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Abstract

We consider the optimization problem of learning regrassimdels with a mixed-norm penalty

that is defined over overlapping groups to achieve strudtsparsity. It has been previously shown
that such penalty can encode prior knowledge on the inputtpud structure to learn an structured-
sparsity pattern in the regression parameters. Howeveguse of the non-separability of the
parameters of the overlapping groups, developing an eificptimization method has remained
a challenge. An existing method casts this problem as a demaler cone programming (SOCP)
and solves it by interior-point methods. However, this apgh is computationally expensive even
for problems of moderate size. In this paper, we proposefenegit proximal-gradient method that

achieves a faster convergence rate and is much more effanedrgcalable than solving the SOCP
formulation. Our method exploits the structure of the noresth structured-sparsity-inducing

norm, introduces its smooth approximation, and solves dpjsroximation function instead of

optimizing the original objective function directly. We menstrate the efficiency and scalability
of our method on simulated datasets and show that our metothe successfully applied to a
very large-scale dataset in genetic association analysis.

Keywords: structured sparsity, overlapping group structure, praigradient method, multi-task
sparse learning
1 Introduction

The problem of high-dimensional sparse feature learnirgggin many areas in science and en-
gineering. In a typical setting, the input lies in a high-dimsional space, and we are interested in
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selecting a small number of input features that influencethiput. Although a popular approach
has been to optimize the loss function with @anorm penalization (e.g., lasso [13]) to shrink
the parameters to zero for the irrelevant input features ,dbes not take advantage of any prior
knowledge on the structure of the inputs to leatructured-sparsityattern in the estimated pa-
rameters. In the simple case of a non-overlapping grouptstreiover the inputs, group lasso with
aly/l,-norm penalty has been used to learn structured-spardigrpan which multiple inputs
in a cluster are jointly relevant to the outplt [14]. Recgnith order to handle a more general
structure, the original group lasso with non-overlappingugs has been extended to overlapping
groups [15/ 6]. For example, when inputs are organized aseawith a multi-level clustering
structure, a generatructured-sparsity-inducing normpenalty can allow the sparsity pattern in
the parameters to reflect overlapping groups of the compleutistructure. Similar ideas have
been used in multi-task learning in which tasks (or outpate)organizea priori into a particular
structure and the closely related tasks according to thistsire share a similar sparsity pattern for
relevant features [7].

A practical challenge in using any structured-sparsitydicing norms with overlapping groups
is to develop an efficient optimization method. In the simpése of group lasso with non-
overlapping groups, the optimization is relatively sthafgrward in that the block coordinate-
descent algorithm [4,/ 9] can be applied that computes thgradient and then update parameters
for each group iteratively according to its closed-form afgdequation. In contrast, when the
groups overlap, this block coordinate-descent methodatams applied because the subgradient
with respect to each group has a complex form and a closed-dpdate equation cannot be ob-
tained. Instead, the most widely adopted method is to faateuhe problem as a second-order cone
programming (SOCP) and solve it by the interior-point met{i®M). This approach is computa-
tionally very expensive [8]. To improve the scalabilityryeecently, an unpublished manuscript
[6] proposed an active-set algorithm which solves a sequefhsubproblems with a smaller set
of “active” variables. However, this method can only solkie tegression problems regularized
by thesquareof the structured-sparsity-inducing norm. In additionstimethod formulates each
subproblem either as an SOCP, which can be computationadBnsive for a large active set, or as
a jointly convex (but still non-convex as a whole) problenthwauxiliary variables, which is then
solved by an alternating gradient descent. This latteragutr lacks the guarantee in optimization
convergence and may lead to numerical problems.

In this paper, we propose an efficient proximal-gradienthoétfor estimating regression pa-
rameters with the overlapping group structure encodedastituctured-sparsity-inducing norm for
both single and multi-task learning settings. Our appraadtalled “proximal” gradient method
in that instead of optimizing the original problem directiye introduce a smooth approximation
of the structured-sparsity-inducing norm and then appdyattcelerated gradient method|[11]. Our
method can achiev® (1) convergence rate for a desired accuracyn other words, it can find
a solution@" for minimizing f function aftert = O(2) iterations such thaf(8') — f(8") <
where3* is the optimal solution. There are several advantages imgusir proximal-gradient
method: (a) Our method is a first-order method, i.e. it onlysuhe gradient information. Thus,
it is significantly more efficient and scalable than IPM for @@ (b) Our method is a general
approach that can be used to solve any optimization probleithsa smooth convex loss and a



structured-sparsity-inducing norm with overlapping grsuincluding both single-task and multi-
task regressions. (c) Theoretically, our optimizationhmodthas a faster convergence rate?c@f;)
than the subgradient method with a convergence ra@(gf). In fact, for the optimization prob-
lems with overlapping groups that we consider in this pajiere are no implementations of the
subgradient method available in the literature. (d) Ourhoeétis easy to implement with only a
few lines of MATLAB code.

