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ABSTRACT 
A current barrier for successful rational drug design is the lack of 
understanding of the structure space provided by the proteins in a 
cell that is determined by their sequence space. The protein 
sequences capable of folding to functional three-dimensional 
shapes of the proteins are clearly different for different organisms, 
since sequences obtained from human proteins often fail to form 
correct three-dimensional structures in bacterial organisms. In 
analogy to the question "What kind of things do people say?" we 
therefore need to ask the question "What kind of amino acid 
sequences occur in the proteins of an organism?" An 
understanding of the sequence space occupied by proteins in 
different organisms would have important applications for 
"translation" of proteins from the language of one organism into 
that of another and design of drugs that target sequences that 
might be unique or preferred by pathogenic organisms over those 
in human hosts. 

Here we describe the development of a biological language 
modeling toolkit (BLMT) for genome-wide statistical amino acid 
n-gram analysis and comparison across organisms (freely 
accessible at www.cs.cmu.edu/~blmt). Its functions were applied 
to 44 different bacterial, archaeal and the human genome. Amino 
acid n-gram distribution was found to be characteristic of 
organisms, as evidenced by (1) the ability of simple Markovian 
unigram models to distinguish organisms, (2) the marked variation 
in n-gram distributions across organisms above random variation, 
and (3) identification of organism-specific phrases in protein 
sequences that are greater than an order of magnitude standard 
deviations away from the mean. These lines of evidence suggest 
that different organisms utilize different "vocabularies" and 
"phrases", an observation that may provide novel approaches to 
drug development by specifically targeting these phrases. The 
results suggest that further detailed analysis of n-gram statistics of 
protein sequences from whole genomes will likely - in analogy to 
word n-gram analysis - result in powerful models for prediction, 
topic classification and information extraction of biological 
sequences. 
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1. INTRODUCTION 
1.1 Opportunity for human language 
technologies in biological data analysis 
Central to the understanding of complex biological systems are 
proteins. Their form and function is in principle encoded in 
characteristic amino acid sequences. The precise relationship 
between a primary protein sequence, its three-dimensional 
structure and its function in a complex cellular environment is one 
of the most fundamental unanswered questions in biology. Large 
amounts of genomic and protein sequence data for homo sapiens 
and other organisms have recently become available, together with 
a growing body of protein structure and function data. The 
expected exponential increase in the amount of this data in the 
coming decade creates an opportunity for attacking the sequence-
structure-function mapping problem with increasingly sophisticated 
data-driven methods. Such methods have proven immensely 
successful in the domain of natural language, and are directly 
responsible for the success of automatic speech recognition, 
document classification, information extraction, statistical machine 
translation and other challenging tasks over the past two decades. 

1.2 Introduction: biological language 
The mapping of biological sequences to form and function of 
proteins is conceptually similar to the mapping of words to 
meaning. This analogy is being studied by a growing body of 
research ([1] and pointers thereof). Thus, word n-gram analysis 
has found applications to biological sequences, using various types 
of "vocabulary", for example the nucleotides or the 61-codon 
types in the case of DNA (e.g. [2]), and the standard 20 amino 
acids or reduced 3-letter charge groups of the amino acids in the 
case of proteins (e.g. [3]). Thus, nearest-neighbor correlation 
analysis have revealed specific preferences for proximity of certain 
amino acids in protein sequences [4], The results from n-gram 
analysis have been used in some cases to demonstrate that genome 
or protein sequences follow Zipf law [5-11]. However, since non-
deterministic sequences also follow a power law (see e.g. [12]), 
detection of linguistic features in biological sequence data based on 
the distribution of n-grams is controversial and the extent to which 
amino acid sequences can be modeled stochastically is not clear. 

