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Abstract

We consider the optimization problem of learning regression models with a mixed-norm penalty
that is defined over overlapping groups to achieve structured sparsity. It has been previously shown
that such penalty can encode prior knowledge on the input or output structure to learn an structured-
sparsity pattern in the regression parameters. However, because of the non-separability of the
parameters of the overlapping groups, developing an efficient optimization method has remained
a challenge. An existing method casts this problem as a second-order cone programming (SOCP)
and solves it by interior-point methods. However, this approach is computationally expensive even
for problems of moderate size. In this paper, we propose an efficient proximal-gradient method that
achieves a faster convergence rate and is much more efficientand scalable than solving the SOCP
formulation. Our method exploits the structure of the non-smooth structured-sparsity-inducing
norm, introduces its smooth approximation, and solves thisapproximation function instead of
optimizing the original objective function directly. We demonstrate the efficiency and scalability
of our method on simulated datasets and show that our method can be successfully applied to a
very large-scale dataset in genetic association analysis.

Keywords: structured sparsity, overlapping group structure, proximal-gradient method, multi-task
sparse learning

1 Introduction

The problem of high-dimensional sparse feature learning arises in many areas in science and en-
gineering. In a typical setting, the input lies in a high-dimensional space, and we are interested in
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selecting a small number of input features that influence theoutput. Although a popular approach
has been to optimize the loss function with anℓ1-norm penalization (e.g., lasso [13]) to shrink
the parameters to zero for the irrelevant input features , this does not take advantage of any prior
knowledge on the structure of the inputs to learnstructured-sparsitypattern in the estimated pa-
rameters. In the simple case of a non-overlapping group structure over the inputs, group lasso with
a ℓ1/ℓ2-norm penalty has been used to learn structured-sparsity pattern in which multiple inputs
in a cluster are jointly relevant to the output [14]. Recently, in order to handle a more general
structure, the original group lasso with non-overlapping groups has been extended to overlapping
groups [15, 6]. For example, when inputs are organized as a tree with a multi-level clustering
structure, a generalstructured-sparsity-inducing normpenalty can allow the sparsity pattern in
the parameters to reflect overlapping groups of the complex input structure. Similar ideas have
been used in multi-task learning in which tasks (or outputs)are organizeda priori into a particular
structure and the closely related tasks according to this structure share a similar sparsity pattern for
relevant features [7].

A practical challenge in using any structured-sparsity-inducing norms with overlapping groups
is to develop an efficient optimization method. In the simplecase of group lasso with non-
overlapping groups, the optimization is relatively straightforward in that the block coordinate-
descent algorithm [4, 9] can be applied that computes the subgradient and then update parameters
for each group iteratively according to its closed-form update equation. In contrast, when the
groups overlap, this block coordinate-descent method cannot be applied because the subgradient
with respect to each group has a complex form and a closed-form update equation cannot be ob-
tained. Instead, the most widely adopted method is to formulate the problem as a second-order cone
programming (SOCP) and solve it by the interior-point method (IPM). This approach is computa-
tionally very expensive [8]. To improve the scalability, very recently, an unpublished manuscript
[6] proposed an active-set algorithm which solves a sequence of subproblems with a smaller set
of “active” variables. However, this method can only solve the regression problems regularized
by thesquareof the structured-sparsity-inducing norm. In addition, this method formulates each
subproblem either as an SOCP, which can be computationally expensive for a large active set, or as
a jointly convex (but still non-convex as a whole) problem with auxiliary variables, which is then
solved by an alternating gradient descent. This latter approach lacks the guarantee in optimization
convergence and may lead to numerical problems.

In this paper, we propose an efficient proximal-gradient method for estimating regression pa-
rameters with the overlapping group structure encoded in the structured-sparsity-inducing norm for
both single and multi-task learning settings. Our approachis called “proximal” gradient method
in that instead of optimizing the original problem directly, we introduce a smooth approximation
of the structured-sparsity-inducing norm and then apply the accelerated gradient method [11]. Our
method can achieveO(1

ǫ
) convergence rate for a desired accuracyǫ. In other words, it can find

a solutionβt for minimizing f function aftert = O(1
ǫ
) iterations such thatf(βt) − f(β∗) ≤ ǫ,

whereβ∗ is the optimal solution. There are several advantages in using our proximal-gradient
method: (a) Our method is a first-order method, i.e. it only uses the gradient information. Thus,
it is significantly more efficient and scalable than IPM for SOCP. (b) Our method is a general
approach that can be used to solve any optimization problemswith a smooth convex loss and a
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structured-sparsity-inducing norm with overlapping groups, including both single-task and multi-
task regressions. (c) Theoretically, our optimization method has a faster convergence rate ofO(1

ǫ
)

than the subgradient method with a convergence rate ofO( 1
ǫ2
). In fact, for the optimization prob-

lems with overlapping groups that we consider in this paper,there are no implementations of the
subgradient method available in the literature. (d) Our method is easy to implement with only a
few lines of MATLAB code.

The rest of this paper is organized as follows. In Section 2, we present our proximal-gradient
method for structured sparse feature learning for univariate-regression along with the complexity
results. In Section 3, we present the generalization of our algorithm to the multi-task learning
setting. In Section 4, we present numerical results on both simulated and genetic association
datasets, followed by conclusions in Section 5.