The rest of this paper is organized as follows. In Section& pvesent our proximal-gradient
method for structured sparse feature learning for unitediegression along with the complexity
results. In Section 3, we present the generalization of tgorihm to the multi-task learning
setting. In Section 4, we present numerical results on bimtlulated and genetic association
datasets, followed by conclusions in Section 5.

2 Proximal-Gradient Method for Univariate-Response Regrs-
sion with Structured Sparsity

In this section, we introduce our proximal-gradient metfadhe sparse univariate-response (also
called single-task) regression problems with overlapgiraup structure over the inputs encoded
in the structured-sparsity-inducing norm. Then, in thetsextion, we will show how this method
can be applied to a multi-task setting.

First, we define our sparse regression problem and stracgparsity-inducing norm. Given
the input dataX € RV*/ for J input features and the output datac RV*! for V samples, we
assume a linear-regression model,

y = X8 +e,

whereg3 is the vector of regression coefficients anid the vector of lengtlVv for noise distributed
asN(0,02Iy«n). We study the following optimization problem that minimézéae squared-error
loss with a penalty function:

1
g;g]f(ﬁ) = 5lly = X8l +2(B). (1)
While various forms of the penalty functidd(3) such ag;-norm,¢,-norm, and/; /¢s-norm have
been considered in literature, in this paper, we are intedes taking advantage of the available
structural information in the inputs to achieve structuspdrsity in3, and focus on the structured-
sparsity-inducing nornf2(3) to encode the overlapping group structures. We assumerihatt
of groups of input®; = {g1, ..., gjg} is defined as a subset of the power seff.. ., J}, and is
available as prior knowledge. Note that the members (gnoofpS are allowed to overlap. Then,
we define the structured-sparsity-inducing norm as:

QB) =D wyl|B,ll2. )

geg

whereg, € R4l is the subvector oB corresponding to the inputs in grogpw, is the predefined
weight for groupg, A is the regularization parameter that controls the spalsitgl, and|| - |-
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denotes the vectak-norm. A simple strategy for setting, is w, = \/@ as in [14] so that the
amount of penalization is adjusted by the size of each group.

We notice that the penalty ifil(2) has a general form that deuridge regression, lasso [13],
group lassol[14], elastic net [16] and hierarchical mixedams [2] as special cases. Although
we focus on the squared-error loss in this paper, our opaitimiz can handle any smooth convex
loss functions such as logistic loss. In addition, our mdtban be easily generalized to solve
optimization problems with other variants of (2) (e.g!,)[6]

The main difficulty in optimizing[(1L) arises from the non-segble{3, },c¢ in the non-smooth
penalty tern2(3). While the block coordinate descent method can be used égoribblem with
non-overlapping groups ig, it cannot be applied to the case of overlapping groups lsecthe
overlap amond 3, },c¢ makes the computation of the subgradient with respeg tifficult. As
we show in this section, the key in our approach is to decotieoverlapped 3, } ¢ into a
simple linear transformation ¢& by introducing auxiliary variables. Then, we introduce asith
approximation td2(3) such that its gradient with respect@ocan be easily calculated.

2.1 Reformulation of the Structured-Sparsity-Inducing Narm
Since the dual norm df-normiis also arf,-norm, we can writd 3, ||» as|| 3, ||> = maxja,|,<1 & B,,
T

. - . : [ T
wherea,, € Rl is the vector of auxiliary variables associated with Leta = [agl, - ag‘g‘] .

Then,a is a vector of lengtly ., |g| with domainQ = {a | [yl < 1, Vg € G}, whereQ is
the Cartesian product of unit balls in Euclidean space ans, th closed and convex set. We can
rewrite the structured-sparsity-inducing norm(ih (2) as:

_ Tg _ Tg _ T
Q(B) = A 2 wy IIOIEI?z);l o, B, = rortlgé(gze; Muga, B, = max CB, (3)

whereC € R4 19%7 js a matrix defined as follows. The rows 6fare indexed by all pairs
of (i,9) € {(4,9)|i € g,i € {1,...,J}}, the columns are indexed hye {1,...,J}, and each
element ofC' is given as:

] Aw, ifi=7,
Cligd = { 0  otherwise (4)

T
Then, we have’3 — [)\wglﬁT o Awgy BT ] .

g1’ 96|
Example. We give a concrete example 6f Assume3 € R3, i.e. J = 3 with groupsg = {g; =
{1,2}, g2 = {2,3}}. Then, the matrix is defined as follows:

J=175=2 j5=3

1=1¢€q [ \wg, 0 0
1=2€q 0 Awg, 0
1=2€E gy 0 Awg, 0
1 =3€ g 0 0 Awg,



Note thatC' is a highly sparse matrix with only a single non-zero elemergach row and
> _geq lg] non-zero elements in the entire matrix, and can be storduanily a small amount of
memory during the optimization procedure.

