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Abstract
1
 

The need for accurate, automated protein classification methods continues to increase as advances 

in biotechnology uncovers new proteins at a fast rate.  G-protein coupled receptors (GPCRs) are a 

particularly difficult superfamily of proteins to classify due to the extreme diversity among its 

members; yet, they are an important subject in pharmacological research being the target of 

approximately 60% of current drugs (Muller, 2000).  A comparison of BLAST, k-NN, HMM and 

SVM with alignment-based features by Karchin et al. (2002) has suggested that classifiers at the 

complexity of SVM are needed to attain high accuracy in GPCR subfamily classification.  Here, 

analogous to document classification, we applied Decision Tree and Naïve Bayes classifiers with 

chi-square feature selection on n-gram counts to the GPCR family and subfamily classification 

task.  Using the dataset and evaluation protocol from the previous study, we found the Naïve 

Bayes classifier surpassing the reported accuracy of SVM by 4.8% and 6.1% in level I and II 

subfamily classification with an accuracy of 93.2% and 92.4% respectively.  The Decision Tree, 

while inferior to SVM, still outperforms HMM in both level I and II subfamily classification.  

Moreover, the n-grams selected by chi-square feature selection show evidence of biological 

importance.  Thus, the document classification approach has resulted in a simpler, more accurate 

and interpretable classifier. 
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1 Introduction 

Advances in biotechnology have drastically increased the rate at which new proteins are being 

uncovered, creating a need for automated methods of classification of proteins.  A variety of 

computational methods have been developed for this task.  These methods can be divided into 

five categories: based on sequence alignments (categories 1-3, Table 1), based on motifs 

(category 4) and based on machine learning approaches that do not center as much on alignment 

(category 5, Table 3). 

                                                      
1 Much of the material in this paper has since been published in PROTEINS: Structure, Function and Bioinformatics 

journal. 
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1.1 Classification of Proteins 

The first category of methods (Table 1A) searches a database of known sequences for one most 

similar to the query sequence, and assigns the classification of the best-scoring known sequence 

to the query sequence.  The similarity search is done by performing a pair-wise sequence 

alignment between the query sequence and every sequence in the database, with the help of a 

contingency matrix called a similarity matrix quantifying how similar two sequences of amino 

acids are.  The Smith-Waterman (1981) and Needleman-Wunsch (1970) algorithms make use of 

dynamic programming to perform the alignment and are guaranteed to find the optimal local and 

global alignment respectively.  However, they are extremely slow and thus impossible to use in a 

database-wide search.  A number of heuristic algorithms have been developed, of which BLAST 

(Altschul et al., 1990) is the most prevalent.  Often, a heuristic algorithm would be used to do an 

initial search of the database for sequences with a similarity scores above a specified threshold, 

and then either the Smith-Waterman or Needleman-Wunsch algorithm would be used to search 

among the much smaller set of similar sequences.  The second category of methods also searches 

against a database of known sequences, but instead of comparing the query sequence against the 

known sequences directly, these methods first align multiple sequences from the same protein 

superfamily, family or subfamily, and create a consensus sequence to represent the particular 

category.  Then, the query sequence is compared against each of the consensus sequences using a 

pair-wise sequence alignment tool and is assigned the protein superfamily, family or subfamily 

represented by the consensus sequence with the highest similarity score.  Some of these methods 

are listed in Table 1B.  The third category of methods uses profile HMM as an alternative to 

consensus sequences, but is otherwise identical to the second category of methods.  

Representative methods are listed in Table 1C.  There are a number of databases of profile HMM 

available on the Internet (Table 2). 

 The fourth category of methods to protein classification searches for the presence of known 

motifs in the query sequence from a database.  Motifs are short amino acid sequence patterns that 

capture the conserved regions of a protein superfamily, family or subfamily.  They are often the 

binding site of a protein-protein interaction specific to the protein category, which is the reason 

for their being conserved through evolution.  They are written as regular expressions because 

biochemically similar amino acids can act as substitutes for one another in these motifs.  Motifs 

are often captured by multiple sequence alignment tools, but some pattern detection methods have 

been attempted as well (Smith et al., 1990; Neuwald and Green, 1994).  These four categories of 

classification methods are preferred by biologists because they are ―white-box‖ classifiers, giving 

an indication of why certain sequences are related and providing clues to the cause of those 

proteins’ functions.  Table 1 lists some of the alignment tools, profile HMM tools, and databases 

used in these popular ―white-box‖ classifiers. 

 

A. Pair-wise Sequence Alignment Tools 

Tool Reference 

BLAST Altschul et al., 1990 

FASTA Pearson, 2000 

ISS Park et al., 1997 

Needleman-Wunsch Needleman and Wunsch, 1970 

PHI-BLAST Zhang et al., 1998 

PSI-BLAST Altschul et al., 1997 

Smith-Waterman Smith and Waterman, 1981 

B. Multiple Sequence Alignment Tools 

Tool Reference 

BLOCKMAKER Henikoff et al., 1995 

ClustalW Thompson et al., 1994 
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DIALIGN Morgenstern et al., 1998; Morgenstern, 1999 

MACAW Schuler et al., 1991 

MULTAL Taylor, 1988 

MULTALIGN Barton and Sternberg, 1987 

Pileup Wisconsin Package, v. 10.3 

SAGA Notredame et al., 1996. 

