
A Study on Retrospective and On-Line Event DetectionYiming Yang, Tom Pierce, Jaime CarbonellSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3702, USAwww.cs.cmu.edu/~yiming/Abstract This paper investigates the use and exten-sion of text retrieval and clustering techniques for eventdetection. The task is to automatically detect novelevents from a temporally-ordered stream of news stories,either retrospectively or as the stories arrive. We appliedhierarchical and non-hierarchical document clustering al-gorithms to a corpus of 15,836 stories, focusing on theexploitation of both content and temporal information.We found the resulting cluster hierarchies highly infor-mative for retrospective detection of previously uniden-ti�ed events, e�ectively supporting both query-free andquery-driven retrieval. We also found that temporal dis-tribution patterns of document clusters provide usefulinformation for improvement in both retrospective de-tection and on-line detection of novel events. In anevaluation using manually labelled events to judge thesystem-detected events, we obtained a result of 82% inthe F1 measure for retrospective detection, and a F1value of 42% for on-line detection.1 IntroductionThe rapidly-growing amount of electronically availableinformation threatens to overwhelm human attention,raising new challenges for information retrieval technol-ogy. Although traditional query-driven retrieval is use-ful for content-focused queries, it is de�cient for genericqueries such as \What happened?" or \What's new?".Browsing without guidance or a conceptual structure ofthe search space is useful only in miniscule informationspaces.Consider a person who returns from an extended va-cation and needs to �nd out quickly what happened in theworld during her absence. Reading the entire news col-lection is a daunting task, and generating speci�c queriesabout unknown facts is rather unrealistic. Thus, intel-ligent assistance from the computer is clearly desirable.Such assistance could take the form of a content summaryof a corpus for a quick review, the temporal evolution ofpast events of interest, or a listing of automatically de-tected new events which demonstrate a signi�cant con-tent shift from any previously known events. It wouldalso be useful to have structured guidelines for naviga-tion through document clusters. Table 1 shows a samplePermission to make digital/hard copy of all or part of this workfor personal or classroom use is granted without fee provided thatcopies are not made or distributed for pro�t or commercial ad-vantage, the copyright notice, the title of the publication and itsdate appear, and notice is given that copying is by permission ofACM, Inc. To copy otherwise, to republish, to post on servers orto redistribute to lists, requires prior speci�c permission and/orfee. SIGIR'98, Melbourne, Australia c 1998 ACM 1-58113-015-58/98 $5.00.

Table 1. Corpus summary using keywords ofautomatically generated clusters of news storiesSize* Top-ranking Words (stemmed)330 republ clinton congress hous amend217 simpson o prosecut trial jury98 israel palestin gaza peac arafat97 japan kobe earthquak quak toky93 russian chech chechny grozn yeltsin56 somal u mogadishu iraq marin55 ood rain californ malibu rive48 serb bosnian bosnia croat u35 game leagu play basebal season33 crash airlin ight airport passeng28 clinic sav abort massachuset norfolk27 shuttl spac astronaut mir discov26 patient drug virus holtz infect24 chin beij deng trad copyright...* Size means the number of documents included.summary of a corpus obtained by applying our hierarchi-cal content-based clustering algorithm to a few thousandnews stories (CNN news and Reuters articles from Jan-uary to February in 1995) and presenting each clusterusing a few (statistically signi�cant) key terms. As thetable shows, domestic politics reigns supreme as usual,the OJ trial still receives media attention, etc. How-ever, the table also reveals that disasters struck KobeJapan and Malibu California, and Chechnia has ared upagain, events which were not present the month before.The key terms provide content information, and the storycounts imply signi�cance, as measured by media atten-tion. If further detail is desired, the sub-clusters can beexamined via query-driven retrieval, browsing individualdocuments or synthetic summaries across documents [2].The utility of such computer assistance is evident eventhough some clusters may be imperfect and the currentuser interface is rudimentary.This paper reports our work in event detection, anew research topic initiated by the Topic Detection andTracking (TDT) project1. The objective is to identifystories in several continuous news streams that pertainto new or previously unidenti�ed events. To be moreprecise, detection consists of two tasks: retrospective de-tection and on-line detection. The former entails the dis-covery of previously unidenti�ed events in an accumu-lated collection, and the latter strives to identify the on-set of new events from live news feeds in real-time. Both1The TDT project is supported by the U.S. Government, con-sisting of segmentation of stories in a continuous news-stream,temporal event tracking and event detection. Our event trackingwork will be reported in a separate paper.