According to [(8),2(8) can be viewed as the inner product of the auxiliary variabknd the
linear mapping of3 given asl'(3) = C3, where the linear operatdr is a mapping fronRR”’ to
R0 19, This linear operator allows us to decouple the overlapgiBig ¢ in () while letting
B appear in its original form in{(3). FromC3,a) = (3,CTa), the adjoint operator of is
I'*(a) = CTa that mapsR>s<< 9! back intoR’. Essentially, the adjoint operatbf is the linear
operator induced by in the space of auxiliary variables. The uselo&nd its adjointl™ will
simplify our notation and provide a uniform treatment of iregle-task and multi-task learning as
shown in the later sections.

2.2 Proximal-Gradient Method

The formulation in[(B) is still a non-smooth function Bf and this makes the optimization chal-
lenging. To tackle this problem, we introduce an auxiliargsgly-convex function to construct a
smooth approximation of[3). More precisely, we define:

Ju(B) = maxa’ CB — pd(a), (5)

where . is a positive smoothness parameter akidk) is an arbitrary smooth strongly-convex
function defined onQ. The original penalty term can be viewed Ag3) with . = 0 (i.e.,
fo(B) = Q(B) = maxaco @’ CB3). Since our algorithm will utilize the optimal solutiam* to
(), we chooseél(a) = |||l so that we can obtain a closed-form equationdor

It is easy to see that,(3) is a lower bound off,(3). In order to bound the gap betwegn3)
andfy(3), let D = max,co d(av). Itis easy to verify that

1 2
D =max>> oyl =161/2 (6)

geg

Then, we havefy(8) — f.(B) < uD = p|G|/2. From Theorem 1 as presented below, we know
that f,,(8) is a smooth function for any. > 0. Therefore,f,(3) can be viewed as a smooth
approximation off,(3) with the maximum gap of:|G|/2, and theu controls the gap between
fu(B) and fy(B). According to the convergence result in the next sectionneexl to sel: = 55
to achieve the best convergence rate given the desiredeageur

Now we present the key theorem. It is also stated in [11] btihout a proof of smoothness
property and a derivation of the gradient. In this paper, mipe a simple proof based on Fenchel
Conjugate and properties of subdifferential. Intuitivehe strong convexity of () leads to the
smoothness of,,(3). A vivid geometric illustration and the proof of this thearere presented in
Appendix.

Theorem 1. For anyn > 0, f,(3) is a convex and continuously-differentiable functioBirand
the gradient off,,(3) takes the following form:

V(B =T (") =C"ar, (7)
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wherel™ is the adjoint operator of" as defined in Sectidn 2.1, ard" is the optimal solution

to ). Furthermore, the gradienV f,(3) is Lipschitz continuous with the Lipschitz constant

L,= i||FH2, where||T'|| is the norm of the linear operatdr defined as:

|| = max [|I'(v = max [|Cv]|,.
I = max, T = max (v

To compute thev f,(3) and L,,, we need to know* and||I'||. We present the closed-form
equations forx* and||T'|| in the following two lemmas. The proof of Lemrha 2 can be foumd i
Appendix.

Lemma 1. Leta*, which is composed ef;'s, be the optimal solution t@)). For anyg € G,
AwyB,
7!
whereS is the shrinkage operator defined for any veahaas follows:

S(u) = {m [ullz > 1,

a; =5(

g

),

u |lull2 < 1.
Proof. Taking the derivative of (5) with respectéoand setting it to zeros, we obtad), = Aw—fg
We project the solution onto th@ to obtain the optimal solution. O
Lemma 2.
L=\ 2, 8
I =3 max /S5 ) ®)

Given the results in Theorem 1, now we present our proximadlignt method. We substi-
tute the penalty ternf)(3) in (@) with its smooth approximatiorf,(3) and obtain the smooth
optimization problem:

min f(8) = Slly - XBI5 + fu(B).

1
2
According to Theorerl1, the gradient £3) is given as:

ViB) =X"XB-y)+C"a", ©)

Moreover,V f(3) is Lipschitz continuous with the Lipschitz constant:
T 2
L = Anax(XTX) + L, = Ao (XTX) + u, (10)
ol

where\ ... (X?X) is the largest eigenvalue 6K X).
We call our method a “proximal” method because instead afhdping the original function

f(B) in @), we optimizef(3), which is a smooth approximation ¢f3). Sincef(3) is asmooth
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Algorithm 1 Proximal-Gradient Method for Structured Variable Selacti

Input: X, y, Group Structuréy, \, {w,},cg, desired accuracy.
Initialization : ConstructC' as in [4); computd, as in [10); sel, = & = 5; setw’ =0 € R,

2D — ]
lterate Fort = 0, 1,2, ..., until convergence oB":

1. ComputeV f(w') according to[(D).

2. Perform the gradient descent stg:= w' — 1V f(w').

3. Setz! = —1 5" TV f(wi).

T £ui=0 "2

Ll telgl 2
4. Setw'" = =50 + 5z

Output: 8 = 3.

function, we can adopt the framework of the acceleratedignadiescent method, so called Nes-
terov’'s method[111], to minimiz¢(3) as shown in Algorithnl1.

