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Abstract

Generating production-quality plans is an essential element
in transforming planners from research tools into real-world
applications. However most of the work to date on learning
planning control knowledge has been aimed at improving the
efficiency of planning; this work has been termed “speed-up
learning”. This paper focuses on learning control knowl-
edge to guide a planner towards better solutions, i.e. to
improve the quality of the plans produced by the planner,
as its problem solving experience increases. We motivate
the use of quality-enhancing search control knowledge and
its automated acquisition from problem solving experience.
We introduce an implemented mechanism for learning such
control knowledge and some of our preliminary results in a
process planning domain.

Introduction
Most research on planning so far has concentrated on meth-
ods for constructing sound and complete planners that find a
satisficing solution, and on howto find such solution in an ef-
ficient way (Chapman 1987; McAllester & Rosenblitt 1991;
Peot & Smith 1993). Accordingly most work on machine
learning in the context of planning systems has focused on
two types of learning goals (Pérez 1994): learning driven
by domain goals, when the domain knowledge is incom-
plete or inaccurate (Gil 1992; Wang 1994; Shen 1989), and
learning driven by planning efficiency goals, or “speed-
up learning” (Mitchell, Keller, & Kedar-Cabelli 1986;
Minton et al. 1989; Etzioni 1990; Pérez & Etzioni 1992;
Knoblock 1990; Veloso 1992; Gratch, Chien, & DeJong
1993). This paper focuses on a third kind of learning goals:
to improve the qualityof plans produced by the planner. The
learner buildsnew control knowledge by analyzing previous
experience, and that knowledge guides subsequent search�This research is partially sponsored by the Wright Labora-
tory, Aeronautical Systems Center, Air Force Materiel Command,
USAF, and the Advanced Research Projects Agency (ARPA) un-
der grant number F33615-93-1-1330. Views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as necessarily representing official policies or endorse-
ments, either expressed or implied, of Wright Laboratory or the
United States Government. The first author holds a scholarship
from the Ministerio de Educación y Ciencia of Spain.

towards better plans. Learning is triggered by the possibil-
ity of improving the quality of the solution obtained with
the planner’s current control knowledge. The planner’s do-
main theory is extended with a function that evaluates the
quality of a plan. In particular the metric we use is related
to plan execution cost, or the efficiency of the plans when
they are executed, instead of the efficiency of the process
of finding those plans. Learning consists in a reformulation
task of the plan evaluation function into control knowledge
usable by the planner at problem solving time. The next sec-
tions present the motivation for using and learning control
knowledge to obtain quality plans, discuss some metrics for
plan quality, and introduce a mechanism for learning such
control knowledge and preliminary results of the full imple-
mentation of such mechanism. Finally, we briefly discuss
some related work and present some conclusions.

Plan Quality and Control Knowledge
Generating production-quality plans is an essential element
in transforming planners from research tools into real-world
applications. For example, in the process planning domain
plan quality is crucial in order to minimize both resource
consumption and execution time.

Planning goals rarely occur in isolation and the interac-
tions between conjunctive goals have an effect in the quality
of the plans that solve them. In (Pérez & Veloso 1993) we
argued for a distinction between explicit goal interactions
and quality goal interactions. Explicit goal interactions are
explicitly represented as part of the domain knowledge in
terms of preconditions and effects of the operators. They
enforce particular goal orderings so that the planner may be
able to produce a solution to the problem. As a particular
problem may have many different solutions the interactions
may be the result of the particular problem solving path
explored. For example, in a machine-shop scheduling do-
main, when two identical machines are available to achieve
two goals, these goals may interact, if the problem solver
chooses to use just one machine to achieve both goals, as it
will have to wait for the machine to be idle. If the problem
solver uses the two machines instead of just one, then the
goals do not interact in this particular solution. These in-
teractions are related to plan quality as the use of resources
dictates the interaction between the goals. Whether one al-



ternative is better than the other depends on the particular
quality measure used for the domain. The control knowl-
edge that guides the planner to solve these interactions is
harder to learn automatically, as the domain theory does not
encode these quality criteria.