T-Coffee Notredame et al., 2000 

C. Profile HMM Tools 

Tool Reference 

GENEWISE GENEWISE, 2002 

HMMER HMMER, 2003 

HMMpro HMMpro, v. 2.2 

META-MEME Grundy et al., 1997 

PFTOOLS Bucher et al., 1996 

PROBE Neuwald et al., 1997 

SAM Krogh et al., 1994 

Table 1. List of tools used in common protein classification methods. 

Motifs / Profiles Databases 

Database Reference 

BLOCKS+ Henikoff et al., 1999; Henikoff et al., 2000 

eMOTIF Huang and Brutlag, 2001 

Pfam Bateman et al., 2002 

PRINTS Attwood et al., 2002 

ProDom Servant et al., 2002; Corpet et al., 2000 

PROSITE Sigrist et al., 2002 

SMART Ponting et al., 1999; Letunic et al., 2002 

Superfamily Gough et al., 2001. 

SWISSPROT Apweiler et al., 1997; Boeckmann et al., 2003 

Table 2. List of databases providing protein family classification information.  A list with links to 

the web-addresses can be found at the authors’ project website flan.blm.cs.cmu.edu. 

One commonality among the first four categories of classification methods is the use of 

alignment.  However, there are inherent limitations with using sequence alignment in 

classification — sequence alignment assumes contiguity is conserved between homologous 

segments in the protein sequence (Vinga and Almeida, 2003).  This contradicts with the genetic 

recombination and re-shuffling that occur in evolution (Lynch, 2002; Zhang et al., 2002).  As a 

result, when sequence similarity is low, aligned sequence segments are often short and due to 

chance occurrence.  In particular, sequence alignments become unreliable when the sequences 

have less than 40% similarity (Wu et al., 2003), and unusable below 20% similarity (Pearson, 

1996; Pearson, 1998).  This has sparked interest in classification methods that do not make use of 

alignments – the fifth category of methods.  The majority of this work has occurred in the past 

two decades with most reports published in the past 5 years.  Two main directions have evolved; 

methods based on ―word‖ frequency, and methods that do not require transforming the sequence 

into fixed length word segments (Vinga and Almeida, 2003).  The first direction makes use of 

various machine-learning algorithms (Baldi and Brunak, 2001).  Popular tools include Markov 

models and k-nearest neighbors (k-NN) classifiers, but Deshpande and Karypis (2002) showed 

that SVM-based approaches can attain a higher accuracy than those classifiers in protein 

classification.  Neural networks, clustering, and approaches that make use of information-theory 
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based measures instead of statistical distances between frequency vectors have also been applied 

(Vinga and Almeida, 2003).  Table 3 shows some of the work in this area.  The second direction 

in this category makes use of Kolmogorov complexity and Chaos Theory (Vinga and Almeida, 

2003).  Compared to the first, these classification schemes are much more recent and just 

beginning to be explored. 

 

Classifier Features Reference 

Bayesian 

inference using 

Gibbs sampling 

Number of conserved columns, the size 

and number of classes and the motifs in 

them 

Qu et al., 1998 

Bayesian Neural 

Networks 

Bi-gram counts, presence and significance 

of motifs found using an automated tool 

Sdiscover 

Wang et al., 2000 

Clustering Digraph representation of the sequence 

space where the weight of each edge 

between 2 sequences is the similarity score 

of the sequences from Smith-Waterman, 

BLAST and FASTA 

Yona et al., 1999 

Sequence and topological similarity Mitsuke et al., 2002 

Discriminant 

function analysis 

(non-parametric, 

linear) 

Frequency of each amino acid, average 

periodicity of GES hydropathy scale and 

polarity scale, variance of first derivative 

of polarity scale 

Kim et al., 2000 

Neural Networks N-gram counts with SVD Wu et al., 1995 

Matrix patterns derived from bi-grams Ferran & Ferrara, 1992 

Sparse Markov 

Transducers 

All subsequences of the protein inside a 

sliding window 

Eskin et al., 2000 

Support Vector 

Machines 

Fisher scores with Fisher kernel Jaakkola et al., 

1999 & 2000; 

Karchin et al., 2002 

Set of all possible k-grams (fixed k) with 

Spectrum kernel and Mismatch kernels 

Leslie et al., 2002a; 

Leslie et al., 2002b 

String subsequence kernel Vanschoenwinkel et 

al., 2002 

Table 3. List of some machine learning approaches on protein classification. 

In summary, there is a belief that the simpler, yet interpretable classifiers based on sequence 

alignments are inherently limited in performance due to the failure in accurate alignment of 

sequences with low sequence identity and that better classification accuracy can be achieved by 

applying more complex classifiers on features that may or may not be derived from sequence 

alignments (Deshpande and Karypis, 2002; Karchin et al., 2002).  However, the latter methods 

generally trade off interpretability of the results for their high accuracy.  While classifiers at the 

higher end of complexity are currently being explored by several groups (see Table 3 for some 

examples), the classifiers at the lower end have been neglected.  In particular, the simplest 

classifier that has been attempted on protein classification is the k-NN classifier, but there are 

several other even simpler classifiers that are particularly popular for text classification which – 

to the best of our knowledge – have not been tried previously on the protein classification task. 