In contrast to the standard gradient-descent algorithrgoithm[1 involves updating three
sequenced,w'}, {3'}, and{z'}, wheres3' is obtained from the gradient-descent update based on
w! with the stepsizc—}, z! is the weighted combination of all the previous gradiendinfation, and
wit! is the convex combination g8’ andz’. Intuitively, the reason why this method is superior
to the standard gradient descent is that it utilizes all tlaglignt information from the first step to
the current step for each update, while the standard gradestent update is based only on the

gradient information at the current step.

2.3 Convergence Rate and Time Complexity

Although we optimize the approximation functicj“vn it can be proven that th,@ obtained from
Algorithm([1 is sufficiently close to the optimal solutigh to the original objective function in{1).
We present the convergence rate of Algorifim 1 in the nexirta.

Theorem 2. Let 3* be the optimal solution tdl) and 3" be the approximate solution at theh
iteration in Algorithm(l. If we requiref(3') — f(8") < € and setu = 5, then, the number of
iterationst is upper-bounded by

\/4||zi*||% (Am(XTX) . 2Dur||2>7 a1

€

whereD and ||T'|| are given in(@) and Lemmal2 respectively.

The key idea behind the proof is to decompggg’) — f(3") into three parts: (i (3) —f(8Y),

(iiy f(B) — f(ﬁ*),gnd (iii) f(B") — f(B7). (i) and (iii) can be bounded by the gap of the approxi-
mationuD. Sincef is a smooth function, we can bound (ii) by the accuracy bounenapplying



the accelerated gradient method to minimize smooth funstjibl]. We obtain[(11) by balancing
these three terms. The details of the proof are presentegpeidix. According to Theoren 2, Al-
gorithm[1 converges i (%) iterations, which is substantially faster than the subigraidnethod
with the convergence rate 61( 5). On the other hand, the best convergence result for optigizi
the purely smooth function using the first-order methdd( -) [10]. The gap betwee® (1) and

O(\[) is due to the approximation of the non-smooth penalty tetmerhains an open question

whether we can further boost our algorithm to ach@\(el—) convergence rate. In addition, note
that settingu = 7 for anyh > 1 instead ofu = affects the results in_(11) only by a constant
factor and still achleve@ (1) convergence rate

As for the time complexity, assuming that we pre-computestoceX” X andX”y with the
time complexity ofO(J2 V), the main computational cost in each iteration comes frdguéating
the gradientV f(w;) with the time complexity of0(J2 + > _gcc lgl). Therefore, the total com-

plexity to achieve: accuracy i) <J2N + (J? + > geG |g\)/e>. In comparison, according tol[8],
solving SOCP with IPM has the complexity 6. + |G|)?(V + 2|G|) per iteration.

Remarks (Time complexity) The per-iteration time complexity of our proximal-gradiemethod
does not depend on the sample sizevhich can be very large in large-scale data analysis, velsere
that of SOCP with IPM grows linearly i&v. Moreover, each IPM iteration of SOCP requires
significantly more memory to store the Newton linear system.

3 Proximal-Gradient Method for Multi-task Regression with
Structured Sparsity

Our proximal-gradient method as presented in the previeasa is a general approach for solv-
ing any types of regression problems with overlapping grstapctures encoded in the structured-
sparsity-inducing norm. In this section, we show that outhod can be applied in a straight-
forward manner to multi-task learning setting, where thracitiral information is available for
outputs instead of inputs and the overlapping group stradggudefined over multiple related re-
sponse variables.

Let X € RY¥*/ denote the matrix of input data forinputs andY € RV*¥ denote the matrix
of output data for” outputs collected ovelN samples. We assume that theh column ofY for
the k-th task is generated from a linear model:

YR:X,Bk‘t‘Ek, szl,K,

where3, = [Bi, - - -, BT is the regression-coefficient vector for theh task and,, is Gaussian
noise. LetB = [34,...,08] € R7*X be the matrix of regression coefficients for all of the
tasks.

Then, the multi-task regression problem can be naturatipfitated as the following optimiza-
tion problem:

IY — XBJ} + Q(B), (12)

Ghin f(B) =

N —



where|| - || denotes the matrix Frobenius norm @@ ) is a structured-sparsity-inducing norm
defined as follows. Assume that we have available a grougtstel over response variables,
denoted byg = {g1,..., g}, which is a subset of the power set{df,. .., K'}. For any variable
Jj €{1,...,J} and groupg € G, let B,, be the vector of regression coefficiedts;,, k € g}.
Then, we define the structured-sparsity-inducing penalty a

J
)‘ZngnﬁngZ- 13)

j=1 geg

Q(B)

This penalty has a general form that includes many prewaistied penalty functions as a special
case. For example, thig/¢,-norm that has been adopted in multi-task regression is @apase
of Q(B), whereg consists of a single group of the entire set of tafks .., K'}. Tree-guided
group-lasso penalty [7] is another special cas@(@s).