It can be argued that the heuristics to guide the planner
towards better solutions could be incorporated into the plan-
ner itself, as in the case of removing unnecessary steps or
using breadth-first search when plan length is used as eval-
uation function. However in some domains plan length is
not an accurate metric of plan quality, as different opera-
tors have different costs. Take an example in the process
planning domain. The goal of process planning is to pro-
duce plans for machining parts given their specifications 1.
In order to perform an operation on a part, certain set-up
operations are required as the part has to be secured to the
machine table with a holding device in certain orientation,
and in many cases the part has to be clean and without burrs
from preceding operations. The appropriate tool has to be
selected and installed in the machine as well. As an exam-
ple, Figure 1 (a) shows a machine set-up to drill a hole in a
part. Figure 1 (b) shows the specification of the sides and
dimensions of a rectangular part. Suppose the planner is
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Figure 1: (a) An example of set-up in the machining domain
(from (Joseph 1992)). In this example the holding device is a vise,
the machine a drill press, and the tool a drill-bit. (b) Dimensions
and sides of a part.

given as a goal to drill two holes on different sides (1 and
4) of a part, where each hole requires a different diameter
drill bit. In the initial state the part is being held ready to
drill the hole on side 4, but the drill-spindle holds the drill
bit suitable for the hole on side 1. One possible plan starts
by releasing the part and holding it again in the orientation
suitable for the hole in side 1, while keeping the tool in
the drill spindle, and then drilling that hole. Other plan
starts by switching the tool while keeping the part in place,

1(Gil 1991) describes the implementation of this domain in the
PRODIGY planner, concentrating on the machining, joining, and
finishing steps of production manufacturing.

and drilling first the hole in side 4. Figure 2 shows these
two alternative plans. Both plans have the same length but
may have different quality. For example if the tool can be
switched automatically but holding the part requires human
assistance (Hayes 1990), the cost of plan (a) is higher than
that of (b).

This knowledge about plan quality, cost in the example,
is not encoded in the domain definition (set of operators and
inference rules) and might vary over time. If it is given
as a domain-dependent plan evaluation function, it must
be translated into knowledge operational at planning time,
capturing the fact that the plan and search tree are only
partially available when a decision has to be made. The
translated knowledge can be expressed as search-control
knowledge in terms of the problem solving state and meta-
state, such as which operators and bindings have been cho-
sen to achieve the goals or which are the candidate goals
to expand (we present later a more detailed example). In
the previous example the goal of drilling the hole on side
4 has to be achieved before the goal of drilling the hole on
side 1. Note that for a different plan evaluation function,
namely one in which switching the tool is more expensive
than holding the part again, the order to achieve the two
goals should be the opposite.

Measuring Plan Quality Plan quality metrics can be clas-
sified in three large groups ((Pérez & Carbonell 1993) con-
tains a detailed taxonomy):� Execution cost. Some of the factors that affect a plan’s

execution cost can be computed by summing over all the
steps or operators in the plan, that is Ctotal = �ci whereCtotal is the total cost of executing the plan and ci is the
cost for each operator. ci can be the operator execution
time, the cost of the resources used by the step, or 1 if the
measure is simply the length of the plan or total number of
actions. Several factors that influence a plan’s execution
cost are the execution time, the material resources, or
the agent skill requirements (which refers to the extent
to which an agent can perform an action; plans with less
agent skill requirements are typically less expensive).� Plan robustness or ability to respond well under changing
or uncertain conditions.� Other factors that capture the satisfaction of the client
with the solution itself (for example the accuracy of the
result, or the comfort it provides to the user). These in
some cases are hard to quantify.
The work on learning quality-enhancing control knowl-

edge described in this paper concentrates on quality metrics
related to plan execution cost, and expressed as an evalua-
tion function additive on the cost of the individual operators.
These functions are linear and do not capture the existence
of tradeoffs between different quality factors.