2 Proximal-Gradient Method for Univariate-Response Regres-
sion with Structured Sparsity

In this section, we introduce our proximal-gradient methodfor the sparse univariate-response (also
called single-task) regression problems with overlappinggroup structure over the inputs encoded
in the structured-sparsity-inducing norm. Then, in the next section, we will show how this method
can be applied to a multi-task setting.

First, we define our sparse regression problem and structured-sparsity-inducing norm. Given
the input dataX ∈ R

N×J for J input features and the output datay ∈ R
N×1 for N samples, we

assume a linear-regression model,
y = Xβ + ǫ,

whereβ is the vector of regression coefficients andǫ is the vector of lengthN for noise distributed
asN(0, σ2IN×N). We study the following optimization problem that minimizes the squared-error
loss with a penalty function:

min
β∈RJ

f(β) ≡
1

2
‖y −Xβ‖22 + Ω(β). (1)

While various forms of the penalty functionΩ(β) such asℓ1-norm,ℓ2-norm, andℓ1/ℓ2-norm have
been considered in literature, in this paper, we are interested in taking advantage of the available
structural information in the inputs to achieve structuredsparsity inβ, and focus on the structured-
sparsity-inducing normΩ(β) to encode the overlapping group structures. We assume that the set
of groups of inputsG = {g1, . . . , g|G|} is defined as a subset of the power set of{1, . . . , J}, and is
available as prior knowledge. Note that the members (groups) of G are allowed to overlap. Then,
we define the structured-sparsity-inducing norm as:

Ω(β) = λ
∑

g∈G
wg‖βg‖2, (2)

whereβg ∈ R
|g| is the subvector ofβ corresponding to the inputs in groupg, wg is the predefined

weight for groupg, λ is the regularization parameter that controls the sparsitylevel, and‖ · ‖2
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denotes the vectorℓ2-norm. A simple strategy for settingwg is wg =
√

|g| as in [14] so that the
amount of penalization is adjusted by the size of each group.

We notice that the penalty in (2) has a general form that includes ridge regression, lasso [13],
group lasso [14], elastic net [16] and hierarchical mixed-norms [2] as special cases. Although
we focus on the squared-error loss in this paper, our oprimization can handle any smooth convex
loss functions such as logistic loss. In addition, our method can be easily generalized to solve
optimization problems with other variants of (2) (e.g., [6]).

The main difficulty in optimizing (1) arises from the non-separable{βg}g∈G in the non-smooth
penalty termΩ(β). While the block coordinate descent method can be used for the problem with
non-overlapping groups inG, it cannot be applied to the case of overlapping groups because the
overlap among{βg}g∈G makes the computation of the subgradient with respect toβg difficult. As
we show in this section, the key in our approach is to decouplethe overlapped{βg}g∈G into a
simple linear transformation ofβ by introducing auxiliary variables. Then, we introduce a smooth
approximation toΩ(β) such that its gradient with respect toβ can be easily calculated.

2.1 Reformulation of the Structured-Sparsity-Inducing Norm

Since the dual norm ofℓ2-norm is also anℓ2-norm, we can write‖βg‖2 as‖βg‖2 = max‖αg‖2≤1α
T
g βg,

whereαg ∈ R
|g| is the vector of auxiliary variables associated withβg. Letα =

[
αT

g1
, . . . ,αT

g|G|

]T
.

Then,α is a vector of length
∑

g∈G |g| with domainQ ≡ {α | ‖αg‖2 ≤ 1, ∀g ∈ G}, whereQ is
the Cartesian product of unit balls in Euclidean space and thus, a closed and convex set. We can
rewrite the structured-sparsity-inducing norm in (2) as:

Ω(β) = λ
∑

g∈G
wg max

‖αg‖2≤1
αT

g βg = max
α∈Q

∑

g∈G
λwgα

T
g βg = max

α∈Q
αTCβ, (3)

whereC ∈ R

∑
g∈G |g|×J is a matrix defined as follows. The rows ofC are indexed by all pairs

of (i, g) ∈ {(i, g)|i ∈ g, i ∈ {1, . . . , J}}, the columns are indexed byj ∈ {1, . . . , J}, and each
element ofC is given as:

C(i,g),j =

{
λwg if i = j,
0 otherwise.

(4)

Then, we haveCβ =
[
λwg1β

T
g1
, . . . , λwg|G|

βT
g|G|

]T
.

