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ABSTRACT

Motivation: Protein secondary structure prediction is an
important step towards understanding how proteins fold in
three dimensions. Recent analysis by information theory
indicates that the correlation between neighboring secondary
structures are much stronger than that of neighboring amino
acids. In this article, we focus on the combination problem
for sequences, i.e. combining the scores or assignments from
single or multiple prediction systems under the constraint of
a whole sequence, as a target for improvement in protein
secondary structure prediction.

Results: We apply several graphical chain models to solve
the combination problem and show that they are consistently
more effective than the traditional window-based methods.
In particular, conditional random fields (CRFs) moderately
improve the predictions for helices and, more importantly,
for beta sheets, which are the major bottleneck for protein
secondary structure prediction.

Contact: yanliu@cs.cmu.edu

INTRODUCTION

feature extraction, converts the primary protein sequencesto a
set of features that can be used to predict the labels of second-
ary structures. Divergent profiles of multiple sequence align-
ments and a large variety of informative features have been
used (Rost and Sander, 1993; Jones, 1999). Next, a sequence-
to-structure mapping process [(B) in Fig. 1] outputs the
predicted scores for each structure type using the features from
(A) as input. Complex machine learning algorithms have been
applied, including neural networks (Rost and Sander, 1993),
recurrent neural networks (Pollasdtal., 2002), Support Vec-

tor Machines (SVMs) (Vapnik, 1995; Hua and Sun, 2001)
and Hidden Markov Models (HMMs) (Bystroét al., 2000).
Then, the output scores from (B) are converted to secondary
structure labels. This involves considering the influence of
neighboring structures by structure-to-structure mapping (C)
and physically removing unlikely conformations by a Jury
system (D), also referred to as ‘filters’ or ‘smoothers’. Some
systems separate (C) and (D) for explicit evaluation while
others keep them in one unit (Rost and Sander, 1993; King and
Sternberg, 1996). Finally, aconsensusis formed by combining
predicted scores or labels from multiple independent systems

Protein secondary structure prediction involves the projecinto a single labeled sequence. Several methods have been
tion of primary sequences onto a string of secondary structur@pplied to consensus formation, such as a complex combina-
assignments, such as helix, sheet or coil. It is widely believedion of neural networks (Cuff and Barton, 2000), multivariate
that secondary structures can contribute valuable informatiolinear regression (Guermewt al., 1999), decision trees

to discerning how proteins fold in three dimensions.

(Selbiget al., 1999) and cascaded multiple classifiers (Ouali

Protein secondary structure prediction has been extensiveBnd King, 2000).
studied for decades (Cuff and Barton, 1999; Rost, 2001). While profile generation (A) and sequence-to-structure
Recent improvements have been accomplished not only byapping (B) have been studied extensively, the structure-
incorporating evolutionary information, but also by combin- to-structure mapping and jury system (C, D) have not been
ing the results of multiple independent prediction methodsexplored in detail although they are commonly used in vari-

into a consensus prediction (Rost, 2001).

ous systems. Recent analysis by information theory also

The architecture of a typical consensus prediction system igdicates that the correlation between neighboring seco_nd-
outlined in Figure 1. First, profile generation [(A) in Fig. 1], or ary structures are much stronger than that of neighboring

*To whom correspondence should be addressed

amino acids (Crooks and Brenner, 2004). From a machine
learning perspective, both the jury system (C, D) and the
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Fig. 1. The architecture of current secondary structure predictions [adapted from Rost and Sander (1993)].

Input Sequence:
Predicted Labels:

..RCGEQGSNMECPNNLCCSQYGYCGMGGDY..
..CCEHHHCCECCHHHCEECCCCCEECCHHHH..

T IA=

consensus (E) can be formulated asdbrebination problem
for sequences: given the predicted scores or labels, how should

we combine them into the final labels, taking into account the
dependencies of neighbors and constraints of a single protein
sequence?

