the
referrals become more exploitative.

Thompson Sampling (TS) Thompson Sampling was first proposed in the 1930’s [59]
and the finite-time regret bound remained unsolved for decades [3] until recent results on its
competitiveness with other algorithms with provable regret bounds renewed interest [18,27].

As described in Algorithm 2, at each step, for each expert e;, TS first samples 6;
from Beta(S,; + 1, Fe; + 1). We briefly recall that Bera distributions form a family of
continuous probability distributions on the interval (0, 1) parameterized by two positive
shape parameters, o« and f. The probability density function of Beta(«, B), is given by
fx;a,B) = %x“’l(l — x)~1 where for any positive integer z, I'(z) = (z — D)\
Next, TS selects the action with highest ;. When the number of observations is 0, 6; is
sampled from Beta(1, 1), which is uniform distribution on (0, 1), i.e., U (0, 1); this makes all
colleagues equally likely to receive referrals. As the number of observations increases, the
distribution for a given expert becomes more and more centered around the empirical mean
favoring experts with better historical performance.
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Algorithm 1: DIEL(e, T)

Initialization:
Ve € subnetwork(e), Ne; < 2,xj . < (0,1
: e

Main loop:
foreach referral query do
foreach ¢; € subnetwork(e) do
Se
score(ej) < m(ej) + —L=
J J /ngj

end
best = arg max ; score(ej)
Observe reward r after referring to epg;
Update:
Update Thestney,, with 7, ey, < Neppe, +1

end

Algorithm 2: TS(e, T)

Initialization:
Ve € subnetwork(e), Sej <~ 0, Fej «~0

Main loop:

foreach referral query do

foreach e; € subnetwork(e) do
‘ 0j ~ Beta(l + Sg_]., 14+ Fej)

end

best = argmax ; 6;

Observe reward r after referring to epg;

Update:

S"besr <~ S@he.vt +r

Febesl <~ Febest +1-r

end

Optimistic Thompson Sampling (Optimistic TS) Optimistic TS [52] is very similar to
TS with an additional restriction: 6; is never allowed to be less than the mean observed
reward m(e;); 0; is set to m(e;) whenever it is less than m(e;) (in the boundary condition
when number of observed samples is zero, m(e;) is considered to be zero). The reason this
sampling technique is called optimistic is because this technique always assumes that the
true mean is at least as high as the sampled mean. Note that, each time we refer to e; where
0; > m(e;), we are essentially performing an exploration step.

DIEL, ., described here, is a component of Hybrid. As the number of observed samples
increases, DIEL becomes more exploitative since the relative importance of DIEL’s variance
term diminishes and the mean observed reward, m(e;), exerts more influence in the overall
score of an expert. In a static setting, favoring experts with historically strong performance has
an intuitive appeal, and DIEL’s success in this setting can be attributed to its early exploration
(through the variance term) followed by aggressive exploitation. However, in order to succeed
in a time-varying expertise setting, an algorithm needs to continually explore. In DIEL; ¢/,
we propose a partial reset to facilitate exploration. We break down the referrals into referral-
windows of w referrals where w is a configurable parameter. After each referral-window wy,
for each expert e, we reset Ne; 10 2 and Yjn, = (m(ej), m(ej)), i.e., we summarize our
past observations into two observed rewards equal to the mean-observed reward and while
resetting the variance to 0.
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Algorithm 3: Optimistic TS(e, T)

Initialization:
Ve € subnetwork(e), Sej «~ 0, Fe/. ~0

Main loop:
foreach referral query do
foreach ¢; € subnetwork(e) do
0j ~ Beta(l + Sej, 1+ Fej)
if (ng + ng) == 0 then
‘ score(ej) < 0;

else
Se;
score(ej) < max (¥, W)
end
end

best = arg max ; score(ej)

Observe reward r after referring to epg;
Update:

Sebex{ <~ Sehext +r

Febesr <~ F"best +1=r

end

Algorithm 4: DIEL, 5. (e, T)

Initialization:

Ve € subnetwork(e), Ne; <= 2, er,ej ~ O, 1

Main loop:

foreach referral window do

foreach referral query do

foreach e; € subnetwork(e) do

Se -
score(ej) < m(ej) + %

€j
end
best = arg max ; score(ej)
Observe reward r after referring to epeg;
Update:
Update Thest ey, with 7, ey, ., < nep,e, +1
end
Reset:
foreach e; € subnetwork(e) do
Nej < 2
Fjne, < (mlej).m(e;)
end
end