Example. We give a concrete example ofC. Assumeβ ∈ R
3, i.e. J = 3 with groupsG = {g1 =

{1, 2}, g2 = {2, 3}}. Then, the matrixC is defined as follows:




j = 1 j = 2 j = 3

i = 1 ∈ g1 λwg1 0 0
i = 2 ∈ g1 0 λwg1 0
i = 2 ∈ g2 0 λwg2 0
i = 3 ∈ g2 0 0 λwg2



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Note thatC is a highly sparse matrix with only a single non-zero elementin each row and∑
g∈G |g| non-zero elements in the entire matrix, and can be stored with only a small amount of

memory during the optimization procedure.
According to (3),Ω(β) can be viewed as the inner product of the auxiliary variableα and the

linear mapping ofβ given asΓ(β) ≡ Cβ, where the linear operatorΓ is a mapping fromRJ to
R

∑
g∈G |g|. This linear operator allows us to decouple the overlapping{βg}g∈G in (2) while letting

β appear in its original form in (3). From〈Cβ,α〉 = 〈β, CTα〉, the adjoint operator ofΓ is
Γ∗(α) = CTα that mapsR

∑
g∈G |g| back intoRJ . Essentially, the adjoint operatorΓ∗ is the linear

operator induced byΓ in the space of auxiliary variables. The use ofΓ and its adjointΓ∗ will
simplify our notation and provide a uniform treatment of thesingle-task and multi-task learning as
shown in the later sections.

2.2 Proximal-Gradient Method

The formulation in (3) is still a non-smooth function ofβ, and this makes the optimization chal-
lenging. To tackle this problem, we introduce an auxiliary strongly-convex function to construct a
smooth approximation of (3). More precisely, we define:

fµ(β) = max
α∈Q

αTCβ − µd(α), (5)

whereµ is a positive smoothness parameter andd(α) is an arbitrary smooth strongly-convex
function defined onQ. The original penalty term can be viewed asfµ(β) with µ = 0 (i.e.,
f0(β) = Ω(β) = maxα∈Q αTCβ). Since our algorithm will utilize the optimal solutionα∗ to
(5), we choosed(α) ≡ 1

2
‖α‖22 so that we can obtain a closed-form equation forα∗.

It is easy to see thatfµ(β) is a lower bound off0(β). In order to bound the gap betweenfµ(β)
andf0(β), letD = maxα∈Q d(α). It is easy to verify that

D = max
α∈Q

1

2

∑

g∈G
‖αg‖

2
2 = |G|/2. (6)

Then, we havef0(β) − fµ(β) ≤ µD = µ|G|/2. From Theorem 1 as presented below, we know
that fµ(β) is a smooth function for anyµ > 0. Therefore,fµ(β) can be viewed as a smooth
approximation off0(β) with the maximum gap ofµ|G|/2, and theµ controls the gap between
fµ(β) andf0(β). According to the convergence result in the next section, weneed to setµ = ǫ

2D

to achieve the best convergence rate given the desired accuracyǫ.
Now we present the key theorem. It is also stated in [11] but without a proof of smoothness

property and a derivation of the gradient. In this paper, we provide a simple proof based on Fenchel
Conjugate and properties of subdifferential. Intuitively, the strong convexity ofd(α) leads to the
smoothness offµ(β). A vivid geometric illustration and the proof of this theorem are presented in
Appendix.

Theorem 1. For anyµ > 0, fµ(β) is a convex and continuously-differentiable function inβ, and
the gradient offµ(β) takes the following form:

∇fµ(β) = Γ∗(α∗) = CTα∗, (7)
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whereΓ∗ is the adjoint operator ofΓ as defined in Section 2.1, andα∗ is the optimal solution
to (5). Furthermore, the gradient∇fµ(β) is Lipschitz continuous with the Lipschitz constant
Lµ = 1

µ
‖Γ‖2, where‖Γ‖ is the norm of the linear operatorΓ defined as:

‖Γ‖ ≡ max
‖v‖2≤1

‖Γ(v)‖2 = max
‖v‖2≤1

‖Cv‖2.

To compute the∇fµ(β) andLµ, we need to knowα∗ and‖Γ‖. We present the closed-form
equations forα∗ and‖Γ‖ in the following two lemmas. The proof of Lemma 2 can be found in
Appendix.

Lemma 1. Letα∗, which is composed ofα∗
g’s, be the optimal solution to(5). For anyg ∈ G,

α∗
g = S(

λwgβg

µ
),

whereS is the shrinkage operator defined for any vectoru as follows:

S(u) =

{
u

‖u‖2 ‖u‖2 > 1,

u ‖u‖2 ≤ 1.

Proof. Taking the derivative of (5) with respect toα and setting it to zeros, we obtainαg =
λwgβg

µ
.

We project the solution onto theQ to obtain the optimal solution.

Lemma 2.

‖Γ‖ = λ max
j∈{1,...,J}

√∑
g∈G s.t. j∈g

(wg)2. (8)

Given the results in Theorem 1, now we present our proximal-gradient method. We substi-
tute the penalty termΩ(β) in (1) with its smooth approximationfµ(β) and obtain the smooth
optimization problem:

min
β

f̃(β) ≡
1

2
‖y −Xβ‖22 + fµ(β).

According to Theorem 1, the gradient off̃(β) is given as:

∇f̃(β) = XT (Xβ − y) + CTα∗. (9)

Moreover,∇f̃(β) is Lipschitz continuous with the Lipschitz constant:

L = λmax(X
TX) + Lµ = λmax(X

TX) +
‖Γ‖2

µ
, (10)

whereλmax(X
TX) is the largest eigenvalue of(XTX).