Note that the combination problem for sequences is distinct
from another closely related task: given the predicted scores

Window-Based
Method

Z
&

w’

)

Graphical Chain
Model
(MEMMs, CRFs)

®

or labels from different systems for one residue, how can we |
combine them into the optimal labels? This task is a classicalcEHHHCCHCCHRHCEECCCCCRECCHHHH | CCRHHHCCECCHHHCEECCCCCEECCHHHH |
problem for machine learning known as an ensemble approach
and many ensemble methods have been used for consengtig. 2. Comparison of combination methods for protein secondary
formation. The difference between our task and the ensemblgructure predictions.
problem is that ensemble treats each residue as independent
and does not consider the extra information from neighbor- Withoutloss of generality, we assume that (1) the predicted
ing structures or constraints of a single sequence. Therefor8C0res are non-negative and normalized; (2) for one residue
our combination problem is more general and difficult than a%i» the higher the scor&;;, the larger the probability that the
classical ensemble problem. residuex; belongs to clasg.

Previous methods for Jury and consensus use Window-basqeli aditional window-based combination

approaches, i.e. taking predicted scores or labels from a slid- L
ing window and treating them as a classification problem (RosYndow-based method for label combination The standard

and Sander, 1993; King and Sternberg, 1996; Sollich an&nethod for converting scores to predicted secondary struc-

Krogh, 1996: Krogh and Sollich, 1997; Selbéyal., 1999: ture labels is to assign the class with the highest score. After

Cuff and Barton, 2000) (as shown in Fig. 2). However, thethat, many systems employ rule-based methods to improve
on the first-pass assignment, i.e. lddgel combination, for

window-based methods cannot capture long-distance interallP

tions, which are a hallmark of protein tertiary structures andnstance: Rost and Sander manually define heuristic rules to
known to influence the formulation and stability of second-femove helices with alength less than 3 and strands of length 1

ary structures. Therefore, we propose the use of graphic4ROSt and Sander, 1993; Salamov and Solovyev, 1995); King

chain models for the combination since they are able to congd Sternberg applied a decision tree algorithm to learn the

sider the correlations between labels, to include Iong-distanc@rjles automatically with 10-fold cross-validation (King and

interaction and to model the protein sequence as a whole. >t€rnberg, 1996). _ o
Predefined heuristic rules, without considering the proper-

ties of the data, have not improved the accuracy consistently
MATERIALS AND METHODS (Rost and Sander, 1993). In contrast, rules extracted auto-
We formulate our combination problem as follows: given amatically by supervised classifiers not only can generate the
protein sequenc® = x1x2---xy, the raw output by a sec- rules to filter out physically unrealistic predictions, but also
ondary structure prediction system is either a label sequenaman reduce the inductive biases from the particular learning
L =1lp---Iy,0raN x 3score matrix S, whers; = S;(x;) algorithm that the system used for prediction, such as neural
is the score of residug; for classj, j € Y = {H,E,C} networks and SVMs (Wolpert, 1992).
andi € {1, 2,..., N}. Taking the predicted labels or score The window-based label combination works as follows:
matrix S, we try to predict the true labéh Y, - - - Yy. given the labels predicted by a systéph --- Iy, and the
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window sizew, letd = (w — 1)/2 be the half of the window
size. The input features for residugare the predicted labels
within the windoww, i.e. {{;_g,li—g+1, - -+ liva—1,li+a) (@
null label is assigned if the label does not exist). Then &
rule-based classifier, such as decision tree or CART (Ro$
and Sander, 1993), can be applied. The window sizis (A)
a parameter with which we can tune the trade-off between

including useful information and excluding ‘noisy’ more Fig. 3. Graphical structures of\) simple HMM, B) MEMM, (C)
remote features. and chain-structured CRF.