The partial reset is inspired by proactive-DIEL’s [41] recent success in dealing with
partially available (potentially noisy) priors. We first present a short introduction of the
augmented learning setting and proactive-DIEL’s initialization to provide better insight to
this design decision. Proactive skill posting is an augmented referral-learning setting [41,42],
where agents are allowed a one-time local network advertisement of a subset of their skills.
After such advertisement in a truthful setting where agents can accurately estimate their own
skills, for each colleague expert e j, for any given topic T, e has an initial estimate of expertise,
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Algorithm 5: Hybrid(e, T)

Initialization:
Ve € subnetwork(e), Ne; < 2, r.i-,ﬂej ~ (0,1
Sej «~ 0, Fej «~0
Main loop:
foreach referral window do
foreach referral query do
Assign algorithm A to DIEL or TS uniformly at random
foreach ¢; € subnetwork(e) do
if A = DIEL then

Se -
‘ score(ej) < m(ej) + ﬁ
else
‘ score(ej) ~ Beta(l + ng, 1+ Fej)
end
end
best = argmax ; score(e;)
Observe reward r after referring to epg;

Update:
Update Thest ey, with 7, ey, < Tep,e, + 1

Sel)est <~ Sebex{ +r, Fehe.vt <~ Febesr +1-r

end
Reset:
foreach ¢; € subnetwork(e) do
nej < 2
rj-"le]' <« (m(ej),m(ej))
end
end

fij,r such that fi; 7 > u; 7, where pu; 1 is true topical expertise of colleague ¢; on topic
T . Instead of initializing DIEL with a pair of rewards (0, 1), proactive-DIEL initializes each
expert with a pair of reward (/i; 7, fi; 1), effectively initializing variance to 0, number of
observed samples to 2 and mean-observed reward to (i 7. Empirical evaluation has shown
that proactive-DIEL is robust to noise in self-skill estimates and strategic misreporting of
skills. In our case, incentive compatibility is not a concern since we actually observe the
rewards we are using to reset the mean and the variance. However, in a time-varying setting,
historical mean can be viewed as a noisy estimate of the current true mean. Proactive-DIEL’s
robustness to noisy self-skill estimates encouraged us to explore this variance reset idea to
facilitate exploration.
We are now ready to describe Hybrid, our primary contribution in this paper.

Hybrid As presented in Algorithm 5, at each step Hybrid randomizes between selecting
DIELjeser and Thompson Sampling (TS). After each referral window, the variance and
mean of DIEL, .. are reset and after each referral, irrespective of the chosen algorithm,
m(ej), s(ej), Ne;, Sej and ng , all are updated accordingly. Effectively, in Hybrid, two dif-
ferent MAB algorithms benefit from each others exploration and exploitation. DIELj¢s;’S
episodic exploration through the variance reset at regular interval is bolstered by TS’s con-
tinual exploration. Although we chose the most widely known, simplest and oldest TS
algorithm [59], Hybrid’s design is flexible and can be extended to other TS variants. In
fact, in Sect. 7.4, we present experimental results after extending the Hybrid design to
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Optimistic Thompson Sampling [52], Dynamic Thompson Sampling [28],
and Discounted Thompson Sampling [54], with good results.