We call our method a “proximal” method because instead of optimizing the original function
f(β) in (1), we optimizef̃(β), which is a smooth approximation off(β). Sincef̃(β) is asmooth

6



Algorithm 1 Proximal-Gradient Method for Structured Variable Selection
Input : X, y, Group StructureG, λ, {wg}g∈G, desired accuracyǫ.
Initialization : ConstructC as in (4); computeL as in (10); setµ = ǫ

2D
= ǫ

|G| ; setw0 = 0 ∈ R
J .

Iterate For t = 0, 1, 2, . . ., until convergence ofβt:

1. Compute∇f̃(wt) according to (9).

2. Perform the gradient descent step:βt = wt − 1
L
∇f̃(wt).

3. Setzt = − 1
L

∑t

i=0
i+1
2
∇f̃(wi).

4. Setwt+1 = t+1
t+3

βt + 2
t+3

zt.

Output : β̂ = βt.

function, we can adopt the framework of the accelerated gradient-descent method, so called Nes-
terov’s method [11], to minimizẽf(β) as shown in Algorithm 1.

In contrast to the standard gradient-descent algorithm, Algorithm 1 involves updating three
sequences,{wt}, {βt}, and{zt}, whereβt is obtained from the gradient-descent update based on
wt with the stepsize1

L
, zt is the weighted combination of all the previous gradient information, and

wt+1 is the convex combination ofβt andzt. Intuitively, the reason why this method is superior
to the standard gradient descent is that it utilizes all the gradient information from the first step to
the current step for each update, while the standard gradient-descent update is based only on the
gradient information at the current step.

2.3 Convergence Rate and Time Complexity

Although we optimize the approximation functioñf , it can be proven that thêβ obtained from
Algorithm 1 is sufficiently close to the optimal solutionβ∗ to the original objective function in (1).
We present the convergence rate of Algorithm 1 in the next theorem.

Theorem 2. Letβ∗ be the optimal solution to(1) andβt be the approximate solution at thet-th
iteration in Algorithm 1. If we requiref(βt) − f(β∗) ≤ ǫ and setµ = ǫ

2D
, then, the number of

iterationst is upper-bounded by

√
4‖β∗‖22

ǫ

(
λmax(XTX) +

2D‖Γ‖2

ǫ

)
, (11)

whereD and‖Γ‖ are given in(6) and Lemma 2 respectively.

The key idea behind the proof is to decomposef(βt)−f(β∗) into three parts: (i)f(βt)−f̃(βt),
(ii) f̃(βt)− f̃(β∗), and (iii) f̃(β∗)− f(β∗). (i) and (iii) can be bounded by the gap of the approxi-
mationµD. Sincef̃ is a smooth function, we can bound (ii) by the accuracy bound when applying
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the accelerated gradient method to minimize smooth functions [11]. We obtain (11) by balancing
these three terms. The details of the proof are presented in Appendix. According to Theorem 2, Al-
gorithm 1 converges inO

(
1
ǫ

)
iterations, which is substantially faster than the subgradient method

with the convergence rate ofO( 1
ǫ2
). On the other hand, the best convergence result for optimizing

the purely smooth function using the first-order method isO( 1√
ǫ
) [10]. The gap betweenO

(
1
ǫ

)
and

O( 1√
ǫ
) is due to the approximation of the non-smooth penalty term. It remains an open question

whether we can further boost our algorithm to achieveO( 1√
ǫ
) convergence rate. In addition, note

that settingµ = ǫ
h

for anyh > 1 instead ofµ = ǫ
2D

affects the results in (11) only by a constant
factor and still achievesO

(
1
ǫ

)
convergence rate.

As for the time complexity, assuming that we pre-compute andstoreXTX andXTy with the
time complexity ofO(J2N), the main computational cost in each iteration comes from calculating
the gradient∇f̃(wt) with the time complexity ofO(J2 +

∑
g∈G |g|). Therefore, the total com-

plexity to achieveǫ accuracy isO
(
J2N + (J2 +

∑
g∈G |g|)/ǫ

)
. In comparison, according to [8],

solving SOCP with IPM has the complexity ofO(J + |G|)2(N + 2|G|) per iteration.

Remarks (Time complexity)The per-iteration time complexity of our proximal-gradient method
does not depend on the sample sizeN , which can be very large in large-scale data analysis, whereas
that of SOCP with IPM grows linearly inN . Moreover, each IPM iteration of SOCP requires
significantly more memory to store the Newton linear system.

3 Proximal-Gradient Method for Multi-task Regression with
Structured Sparsity

Our proximal-gradient method as presented in the previous section is a general approach for solv-
ing any types of regression problems with overlapping groupstructures encoded in the structured-
sparsity-inducing norm. In this section, we show that our method can be applied in a straight-
forward manner to multi-task learning setting, where the structural information is available for
outputs instead of inputs and the overlapping group structure is defined over multiple related re-
sponse variables.