Here, we describe the application of two of the simplest classifiers, Naïve Bayes and Decision 

Trees to the protein family classification task. 
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1.2 G-Protein Coupled Receptors 

With the enormous amount of proteomic data now available, there are a large number of datasets 

which can be used in the protein family classification task.  We have chosen the G-protein 

coupled receptor (GPCR) family in our experiments because they are an important topic in 

pharmacology research and they present one of the most challenging datasets for protein 

classification.  GPCRs are the largest superfamily of proteins found in the body (Gether, 2000) 

and function in mediating the responses of cells to various environmental stimuli including 

hormones, neurotransmitters and odorants, to name just a few of the chemically diverse ligands 

that GPCRs respond to.  As a result, they are the target of approximately 60% of approved drugs 

currently on the market (Muller, 2000).  Reflecting the diversity in ligands, the GPCR 

superfamily is also one of the most diverse protein families (Moriyama and Kim, 2003).  Sharing 

no overall sequence homology (Kolakowski, 1994), the only feature common to all GPCRs is 

their seven transmembrane alpha helices separated by alternating extracellular and intracellular 

loops, with the amino terminus (N-terminus) on the extracellular side and the carboxyl terminus 

(C-terminus) on the intracellular side.  The GPCR protein superfamily is composed of five major 

families (classes A through E) and several putative and ―orphan‖ families (Horn et al., 1998).  

Each family is divided into level I subfamilies and then further into level II subfamilies based on 

pharmacological and sequence identity considerations.  The extreme divergence among GPCR 

sequences is the primary reason for the difficulty in classifying them and the diversity has 

prevented further classification of a number of known GPCR sequences at the family and 

subfamily levels — these sequences are designated as ―orphan‖ or ―putative/unclassified‖ GPCRs 

(Moriyama and Kim, 2003).  Moreover, since subfamily classifications are often defined 

chemically/pharmacologically rather than by sequence homology, many subfamilies share strong 

sequence homology with other subfamilies, making subfamily classification extremely difficult 

(Karchin et al., 2002). 

1.3 Classification of G-Protein Coupled Receptor Sequences 

A number of classification methods have been studied on the GPCR dataset.  Lapinsh et al. 

(2002) extracted physical properties of amino acids and used multivariate statistical methods, 

specifically principal component analysis (PCA), partial least squares (PLS), autocross-

covariance transformations (ACC’s) and z-scores, to classify GPCR proteins at the level I 

subfamily level.  Levchenko (2001) used hierarchical clustering on similarity scores computed 

with the SSEARCH program
2
 to classify GPCR sequences in the human genome belonging to the 

peptide level I subfamily into their level II subfamilies.  Liu and Califano (2001) used 

unsupervised, top-down clustering in conjunction with a pattern-discovery algorithm, a statistical 

framework for pattern analysis, and hidden Markov models to produce a hierarchical 

decomposition of GPCRs down to the subfamily levels.  A systematic comparison of performance 

of different classifiers ranging in complexity has been carried out recently by Karchin et al. 

(2002) for GPCR classification at the superfamily level (that is, whether or not a given protein is 

a GPCR) and level I and II subfamily levels.  Note that family-level classification was not 

examined by this study.  The methods tested include a simple nearest neighbor approach 

(BLAST), a method based on multiple sequence alignment generated by a statistical profile 

hidden Markov model (HMM), a nearest neighbor approach with protein sequences encoded into 

Fisher Score Vector space (kernNN), and support vector machines.  In the HMM method, a 

model is built for each class in the classification and a query sequence is assigned to the class 

whose model has the highest probability of generating the sequence.  Two implementations of 

                                                      
2 The SSEARCH program is a rigorous and computationally expensive program that searches for similarity between a 

query sequence and a group of sequences.  It uses William Pearson’s implementation of the Smith and Waterman 

algorithm.  Compared to the more popular similarity search programs, BLAST and FASTA, it can be very slow.  

(SSearch, 2002) 
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support vector machines were investigated, SVM and SVMtree, where the latter is a faster 

approximation to a multi-class SVM.  Fisher Score Vectors were also used with SVM and 

SVMtree.  To derive the vectors, Karchin et al. built a profile HMM model for a group of 

proteins and then computed the gradient of the log likelihood that the query sequence was 

generated by the model.  A feature reduction technique based on a set of pre-calculated amino 

acid distributions was used to reduce the number of features from 20 components per matching 

state in the HMM to 9 components per matching state.  Both SVM and the kernNN method made 

use of a radial basis kernel functions.  The results from this study are reproduced in Table 4.  The 

study concluded that while simpler classifiers (specifically HMM) perform better at the 

superfamily level, the computational complexity of SVM is needed to attain ―annotation-quality 

classification‖ at the subfamily levels.  However, the simplest classifiers, such as Decision Trees 

and Naïve Bayes, have not been applied.  In this study, we investigated in further detail the 

performance of simple classifiers in the task of GPCR classification at the family and subfamily 

levels.  We first optimized these simple classifiers using feature selection and then compared our 

results against those reported in the study by Karchin et al. (2002).  To our surprise, using only a 

simple classifier on counts of n-grams in conjunction with a straight-forward feature-selection 

algorithm, chi-square, was sufficient to outperform all of the classifiers investigated by Karchin et 

al. (2002). 