6 Experimental setup

Baselines and upper bounds We use DIEL as our primary baseline; it is the previously-
known state-of-the-art referral learning algorithm for the stationary setting. As additional
baselines we include two Thompson Sampling variants, and we also report two topi-
cal upper bounds for performance comparison. Thompson Sampling variants and the
DIEL version used [41,43] are parameter free. We refer all three algorithms, DIEL, T'S, and
Optimistic TS, as challengers. We considered two upper bounds: Drift-blind and
Drift-aware. The Drift-aware upper bound is the performance of a network where
every expert has access to an oracle that knows the true topic-mean (i.e., Hetopicp,e;j,epoch
where k is the current epoch) of every expert—topic pair (e, topic,). At all points in the sim-
ulation, every expert refers to the colleague with highest distribution mean on that topic at
that point of time. Effectively, the Dri ft-aware upper bound mimics the performance of
anetwork where every expert starts with a perfect estimation of her colleagues’ expertise and
precisely tracks subsequent drifts without requiring learning. The Drift-blind “upper
bound” is the performance of a network where every expert has access to an oracle that only
knows the true topic-mean of every expert—topic pair at the beginning of the simulation but
ignores any subsequent drift. This means for every instance belonging to fopic ,, an expert e
will always refer to ep such thate; € subnetwork(e) and best = arg max (/L,Upicp,ej sepochy)-
Data set Our test set for performance evaluation is the same data set used in [401,1 which
is a random subset of 200 referral scenarios also used in [41,43,45]. Each referral scenario
consists of a network of 100 experts and 10 topics. The distribution of subnetwork size is
presented in Fig. 2; the average connection density is 16.36 &= 5.03. In our simulation, we start
with the same parameter values describing topical expertise of each expert. As the simulation
progresses, the expertise drifts according to the drift parameter values are described in Table 1.
For modeling expertise drift, we believe a gradual change in expertise is more realistic than
abrupt changes. Hence, we considered the distribution for expertise as piece-wise stationary
and selected small values for j14,; r, and o4,; ;. Recall that in a time-varying expertise setting,
expertise of an expert e; on topic, is modeled as

! The data set can be downloaded from https://www.cs.cmu.edu/~akhudabu/referral-networks.html.
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Table 1 Drift parameters

Drift distribution Drift nature Hdrift Odrift
Dy ‘Weak, unbiased 0 0.03
Dy Strong, unbiased 0 0.06
Ds Weak, small positive bias 0.005 0.03
Dy Strong, small positive bias 0.005 0.06
Ds Strong, large positive bias 0.01 0.06

Mtopicy,ei,epochiyr = Mropicp,eiepochy + N(Mdrifta Udrift)~ We use #Samples as a proxy for
time as is typical in Machine Learning for evolving or streaming scenarios. For each expert,
the epoch boundaries are chosen uniformly at random. The total number of epochs for a
given topic is set to 40 (with 10 topics, this essentially means, the total number of time the
expertise of an expert changes is 400).

In addition to drift distributions Dy, . .., Ds, we also used topic-dependent drift distribu-
tion, D7, and combined expert—topic dependent drift distribution, D, 7. We describe these
two distributions in Sect. 7.2.

Performance Measure We use the same performance measure, overall task accuracy of our
multi-expert system, as in previous work in referral networks. So if a network receives n tasks
of which m tasks are solved (either by the initial expert or the referred expert), the overall
task accuracy is . O, the per-instance query budget, is set to 2. Each algorithm is run on
the data set of 200 referral networks and the average over such 200 simulations is reported
in our results section. In order to facilitate comparability, for a given simulation across all
algorithms, we chose the same sequence of initial expert and topic pairs; for each expert
in a network, the epoch length and expertise shift for each given topic are identical across
different referral algorithm runs.

Algorithm Configuration For all our experiments, Hybrid’s parameter w is set to 100. In
Sect. 7.4, we demonstrate that over a reasonable set of choices for w, Hybrid’s performance
is not highly sensitive. Additionally, we found that instead of a one-size-fits-all approach, for
each expert, w can be set to the square of the expert’s subnetwork size without any loss of
performance.

Computational Environment Experiments were carried out on Matlab R2016 running Win-
dows 10.

7 Results
7.1 Performance comparison with drift distributions uniform across networks

Figure 3 summarizes the performance of referral-learning algorithms with drift distributions
D1, D4 and Ds listed in Table 1 (we omit qualitatively similar results on D, and Dy). Our
results demonstrate the following points:

First, the Dri f t —aware upper bound outperforms the Drift -b1lind by aconsiderable
margin, as expected. In fact, all algorithms eventually outperformed the Drift-Blind
upper bound. This underscores the importance of tracking drift in expertise estimation and
continual learning, since starting with a perfect information on the topical mean of every
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Fig.3 Performance comparison of referral learning algorithms

expert—topic pair was not enough to overcome expertise-drift, even if the expertise tracking
methods start with imperfect estimates.