Let X ∈ R
N×J denote the matrix of input data forJ inputs andY ∈ R

N×K denote the matrix
of output data forK outputs collected overN samples. We assume that thek-th column ofY for
thek-th task is generated from a linear model:

yk = Xβk + ǫk, ∀k = 1, . . .K,

whereβk = [β1k, . . . , βJk]
T is the regression-coefficient vector for thek-th task andǫk is Gaussian

noise. LetB = [β1, . . . ,βK ] ∈ R
J×K be the matrix of regression coefficients for all of theK

tasks.
Then, the multi-task regression problem can be naturally formulated as the following optimiza-

tion problem:

min
B∈RJ×K

f(B) ≡
1

2
‖Y −XB‖2F + Ω(B), (12)
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where‖ · ‖F denotes the matrix Frobenius norm andΩ(B) is a structured-sparsity-inducing norm
defined as follows. Assume that we have available a group structure over response variables,
denoted byG = {g1, . . . , g|G|}, which is a subset of the power set of{1, . . . , K}. For any variable
j ∈ {1, . . . , J} and groupg ∈ G, let βjg be the vector of regression coefficients{βjk, k ∈ g}.
Then, we define the structured-sparsity-inducing penalty as:

Ω(B) ≡ λ
J∑

j=1

∑

g∈G
wg‖βjg‖2. (13)

This penalty has a general form that includes many previously studied penalty functions as a special
case. For example, theℓ1/ℓ2-norm that has been adopted in multi-task regression is a special case
of Ω(B), whereG consists of a single group of the entire set of tasks{1, . . . , K}. Tree-guided
group-lasso penalty [7] is another special case ofΩ(B).

Following a technique similar to that in Section 2.1, for each inputj and groupg, we introduce
a vector of auxiliary variablesαjg so that‖βjg‖2 = max‖αjg‖2≤1α

T
jgβjg. Let

A =




α1g1 . . . αJg1
...

. . .
...

α1g|G|
. . . αJg|G|


 .

Note thatA is a(
∑

g∈G |g|)×J matrix with domainQ ≡ {A | ‖αjg‖2 ≤ 1, ∀ j ∈ {1, . . . , J} , g ∈
G}. Now, the penalty function in (13) can be written as

Ω(B) = λ

J∑

j=1

∑

g∈G
wg max

‖αjg‖2≤1
αT

jgβjg = max
A∈Q

〈CBT ,A〉, (14)

where〈U,V〉 ≡ Tr(UTV) denotes a matrix inner product. The matrixC ∈ R

∑
g∈G |g|×K is defined

similarly to (4), where rows are indexed by(i, g) such thati ∈ {1, . . . , K}, i ∈ g, columns are
indexed byk ∈ {1, . . . , K}, and the value of each element is set toC(i,g),k = λwg if i = k and 0
otherwise. The linear operatorΓ now becomesΓ(B) = CBT with adjointΓ∗(A) = ATC.

We introduce the uniform smooth approximation of (14):

fµ(B) = max
A∈Q

〈CBT ,A〉 − µd(A), (15)

whered(A) ≡ 1
2
‖A‖2F with the maximum valueD ≡ maxA∈Q d(A) = J |G|

2
.

Following a proof strategy similar to that in Theorem 1, we can show thatfµ(B) is convex and
smooth with gradient∇fµ(B) = Γ∗(A∗) = (A∗)TC, whereA∗ is the optimal solution to (15),

composed ofα∗
jg = S(

λwgβjg

µ
). In addition,∇fµ(B) is Lipschitz continuous with the Lipschitz

constantLµ = ‖Γ‖2/µ, where‖Γ‖ ≡ max‖V‖F≤1 ‖Γ(V)‖F = max‖V‖F≤1 ‖CVT‖F . Similar to

Lemma 2, we can show that‖Γ‖ = λmaxk∈{1,...,K}

√∑
g∈G s.t. k∈g

(wg)2.

By substitutingΩ(B) in (12) with fµ(B), we can adopt Algorithm 1 to solve (12) with con-
vergence rate ofO(1

ǫ
) iterations. The time complexity per iteration of our methodis O(J2K +

9



J
∑

g∈G |g|), whereas an IPM for SOCP costsO
(
J2(K + |G|)2(KN + J(|G|+

∑
g∈G |g|))

)
per

iteration.

Remarks. (Time Complexity) If we pre-compute and storeXTX andXTY with the time com-
plexity of O(J2N + JKN), the per-iteration time complexity of our proximal-gradient method
is independent of the number of samplesN and linear inK. In contrast, the time complexity of
IPM for SOCP is linear inN and cubic inK. Thus, our method has a significantly lower time
complexity than solving the SOCP formulation.

4 Experiments

In this section, we evaluate our proximal-gradient method (Prox-Grad) on both synthetic and real
datasets, and compare the performance of our method with that of IPM for SOCP formulation
using the standard MATLAB package SeDuMi [12].∗ All of the experiments are performed on a
PC with Intel Core 2 Quad Q6600 CPU 2.4GHz CPU and 4GB RAM. The software is written in
MATLAB, and we terminate our optimization procedure when the relative change in the objective
is below10−6. We select the tuning parameterλ by three-fold cross-validation, and report the
computation time as the CPU time for running the optimization procedure on the entire dataset
with the selectedλ. We find that setting the desired accuracyǫ = 0.1 generally gave us a good
performance on the recovery of the sparsity pattern, and usethis value in all of our experiments to
setµ = ǫ

2D
according to Theorem 2. We assume that for each groupg, wg =

√
|g| as in [14] for

simulation studies.