Following a technique similar to that in Sectionl2.1, forkeagut; and groupy, we introduce
a vector of auxiliary variablea;, so that]| 3, | = maxq,,|,<1 &],3;,. Let

algl e Oéng

A_:

alg‘G‘ e an‘G‘

Note thatA isa(}_ . [g]) x J matrix with domainQ = {A | [layls <1, Vje{l,...,J},g €
G}. Now, the penalty function in_.(13) can be written as

J
— T _ T
OB)=r> ) w, Jnax  ajyB;, = max(CBT, A), (14)

j=1 geg

where(U, V) = Tr(U”'V) denotes a matrix inner product. The matfixc R>s<s 91X is defined
similarly to (4), where rows are indexed Iy ¢) such that € {1,..., K},i € g, columns are
indexed byt € {1,..., K}, and the value of each element is settg) , = Aw, if i = k and 0
otherwise. The linear operatbrnow become$'(B) = CB* with adjointl'™*(A) = ATC.

We introduce the uniform smooth approximation[of](14):

fu(B) = max(CB”, A) — ud(A), (15)
AcQ
whered(A) = || A% with the maximum valu® = maxaco d(A) = %

Following a proof strategy similar to that in Theoreim 1, wa show thatf,,(B) is convex and
smooth with gradien¥ f,,(B) = I'*(A*) = (A*)"C, whereA* is the optimal solution td(15),
composed ok}, = S(%). In addition,V f,(B) is Lipschitz continuous with the Lipschitz
constantL,, = ||T'||?/x, where||T|| = maxv),<1 [|[T(V)|r = maxjv|,<1 [|[CVT|p. Similarto

.....

By substituting®2(B) in (12) with f,(B), we can adopt Algorithrial1 to solve ([12) with con-
vergence rate o@(%) iterations. The time complexity per iteration of our methed) (J2K +
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J Y 4eq l91), whereas an IPM for SOCP co@s(J?(K +IGN(EN + J(IG] + 3 o \g|))) per
iteration.

Remarks. (Time Complexity) If we pre-compute and stoX¥”X andX”Y with the time com-
plexity of O(J2N + JK N), the per-iteration time complexity of our proximal-gradlienethod

is independent of the number of samplgsand linear inK. In contrast, the time complexity of
IPM for SOCP is linear inV and cubic inK. Thus, our method has a significantly lower time
complexity than solving the SOCP formulation.

4 Experiments

In this section, we evaluate our proximal-gradient metiRmX-Grad) on both synthetic and real
datasets, and compare the performance of our method wittotHB@M for SOCP formulation
using the standard MATLAB package SeDuMi [ﬁ]ﬂ.\ll of the experiments are performed on a
PC with Intel Core 2 Quad Q6600 CPU 2.4GHz CPU and 4GB RAM. ™iare is written in
MATLAB, and we terminate our optimization procedure wheae thlative change in the objective
is below10¢. We select the tuning parametgrby three-fold cross-validation, and report the
computation time as the CPU time for running the optimizapoocedure on the entire dataset
with the selected\. We find that setting the desired accuracy- 0.1 generally gave us a good
performance on the recovery of the sparsity pattern, anthisgalue in all of our experiments to
setu = 55 according to Theorem 2. We assume that for each ggoup, = +/[g| as in [14] for
simulation studies.

4.1 Synthetic Data
4.1.1 Univariate-Response Sparse Regression

We simulate data for a single-task regression, assuminghbanputs have an overlapping group
structure as described below. Assuming that the inputsrdexed, we define a sequence of groups
of 10 adjacent inputs with an overlap of three variables betwtwo successive groups so that
G ={{1,...,10},{8,...,17},... . {J —9,...,J}} with J = 7|G| + 3. We set the support of
(3 to the first half of the input variables We sample each eleraéd and the non-zero elements
of 8 from i.i.d. Gaussian distribution, and generate the output data from X3 + €, where

€ NN(O,]NX]V).

In Figurel1l, we compare the performance of lasso and thetstagtsparse regression method
with overlapping groupg on variable-selection problem. We generate 100 datas#isVvi= 200
and|G| = 10 (J = 73) using a fixed3 and a randomly generated input matkxin each repetition,
and plot the frequency of selection of each variabl@xis) as a function of the regularization
parameten (z-axis). The black pixels represent selections in all of the datasets and the white
pixels represent selections in none of the 100 dataset@anlbe clearly seen that the structured

*We do not compare with the active-set method in [6] sincetitoiges a different objective and requires a heuristic
search.
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Figure 1: Results on synthetic data for single-task regrassFrequency of selection of each

variable via (a) lasso and (b) the structured sparse ragres&) Objective values of the Prox-
Grad method over iterations.
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Figure 2: Comparisons of scalability for Prox-Grad and SO@PFix N = 5000 and vary|G|
from 100 to 1000 with a step size of 50. (b) F& = 200 and varyN from 1000 to 10000 with a
step size of 500. Thg-axis denotes the computation time in seconds in logarittstale.

variable selection outperforms lasso. The values of theabbe function over iterations in a
typical run of Prox-Grad is plotted in Figulré 1 (c).