Next, we evaluate the relative expertise-tracking performance of algorithms in the liter-
ature. The vertical line at 5000 samples per subnetwork marks the horizon considered in
previously reported results. Earlier results demonstrated DIEL outperformed several algo-
rithms including UCB variants, Q-Learning variants [43—45] in the stationary expertise
setting. In our new results, we find that in the presence of unbiased drift, DIEL still outper-
forms the TS variants when the number of observed samples is small, once again highlighting
the early performance gain that made DIEL suitable for multi-hop referral learning and
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proactive skill posting. However, with a larger number of samples under the expertise-drift
condition, we find that both TS algorithms eventually outperform DIEL, thus presenting
better long-term steady-state performance due to superior tracking of drifting experts. In the
presence of positive bias drift, a particular case we are interested in evaluating, we found the
TS algorithms outperform DIEL even when the number of observed samples is small. Much
of DIEL’s success stems from early identification of strong candidates and then aggressively
pursuing them. However, with positive biased drift, weaker experts may improve and if an
algorithm fails to detect those late-bloomers, it will perform sub-optimally.

Finally, we focus on Hybrid, our primary proposed algorithm. As shown in Fig. 3,
Hybrid outperformed all three challenger algorithms by effectively combining exploration
through TS and exploitation through our new DIEL variant with variance reset. With stronger
drift, the performance gap between Hybrid and the challenger widens indicating Hybrid’s
superior drift tracking performance. We next present a thorough robustness analysis consider-
ing less restrictive drift settings and a component analysis of Hybrid pin-pointing particular
design choices that are crucial for Hybrid’s success.

7.2 Robustness analysis

So far, we assumed the distribution parameters for drift do not vary across topics. However,
in reality, some topics may be prone to rapid skill evolution, whereas others are more stable.
Also, certain experts may have natural abilities to learn some topics faster than others. In our
current set of experiments, we consider two additional drift distributions: D7, and D, 7. In
D, for any given topic ¢, the underlying drift distribution is chosen uniformly at random
from Dy, ..., Ds and the distribution remains the same across all experts. In D, 7, for a
given expert topic pair, (e, ), the underlying drift distribution is chosen uniformly at random
from Dy, ..., Ds. This implies that D, 7 is by far the least restrictive distribution allowing
experts a flexible choice from Dy, . . ., Ds. For our remaining experiments, we will focus on
D, and D, 7 as they represent more realistic drift conditions.

Figure 4 summarizes the referral-learning performance on these two new distributions.
Our findings are consistent with our previous results; Hybrid outperforms all challengers
and the Drift-blind upper bound on both distributions. Since for each expert, Hybrid
maintains a separate learning thread for a given topic, we expected Hybrid to perform better
than the challengers on D7 . However, D, 7 is a much harder case where even within the same
topic different experts may exhibit different drift behavior. Hylrid’s superior drift-tracking
on D, 7 indicates robustness to drift behavior which we further stress-test on our next series
of experiments involving expertise-level dependent drifts.

Before we describe our next set of results involving expertise-level dependent drifts, we
make a quick digression to highlight a subtle point. In both D7 and D, 7, the choice of drift
distribution is uniform at random; the only distinction is that in one case (D7), the choice
is fixed for a given topic across all experts and in another (D, 1), it varies across different
expert—topic pairs. Nonetheless, the total number of experts exhibiting a specific drift behavior
(e {Dy, ..., Ds}) has the same expected value. However, we notice that the performance of
both the Drift-aware upper bound and Hybrid on D, 7 is better than their respective
performances on D7 . This actually highlights that while the number of experts exhibiting
certain drift behavior remains roughly the same, by allowing different experts exhibiting
different drift behaviors across the same topic, we allow the network to be more versatile;
following the primary essence of the referral network setting: “different agents have different
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Fig.4 Robustness analysis

strengths, referring to the most appropriate agent would improve overall performance”, we
notice just such a performance boost.

In all our experiments so far, we assumed that the nature of drift is independent of
the expertise level of each expert. However, a strong expert is unlikely to lose exper-
tise and also has less headroom for rapid additional improvement, whereas a weak expert
may be more likely to substantially improve in a short span of time if they focus their
efforts, e.g., a student rapidly learning to become a true expert. We incorporate this in
our next set of experiments where drift is also a function of current expertise. Recall
that, in a time-varying expertise setting, expertise of an expert ¢; on fopic, is modeled as

Htopicp,ej,epochiyr = Mtopic,.ei,epochy + pa where pp ~ N(Mdriftv Gdrift)~ In an expertise-

] ] I+€e—propic p.ej,epochy
level dependent drift setting, itropic,.e;.epochis1 = Hiopicy.ei.epochy + ——fre a4