Learning to Improve Plan Quality
To date no work has focused on automatically acquiring
knowledge to improve plan quality, i.e. on building learn-
ing systems that address the third type of learning goals
presented in above. This section presents work in progress
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Figure 2: Two solutions for a process planning problem with the same length but different cost, as switching the tool is cheaper than
setting-up the part.

to address this problem. Our goal is to have a system
that improves over experience the quality of the plans it
generates by acquiring in a fully automated fashion con-
trol knowledge to guide the search. Figure 3 shows the
architecture of the current system, fully implemented and
built on top of the PRODIGY nonlinear planner (Carbonell &
The PRODIGY Research Group 1992).
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for better plans

Control Knowledge
for faster planning

Figure 3: Architecture of a system to learn control knowledge to
improve the quality of plans.

The learning algorithm is given a domain theory (opera-
tors and inference rules) and a domain-dependent objective
function that describes the quality of the plans. It is also
given problems to solve in that domain. The algorithm
analyzes the problem-solving episodes by comparing the
search trace for the planner solution given the current con-
trol knowledge, and another search trace corresponding to a
better solution (better according to the evaluation function).
The latter search trace is obtained by letting the problem
solver search further until a better solution is found, or by
asking a human expert for a better solution and then produc-
ing a search trace that leads to that solution. The algorithm
explains why one solution is better than the other and its
output is search control knowledge that leads future prob-
lem solving towards better quality plans. Two points are
worth mentioning:� Learning is driven by the existence of a better solution

and a failure of the current control knowledge to produce
it.� There is a change of representation from the knowl-
edge about quality encoded on the objective function into
knowledge that the planner may use at problem solving

time (as mentioned before the plan and search tree are
only partially available when a decision has to be made).

We do not claim that this control knowledge will necessar-
ily guide the planner to find optimal solutions, but that the
quality of the plans will incrementally improve with expe-
rience, as the planner sees new interesting problems in the
domain.

Example
Take the example in the process planning domain of Fig-
ure 4. The goal is to produce a part with a given height and(state (and (diameter-of-drill-bit twist-drill6 9/64)(material-of part5 ALUMINUM) (size-of part5 LENGTH 5)(size-of part5 HEIGHT 3) (size-of part5 WIDTH 3)...))(goal ((<part> PART))(and (size-of <part> HEIGHT 2)(has-spot <part> hole1 side1 1.375 0.25)))
Figure 4: Example problem, showing the goal and a subset of the
initial state.

with a spot hole on its side 1. The system also knows about
a domain dependent function that evaluates the quality of
the plans. The one we use in this example is additive on the
plan operators and intends to capture the cost of the set-up
operations required to machine the part. As we mentioned
earlier these operations have different costs.

Figure 5 (a) shows the solution obtained by the plan-
ner with the current control knowledge. The ori-
entation in which a part is held and then machined
is given by the side that faces up, and the pair of
sides that face the holding device. For example, the
operation (drill-with-spot-drill drill1 spot-drill1vise1 part5 hole1 side1 side2-side5) indicates thathole1 will be drilled in part5 on the drill press drill1
using as a tool spot-drill1, while the part is being held
with its side 1 up, and sides 2 and 5 facing the holding
device, vise1.

Milling machines can be used both to reduce the size
of a part, and to drill holes and spot-holes on it. There-
fore this solution can be improved, according to the eval-
uation function, by using the milling machine to drill
the spot-hole, and by picking the same orientation, ma-
chine and holding device for the drill and mill opera-
tions so that the part does not have to be released and
held again. These changes correspond at problem-solving
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Figure 5: (a) Solution obtained by the planner guided by the current control knowledge. (b) A better solution according to the evaluation
function, input by a human expert.

time to an operator decision (drill-with-spot-drill
vs drill-with-spot-drill-in-milling-machine) and
a bindings decision (bindings for drill-with-spot-drill-in-milling-machine)2. In this case a domain expert
inputs the improved solution, shown in Figure 5 (b) and the
system produces a search trace that leads to that solution.
As mentioned above what drives the learning process is the
planner’s lack of knowledge to achieve the better solution,
and the existence of decision points where that knowledge
can be used. Next the learner compares both problem solv-
ing traces to find where the savings come from. In this
example, the cost of achieving the subgoals of drilling the
spot-hole is reduced in solution (b) because part of the set-up
is common with the milling operation. The learner explains
why these savings occur and makes that description opera-
tional so it uses knowledge available at the decision points.
The learning mechanism comes up with the control rules in
Figure 6 that guide the planner in the decisions mentioned
above.