4.1 Synthetic Data

4.1.1 Univariate-Response Sparse Regression

We simulate data for a single-task regression, assuming that the inputs have an overlapping group
structure as described below. Assuming that the inputs are ordered, we define a sequence of groups
of 10 adjacent inputs with an overlap of three variables between two successive groups so that
G = {{1, . . . , 10}, {8, . . . , 17}, . . . , {J − 9, . . . , J}} with J = 7|G| + 3. We set the support of
β to the first half of the input variables We sample each elementof X and the non-zero elements
of β from i.i.d. Gaussian distribution, and generate the output data fromy = Xβ + ǫ, where
ǫ ∼ N (0, IN×N).

In Figure 1, we compare the performance of lasso and the structured sparse regression method
with overlapping groupsG on variable-selection problem. We generate 100 datasets withN = 200
and|G| = 10 (J = 73) using a fixedβ and a randomly generated input matrixX in each repetition,
and plot the frequency of selection of each variable (y-axis) as a function of the regularization
parameterλ (x-axis). The black pixels represent selections in all of the 100 datasets and the white
pixels represent selections in none of the 100 datasets. It can be clearly seen that the structured

∗We do not compare with the active-set method in [6] since it optimizes a different objective and requires a heuristic
search.
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Figure 1: Results on synthetic data for single-task regression. Frequency of selection of each
variable via (a) lasso and (b) the structured sparse regression. (c) Objective values of the Prox-
Grad method over iterations.
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Figure 2: Comparisons of scalability for Prox-Grad and SOCP. (a) FixN = 5000 and vary|G|
from 100 to 1000 with a step size of 50. (b) Fix|G| = 200 and varyN from 1000 to 10000 with a
step size of 500. They-axis denotes the computation time in seconds in logarithmic scale.

variable selection outperforms lasso. The values of the objective function over iterations in a
typical run of Prox-Grad is plotted in Figure 1 (c).

To demonstrate the efficiency and scalability of Prox-Grad as compared to SOCP, we present
the computation time for datasets with varyingN and |G| in Figure 2. The computation time
is measured in seconds and plotted in logarithmic scale. We omit the computation time for the
SOCP formulation when it exceeds 2 hours. Clearly, Prox-Grad is more efficient and scalable by
orders of magnitude than IPM with SOCP formulation. Moreover, we notice that the increase of
N almost does not affect the computation time of Prox-Grad sinceN affects only the computation
time ofXTX andXTy that can be pre-computed before Prox-Grad iterations start. In contrast, the
increase ofN leads to an approximately linear increase of the computation time for SOCP. This
observation is consistent with our complexity analysis in Section 2.3.

4.1.2 Multi-task Sparse Regression

In this section, we consider the multi-task regression problem, where the structure is defined over
the outputs and related outputs share a similar sparsity pattern in their regression coefficients. We
assume thatK tasks are organized as a perfect binary tree of depthl with leaf nodes correspond-
ing to tasks and internal nodes representing clusters of thetasks for the subtree. Furthermore, we
assume that the clusters of the tasks near the bottom of the tree are more closely related as in hier-
archical clustering tree and more likely to share the sparsity pattern in their regression coefficients.
Given this output structure, we set the sparsity pattern in the true regression-coefficient matrix as
shown in Figure 3(a), where the white pixels represent non-zero elements. Then, we sample the
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Figure 3: Comparison of different regression methods on therecovery of tree sparsity pattern
in multi-task regression. (a) The matrix of true regressioncoefficientsB. Estimated regression
coefficients are shown for (b) lasso, (c)ℓ1/ℓ2-regularized regression, (d) tree-structured sparse
regression. The rows and columns represent tasks and inputs, respectively. The white pixels
correspond to non-zero regression coefficients.
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Figure 4: Comparisons of scalability of Prox-Grad and SOCP.(a) FixN = 1000 andJ = 600, and
vary log2(K) from 2 to 8 with a step size of 1. (b) FixN = 1000 andK = 32, and varyJ from
100 to 1000 with a step size of 100. (c) FixJ = 100 andK = 32, and varyN from 500 to 5000
with a step size of 500. They-axis shows the computation time in seconds in logarithmic scale.

elements ofX from i.i.d standard Gaussian and generate the output data usingY = XB+ǫ, where
ǫ is the standard Gaussian noise.

First, we compare the performance of lasso, theℓ1/ℓ2-regularized multi-task regression [1],
and the tree-structured multi-task regression [7] in termsof recovery of true sparsity pattern. We
use a dataset simulated withN = 100, J = 100, andK = 32. For the tree-structured multi-task
regression, each node in the tree over the outputs defines a groupg ∈ G of the tasks in the subtree.
See [7] for more details. The recovered regression-coefficient matrix is plotted in Figures 3 (b)–
(d). It is visually clear that the tree-structured multi-task regression recovers the true underlying
sparsity pattern significantly better than other methods.

We compare the scalability of the proposed Prox-Grad algorithm with that of IPM for SOCP.
We simulate datasets with varyingK, J andN , and present the computational time on these
datasets for our Prox-Grad method and IPM with SOCP formulation in Figure 4. We omit the
computation time for SOCP when it exceeds 2 hours. As can be seen in Figure 4, our method is
significantly faster than the SOCP formulation and can scaleup to a very high-dimensional dataset
with many tasks.