. e . I+€—LLtopicp.e; epoch
where ¢ is a configurable parameter. The multiplicative factor, ———52CP*2  has a

range of [ £y, 1] and approaches 1 when expertise approaches zero and approaches {7

when expertise approaches one. L.e., in this setting, stronger experts gain (or lose) experetiJrsl:
at a slower rate than weaker experts. In all our experiments, we set € to 0.05. Our exper-
imental results on expertise-level dependent drift are summarized in Fig. 5. We consider
two cases where 4 is drawn from D7 and D, 7. Our results indicate that Hybrid still
outperformed the challengers, however, the performance gap was narrower. This is because
as experts improve, the rate of change slows down allowing weaker algorithms to track drift

somewhat better than in the previous setting.
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Fig.5 Expertise-level dependent drift
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Fig.6 Multi-hop referral with Q =3

7.3 Higher query budget and different network distributions

7.3.1 Higher query budget

So far, we conducted all our experiments with the per-instance query budget Q set to 2.
For our next set of experiments, we relax this assumption and consider bounded multi-hop

referrals, setting Q = 3. In case of multi-hop referrals, suppose an instance is first received
by expert A who redirects it to B, B redirects it to C who eventually solves it. C will inform
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B of the solution who in turn will inform A. So A will learn B solved the instance and will
assign a reward 1 to B while B will learn C (the actual solver) solved the instance and will
assign areward 1 to C. Multi-hop referrals introduce additional non-stationarity in expertise
in a sense that a weak expert can find a strong colleague in a later part of the simulation
which effectively changes her ability to solve problems, i.e. her observable expertise (even
if she solves few if any problems).

We focus on two drift distributions D7 and D, 7. Figure 6 summarizes the performance
of Hybrid and the challengers. In order to obtain a better visualization of the results, we
exclude the upper bounds and focus only on the steady-state performance. As shown in
Fig. 6, Hybrid marginally outperformed the challengers. Understandably, with a higher
per-instance query budget, the overall performance of all algorithms improved. However,
due to additional non-stationarity in expertise, the performance gap between Hybrid and
TS variants became narrower.

7.3.2 Different network topologies

Intuitively, the distributed nature of referral-learning with each expert only focusing on esti-
mating the expertise of other experts in her subnetwork lends implicit robustness across
network topologies. In fact, previous work [44] has reported that the relative ordering of
referral-learning algorithms’ performance in static expertise setting is robust to a wide range
of network topologies generated using well-known random graph generators [10,33,62]. In
Fig. 7, we report the results on small-world graphs known to model collaborative networks.
In this set of experiments, we assume the drift distributions (which only concern expert—topic
pairs) remain the same as previous, only the underlying network topology has changed. Fig-
ure 7 shows that across different network topologies, Hybrid remains the best-performing
algorithm. In the interest of saving space, we omit qualitatively similar results for other two
network distributions.

7.3.3 Asymmetric referrals

In an expert referral network, the standard assumption is referral links are bi-directional [41,
44,45]. However the most renowned experts may be referred to by many more than those to
whom they refer. Hence the referral links may be uni-directional with the renowned experts
having more incoming links than outgoing links.

In this section, we construct a new data set that obeys the above condition. Let a uni-
directional referral link be denoted by (¢; — e¢;) indicating that only e; can refer to e;
but not the other way round. We next describe the steps with which we change some of
the existing bi-directional referral links to uni-direcitonal links (sparsify step) and introduce
additional new uni-directional referral links (densify step).

For a given scenario, we construct a set of renowned experts (denoted as RE) con-
sisting of the top 3 experts on each topic. In our sparsify step, for a renowned expert on
topic T, erTen owneq» WE TEMOVE outgoing connections to the three weakest experts on topic
T (denoted as eg oar) 10 her subnetwork such that the weakest experts do not belong to
RE, i.e., we modify (egeak, erTenowned) to (eVTveak — erTmawned) such that egeak ¢ RE and
e£ eak € subnetwork(erTen owneq) We stop at the boundary condition where modifying a link
would eliminate all outgoing links from erTen owned (€-&-» if a renowned expert has only three
or less bi-directional links to start with). The intuition for granting experts belonging to RE
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Fig.7 Performance on referral networks constructed using small world graph generator [62]

sparsification immunity was that the expert may simply be known because of other expertise
(albeit on a different topic).