The advent of whole-genome sequencing efforts provides a new 
opportunity to revisit n-gram statistics and Zipf-type analysis in 
greater detail. In particular, specific questions that can now be 
addressed are: How characteristic is the amino acid n-gram 
distribution for specific organisms? Do different organisms tend to 
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use different phrases? Previous determination of global statistics of 
entire genomes supports that there are genome-specific regularities 
in n-gram statistics. For example, species-specific regularity in 
composition ("unigram count") has been identified [13], the typical 
length of prokaryotic proteins is different from that in eukaryotes 
[14, 15] and differences in patterns in usage of secondary structure 
elements [16] by various genomes have been observed. Here we 
extend global genome sequence analysis to systematically compare 
n-gram statistics of protein sequences from a larger number of 
known genomes. The long-term goal is to provide a useful starting 
point to derive language models with defined vocabulary and 
phrase preferences and grammatical rules for protein sequences of 
different organisms. 

2. DEVELOPMENT OF A TOOL-KIT FOR 
BIOLOGICAL LANGUAGE MODELING 
(BLMT) 
Statistical analysis of biological sequence data requires n-gram 
string matching and string searches. Due to the large size of 
genomic data, the search for subsequences becomes a 
computationally challenging problem. Searching for a sub-string 
from large text data is a well-studied problem in computer science, 
with applications to diverse areas including data compression, 
network intrusion detection, information retrieval and word 
processing [17]. Data structures like suffix trees [18] and suffix 
arrays [19] have been used as preferred data structures for 
applications of this kind [19-21] and more recently also for 
biological data [22]. When suffix arrays are complemented with 
other data arrays, e.g. the Least Common Prefix (LCP) array [19] 
and/or Rank arrays [23], they provide additional functionality at 
reduced computational cost. Thus, it permits search of a sub-string 
of length P in a string of length N in 0(P+log N) time, and requires 
O(N) space for construction, which is competitive with those of 
suffix trees [19]. Preprocessed suffix arrays can now be used to 
efficiently extract global n-gram statistics and compare it amongst 
various genomes. The method is illustrated in Figure 1 using the 
organism Aeropyrum pernix as an example (Table 1). 

To extract n-gram statistical data from the genome suffices, we 
have assembled a tool-kit that combines the following functions: 
(1) Counting protein number and length 
(2) Counting n-grams and most frequent n-grams 
(3) Counting n-grams of specified length 

(4) Determining relative frequencies of specific n-grams across 
organisms 
(5) Identifying longest repeating sequences 
(6) Localization and co-localization of n-grams for grouping 
proteins 
(7) N-gram neighbor (left and right) identification 
(8) Distribution of n-gram frequencies in specific protein sequences 
from global statistics 
(9) Preprocessing of sequence data to prepare for analysis in 
CMU/Cambridge Statistical Language Modeling (SLM) Toolkit 
[24]. 

The functions of the toolkit were applied to protein sequences 
derived from whole-genome sequences of 44 different organisms. 
Amino acids were treated as words. The numbers of proteins 
varied from 484 (175,928 amino acids) in Mycoplasma genitalium 
to 25612 (18,283,879 amino acids) in Homo sapiens. 

Table 1. Format of protein sequence input files 

>gil5103389ldbjlBAA78910.1l 241aa long hypothetical protein 
MVDILSSLLL 
>gil5103390ldbjlBAA78911.11 112aa long hypothetical protein 
MDPADKLMK 
>gil5103391ldbjlBAA78912.1l lOOaa long hypothetical protein 
MQA 

3. RESULTS: COMPARATIVE GENOME 
N-GRAM STATISTICS 
3.1 Probabilistic models can distinguish 
organisms 
A simple Markovian unigram (context independent amino acid) 
model from the proteins of Aeropyrum pernix was trained. When 
training and test set were from the same organism, a perplexity (a 
variation on cross-entropy) of 16.6 was observed, whereas data 
from other organisms varied from 16.8 to 21.9. Thus the 
differences between the 'sub-languages' of the different organisms 
are automatically detectable with even the simplest language 
model. This observation is purely based on the large differences in 
unigram distributions (described in Section 3.2 and Figure 2 
below) and is independent of the organism that is used to train the 
model. 