To demonstrate the efficiency and scalability of Prox-Grad@mpared to SOCP, we present
the computation time for datasets with varyingand |G| in Figure[2. The computation time
is measured in seconds and plotted in logarithmic scale. WMiétbhe computation time for the
SOCP formulation when it exceeds 2 hours. Clearly, Proxd@amore efficient and scalable by
orders of magnitude than IPM with SOCP formulation. Mor@pwee notice that the increase of
N almost does not affect the computation time of Prox-Gradesivi affects only the computation
time of XX andXy that can be pre-computed before Prox-Grad iterations $tacbntrast, the
increase ofN leads to an approximately linear increase of the compurtdiime for SOCP. This
observation is consistent with our complexity analysiseatn[2.3.

4.1.2 Multi-task Sparse Regression

In this section, we consider the multi-task regression lgrobwhere the structure is defined over
the outputs and related outputs share a similar sparsitgrpah their regression coefficients. We
assume thafl tasks are organized as a perfect binary tree of depfith leaf nodes correspond-

ing to tasks and internal nodes representing clusters da#ies for the subtree. Furthermore, we
assume that the clusters of the tasks near the bottom ofeth@te more closely related as in hier-
archical clustering tree and more likely to share the spapsittern in their regression coefficients.
Given this output structure, we set the sparsity patterhantue regression-coefficient matrix as
shown in Figuré 3(a), where the white pixels represent rmn-elements. Then, we sample the

11



a b
Figure 3: Compa(lri)son of different (re)gression methods onrélcevery of tree sparsity pattern
in multi-task regression. (a) The matrix of true regressiorfficientsB. Estimated regression
coefficients are shown for (b) lasso, (G)//,-regularized regression, (d) tree-structured sparse
regression. The rows and columns represent tasks and jmesfgectively. The white pixels

d

correspond to non-zero regression coefficients.
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Figure 4: Comparisoné ())f scalability of ProxECgrad and SC(é)FFixN(i 1000 andJ = 600, and
vary log,(K') from 2 to 8 with a step size of 1. (b) FiXv = 1000 and K = 32, and vary.J from
100 to 1000 with a step size of 100. (c) Eix= 100 and K = 32, and varyN from 500 to 5000
with a step size of 500. Thg-axis shows the computation time in seconds in logarithiwédes

elements oKX fromi.i.d standard Gaussian and generate the output data¥WsiagK B+ €, where
€ is the standard Gaussian noise.

First, we compare the performance of lasso, &h&,-regularized multi-task regressionl [1],
and the tree-structured multi-task regressidn [7] in teofn®covery of true sparsity pattern. We
use a dataset simulated with = 100, J = 100, and X' = 32. For the tree-structured multi-task
regression, each node in the tree over the outputs definemipgE G of the tasks in the subtree.
See [[7] for more details. The recovered regression-coeffianatrix is plotted in Figurds 3 (b)—
(d). Itis visually clear that the tree-structured mulskaegression recovers the true underlying
sparsity pattern significantly better than other methods.

We compare the scalability of the proposed Prox-Grad algoriwvith that of IPM for SOCP.
We simulate datasets with varying, J and N, and present the computational time on these
datasets for our Prox-Grad method and IPM with SOCP forrnmuah Figure[4. We omit the
computation time for SOCP when it exceeds 2 hours. As candmisgrigurd 4, our method is
significantly faster than the SOCP formulation and can sgal® a very high-dimensional dataset
with many tasks.

4.2 Analysis of Yeast Dataset

We analyze the yeast data with 1,260 genotypes (inputs)gression levels (outputs) of 3,684
genes collected for 114 yeast strainis [3]. We apply thedreded group lasso with groups over-
lapping according to the hierarchical clustering tree akiergenes as described lin [7].
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Figure 5. Results on yeast dataset. (a) Cross-validateligbien errors. (b) The change in values
of the objective function over iterations in Prox-Grad.

We present the boxplot of cross-validated prediction srierFigurelb (a). Clearly, the tree-
based method has a superior performance to lasso ard/theregularized multi-task regression.
The decrease of the values of the objective function oveatitens in a typical run of Prox-Grad
for tree-guided group lasso is plotted in Figlie 5 (b). Witilekes approximately an hour for
the Prox-Grad method to reach convergence in this datas#tietbest of our knowledge, there
are no known optimization algorithms that can solve mualskt regression problems with struc-
tured sparsity of this scale. Although the same dataseté@s dnalyzed using tree-guided group
lasso in [7], their optimization method based on a variatidormulation could handle only a
small-scale dataset because it involves an inversioh»fJ matrix in each iteration. Thus, their
analysis is focused only on a single chromosome with 21 ggestinstead of the entire set of
1260 genotypes.

5 Conclusions

In this paper, we considered an optimization problem forniggy a structured-sparsity pattern

in regression parameters, where the overlapping grouptateuin inputs or outputs is encoded

the structured-sparsity-inducing norm. Under singlé-t@sd multi-task regression settings, we
developed a proximal-gradient method that is extremelgiefit and can scale up to very high-

dimensional datasets. Using synthetic and real datasetdemonstrated the efficiency and scala-
bility of our method.