Our densify step is rather simple and guided by the intuition that a renowned expert may be
known by other experts whom she may not know. In this step, for a renowned expert erTe owned
we randomly select three experts without any existing incoming referral links to erTen owned
and create (€;qndom — erTe nowned)» & incoming link from the randomly chosen expert €,andom
to the renowned expert. Note that, for every bi-directional link modified to a uni-directional
link, we create an additional uni-directional link that did not exist before. Hence, the overall
number of links in the referral network remains roughly the same, though we may not modify
some of the bi-direcitonal links during the sparsify step due to the boundary condition. As
shown in Fig. 8, on our new data set, Hybrid still leads the pack outperforming DIEL and

TS variants.

7.4 Component analysis

In this subsection, we perform a thorough component analysis of Hybrid. The key research
questions we ask are the following:

— How critical is the variance reset?
— How sensitive is Hybrid to different choices of values for w?
— Can DIEL with variance reset alone prove sufficient to track drift?
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Fig.8 Performance on networks with asymmetric referral links

— Can Hybrid’s design be simplified without compromising on performance?
— and finally, the most important, can DIEL,.s; be combined with other Bayesian
approaches?

In the design of Hybrid, the novelties are twofold: first, we use a new variant of
DIEL with variance reset, second, we randomize between a frequentist (DIEL;g.r) and a
Bayesian T'S approach. We focus on the criticality of both aspects on the success of Hybrid.
In Fig. 9, we compare three algorithms: Hybridprar,,,,,» Hybridprer, and DIELjege-
Hybridprzy,,,,, 18 basically Hybrid, our proposed new algorithm. Hybr idprgr, random-
izes between TS and DIEL, but does not use the variance reset mechanism first proposed
in this paper. As shown in Fig. 9, Hybrid outperforms both DIEL; s and Hybridprer
indicating that neither the variance reset alone nor the randomization between between TS
and DIEL without variance reset is sufficient to obtain drift-tracking performance similar to
Hybrid. Hence, our current design of Hybrid does not have any component that can be
discarded for the sake of further simplicity without significantly losing performance.

Hybrid has a configurable parameter w that specifies the size of the referral window.
Apart from 100, the value w was set to in all our experiments, we considered three additional
choices: 50, 100, and square of the subnetwork size of a given expert (i,e., |subnetwork(e) |2,
where the size of the subnetwork of expert e is denoted by |subnetwork(e)l|). In Fig. 10,
we report the steady-state performance of Hybrid with different parameter configurations
on D7 and D, 7. Our results indicate that over a reasonable set of values for w, different
configurations of Hybrid’s performance is practically indistinguishable. Additionally, set-
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Fig.9 Components of Hybrid
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Fig. 10 Sensitivity of the w parameter. The steady-state performance of Hybrid with different parameter
configurations is practically indistinguishable

ting w w.r.t. the subnetwork size did not affect its performance either. Hence, Hybrid’s
performance is not highly sensitive to the choice of w and it is possible to empirically set the
window size for different sizes of data sets.

Finally, we pursue a deeper design question: can we combine DIEL,.s; With other
Bayesian approaches and obtain similar performance boost? We considered three Thompson
Sampling variants for this design analysis: Optimistic TS [52], an algorithm already
included as one of our challengers, Discounted TS [54]arecently-proposed Thompson
Sampl ing variant for non-stationary bandits, and Dynamic TS [28], another TS variant
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Fig. 11 Combining Hybrid with different Thompson Sampling variants. The drift distribution is indi-
cated within square brackets

for non-stationary distributions. As we already described in Sect. 5.1, Optimistic TSis
parameter-less. However, both Discounted TS (y)and Dynamic TS (C) has one con-
figurable parameter. We set C to 100, the same as the size of the referral-window in Hybrid.
We set y to 0.95.2

As shown in Fig. 11, we found that Hybrid’s design is fairly general, in a sense that
other TS variant can be plugged into and the resulting algorithm would track drift better than
its individual TS components. In fact, with Hybridpynamic 7s, we obtained slightly better
performance than Hybrid. Our results lead us to the following observation: different MAB
algorithms have different exploitation-exploration mechanisms, combining these strategies
in an interleaved manner with one algorithm benefiting from another algorithm’s exploration
(or exploitation), may lead to improved performance, and that improvement can be significant
and robust as shown for Hybrid.