4.2 Analysis of Yeast Dataset

We analyze the yeast data with 1,260 genotypes (inputs) and expression levels (outputs) of 3,684
genes collected for 114 yeast strains [3]. We apply the tree-guided group lasso with groups over-
lapping according to the hierarchical clustering tree overthe genes as described in [7].
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Figure 5: Results on yeast dataset. (a) Cross-validated prediction errors. (b) The change in values
of the objective function over iterations in Prox-Grad.

We present the boxplot of cross-validated prediction errors in Figure 5 (a). Clearly, the tree-
based method has a superior performance to lasso and theℓ1/ℓ2-regularized multi-task regression.
The decrease of the values of the objective function over iterations in a typical run of Prox-Grad
for tree-guided group lasso is plotted in Figure 5 (b). Whileit takes approximately an hour for
the Prox-Grad method to reach convergence in this dataset, to the best of our knowledge, there
are no known optimization algorithms that can solve multi-task regression problems with struc-
tured sparsity of this scale. Although the same dataset has been analyzed using tree-guided group
lasso in [7], their optimization method based on a variational formulation could handle only a
small-scale dataset because it involves an inversion ofJ × J matrix in each iteration. Thus, their
analysis is focused only on a single chromosome with 21 genotypes instead of the entire set of
1260 genotypes.

5 Conclusions

In this paper, we considered an optimization problem for learning a structured-sparsity pattern
in regression parameters, where the overlapping group structure in inputs or outputs is encoded
the structured-sparsity-inducing norm. Under single-task and multi-task regression settings, we
developed a proximal-gradient method that is extremely efficient and can scale up to very high-
dimensional datasets. Using synthetic and real datasets, we demonstrated the efficiency and scala-
bility of our method.

Appendix

A.1 Geometric Illustration of the Smoothness offµ(β)

In order to provide a geometric illustration of the smoothness offµ(β) as stated in Theorem 1, we
consider the functionf0(β) and its smooth approximationfµ(β) in one-dimensional space (i.e.,
β ∈ R). For the sake of simplicity, we assume thatµ andC are set to 1.

First, we show geometrically thatf0(β) = maxα∈[−1,1] z(α, β) with z(α, β) ≡ αβ is a non-
smooth function. The 3-D plot forz(α, β) with α restricted to[−1, 1] is shown in Figure 6(a). We
project the surface in Figure 6(a) onto theβ − z space as shown in Figure 6(b). For eachβ, the
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value off0(β) is the highest point along thez-axis since we maximize overα in [−1, 1]. We can
see thatf0(β) is composed of two segments with a sharp point atβ = 0. In factf0(β) = |β|.

Now, we introduce the auxiliary functiond(α) = 1
2
α2 and letzs(α, β) ≡ αβ − 1

2
α2 and

fµ(β) = maxα∈[−1,1] zs(α, β). We show geometrically thatfµ(β) is a smooth approximation of
f0(β). The 3-D plot forzs(α, β) with α restricted to[−1, 1] is shown in Figure 6(c). Similarly,
we project the surface in Figure 6(c) onto theβ − zs space as shown in Figure 6(d). For fixedβ,
the value offµ(β) is the highest point along thez-axis. In Figure 6(d), we can see thatfµ(β) is
composed of three parts: (i) a line with slope−1 whenβ < 1, (ii) a line with slope1 whenβ > 1,
and (iii) a quadratic function when−1 ≤ β ≤ 1. By introducing a quadratic auxiliary function,
we remove the sharp point atβ = 0 andfµ(β) becomes a smooth function. In fact,fµ takes the
following form:

fµ(β) =





β2

2
−1 < β < 1

β − 1
2

β ≥ 1

−β − 1
2

β ≤ −1.

We note thatfµ is smooth atβ = ±1.
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Figure 6: A geometric illustration of the smoothness offµ(β). (a) The 3-D plot ofz(α, β), (b) the
projection of (a) onto theβ-z space, (c) the 3-D plot ofzs(α, β), and (d) the projection of (c) onto
theβ-z space.

A.2 Proof of Theorem 1

Thefµ(β) is a convex function since it is the maximum of a set of functions that are linear inβ.
For the smoothness property, let the functiond∗ be the Fenchel conjugate of the distance function
d defined as:

d∗(γ) = max
α∈Q

〈α,γ〉 − d(α). (16)

We want to proved∗ is differentiable everywhere by showing that the subdifferential∂d∗ of d∗ is a
singleton set for anyγ.