 

Superfamily Classification 

Method Accuracy at the MEP (%) 

SAM-T99 HMM 99.96 

SVM 99.78 

FPS BLAST 93.18 

Level I Subfamily Classification 

Method Accuracy at the MEP (%) 

SVM 88.4 

BLAST 83.3 

SAM-T2K HMM 69.9 

kernNN 64.0 

Level II Subfamily Classification 

Method Accuracy at the MEP (%) 

SVM 86.3 

SVMtree 82.9 

BLAST 74.5 

SAM-T2K HMM 70.0 

kernNN 51.0 

Table 4. Classification results reported in a previous study on complexity needed for the GPCR 

classification task (Karchin et al., 2002).  Karchin et al. reported their results in terms of ―average 

errors per sequence‖ at the minimum error point (MEP).  Through e-mail correspondence with the 

first author, we verified that ―average errors per sequence‖ is equivalent to the error rate.  Thus, 

the accuracy results shown above are converted from those in their paper by the formula ―1 – 

average errors per sequence‖. 

2 Approach 

In this section, we will describe the classifiers we used and the method in which we extracted and 

selected the features for our classifiers using chi-square.  Section 4 will explain the datasets used 

in our study, while section 5 will present our results. 
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2.1 Decision Tree 

Decision tree is one of the simplest classifiers in machine learning.  One of its advantages lies in 

its ease of interpretation as to which are the most distinguishing features in a classification 

problem.  It has been used previously with biological sequence data in classifying gene sequences 

(Yuan et al., 2003).  We used C4.5 implementation of decision tree by J. R. Quinlan (C4.5, 

release 8).  The features given to the classifier were counts of n-grams extracted from the amino 

acid sequences.  Instead of using only n-grams of a single fixed length n, we used n-grams of 

length 1, 2 … n.  The features were declared as continuous attributes rather than discrete 

attributes to the decision tree classifier.  Although we examined the effect of different confidence 

level in pruning the decision tree, because the difference in accuracy is 1.2% at most, we 

remained largely with the default 75% confidence level in our experiments and present only those 

results here. 

2.2 Naïve Bayes 

Naïve Bayes is another example of a simple classifier in machine learning.  Its naïve assumption 

that all of its features are independent clearly did not hold when we allowed overlaps in extracting 

n-grams of length greater than 1 from a sequence.  Nonetheless, the classifier worked remarkably 

well in our task as described below. 

We used the Rainbow implementation of the Naïve Bayes classifier by Andrew K. 

McCallum
3
.  The features given to the classifier were counts of n-grams extracted from the 

protein amino acid sequence.  Because Rainbow has been originally developed for document 

classification applications, the software expects its training and testing instances to be documents 

of words from which it can count the number of occurrences of each word.  To transform a 

protein sequence into a document, we explicitly stated in the document all of the occurring n-

grams of the desired sizes.  For instance, for the sequence ―ACWQRACW‖ and n-grams of size 2 

and 3, the corresponding document would be ―AC CW ACW WQ CWQ QR WQR RA QRA AC 

RAC CW ACW‖.  Rainbow as a document classification tool also excludes all words of length 1, 

which in our case, are unigrams of amino acids from the protein sequence.  Since turning off the 

stop-list feature and any tokenization procedures in Rainbow did not change this result, we used 

only n-grams of length 2, 3 … n in our experiments with the Naïve Bayes classifier.  The n-gram 

counts were treated as multinomial attributes in the classifier without any normalization.  Laplace 

smoothing was used. 

2.3 Chi-Square 

Most machine-learning algorithms do not scale well to high-dimensional feature spaces 

(Sebastiani, 1999), and the decision tree and Naïve Bayes classifiers are no exceptions.  Thus, it is 

desirable to reduce the dimension of the feature space without sacrificing classification accuracy 

by removing non-informative or redundant features (Yang and Pedersen, 1997).  A large number 

of feature selection methods have been developed for this task, including document frequency, 

information gain, mutual information, chi-square, and term strength.  We have chosen to use chi-

square in our study because it is one of most effective feature selection methods in document 

classification (Yang and Pedersen, 1997). 

The chi-square statistic measures the lack of independence between a given binary feature x 

and a classification category c by computing the difference between the ―expected‖ number of 

objects in c with that feature and the observed number of objects in c actually having that feature.  

By ―expected‖, we mean that if the feature were not dependent on the category and had a uniform 

                                                      
3 The Rainbow implementation is part of Bow, a toolkit for statistical language modeling, text retrieval, classification 

and clustering (Bow, 2002). 
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distribution over all the categories instead, how many instances of c would we find with feature x.  

Thus, the formula for the chi-square statistic for each feature x is as follows, 

 

Cc xc
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x
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2
2

 

where C is the set of all categories in our classification task, and e(c,x) and o(c,x) are the 

―expected‖ and observed number of instances in category c with feature x respectively.  The 

―expected‖ number e(c,x) is computed as 
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where nc is the number of objects in category c, N is the total number of objects, and tx is the 

number of objects with feature x. 