Appendix

A.1 Geometric lllustration of the Smoothness off,, ()

In order to provide a geometric illustration of the smootmef f,(3) as stated in Theorem 1, we
consider the functiorf,(3) and its smooth approximatiof),(3) in one-dimensional space (i.e.,
B € R). For the sake of simplicity, we assume thaandC are set to 1.

First, we show geometrically thah(3) = max,c[—1,1) 2(a, B) with z2(o, ) = af is a non-
smooth function. The 3-D plot for(«, 5) with « restricted td—1, 1] is shown in Figurél6(a). We
project the surface in Figuté 6(a) onto the- > space as shown in Figuré 6(b). For edthhe
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value of fy(3) is the highest point along theaxis since we maximize overin [—1, 1]. We can
see thatfy(5) is composed of two segments with a sharp poirit at 0. In fact f,(5) = |5|.

Now, we introduce the auxiliary functiod(c) = 3o and letz,(a,8) = aff — 302 and
fu(B) = maxae-11) zs(a, 3). We show geometrically thaf,(3) is a smooth approximation of
fo(5). The 3-D plot forz,(«, 8) with « restricted to]—1, 1] is shown in Figurél6(c). Similarly,
we project the surface in Figuké 6(c) onto the- 2, space as shown in Figuré 6(d). For fixéd
the value off,(3) is the highest point along theaxis. In Figure_6(d), we can see that5) is
composed of three parts: (i) a line with slopé wheng < 1, (i) a line with slopel whenj > 1,
and (iii) a quadratic function wher1 < g < 1. By introducing a quadratic auxiliary function,
we remove the sharp point &t= 0 and f,(3) becomes a smooth function. In fag}, takes the
following form:

%2 -1<p<1
fu(ﬂ): 5_% 621
—f-3 B<-1

(a) (b) (d)

Figure 6: A geometric illustration of the smoothnesggff). (a) The 3-D plot of:(«, 3), (b) the
projection of (a) onto th&-z space, (c) the 3-D plot of,(«, 5), and (d) the projection of (c) onto
the 5-z space.

A.2 Proof of Theorem[1

The f,(8) is a convex function since it is the maximum of a set of funtdithat are linear iB.
For the smoothness property, let the functitirbe the Fenchel conjugate of the distance function
d defined as:

d*(v) = max{a,v) — d(). (16)

acQ

We want to provel* is differentiable everywhere by showing that the subd#feial 0d* of d* is a
singleton set for any.
From the definition in[(16), for any and anya € Q, we have:

d*(v) + d(a) > (a,7), (17)

where the inequality holds as an equality if and onlgif= arg max, .o (a’',v) — d(a').
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Sinced is convex and closed, we haw& = d (Chapter E in[[5]). Thus[(17) can be written as:
d*(y) + d™(a) = {a,7), (18)

where the inequality holds as an equality if and onby = arg max, g, (e, v') — d*(v').
Since [17) and{18) are equivalent, we know that argmax, ., a'”v — d(’) if and only
if v =argmax, g, (a,v') — d*(+'). The latter equality implies that for any':

d'(v') = d*(v) + {a,¥ =),

which further means that is a subgradient af* at~ by the definition of subgradient.

Summarizing the above arguments, we concludedhista subgradient of* at~ if and only
if

a = argmaxa’,v) — d(a). (19)
a’eQ

Sinced is a strongly-convex function, this maximization problem(I9) has a unique optimal
solution. Thus, the subdifferentiali* of d* at any pointy is a singleton set that contains oraly
Therefore/* is differentiable everywhere (Chapter D In [5]) ands its gradient:

Vd*(y) = a = argmaxa’, v) — d(a). (20)
a’eQ

Now we return to our original problem ¢f,(3) and rewrite it as:

fu(B) = gleaé((a, I['B)) — pd(a) = ,urgeaé(Ka’ @) —d(a)] = ud*(@)_
Using (20) and the chain rule, we know th&t3) is continuously differentiable and its gradient

takes the following form:

V) = (v (M)~ (argmael, H2) — dta)
~ T (argmak(a/,T(8) - ui(a)) = I*(ac),

For the proof of Lipschitz constant ¢f,(3), readers can refer td [11].

A.3 Proof of Lemmal2

Since we have

J
j=

Il = lICVIiz =X DD (wy)*} = A\I > ( > (wg)2> vi,

geg j€Eg 1 \g€g s.t. jeg

the maximum value of'(v)||2, given||v ||, < 1, can be achieved by settingfor j corresponding

to the largest summation, ; , , ;.,(w,)” to one, and setting othey’s to zeros. Hence, we have
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For the norm of the linear operatbBiin the multi-task setting, following the same proof strgteg

we can show that
— 2
1T = A kel \/deg st keg<w9> '

.....