8 Conclusions and future work

Learning to refer is a recent Active Learning setting where experts can redirect difficult
tasks they cannot solve to other connected experts. In this work, we introduced the notion of

2 154 reports 0.8 as the optimal value of y for slowly moving distributions. However, in our experiments, we
obtained better performance for both Discounted TS and Hybridpiscounted Ts When y was set to
0.95. We have not performed extensive parameter tuning for the new TS variants and chose values that seemed
reasonable. We admit that with parameter tuning, it may be possible to squeeze further performance boost
out of Hybridpynamic s, but our primary goal was to test Hybrid’s design compatibility with other TS
variants.
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time-varying expertise in referral networks, an important practical factor not considered in
the literature. Our results indicate that DIEL, the state-of-the-art referral learning algorithm
on referral networks without time-varying expertise, is vulnerable to expertise drift. Hence,
we proposed a novel combination of Thompson Sampling and DIEL;.s.; Which outper-
formed DIEL on different types of drift conditions that include topic-dependent drifts and
expertise-level-dependent drifts. Moreover, we have shown that DIEL,s.; can be combined
with other Bayesian approaches for similar drift-tracking improvement.
We now revisit the research questions and summarize our findings.

1. Are existing high-performance algorithms vulnerable to time-varying expertise? If
yes, how to track expertise drift in referral networks?

Yes, they are vulnerable. In fact, DIEL’s (the known state-of-the-art on stationary setting)
drift tracking performance was worse than existing Thompson Sampling variants in
presence of biased drift.

2. Previous literature provides experimental evidence DIEL’s early learning advan-
tage and Thompson Sampling’s (TS) competitive performance due to Bayesian
exploration. Can DIEL or a variant of DIEL be effectively combined with TS vari-
ants for superior drift-tracking?

Yes, we answered this question constructively by proposing and testing Hybrid, a new
combination of TS and DIELy.se. Across a wide range of drift settings, Hybrid con-
sistently outperformed all challenger algorithms we considered.

3. Is the newly-proposed Hybrid algorithm robust to topic-dependent drifts and
expertise-level-dependent drifts?

Yes. Additionally, Hybrid is robust to a drift setting where drift behavior can vary across
expert-and-topic pairs concurrently.

4. How crucial is the variance reset for improved performance?

Our empirical evaluations suggested all components of Hybrid were necessary for its
superior performance. Not only is variance reset necessary, but also effectively random-
izing between DIEL,.s and a Bayesian TS algorithm was critical for its performance.

5. Can DIEL with variance reset be combined with other Bayesian approaches for

improved performance?
Yes. We conducted experiments with three additional TS variants and found that
the resulting Hybrid algorithms outperformed their respective TS component alone.
In fact, Hybridpynamic s, combination of DIEL,.s; and Dynamic Thompson
Sampling, slightly outperformed Hybrid.

Our work can be extended in multiple ways, including the following:

1. Biasing Hybrid to the more successful component: Our design for randomization
between two component algorithms is rather simple. Instead of randomizing between two
components with equal probability, a performance-dependent guided selection approach
or meta-learning may lead to an additional performance boost. A deeper exploration of
this idea can be an interesting future line of research.

2. Adaptive mechanism to set the w parameter of DIEL,.s,: We have shown that the
performance of Hybrid is not overly sensitive to the choice of w. Moreover, the param-
eter can be configured w.r.t. the individual subnetwork size. However, a more principled
approach to set w motivated by some recent progress in adaptively setting parameter
values could prove fruitful.

3. Theoretical analysis of Hybrid: Even in the stationary expertise setting, the analysis of
Thompson Sampling, one of the two components of Hybrid was a long-standing
research problem that remained unsolved for decades. To the best of our knowledge,
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DIEL does not have known finite-time regret bound in the static setting either. Hence,
theoretical analysis of Hybridin atime-varying setting is a doubly-challenging research
problem. However, considering the practical performance, a thorough theoretical analysis
of Hybrid would be a worthy research objective.

Relaxing the crisp boundary and independence assumptions of topics: In this work
and also in previous research on referral networks, the typical assumption is that topics
have clear boundaries and expertise in one particular topic is independent of expertise
in other topics. These assumptions do not strictly hold in the real-world; skilled experts
on a particular topic are likely to succeed in related topics and instances may belong
to multiple overlapping topics (e.g., a multi-task learning topic can also be a continual
learning topic). Devising drift-tracking algorithms in a learning setting where topics have
overlapping boundaries and expertise on similar topics are correlated can be an interesting
future research direction.
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