forms of detection intentionally lack advance knowledgeof novel events, but do have access to (unlabelled) his-torical news-stories for use as contrast sets.Event detection is essentially a discovery problem,i.e., mining the data stream for new patterns in docu-ment content. Bottom-up document clustering appearsto be a natural solution for the discovery of natural clus-ters without introducing any assumptions about the do-main or down-stream applications. Moreover, bottom-upclustering can result in a cluster hierarchy, thus allowingobservation at any level of abstraction in the informationspace. Higher levels of clusters give progressively coarse-grain overviews of the content of document groups, whilelower levels provide tighter clusters corresponding to spe-ci�c events, temporal phases of events, or sub-events.We have applied both hierarchical and incremental non-hierarchical clustering algorithms to explore the natureof the problem and the solution space, focusing on thecombined use of context information and temporal pat-terns of event distribution.Directly related to our work is the on-going research inthe other TDT-member groups: the UMass informationretrieval group and the Dragon Systems speech recogni-tion group. These groups also use document clusteringas their basic approach. UMass focuses on the detec-tion of \disaster" events by monitoring sudden changesin term frequencies in news streams, and using the sto-ries that contain disaster-related terms to construct clus-ter centroids. Dragon adapts unigram (and later bi-gram) language models to document/cluster representa-tion, and uses k-means clustering algorithms for docu-ment grouping[10]. We compare the results of the ap-proaches of these two groups with the results of our ap-proaches in the evaluation section.Other related work in the IR literature includes:� the Scatter/Gather cluster-based approach to cor-pus navigation[3, 4];� the studies on clustering algorithms and their ap-plications in the context of query-driven retrieval[7, 6, 9, 8].Our detection methods are inspired by the Scatter andGather paper[3], including the choice of the basic group-average clustering (GAC) algorithm. However clusteringalgorithms per se are not the major focus of this study,nor are the applications or evaluations in a query-drivenretrieval paradigm. Instead, the primary contributionsof this paper are applications of clustering techniques forevent detection. Speci�cally, we investigated:� semantic and temporal properties of events;� document clustering based on content and temporaladjacency (rather than just content);� event detection based on similarity versus novelty;� evaluation methods for retrospective and on-linedetection.2 Event AnalysisIn order to investigate the nature of events and to eval-uate the e�ectiveness of detection algorithms, the TDTproject prepared a collection of 15,836 news stories, in
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NYC Subway bombing
OK-City bombingFigure 2: Histograms of bombing-related eventswhich 25 events were identi�ed by the TDT researchers2 .The only guideline explicitly given for event de�nitionwas that an event should identify something (non-trivial)happening in a certain place at a certain time. This prop-erty makes events di�er from topics. For example, theTWA-800 airplane crash is an event but not a topic, andairplane accidents is a topic but not an event. This dis-tinction gives rise to reporting patterns of events andtheir evolution over time. Since selecting the events fromthe TDT corpus entailed an initial random sampling ofthat corpus, a bias towards larger events (those reportedmore often) was evident. The 25 events selected containdi�erent numbers of stories, ranging from 2 stories forCuban riot in Panama to 273 stories for OK City bomb-ing. The entire corpus of stories was manually labelled;each story was assigned a label of YES, NO or BRIEFwith respect to each of the 25 events. The corpus con-tains stories about more events than the 25 labeled ones;unlabeled events were not used in the evaluation.An interesting characteristic of news stories is thatevents are often associated with news bursts. Figures 1and 2 illustrate the temporal histograms of a few events,where the X-axis of each graph is time (numbered fromday 1 to 365), and the Y-axis is the story count per day.Several patterns emerged from our observations of tem-poral event distributions:� News stories discussing the same event tend to betemporally proximate, suggesting the use of a com-bined measure of lexical similarity and temporalproximity as a criterion for document clustering.� A time gap between bursts of topically similar sto-ries is often an indication of di�erent events (e.g.,di�erent earthquakes, airplane accidents, political2The TDT corpus consists of 15,836 news stories in the timeperiod from July 1, 1994 to June 30, 1995. Roughly a half of thesestories are Reuters articles, and the other half are from multipleprograms of CNN broadcast news. This corpus is available viaCMU web site to members of the Linguistic Data Consortium {email: yiming@cs.cmu.edu.