A.4 Proof of Theorem[2

Based on Theorem 2 in[11], we have the following lemma:

Lemma 3. Assume that functiorfi(3) is an arbitrary convex smooth function and its gradient

Yf(ﬁ) is Lipschitz continuous with the Lipschitz constéantWe apply Algorithm 1 to minimize

f(B) and let3' be the approximate solution at tih iteration. For any3, we have the following
bound:

fig) - figy < 201k, (21)
Recall that the smooth approximation of the functjiB), f(3), is defined as:
F(8) = 5lly = XBI3 + £,(8) = 5 lly ~ XBI3 + max(aTCB — a3
Since Algorithm 1 optimizes the smooth functiﬁ(‘;@), according to Lemmia 3, we have
fi) - fig) < 2SR, 22

whereL = A\ (XTX) + W is the Lipschitz constant fov f(3).
In order to use the bound ih(22), we decompg&@’) — f(B3*) into three terms:

18 - 18 = (18 - 118Y) + (J(8) - F8) + (8 - 1(8Y) . (23

According to the definition of, we know that for any3

f(B) < f(B) < f(B) + D,

whereD = max,co d(). Therefore, the first term ilm%f,(ﬁt) — f( "), is upper-bounded by

wD, and the last term in_(23) is less than or equal to 0 (f63*) — f(8*) < 0). Combining [(22)
with these two simple bounds, we have:

2L 3*]|2 2/18%||3 r||?
f(ﬁt>_f<,3*> SMD—i_ ||t§ ||2 SMD—i_ ||f2 ||2 (Amax(XTX)_'_ ||Iu|| ) (24)
By settingu = 5% and plugging this into the right-hand side bfi(24), we obtain
*||12 2
18 - 1087 < g+ 25T (e (x7) 4 2210, (25)

If we require the right-hand side df (25) to be equat tnd solve it fort, we obtain the bound of
tin (11).

Note that we can set = ;- for anyh > 1 to achieveD (%) convergence rate, which is different
from (11) only by a constant factor.

16



References

[1] Andreas Argyriou, Theodoros Evgeniou, and Massimii&ontil. Convex multi-task feature
learning.Machine Learning73:243-272, 2006.

[2] Francis Bach. Exploring large feature spaces with mavigal multiple kernel learning. In
Advances in Neural Information Processing Systems (NIE®)3.

[3] Jun Zhu et al. Integrating large-scale functional geimodata to dissect the complexity of
yeast regulatory network®lature Genetics40:854-861, 2008.

[4] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. uRegzation paths for generalized
linear models via coordinate descedburnal of Statistical Softwar&3(1), 2010.

[5] Jean-Baptiste Hiriart-Urruty and Claude Lemarech&undamentals of Convex Analysis
Springer, 2001.

[6] Rodolphe Jenatton, Jean-Yves Audibert, and Francis Batuctured variable selection with
sparsity-inducing norms. Technical report, INRIA, 2009.

[7] Seyoung Kim and Eric P. Xing. Tree-guided group lassaoiti-task regression with struc-
tured sparsity. IrProceedings of the 27th International Conference on Maghiearning
2010.

[8] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Bayd Herve Lebret. Applications of
second-order cone programmirignear Algebra and Its Application284:193—-228, 1998.

[9] Lukas Meier, Sara van de Geer, and Peter Buhlmann. Theydasso for logistic regression.
Journal of the Royal Statistical Society: Series/B:53—-71, 2008.

[10] Yurii Nesterov. Introductory lectures on convex optimization: a basic cauKluwer Aca-
demic Pub, 2003.

[11] Yurii Nesterov. Smooth minimization of non-smooth @tions.Mathematical Programming
103(1):127-152, 2005.

[12] Jos F. Sturm. Using sedumi 1.02, a matlab toolbox fomoigation over symmetric cones.
Optimization Methods and SoftwarElL(12):625:653, 1999.

[13] Robert Tibshirani. Regression shrinkage and seleatia the lasso.Journal of the Royal
Statistical Society: Series B8:267-288, 1996.

[14] Ming Yuan and Yi Lin. Model selection and estimation egression with grouped variables.
Journal of the Royal Statistical Society: Serie6B:49—-67, 2006.

[15] Peng Zhao, Guilherme Rocha, and Bin Yu. The composisolabe penalties family for
grouped and hierarchical variable selectidimnals of Statistics37(6A):3468—-3497, 2009.

17



[16] Hui Zou and Trevor Hastie. Regularization and variad@dkection via the elastic nelournal
of the Royal Statistical Society: Series@(2):301-320, 2005.

18



	1 Introduction
	2 Proximal-Gradient Method for Univariate-Response Regression with Structured Sparsity
	2.1 Reformulation of the Structured-Sparsity-Inducing Norm
	2.2 Proximal-Gradient Method
	2.3 Convergence Rate and Time Complexity

	3 Proximal-Gradient Method for Multi-task Regression with Structured Sparsity
	4 Experiments
	4.1 Synthetic Data
	4.1.1 Univariate-Response Sparse Regression
	4.1.2 Multi-task Sparse Regression 

	4.2 Analysis of Yeast Dataset

	5 Conclusions
	A.1 Geometric Illustration of the Smoothness of f()
	A.2 Proof of Theorem ??
	A.3 Proof of Lemma ??
	A.4 Proof of Theorem ??