Genome String 

Suffix (Pos) Array Lexicographical ordering of suffixes: Position 0 is # (24 in original string). Position 1 
is #MD... (10 in original string), Position 2 is #MQ... (20 in original string), Position 3 is A# (23 in original 

^ ^ string) etc. 
| H Rank Array The suffix A#.... takes position 3 in the suffix array, hence its rank is 3. 

LCP Array The number of common leading symbols. 

Figure 1. Example for genome string organization in suffix arrays: Aeropyrum pernix. 
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3.2 Comparative Zipf-like analysis 
We developed a modification of Zipf-like analysis that can reveal 
differences between word-usage in different organisms. First, the 
amino acid n-grams of a given length are sorted in descending 
order by frequency for the organism of choice. An example using 
the simplest case, n=l, is shown in Figure 2 for two organisms 
Aeropyrum pernix and Neisseria meningitidis to illustrate the 
principle. The frequencies of the sorted n-grams are shown in bold 
red. Thin lines indicate the respective frequencies of n-grams with 
given rank in Aeropyrum pernix (Figure 2A) or Neisseria 
meningitides (Figure 2B) in all the other organisms. The same plots 
for the other 42 organisms studied for n=l and also for other n 
(n<5) can be viewed at www.cs.cmu.edu/~blmt. While there is 
striking variation in rank of certain n-grams in different organisms, 
the most rare n-grams in one organism are overall rare in all 
organisms. Specific differences in n-grams other than unigrams are 
explored in more detail below (Section 3.3). 

L A G V R S E P I T D K Y F M N H Q W C 
Ranked Amino Acid 

A L G V E I K S R D T P F N Q Y M H W C 
Ranked Amino Acid 

Figure 2. Comparative Zipf analysis: n-grams are 
ranked according to frequency for one organism 
(shown as bold, red line). Shown here are two 
examples for n=l, Aeropyrum pernix (A.) and 
Neisseria menigitidis (B.). The respective 
frequencies of n-grams the other 43 organisms 
studied are drawn as thin lines. The plots for 
other organisms and other n studied can be 
viewed at the website www.cs.cmu.edu/~blmt. 

3.3 Organism-specific usage of "phrases" in 
protein sequences 
The Zipf-like analysis described above (Section 3.2) allows us to 
quantify the differences in specific n-gram frequencies across 

0.10 r"' 

B. Neisseria meningitidis, n=4 

0.00. 

C. Homo sapiens, n=4 

Figure 3. Comparative Zipf analysis: Top 20 most frequently 
used 4-grams in Aeropyrum pernix (A), Neisseria 
meningitidis (B) and Homo sapiens (C). Line colors as in 
Figure 2. 
organisms. In particular, as we move to larger contexts, organisms 
show much more marked differences in the statistics of their n-
gram distribution with peculiar outliers. Strikingly, we found n-
grams that are very frequent in some organisms yet rare (or 
completely absent in some cases) in others. Examples are shown in 
Figure 3 for n=4 in Aeropyrum pernix (Figure 3A), Neisseria 
meningitidis (Figure 3B) and Homo sapiens (Figure 3C). In A. 
pernix, the LEEA frequency is strikingly high. In N. meningitidis, 
MPSE, SDGI and GRLK are amongst the top 20 most frequently 
used 4-grams, but are used in no other organism with such high 
frequencies. In human, the differences to the bacterial and archaeal 
organisms are even more pronounced, presumably due to their 
evolutionary distance to the unicellular organisms. The 
investigation of other eukaryotic genomes is underway. 