To obtain binary features from counts of n-grams, we divided each n-gram feature into 

multiple binary features by considering whether the n-gram has occurred at least i times in the 

sequence, where i is the first 20 multiples of 5 (that is, 5, 10, 15 … 100) for unigrams and the first 

20 multiples of 1 (that is, 1, 2, 3 … 20) for all other n-grams.  Then, we computed the chi-square 

statistic for each of these binary features.  For instance, for the tri-gram DRY, we computed the 

chi-square statistic for DRY occurring at least 1, 2, 3 … 20 times.  The expected number of 

protein sequences in class c having at least i occurrences of the n-gram DRY is the product of the 

number of sequences in class c and the ratio of the number of sequences with at least i 

occurrences of the n-gram DRY to the total number of sequences.  The chi-square statistic for 

DRY occurring at least i times is the square of the difference between the expected and observed 

number of sequences in each class having at least i occurrences of DRY, normalized by the 

expected number and summed over all classes. 

Next, for each n-gram j, we found the value imax such that the binary feature of having at least 

imax occurrences of n-gram j has the highest chi-square statistic out of the 20 binary features 

associated with n-gram j.  The n-grams were then sorted in decreasing order according to the chi-

square value at their associated binary feature of having at least imax occurrences of the n-gram.  

The top K n-grams were selected as input to our classifiers, where K is a parameter that can be 

tuned to achieve maximum accuracy.  Our results showed that the accuracy increases as K 

increases until a maximum is achieved, after which the accuracy slowly decreases as K continues 

to increase.  In our study, we also investigated the effect on accuracy from giving the classifier 

the binary feature of having at least imax occurrences of each selected n-gram j versus giving the 

classifier the count of n-gram j as mentioned in sections 4.2 and 4.3. 

3 Datasets & Evaluation 

In this study, we examined classification of GPCRs at the family level and level I and II 

subfamily levels.  Family-level classification was used to develop our classification protocol, 

while the subfamily-levels classification were used to compare the performance of our protocol 

against those classifiers, particularly SVM, studied by Karchin et al. (2002). 

3.1 Family-Level Classification 

In family-level classification, we made use of all GPCR sequences and bacteriorhodopsin 

sequences with SWISS-PROT entries found in the September 15, 2002 release of GPCRDB 

(Horn et al., 1998).  GPCRDB is an information system specifically for GPCRs, containing all 
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known GPCR sequences, classification information, mutation data, snake-plots, links to various 

tools for GPCRs, and other GPCR-related information.  It contains both sequences with SWISS-

PROT entries and those with TREMBL entries.  These entries contain important information such 

as the protein’s classification, function and domain structure.  SWISS-PROT entries are 

computer-generated annotations that have been reviewed by a human, while TREMBL entries 

have not yet been reviewed.  For this reason, we have chosen to use only those sequences with 

SWISS-PROT entries in our evaluation. 

According to GPCRDB, the GPCR superfamily is divided into 12 major and putative 

families.  Bacteriorhodopsin is a non-GPCR family of proteins that are often used as a structural 

template for the three-dimensional structure of GPCRs (Pardo et al., 1992).  Thus, we have 

decided to include them into our dataset as a control.  Hence, there were 13 classes in our family 

classification dataset — 12 GPCR families and 1 non-GPCR family, the largest of which 

comprise 80% of the dataset.  A ten-fold cross-validation was used as our evaluation protocol. 

3.2 Level I Subfamily Classification 

Since we are using the results of the various classifiers studied by Karchin et al. (2002) as the 

baseline for our subfamily classifications, we have used the same datasets and evaluation protocol 

in our evaluation at the level I and II subfamily classification.  In level I subfamily classification, 

1269 sequences from subfamilies within Classes A and C, as well as 149 non-GPCR sequences 

from archaea rhodopsins and G-alpha proteins were used.  The non-GPCR sequences were 

grouped together as a single class of negative examples for our classifier evaluation.  The 

majority class, Peptide subfamily in Class A, comprises 27% of the dataset.  We performed a 

two-fold cross-validation using the same training-testing data split as in the study by Karchin et 

al. (2002).  The dataset and training-testing data split is available at 

http://www.soe.ucsc.edu/research/compbio/gpcr/subfamily_seqs. 

3.3 Level II Subfamily Classification 

In level 2 subfamily classification, we used 1170 sequences from Classes A and C, and 248 

sequences from arachaea rhodopsins, G-alpha proteins, and GPCRs with no level II subfamily 

classification or in a level II subfamily containing only 1 protein.  As before, the 248 sequences 

were grouped together as a single class of negative examples and a two-fold cross-validation was 

performed using the same training-testing data split as in the study by Karchin et al. (2002).  The 

majority class is the set of negative examples which comprises 17.5% of the dataset. 

4 Results and Discussion 

In the following, we first present the result of our classifier as we attempt to optimize it using the 

family-level classification dataset.  We then compare the performance of our classifier on the 

subfamily-level classification datasets against several classifiers of varying computational 

complexity presented in the study by Karchin et al. (2002).  Finally, we examine the significance 

of the features selected by chi-square. 

4.1 Family-Level Classification 

We began by running the decision tree and Naïve Bayes classifiers on all the n-grams of a 

particular size — 1, 2 … n for decision tree and 2, 3 … n for Naïve Bayes.  The maximum n for 

the decision tree was 3 (―tri-grams‖) due to the limitations in the number of features allowed by 

the C4.5 software.  For Naïve Bayes, n up to 5 were included.  The results are shown in Table 5.  