The explanation is built from a singleexample, explaining
why one alternative at the decision point is preferred to the
other. Therefore the explanation is incomplete as it does not
consider all possible hypothetical scenarios. For example,
if in the above problem a third goal is to have hole1 coun-
terbored, and the counterboring can only be performed by
the drill-press, using the milling machine for the spot-hole
may not be the best alternative as the part has to be set up
also in the drill-press. However the rules in Figure 6 would
still apply. The consequence of using incomplete explana-
tions is learning over-general knowledge (Tadepalli 1989;
Chien 1989). The system refines the learned knowledge
incrementally, upon unexpected failures. By a failure we
mean that the preferred alternative leads to a plan that can
be improved. The refinement does not modify the applica-
bility conditions of the learned rules but adds new rules (if
needed) and sets priorities among rules.

2Control rules for goal preferences are learned from other
problems.

(control-rule pref-drill-with-spot-drill-in-milling-machine30(if (and(current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))(pending-goal(holding <mach> <holding-dev> <part> <side> <side-pair>))(type-of-object <mach> milling-machine)))(then prefer operator drill-with-spot-drill-in-milling-machinedrill-with-spot-drill))(control-rule pref-bnds-drill-with-spot-drill-in-milling-machine31(if (and(current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))(current-operator drill-with-spot-drill-in-milling-machine)(pending-goal(holding <mach4> <holding-dev5> <part> <side> <side-pair-6>))(or (diff <mach4> <mach1>) (diff <holding-dev5> <holding-dev2>)(diff <side-pair-6> <side-pair-3>))))(then prefer bindings((<mach> . <mach4>)(<hd> . <holding-dev5>)(<sp> . <side-pair-6>))((<mach> . <mach1>)(<hd> . <holding-dev2>)(<sp> . <side-pair-3>))))
Figure 6: Search control rules learned from the problem in Fig-
ure 4.

Empirical Results
We have implemented the mechanism described in the pre-
vious section and run preliminary experiments to evaluate
the solution quality gained by the use of the learned control
knowledge. Table 1 shows the effect of that knowledge on
the solution cost, according to the above mentioned evalua-
tion function 3, over 70 randomly-generated problems in the
process planning domain. Each column corresponds to a set
of 10 problems with common parameters (number and type
of goals, parts, etc) which determine the problem difficulty
and the usefulness of quality-enhancing control knowledge.
In many of the training and test problems the planner did
not require control knowledge to obtain a good solution and
therefore for each problem set we have only recorded the
problems where the solution was actually improved. The
third row corresponds to the cost of the solutions obtained
by the planner when it lacks any quality-enhancing control

3In the experiment plan quality was related to the set-up cost,
and in the evaluation function all machining operations have the
same cost, and the operations to set-up the part on the machine
were more expensive than those to switch the tool.



knowledge. The fourth row shows the cost of the solu-
tions obtained using the learned control rules. The rules
were learned from a different set of 60 randomly generated
problems with the same parameters than for sets 1 to 6 of
Table 1. In only 41 of these problems the solution could be
improved and therefore learning was invoked. The smaller
quality improvement obtained for set 7 is due to the fact
that the training phase did not include problems with simi-
lar parameters and therefore some of the control knowledge
relevant to those problems had not yet been learned. The
number of nodes was also reduced by using the learned
control knowledge, due to shorter solution lengths. The
total CPU time was also reduced, but still we plan to fur-
ther analyze the cost of using learned knowledge and the
possible tradeoff between the matching cost and the savings
obtained by using the learned knowledge instead of doing
a more exhaustive search until a reasonably good solution
is found according to the evaluation function. We also plan
to explore the effect of this learning mechanism on other
domains and on other types of evaluation functions.