()=} | )—()—)
ONONOGHOMOMO
(B)

©

Window-based method for score combination In current . . _ L
secondary structure prediction systemscore combina- machine learning community has proposed several discrimin-

tion is used widely. Window-based score combination@tiVé models for sequence data, such as Maximum Entropy
works similar to label combination except: (1) the input Markov Models (MEMMSs) (McCallumet al., 2000) and
features for residuer; are scores instead of labels, Conditional random fields (CRFs) (Lafferigt al., 2001).
i.€.[SH (Xi—a), SE(Xi—a), Sc (Xi—a), - - -+ St (Xiva), SE(Xitd), _They _have_ been s_uccessfully applied to many _apphcatlons
Sc(xiva)]; (2) powerful classifiers, such as neural networksincluding information retrieval and computer vision, and

and k-Nearest-Neighbor, are used instead of rule-base@chieved significant improvement over HMMs (McCallum,
classifiers. 2003). Compared with window-based methods, these graph-

Empirically, score combination has demonstrated morécal models are able to take into consideration the correlations

improvement in accuracy than label combination since thd€tween labels and long-distance information. Therefore, we
scores; (x;) indicates the confidence of the prediction thatP'OPOS€ to use the discriminative graphical chain models
residuex; belong to clasg and thus contains more informa- for score combination. To the best of our knowledge, this

tion than a single label (Rost and Sander, 1993; Salamo@PProach has not been studied in previous protein second-
and Solovyev, 1995; Jones, 1999; Gail., 2004). On the &Y structure prediction literature and is the primary focus of

other hand, we can expect that applying label combinatio?Ur article.

after score combination will hardly Change the final pl’ediC-Maxi mum entropy Markov models As shown in Figure 3B,

tions since the information from labels has been implicitty MEMMs replace the generative joint probabiliff (x, y;|
encoded in the scores (Rost and Sander, 1993). Both window;; _,)] parameterization in HMMs with the conditional

based label combination and score combination have thgrobabilities P(y;|y;—1,X) based on an exponential model
disadvantages of only considering the local information.  (McCallumet al., 2000):

Graphical modelsfor score combination 1

. . . P(ilyi-1,%) = ———exp| Y hcfi(%, yi, yi-1) |,
Simple graphical chain models, such as HMMs, have Z(¥i—1,X) [ - ]
been successfully applied to secondary structure prediction 1)
(Karpluset al., 1998; Bystroffet al., 2000). HMMs are gen-
erative models that assume that the data are generated b
particular model. These models work by computing the join
distribution of observations and statey, P(x, y) and make
predictions by using Bayes rules to calcula@éy|x). Two
kinds of probability distributions are defined in HMMs: (1)
the transition probabilitied (y;|y;—1) and (2) the observa-

tion probabilitiesP (x;1y;). By the independence assumptions, i il an efficient dynamic programming solution to the

|Ie pilyi) = p(xilyi,yi-1), we have the rj;oint pr?]bat)l— problem of identifying the most likely state sequemieen
ity P(x;, yilyi-1) = P(xily)P(vilyi-1). The graphical o ohgeration. Compared to HMMs, McCallatral. (2000)

structure of HMMs is shown ?n Figure 3A. redefinedw; (y) to be the probability of being in state at
Although successfully applied to many sequence data IorObﬁmei given the observation sequence up to tim&hen the
lems, HMMs are not appropriate for our combination taSk'recursive step is

First, it is difficult to include overlapping long-range fea-

tures due to the independence assumption. Second, gen- o _ @ (V) P(VIV - x: 2
erative models such as HMMs, work well only when the +10) Z (O PO, xiv1) @
underlying assumptions are appropriate. On the other hand,
discriminative models do not make any assumptions an&imilarly, 8;(y) is redefined to be the probability of starting
compute the posterior probability directly. Recently, thefrom statey at timei given the observation sequence after

where Z(y;—1,X) is a normalizing factor. The exponential
er?)dels, derived by maximum entropy, are able to handle
tarbitrary, non-independent featuregi, including long-
distance interactions. The model parametgi.e. the weight
for feature fi, is learned via maximizing the conditional
likelihood of the training datd[, P (y:|x:).