The addition of larger-sized n-grams as features for the decision tree had little effect on its 

accuracy.  In contrast, the Naïve Bayes classifier performed significantly better with bi-grams and 

trigrams together than with bi-grams alone.  Addition of n-grams of length greater than 3 

decreased the accuracy.  Based on these results, we employed chi-square feature selection on the 
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set of all unigrams, bi-grams and tri-grams for the decision tree classifier, and on the set of all bi-

grams and tri-grams for the Naïve Bayes classifier. 

 

Decision Tree Naïve Bayes 

N-grams Used Accuracy N-grams Used Accuracy 

1-gram 89.4 % 2-grams 80.7 % 

1, 2-grams 89.5 % 2, 3-grams 96.3 % 

1, 2, 3-grams 89.3 % 2, 3, 4-grams 95.6 % 

  2, 3, 4, 5-grams 94.8 % 

Table 5. Result of ten-fold cross-validation on GPCR classification at the family level using 

decision tree and Naïve Bayes classifier on all n-grams of the specified sizes. 

To determine the optimal number of features, K, the chi-square algorithm needs to select for 

each of the classifier, we measured the accuracy of the classifier as a function of K.  We 

investigated both using the binary features of having at least imax occurrences of each selected n-

gram j and using the count of n-gram j as mentioned in section 2.3.  Overall, the accuracy of the 

classifier increases with K until a maximum accuracy is reached, after which the accuracy drops 

as K continues to increase.  Using the count of the selected n-grams instead of their binary 

features resulted in a higher accuracy with the decision tree, while no significant difference 

resulted with the Naïve Bayes classifier. 

The effect of chi-square feature selection on classification accuracy is reported in Table 6.  

While chi-square feature selection improved the accuracy of the decision tree with unigrams, bi-

grams and tri-grams, it had little effect on the Naïve Bayes classifier with bi-grams and tri-grams.  

Despite the improvement in accuracy of the decision tree, it is still lower than the accuracy of the 

Naïve Bayes classifier.  With both classifiers, chi-square feature selection reduces the number of 

features needed for them to achieve their respective optimal accuracy. 

GPCR sequences vary significantly in length.  For example, the rhodopsin sequence in Class 

A is one of the shortest GPCR sequences with 348 amino acids only, while the longest GPCR 

sequences having several thousands of amino acids belong to Class B.  We therefore investigated 

whether the protein sequence length is a useful feature in GPCR classification by plotting a 

histogram of the sequence length, separated by the GPCR family and the control group, 

bacteriorhodopsins.  While this plot confirms that there is significant variation in sequence length, 

it also shows that the range of sequence length within each GPCR family overlaps significantly, 

leading to the confusion of the classifier.  We confirmed this by training a decision tree on the 

sequence length in addition to the counts of all unigrams, bi-grams and tri-grams.  The resulting 

tree gave an improvement of 0.1% in test set accuracy over using the decision tree with only 

those n-grams.  Moreover, the sequence length appeared as a node of the decision tree in only one 

of the ten trials in a ten-fold cross validation, and the node was at the 11
th
 level.  Both histogram 

and experiment result therefore suggest that sequence length is not a distinguishing feature in 

GPCR classification. 

4.2 Level I Subfamily Classification 

The experiments on family-level classification described above demonstrated that chi-square 

feature selection is beneficial, not only in reducing the number of features needed but also in 

improving the classification accuracy.  We therefore tested if a similar improvement may be 

obtained at the subfamily levels.  As before, we measured the classification accuracy as a 

function of the number of features, K, using unigrams, bi-grams and tri-grams with the decision 

tree, and bi-grams and tri-grams with the Naïve Bayes classifier.  The accuracy was computed 

from a two-fold cross-validation using the same dataset and training-testing data split as in the 

study by Karchin et al. (2002) for ease of comparison to the classifiers presented in their study.  
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Similar to the family-level classification, the accuracy increases as K increases until a maximum 

is reached, after which the accuracy decreases.  Therefore, an improvement can be obtained by 

using only a subset of the features selected by chi-square.  The results are shown in Table 6, along 

with a reproduction of the results reported by Karchin et al. (2002) on the same dataset and using 

the same evaluation procedure. 

As Table 6 clearly shows, chi-square feature selection improves the accuracy of level I 

subfamily classification as well.  In both family-level and level I subfamily classification, 

employing the decision tree and the Naïve Bayes classifier on the counts of n-grams selected by 

chi-square instead of the selected binary features reduces the number of features needed to 

achieve their respective maximum accuracy. 

Table 6 compares the performance of our two simple classifiers, the decision tree and the 

Naïve Bayes classifier, against those classifiers in the study by Karchin et al. (2002).  The Naïve 

Bayes classifier outperforms all other classifiers in level I subfamily classification, including 

SVM, a much more complicated classifier whose computational complexity was claimed to be 

needed to achieve ―annotation-quality‖ accuracy in GPCR subfamily classification (Karchin et 

al., 2002). 

4.3 Level II Subfamily Classification 

Next, we repeated the above experiments for level II subfamily classification.  Plotting the 

accuracy of the decision tree and the Naïve Bayes classifier as a function of the number of 

features K using a two-fold cross validation with the same training-testing data split as in the 

study by Karchin et al. (2002) produced graphs similar to those in level I subfamily classification 

(data not shown).  The accuracy of our classifiers with and without chi-square feature selection is 

shown in Table 6, along with a reproduction of the results reported by Karchin et al. (2002). 