Table 1: Improvement on the quality of the plans obtained for 70
randomly-generated problems in the process planning domain.

Problem set
(10 probs per set) 1 2 3 4 5 6 7

# problems
with improvement 3 9 3 10 10 4 9
Without learned
control knowledge 107 202 190 431 362 442 732
With learned
control knowledge 91 132 166 350 220 409 665
Cost decrease 44% 48% 33% 24% 47% 17% 8%

Related Work
As we mentioned in the introduction, although there have
been a number of systems that learn control knowledge
for planning systems, most of them are oriented towards
improving search efficiency and not plan quality. Some
EBL for problem solving systems (Golding, Rosenbloom,
& Laird 1987) learn from externally provided guidance.
When used, the guidance takes the form of a plan reducing
the need for the user to understand the problem solving pro-
cess. However our method does not rely on such guidance,
as since the quality evaluation function is available, the sys-
tem continues searching for better solutions and then learns
about which paths are better than others. R1-Soar (Rosen-
bloom et al. 1985) uses a similar approach for optimizing
a computer configuration task. Chunking is used indis-
tinctly to reduce the search and to prefer better solutions.
Our method explains the difference in cost between the two
paths rather than simply the union of what mattered along
the two paths and therefore may be able to build more gen-
eral rules. Most of the work on plan quality has been on
the relationship between plan quality and goal interactions.
(Wilensky 1983) explores such relationship in detail. Sev-
eral planners for the process planning domain deal with
the quality of plans (Hayes 1990; Nau & Chang 1985) us-

ing domain-dependent heuristics. Other work focuses on
post-facto plan modification (Karinthi, Nau, & Yang 1992;
Foulser, Li, & Yang 1992) by merging plans for individ-
ual subgoals taking advantage of helpful goal interactions.
Our method uses instead control knowledge at problem
solving time and is able to learn from experience in a
domain-independent fashion. Our work is different from
SteppingStone (Ruby & Kibler 1990) in that it heuristically
decomposes a problem into simpler subproblems, and then
learns to deal with the interactions that arise between them.
(Iwamoto 1994) has developed an extension to PRODIGY to
solve optimization problems and an EBL method to learn
control rules to find near-optimal solutions in LSI design.
The quality goals are represented explicitly and based on the
quality of the final state instead of that of the plan. This is
equivalent to our use of a quality evaluation function. The
learning method is similar to ours in that it compares two so-
lutions of different quality, builds an explanation, and learns
operator preferences. Our method however makes use of
the quality evaluation function to build the explanation, and
learns in addition bindings and goal preference rules. As in
our case, the learned knowledge may be overgeneral and is
refined upon further experience by learning more specific
rules and preferences among them. The method does not
allow user guidance as it uses exhaustive search until the
quality goal is satisfied to find the best solution. This is
possible because of the relatively small size of the search
space of the examples used.

The problem of finding optimal plans has been attacked
by decision theorists. However this problem is computa-
tionally very expensive. Simon introduced the idea of “sat-
isficing” (Simon 1981) arguing that a rational agent does
not always have the resources to determine what the opti-
mal action is, and instead should attempt only to make good
enough, to satisfy. We acknowledge the computational cost
of finding the optimal behavior and do not claim that the ac-
quired control knowledge will necessarily guide the planner
to optimal plans, but that plan quality will improve incre-
mentally over experience as the planner sees new interesting
problems.

Conclusion

This paper described a mechanism for learning quality-
enhancing search control knowledge from problem solving
experience. The mechanism has been implemented in a sys-
tem that acquires control rules in a fully automated fashion.
The learning process translates knowledge about plan qual-
ity encoded in a domain-dependent plan evaluation function
into control knowledge that the planner can use at problem
solving time. The motivation for our work is the belief that
generating production-quality plans is an essential element
in transforming planners from research tools into real-world
applications. To date not much research on planning and
learning has approached this problem. The work presented
here demonstrates that learning from problem solving expe-
rience is not only useful for improving planning efficiency
but also can be an effective tool to generate better plans.
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