Despite the differences between HMMs and MEMMs, there

y'ey
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time i and the recursive step is m
Bi(y) =D PGIY, xiy) - Biya (). o @ @ 0 0 @ @ @
yeyY
Given the observatiomyxz - - - x, we can compute (1) the ° @ e @ ° e @ e
(A) (B)

marginal mode of the optimal labélgs - - -ty by

l; = arg ;2‘;3}){%' MBiM],
Fig. 4. Graphical structures ofA) MEMM and (B) second-order

or (2) MAP estimate by using Viterbi algorithm as defined MEMM.
in Equation (2) except for using a maximization operation in
place of summaupn [_see Rabmgr (1989)_for details]. The score feature is the same as discussed above and the

For score combination, we define two kinds of features: on? i . . )
. ransition feature is defined as follows:
is the score feature

JE— i) dfy=j Pyilyi-1) = Pyi, yi—1) [(yi-1, yi-2)) = P(yi|yi—1-yi—(24)rj
Y oo 0 otherwise.
Pseudo state duration markovmodels Higher-order Markov
and the other is the transition feature models provide a solution to circumvent the state independ-
POilyiy) i vi= joyi1=k ence assumptipns. quever, the number of new slm_s
S (xi, i, yie1) = { Yilyi-r) WY =JiJi-1 is an exponential function of the order K. The computational
' 0 otherwise, costs become intractable as k increases. To solve the problem,

(3)  we devise a heuristic method that is able to encompass more
wherej,k € Y = {H, E,C}. P(yilyi-1) can be learned from  hjstory information with the same computational cost as one-
the training data: order Markov models, namely pseudo state duration Markov
models (PSMEMMS).

Our heuristics are based on the observation that the distri-
bution of the segment length varies for different structures, as
We notice that for MEMMSs, the transition information is shown in Figure 5A (only segments less than 20 residues are
already encoded implicitly in the Viterbi process. Sinceshown). From the graph, we can see that different segment
MEMMs have the advantage of allowing as many featuredengths are preferred by different structures. For example,
as possible without decreasing the performance, we also treatound 25% of beta-strands have only one residue, which are
flransas explicit features in case they help. in fact beta-bridges; there are also shag:Belices with three
or four residues.

To incorporate such kind of information, we define

# of occurencesy’y
# of occurencesy’

POyly) =

Higher-order Markov models As shown in Figure 3B,

MEMMs have first-order Markov assumption, i.e. P(yly', N) as the probability that the current stateigiven

P(yi+1lyi) = P(yivalyi, yi-1). The effect is 2-fold: on one oo oo history oV consecutive’. P(y|y’, N) is learned
hand, it simplifies the model and dramatically reduces thefrom the training data in the following way:

computational cost; on the other hand, this assumption
is clearly inappropriate for secondary structure prediction, N

where the structure dependencies extend over several residues / # of occurencesy’ ’y/y/ o y?y

and even involve long-distance interactions. To solve this POyly',N) = = .

problem, higher-order Markov models (HOMEMMSs) can be # of occurencesy’y’y’-- -y’

applied (Rabiner, 1989). The distribution of? (H|E, N), P(H|H, N) andP(E|E, N),

For simplicity, we only consider second-order Markovmod- p (g, N) for N < 20is plotted in Figure 5B and C, respect-
els, in which the next state depends upon the two previougely (we assume there is no direct transition from H to E,
states (Fig. 4B). The second-order Markov models can bg; from E to H). Data sparsity problems might occur when
transformed to an equivalent first-order Markov model by ;' grows larger. It can be addressed by smoothing methods,
redefining the stat¢; as such as Laplace smoothing.

All the algorithms and definitions are similar as MEMMs
except that the transition feature is:

Vi = (i, yi-1) €Y xY =Q.