Here, using binary features selected by chi-square with the Naïve Bayes classifier was more 

effective than using the counts of the corresponding n-grams, giving an improvement of 10.5% in 

accuracy.  Comparison with the previously studied classifiers shows that the Naïve Bayes 

classifier outperformed all other classifiers with an improvement of 6.1% over SVM, the best out 

of the previously studied classifiers.  While the decision tree performed worse than SVM, with 

the aid of chi-square feature selection, it still outperformed HMM and kernNN.  This result shows 

that the computational complexity of SVM, which has been previously claimed to be necessary 

for high accuracy in GPCR level II subfamily classification (Karchin et al., 2002), can be avoided 

by using the simple feature selection algorithm chi-square. 

 

Classifier # of Features Type of Features Accuracy 

Family Classification 

Decision Tree All (9723) N-gram counts 89.3 % 

1100 Binary 89.2 % 

500 N-gram counts 90.2 % 

Naïve Bayes All (9702) N-gram counts 94.7 %
4
 

3900 Binary 95.1 % 

6900 N-gram counts 95.0 % 

Level I Subfamily Classification 

Decision Tree All (9723) N-gram counts 77.2 % 

                                                      
4 The accuracy of using all bigrams and trigrams reported here differs from that in Table 5 because results in Table 6 

were generated using the cross-validation option provided in Rainbow toolkit, which allows overlaps between the folds 

(that is, it performs replacement before drawing samples for the test set at each fold).  This gives a small increase in 

accuracy over the cross-validation method used here where no overlaps are allowed when the class size is small (such 

as the Nematode Chemoreceptors) where there may be instances of the class in the test set but not in the training set. 
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2700 Binary 78.0 % 

700 N-gram counts 78.4 % 

Naïve Bayes All (9702) N-gram counts 90.0 % 

7400 Binary 93.2 % 

6300 N-gram counts 90.9 % 

SVM 9 per match state in 

the HMM 

Gradient of the log-likelihood 

that the sequence is generated 

by the given HMM model 

88.4 % 

BLAST Local sequence alignment 83.3 % 

SAM-T2K 

HMM 

A HMM model built for each protein subfamily 69.9 % 

kernNN 9 per match state in 

the HMM 

Gradient of the log-likelihood 

that the sequence is generated 

by the given HMM model 

64.0 % 

Level II Subfamily Classification 

Decision Tree All (9723) N-gram counts 66.0 % 

2300 Binary 70.2 % 

1200 N-gram counts 70.8 % 

Naïve Bayes All (9702) N-gram counts 81.9 % 

8100 Binary 92.4 % 

5600 N-gram counts 84.2 % 

SVM 9 per match state in 

the HMM 

Gradient of the log-likelihood 

that the sequence is generated 

by the given HMM model 

86.3 % 

SVMtree 9 per match state in 

the HMM 

Gradient of the log-likelihood 

that the sequence is generated 

by the given HMM model 

82.9 % 

BLAST Local sequence alignment 74.5 % 

SAM-T2K 

HMM 

A HMM model built for each protein subfamily 70.0 % 

kernNN 9 per match state in 

the HMM 

Gradient of the log-likelihood 

that the sequence is generated 

by the given HMM model 

51.0 % 

Table 6. Comparison of the accuracy of various classifiers at GPCR level II subfamily 

classification.  Unigrams, bi-grams and tri-grams are used with the decision tree, while bi-grams 

and tri-grams are used with the Naïve Bayes classifier.  Results of SVM, BLAST, HMM and 

kernNN from the study by Karchin et al. (2002) are reproduced above for ease of comparison. 

4.4 Significance of Selected Features 

In light of the successful results in classification, we were curious whether there is biological 

significance to the n-grams selected by chi-square.  However, examining the importance of 

bigrams and trigrams is difficult because they are likely to occur multiple times in a sequence.  

Moreover, biologists are interested in whether properties characteristic of a single class rather 

than multiple classes.  Thus, we extracted all 4-grams in addition to the bigrams and trigrams and 

employed a modified chi-square feature selection to select the 20 most important n-grams for the 

Class B family.  The modification is, in essence, the removal of the summation across all classes 

so that a significance measure is computed for each n-gram-class pair.  We plotted the top 20 n-

grams on the snake-plots of several GPCRs.  An example is shown in Figure 1 with 

PTRR_HUMAN.  From the snake-plots, we observed that most of the selected n-grams lie in the 
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cytoplasmic domains of the receptors.  This is consistent with the finding by Vriend and co-

workers that conserved regions often lie in the G-protein activating domains.  A number of the 

other selected n-grams are in helix 3 and 7, both known to be important for signal transduction.  

Ongoing work is being conducted to investigate the biological interpretation of these selected n-

grams further. 