These highly idiosyncratic n-grams suggest "phrases" that are 
preferably used in the particular organism The observation of 
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organism-specific phrases is not unique to extremophile or other 
specialized organisms. Instead,; idiosyncratic phrases appear in all 
the organisms (also see Section 3.4 below), and the results for 
other organisms (including very common and ubiquitous bacteria 
such as Escherichi coli) can be viewed at www.cs.cmu.edu/~blmt. 
Importantly, these phrases can be organism-specific. 

3.4 Phrases are not due to random variation 
To test if the observation of idiosyncratic n-grams could be 
explained by chance sampling, we generated two sets of 20 
artificial genomes by Monte Carlo simulation using the unigram 
frequencies of Neisseria meningitidis and Aeropyrum pernix, 
respectively. Figure 4 shows a Zipf-like comparison as described 
above for the natural genomes, for Neisseria meningitidis in 
comparison to the random genomes (A), for Aeropurum pernix in 
comparison to the random genomes (B) and for one of the random 
genomes in comparison to the other random genomes and the 
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B. Neisseria meningitidis, n=4 

^M^^^^^W^^ 

N-gram 

Figure 4. Comparative Zipf analysis of random genomes versus 
natural genomes: Top 20 most frequently used 4-grams in 
Aeropyrum pernix (A), Neisseria meningitidis (B) and a random 
genome (C). Line colors as in Figure 2. Note that both natural 
genomes strike out, not only the one according to which the n-
grams were ranked. 

N-gram 

Figure 5. Distance from mean values based on unigram 
distributions in Neisseria meningitidis. Values are 
plotted as multiples of standard deviation from mean. 
The unigram distribution was as in Figure 2A. 

Neisseria and Aeropyrum genomes (C). As one can see, in both 
natural genomes the frequencies are well above the baseline 
variation due to chance sampling. 

3.5 Phrase frequencies can be very distant 
from mean values 
To further strengthen the notion that the phrases are not due to 
random variation, we calculated the distance of 4-gram frequencies 
in multiples of standard deviations for the top 20 4-grams in 
Neisseria meningitidis. The result is shown in Figure 5. The 
phrases SDGI and MPSE are approximately 30 standard deviations 
away from the means based on unigram distributions. In contrast, 
all of the other organism, except for a different strain of Neisseria 
meningitidis, show only very small standard deviations from mean 
values based on their own unigram frequencies. GRLK is also 
more frequent than would be expected based on independent 
unigram probabilities, although not to the same degree as SDGI 
and MPSE. The large deviation from mean values clearly shows 
that phrases are not only organism-specific in absolute terms but 
are also quantifiably distant from the values predicted by 
independent unigram frequencies of the same organism. 

3.6 How many phrases are there in an 
organism? 
The previous section has shown that there is a correlation between 
deviation from mean values within the same organism and 
difference in frequency of certain n-grams in comparison with 
other organisms. The next step is to identify all the phrases in an 
organism. Towards this goal, we have quantified the number of n-
grams as a function of standard deviation from mean values. The 
result is shown for one organism (Escherichia coli) in Figure 6, for 
n=2 (Figure 6A), n=3 (Figure 6B) and n=4 (Figure 6C). Especially 
3-gram and 4-gram values are heavily tailed. It is this long tail 
which gives rise to the large deviations observed in Figure 5. 
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One Standard Deviation 

A:n=2 

x10A-4 

Least distance from mean in 
intervals of standard deviation 

Figure 6. Number of n-grams in dependence of 
distance from mean value for Escherichia coli. 
Solid lines, absolute values; dotted lines, negative 
values (underrepresented n-grams); dashed lines, 
positive values (overrepresented n-grams). 

4. CONCLUSIONS AND FUTURE WORK 
Using n-gram statistical analysis of whole-genome protein 
sequences we have shown that there are organism-specific phrases 
in direct analogy to human languages. Future work will aim at 
detailed identification of these phrases to map out the sequence 
space occupied by proteins in different genomes. We will test 
experimentally what is the structure space occupied by these 
sequences to map their biological significance. 
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