In secondary structure prediction, the set of new stat@sis . .
{HC, HE, HH, EC, EE, EH, CC, CE, CHWe notice that the  srans (. o 1y _ P(yilyi-1, N) ifyi=j,yica=k
number of states grows exponentially. <k T 0 otherwise,
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Fig.5. (A) The distribution of the segment length for different structurB}ttfe transition probability of helicesC) the transition probability
of beta-sheet.

whereN can be back-traced from the maximization historiesP (y | x) directly. The graphical structure for chain-form
in the dynamic programming process. CRFs is shown in Figure 3C. By Hammersely—Clifford the-
orem (Hammersley and Clifford, 1971) and using exponential

Conditional random fields In addition to Markov assump- model, the conditional probability (y|x) is defined as
tion, MEMMs also suffer from the problem known as thbel N
biasproblem. In short, thiabel biasmeans that the total prob- 1
ability ‘received’ byy;_1 must be passed on to labg]sat time Py = 7o %P |:Z > febi-a, yi’x):| - 0
i evenifx; is completely incompatible with; _1 [see Lafferty
et al. (2001) for full discussion]. CRFs proposed by Lafferty Similar to MEMMs, f; can be arbitrary features and
et al., are a globally normalized extension to MEMMs that the weight A; is learned via maximizing the conditional
avoid the label bias problem (Laffergg al., 2001). likelihood of the training data.

CRFs areundirected graphical models (also known as Comparing Equation (5) with Equation (1) in MEMM, the
random fields) and calculate the conditional likelihood only difference between the two is that MEMMs take a local

i=1 k
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Table 1. Summary of the graphical models constraints. Based on the discussion by Cuff and Barton
(1999), the eight DSSP labels are reduced to a three state
model as follows: H and G to Helix (H), E and B to Sheets

1st-order Label Flexibility of Global

Markov bias features optimum (E) and all other states to Coil (C).
All the combination methods discussed above can be
HMMs + + - - applied to combine predictions from single or multiple sys-
MEMMs + - + - tems. To provide accurate evaluation, we choose to use outputs
HOMEMMs  — - + - from a single system to distinguish the improvement from con-
PSMEMMs - - + B sidering correlations of labels and long-distance interactions
CRFs + + + +

with the improvement from the overlapping information by
different systems.

For protein secondary structure prediction, the state-of-art
performance is achieved by window-based methods using the
PSI-BLAST profiles (Jones, 1999). In our experiments, we
apply a linear transformatioh to the PSSM matrix elements
@ccording to

normalizationZy while CRFs are global. This enables CRFs
to have convex optimization function so that the global optimal
solutions are guaranteed (Laffedyal., 2001). However, it

is not straightforward for CRFs to find the optimum quickly.
Very recently, the quasi-Newton methods are shown to b

significantly more efficient than other methods (McCallum, 0 if (x <—=5)
2003). Lx)={L(x)=3+% if(-5<x<5
As in MEMMs, the ‘forward valuei; (y) is defined as the LEx; B i 10 ot;eerse =5

probability of being in state at timei given the observation
up to timei andg; (y) is the probability of starting from state This is the same transform used by Kim and Park (2003) in the
y at timei given the observation sequence after tim&dhe  recent CASP (Critical Assessment of Structure Predictions)
recursive step is: competition, which achieved one of the best results for protein
secondary structure prediction. The window size is set to 13
by cross-validation.

Various measures are used to evaluate the prediction accur-
acy, including overall per-residue accuragysj, Matthew’s

) correlation coefficients per structure typéy, Cc, Cg) and

Bi(y) = ZGXP[Z M ey %00+ 1)}3141(3’)' segment of overlap (SOV) (Rost al., 1994; Zemlaet al.,

yey k 1999) and the per-residue accuracy for each type of secondary
. pre pre pr
The forward—backward and Viterbi algorithms can be derivedtUcture O, Qe, Oc; Oy, O ,0¢") [see Hua and Sun

accordingly. The features for score combination are the sam@901) for detailed definition]. Seven-fold cross-validation
as that defined for MEMMs. was used, which is the same setting as in Rost and Sander