 

 

Figure 1.  Snake-plot of PTRR_HUMAN in Class B GPCRs with the 20 most significant n-grams 

as selected by modified chi-square feature selection labeled. 
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5 Conclusions and Future Work 

In this study, we evaluated the performance of simple classifiers in conjunction with feature 

selection against more complicated classifiers in the task of protein sequence classification.  We 

chose to use the superfamily of G-protein coupled receptors as our dataset because of its 

biological importance, particularly in pharmacology, and the known difficulty it presents in the 

classification task due to the extreme diversity among its members.  In analogy to document 

classification in the human language technologies domain, we used the decision tree and Naïve 

Bayes classifier, and began our experiments with classification at the family level.  We first 

optimized our classification procedure with feature selection using this dataset.  In document 

classification, chi-square feature selection has proven to be highly successful (Yang and 

Pedersen, 1997), not only in reducing the number of features necessary for accurate classification, 

but also in increasing classification accuracy via the elimination of ―noisy features‖.  We applied 

chi-square feature selection to the GPCR family classification task and found that chi-square was 

successful in this task as well.  Specifically, using chi-square feature selection, the accuracy 

increased with the number of features until a maximum accuracy was reached, after which the 

accuracy dropped.  Thus, an improvement in accuracy can be attained by using chi-square to 

reduce the dimensionality of the feature space to the point at which the maximum accuracy 

occurs. 

 We then applied our method to the GPCR level I and II subfamily classification tasks studied 

previously by Karchin et al. (2002) in a systematic comparison of classifiers of varying 

complexity.  For comparability, we used the same dataset and evaluation procedure as published 

in the previous study.  First, we note that subfamily classifications are much more difficult to 

predict than family level classifications, as shown by the decrease in accuracy of both the 

decision tree and Naïve Bayes classifier.  This observation is consistent with the fact that 

subfamilies are defined to a greater extent than families are by chemical and pharmacological 

criteria as opposed to sequence homology.  Because of these difficulties, the previous study 

(Karchin et al., 2002) had concluded that at the subfamily levels, more complex classifiers are 

needed to maintain high classification accuracy.  In particular, the accuracies of BLAST, k-

nearest neighbors in conjunction with Fisher Score Vector space, profile HMM and SVM in level 

I and II subfamily classification had been studied with alignment-based features, and SVM was 

found to be required to attain ―annotation-quality‖ accuracy.  Using SVM, an accuracy of 88.4% 

and 86.3% had been achieved in level I and II subfamily classification (Karchin et al., 2002), see 

Table 6.  In level I subfamily classification, we found that the Naïve Bayes classifier using the 

counts of all bi-grams and tri-grams can outperform SVM by 1.6%.  Moreover, a greater 

improvement of 4.8% over SVM can be achieved if chi-square feature extraction is used in 

conjunction with the Naïve Bayes classifier, leading to a final accuracy of 93.2%.  In level II 

subfamily classification, the Naïve Bayes classifier with the aid of chi-square feature selection 

surpassed SVM by 6.1% and achieved an accuracy of 92.4%.  The comparison of results from the 

classifiers in our study and that of Karchin et al. (2002) showed that the decision tree cannot 

match the performance of the Naïve Bayes classifier and SVM in either level I or II subfamily 

classification.  However, chi-square improves the accuracy of the decision tree to the extent that it 

outperforms HMM in both of these tasks. 

 One interesting observation in our level I subfamily classification results (Table 6) is that 

while the Naïve Bayes classifier performed better with the help of chi-square feature selection, it 

outperformed all other classifiers even on its own using counts of all bi-grams and trigrams.  This 

suggests that the difference in performance between the Naïve Bayes classifier and SVM may be 

due to the different features used.  In particular, n-grams may be a better set of features than 

alignment-based features for protein classification.  Biologically, this means that one reason for 

the improvement in classification accuracy may be the use of small peptide fragments (n-grams) 

which do not require the sequential arrangement necessary in a sequence alignment.  Although 
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sequence alignment has dominated the field for many years because of its intuitive nature in 

understanding the evolutionary origin of protein families and subfamilies, relaxing the 

requirement for consecutive features is more in tune with the hallmark of protein structures.  

Protein structures are functional because of their arrangement in three-dimensional space, 

bringing about important contact between amino acids that may be far apart in the linear amino 

acid sequence.  From our current experiments, we cannot distinguish if the type of features, the 

feature selection process or the different classifier has caused the significant improvement of our 

simple Naïve Bayes classifier over the SVM classifier.  Further experiments using SVM on n-

gram features alone and in conjunction with chi-square feature selection are ongoing to determine 

whether the improvement in accuracy is due to the specific classifier (that is, the Naïve Bayes 

classifier versus SVM), the feature set or chi-square feature selection. 

 From the study presented here, we conclude that complicated classifiers at the complexity of 

SVM are not necessary to attain high accuracy in protein classification, even for the particularly 

challenging GPCR subfamily classification task.  A simple classifier, the Naïve Bayes classifier, 

in conjunction with chi-square feature selection, applied to n-gram counts can perform better than 

SVM on alignment-based features.  Another simple classifier, Decision Tree with chi-square 

feature selection, while not as powerful as either Naïve Bayes or SVM, can still outperform 

profile HMM.  Moreover, the n-grams selected by chi-square feature selection seem to have 

biological significance.  Further work is being conducted to investigate this further.  The methods 

presented here were all originally applied to the document classification task in human language 

technologies domain.  The successful application of document classification techniques to the 

protein classification task, together with the conclusion that simple classifiers can outperform 

complicated classifiers in this task as a result, have important implications.  There are many 

problems in the biology domain that can be formulated as a classification task.  Many of these are 

considered to be more challenging by biologists than the protein classification task.  This includes 

predicting folding, tertiary structure and functional properties of proteins, such as protein-protein 

interactions.  Thus, these important classification tasks are potential areas for applications of 

human language technologies in modern proteomics. 
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