From the definition in (16), for anyγ and anyα ∈ Q, we have:

d∗(γ) + d(α) ≥ 〈α,γ〉, (17)

where the inequality holds as an equality if and only ifα = arg maxα′∈Q〈α
′,γ〉 − d(α′).
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Sinced is convex and closed, we haved∗∗ ≡ d (Chapter E in [5]). Thus, (17) can be written as:

d∗(γ) + d∗∗(α) ≥ 〈α,γ〉, (18)

where the inequality holds as an equality if and only ifγ = arg maxγ′∈RJ 〈α,γ ′〉 − d∗(γ ′).
Since (17) and (18) are equivalent, we know thatα = arg maxα′∈Qα′Tγ − d(α′) if and only

if γ = arg maxγ′∈RJ 〈α,γ ′〉 − d∗(γ ′). The latter equality implies that for anyγ ′:

d∗(γ ′) ≥ d∗(γ) + 〈α,γ ′ − γ〉,

which further means thatα is a subgradient ofd∗ atγ by the definition of subgradient.
Summarizing the above arguments, we conclude thatα is a subgradient ofd∗ atγ if and only

if
α = arg max

α′∈Q
〈α′,γ〉 − d(α′). (19)

Sinced is a strongly-convex function, this maximization problem in (19) has a unique optimal
solution. Thus, the subdifferential∂d∗ of d∗ at any pointγ is a singleton set that contains onlyα.
Therefore,d∗ is differentiable everywhere (Chapter D in [5]) andα is its gradient:

∇d∗(γ) = α = arg max
α′∈Q

〈α′,γ〉 − d(α′). (20)

Now we return to our original problem offµ(β) and rewrite it as:

fµ(β) = max
α∈Q

〈α,Γ(β)〉 − µd(α) = µmax
α∈Q

[〈α,
Γ(β)

µ
〉 − d(α)] = µd∗(

Γ(β)

µ
).

Using (20) and the chain rule, we know thatfµ(β) is continuously differentiable and its gradient
takes the following form:

∇fµ(β) = µΓ∗(∇d∗(
Γ(β)

µ
)) = µΓ∗(arg max

α′∈Q
[〈α′,

Γ(β)

µ
〉 − d(α′)])

= Γ∗(arg max
α′∈Q

[〈α′,Γ(β)〉 − µd(α′)]) = Γ∗(α∗).

For the proof of Lipschitz constant offµ(β), readers can refer to [11].

A.3 Proof of Lemma 2

Since we have

‖Γ(v)‖2 = ‖Cv‖2 = λ

√∑

g∈G

∑

j∈g
(wg)2v2j = λ

√√√√
J∑

j=1

(
∑

g∈G s.t. j∈g
(wg)2

)
v2j ,

the maximum value of‖Γ(v)‖2, given‖v‖2 ≤ 1, can be achieved by settingvĵ for j corresponding
to the largest summation

∑
g∈G s.t. j∈g(wg)

2 to one, and setting othervj ’s to zeros. Hence, we have

‖Γ(v)‖2 = λmaxj∈{1,...,J}

√∑
g∈G s.t. j∈g

(wg)2.

15



For the norm of the linear operatorΓ in the multi-task setting, following the same proof strategy,
we can show that

‖Γ‖ = λ max
k∈{1,...,K}

√∑
g∈G s.t. k∈g

(wg)2.

A.4 Proof of Theorem 2

Based on Theorem 2 in [11], we have the following lemma:

Lemma 3. Assume that functioñf(β) is an arbitrary convex smooth function and its gradient
∇f̃(β) is Lipschitz continuous with the Lipschitz constantL. We apply Algorithm 1 to minimize
f̃(β) and letβt be the approximate solution at thet-th iteration. For anyβ, we have the following
bound:

f̃(βt)− f̃(β) ≤
2L‖β‖22

t2
. (21)

Recall that the smooth approximation of the functionf(β), f̃(β), is defined as:

f̃(β) ≡
1

2
‖y −Xβ‖22 + fµ(β) =

1

2
‖y −Xβ‖22 +max

α∈Q
(αTCβ −

1

2
‖α‖22).

Since Algorithm 1 optimizes the smooth functioñf(β), according to Lemma 3, we have

f̃(βt)− f̃(β∗) ≤
2L‖β∗‖22

t2
, (22)

whereL = λmax(X
TX) + ‖Γ‖2

µ
is the Lipschitz constant for∇f̃(β).

In order to use the bound in (22), we decomposef(βt)− f(β∗) into three terms:

f(βt)− f(β∗) =
(
f(βt)− f̃(βt)

)
+
(
f̃(βt)− f̃(β∗)

)
+
(
f̃(β∗)− f(β∗)

)
. (23)

According to the definition of̃f , we know that for anyβ

f̃(β) ≤ f(β) ≤ f̃(β) + µD,

whereD ≡ maxα∈Q d(α). Therefore, the first term in (23),f(βt)− f̃(βt), is upper-bounded by
µD, and the last term in (23) is less than or equal to 0 (i.e.,f̃(β∗)− f(β∗) ≤ 0). Combining (22)
with these two simple bounds, we have:

f(βt)− f(β∗) ≤ µD +
2L‖β∗‖22

t2
≤ µD +

2‖β∗‖22
t2

(
λmax(X

TX) +
‖Γ‖2

µ

)
. (24)

By settingµ = ǫ
2D

and plugging this into the right-hand side of (24), we obtain

f(βt)− f(β∗) ≤
ǫ

2
+

2‖β∗‖22
t2

(
λmax

(
XTX

)
+

2D‖Γ‖2

ǫ

)
. (25)

If we require the right-hand side of (25) to be equal toǫ and solve it fort, we obtain the bound of
t in (11).

Note that we can setµ = ǫ
h

for anyh > 1 to achieveO
(
1
ǫ

)
convergence rate, which is different

from (11) only by a constant factor.
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