(1993) and Hua and Sun (2001).
Summary Table 1 summarizes the properties of the graph-

ical models discussed above. We can see that all the modeSESULTS

except HMMs have the flexibility of mplud_lngny feature ‘Scoredistribution

and therefore are good for score combination. However, this . o

only indicates the general power of the models; the effective©@ne of the assumptions for why combination methods work

ness and computational costs will be further discovered in oul that the score contains more information than a single label.

ai1(y) =Y i () exp {Z M fi Yy X0+ 1)} :
Y k

experiments. If two scoresS; (x;) and Sy (x;) for residuex; are very close,
) then combining them with the information from neighbors
Materials might help the final prediction adjust to the correct label by

In our experiments, we used the CB513 dataset by Cuff andverriding the small score difference. From the aspect of
Barton (Cuff and Barton, 1999), which many previous papersnformation theory, we try to use combination methods for
reported results on (Hua and Sun, 2001; Kim and Park, 200Zrror-correction.
Guoet al., 2004). It consists of 513 non-homologous protein Therefore, we studied the distribution of the differences
chains thathave an SD score, i.e. Z score for comparison of thHeetween the maximum scodé(x;) and the second maximum
native sequences given by — x) /o, of less than five (Cuff scoreM’(x;) for residuex;, as shown in Figure 6. From the
and Barton, 1999). The dataset can be downloaded from thaot, we can see that the probability that the differenbes
website http://barton.ebi.ac.uk/. are close to zero is very high. The cases falling into the green
We followed the DSSP definition for protein secondaryarea |P(|D| < 0.1)] covers around 5% of the total residues,
structure assignment (Kabsch and Sander, 1983). The definishich demonstrates that there is still room for improvement
tion is based on hydrogen bonding patterns and geometricaly score combination.

3104


http://barton.ebi.ac.uk/

Protein secondary structure prediction

0.25

representative. To get the optimumin MEMMs and CRFs,

the conjugate gradient algorithm was applied (the code can
be downloaded from http://www.cs.toronto.egtbliescher/).
Table 3 shows the results of the four graphical models for
score combination:

02

0.15
Generally speaking, the graphical models for score com-

bination are consistently better than the window-based
oal | approaches, especially in SOV measure.

« For the MEMMSs, the prediction accuracy using Viterbi
algorithm is better than that using marginal mode. It is
0.05 1 interesting to note that the opposite is true for CRFs.

e Compared with MEMMs, HOMEMMs and PSMEMMs
. . . . . were somewhat improved in SOV measure since these
-8 -6 -4 -2 0 2 4 6 8 methods consider more history information. How-

D = Max Score -~ Second Max Score ever, there is little difference in performance between
HOMEMMSs and PSMEMMSs. This might indicate that
higher-order MEMMs will hardly add more value than
second-order MEMMSs.

e CRFs perform the best among the four graphical
models. They exhibit moderate improvements for
predicting helices and especially sheets. Global
optimization and removing label bias seem to help since
these are the only differences between MEMMs and
CRFs.

P(D)
°

Fig. 6. The distribution of the differences between max score and
second max score.

Comparison of combination strategies

To fairly evaluate the effectiveness of different methods, we
use the same input, i.e. the score maffigenerated from
SVMs with RBF kernels using the PSI-BLAST profiles. For
the window-based combination, we use the decision tree
algorithm C4.5 (Quinlan, 1993) for label combination and
SVMs with RBF kernels for score combination. The window
sizew is set to 15.

Table 2 lists the results of the window-based methods

« Generally speaking, the window-based score combinaCombination bounds using PSI-BLAST profiles
tion improved the prediction more than the labelWe have discussed several combination strategies using
combination. This confirms our expectation sincegraphical models and our experiments demonstrate that those
the scores contain more information than a singlemethods can improve the secondary structure prediction per-
label. formance to a certain extent. However, what is the best

« The label combination resulted in maximum improve- performance we can get by combining the predictions?
ment for predicting helices rather than other structuresAnswering this question will involve much deeper analysis
King and Sternberg reported a similar observation andtnd more thorough experiments. However, we can getarough
showed that the extracted rules are most relevant téfea of the limits by providing the location of the true segment
helices (King and Sternberg, 1996). boundaries.

e The prediction accuracy has increased for both helices TWO .S|mple strqteg|es have peen used: the max rule, i.e.
and sheets by score combination. assigning the labglwith the maximum score max S; (x;) to

all residues within the segment, and the sumrule, i.e. assigning
In terms of the graphical models for score combination, wethe labelj with the maximum sum of scores ma} ; S; (x;)]
examined the four methods discussed before. To fairly comto all the residues within the segment (Table 5). Since no
pare with window-based methods, only two kinds of featuresnethod can predict the segment with perfect accuracy, these
are used for the prediction: the score featufé®®©and the results can be seen as an upper bound by using PSI-BLAST
transition featureg@"S although we believe incorporating profiles. From the results, we can see that even given the
other features will improve the predictions more. For higher-true segment assignments, we are still far from reaching an
order MEMMSs, we choose the second-order MEMMs asaccuracy of 90% using current PSI-BLAST profile features.
The ideal solution would be to incorporate other informative

IThe results for window-based score combination using SVMs are slightylon-local features, by which the graphical models can gain
better than the results reported in Gai@l. (2004) on the same dataset. more Improvements.

Table 4 summarizes our discussion above and provides a
qualitative estimation of computational costs as well as the
performance for each method.
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Table 2. Results of protein secondary structure prediction on CB513 dataset using window-based combination methods

Combination method SOV (%) Q3(%)  QOn (%)  Qc(%) Qe(%w) OF° (%)  02°(%)  OF°®%)  Cw Ce Ce

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
Dtree 75.7 76.7 78.0 83.2 62.8 83.7 72.1 77.1 0.72 0.58 0.62
SVM 75.7 76.9 814 76.7 70.5 82.1 75.2 72.2 0.72 0.58 0.63

Table 3. Results on CB513 dataset using different combination strategies. MENMIRF: p refers to different way to compute the labels;= 1: marginal
model; p = 2: Viterbi algorithm

Combination method SOV (%) Q3(%) Ou (%)  QOc(®) Qe @) OF°@®) 02°®%) 0OfF°®%) Cu Cc Ce

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
MEMM* 75.6 76.7 77.8 83.6 62.1 83.7 71.8 77.8 0.71 0.58 0.62
MEMM?2 76.0 76.8 78.2 83.4 62.2 83.7 72.0 78.0 0.71 0.58 0.62
HOMEMMs? 76.1 76.9 78.3 83.4 62.4 83.6 72.1 77.9 0.71 0.59 0.62
PSMMEMMS 76.1 76.9 78.3 83.3 62.2 83.6 72.0 78.0 0.71 0.58 0.62
CRF 76.2 77.0 78.3 83.4 63.4 83.7 72.1 78.0 0.72 0.58 0.63

Table 4. Summary of computational costs and effectiveness for differentthe combination. Ourexperiments showthatgraphica| models
combination strategies. H/L/M: high/low/medium computational cests;: are consistently better than the window-based methods. In
i i t th li Its without inati . . . .
improvement/no improvement over the baseline results without combina 'O?:)artlcular, CRFs improve the predictions for both helices and
sheets, while sheets benefitted the most.

Train  Test Helices Sheets Coil  Segment Qur goal is to evaluate different combination methods and

provide a deeper understanding of how to effectively improve

DTree M L + - - - secondary structure prediction. Although our discussion is
a\é"l\"ﬂMs Z f + + - J‘r focused on combining predictions from a single secondary
HOMEMMs & L B B -~ . strugture pred|c'F|on system, all th_e methods dlscussegl can be
PSMEMMs H L _ _ _ + applied to combine results from different systems and include
CRFs H L + + - + other physico-chemical features. Since each part in a second-

ary structure prediction system is not independent (Fig. 1),
our future work would be to consider all parts as a whole and
Table5. Results of combination given the location of each structure segmenbuild a hybrid system.

on CB513 dataset by seven-fold cross-validation
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