crises, etc.), suggesting a need for monitoring clus-ter evolution over time, and a bene�t from using atime windows for event scoping.� A signi�cant vocabulary shift and rapid changes interm frequency distribution are typical of stories re-porting a new event, indicating the importance ofdynamically updating the corpus vocabulary andstatistical term weights. A timely recognition ofnew patterns, including previously unseen propernames and proximity phrases, in the streams of sto-ries is potentially useful for detection of the onsetof a new event.These points will be addressed further in the nextsection where the design of our document-clustering al-gorithms for event detection are described.3 Detection MethodsRetrospective event detection is the task of grouping sto-ries in a corpus where each group uniquely identi�es anevent. On-line event detection is the problem of labelingeach document as it arrives in sequence with a New orOld ag, indicating whether or not the current documentis the �rst story discussing a novel event at that time.We investigated two clustering methods: an agglomera-tive (hierarchical) algorithm based on group-average clus-tering (GAC), and a single-pass algorithm (incrementalclustering or INCR) which generates a non-hierarchicalpartition of the input collection. GAC is designed forbatch processing, and is used for retrospective detection.INCR is designed for sequential processing, and is usedfor both retrospective detection and on-line detection.3.1 Cluster representationWe share a common representation for documents andclusters in our detection and tracking algorithms. Weemploy the conventional vector space model[5] which usesthe bag-of-terms representation. A document (story) isrepresented using a vector of weighted terms (words orphrases). The normalized vector sum of documents ina cluster is used to represent the cluster, and called theprototype or centroid of the cluster. Terms in a documentvector or a cluster prototype are statistically weighted us-ing the term frequency (TF) and the Inverse DocumentFrequency (IDF) and are appropriately normalized. Weonly keep the k top-ranking terms (at the most) per vec-tor, and ignore the remaining terms. The value of k isempirically chosen to optimize detection or tracking per-formance. We use the standard cosine similarity, i.e.,the cosine value between document and cluster prototypevectors to measure their similarity.We employ the SMART 11.0 system (developed atCornell)[5] for document preprocessing, including the re-moval of stop words, stemming, and term weighting.SMART also provides several term weighting schemes,of which we found the ltc option yielded in the bestdetection results in our experiments. Given term t indocument d, the ltc weight is de�ned as:w(t; d) = (1 + log2 TF(t;d))� IDF(t)=k~dk:The denominator k~dk is the 2-norm of vector ~d, i.e. thesquare root of the squared sum of all the elements in thatvector. IDF, standing for Inverse Document Frequency,is a corpus-level statistic, de�ned to be N=nt where N

is the total number of training documents, and nt is thenumber of training documents which contain term t.3.2 GAC-based hierarchical clusteringBasic GAC algorithmGroup Average Clustering (GAC) is an agglomerative al-gorithm which maximizes the average similarity betweendocument pairs in the resulting clusters [7, 9]. Straight-forward GAC algorithms typically have a complexity intime and space quadratic to the number of input docu-ments [3], which is less economical or tractable for largeapplications than simpler methods, such as single-linkclustering. Cutting et al. presented an iterative bottom-up algorithm aiming for a compromise between clusterquality and computational e�ciency[3]. In each iteration,it divides the current set of active clusters/documentsinto buckets, and does local clustering within each bucket.The process repeats and generates clusters at higher andhigher levels, until a pre-determined number of top-levelclusters are obtained. This algorithm has a time com-plexity of O(mn) where n is the number of documents inthe input corpus, m is the bucket size, and m � n.Bucketing and reclusteringWhen applying the above algorithm to event detection,we based the bucketing of documents/clusters on thetemporal order of the documents. Our motivation is notjust computational e�ciency, but the exploitation of tem-poral proximity of news stories discussing a given event.Most of the manually labelled events in the TDT corpuslast no longer than 2 months. The fact that events tendto appear in news bursts makes it reasonable to bucketstories according to their order in time. In other words,our strategy gives a higher priority to grouping consecu-tive stories rather than temporally disparate ones.The input to the GAC algorithm is a document col-lection, and the output is a forest of cluster trees with thenumber of trees speci�ed by the user. Clusters are pro-duced by growing a binary tree in a bottom-up fashion:the leaf nodes of the tree are single-document clusters; amiddle-level node is the merged cluster of the two mostsimilar lower-level clusters. By default, the bottom-upclustering continues until the root node is created, whichrepresents the universal cluster containing all clusters andtherefore all the stories. If the desired number of clus-ters is pre-speci�ed, then the algorithm stops when thatnumber of clusters is reached rather than proceeding tothe root. The algorithm consists of the following steps:1. Sort the stories in chronological order, and use thisas the initial partition of the corpus where eachcluster consists of a single document.2. Divide the current partition into non-overlappingand consecutive buckets of �xed size.3. Apply GAC to each bucket by combining lower-level clusters into higher-level ones in a bottom-upfashion until the bucket size (number of clusters init) is reduced by a factor of �, called the reductionfactor.4. Remove the bucket boundaries (assemble all theGAC clusters) while preserving the time order ofthe clusters. Use the resulting cluster series as theupdated partition of the corpus.



5. Repeat steps 2-4, until a pre-determined number oftop-level clusters is obtained in the �nal partition.6. Periodically (once per k iterations in Step 5) re-cluster the stories within each of the top-level clus-ters, by attening the component clusters and re-growing GAC clusters internally from the leaf nodes.The re-clustering step is our augmentation to Cut-ting's algorithm. This step is useful when events straddlethe initial temporal-bucket boundaries; subsets of storiesdiscussing the event within di�erent buckets are oftenclustered together with somewhat similar stories at a lowlevel, and are only later assembled in a higher level nodeof the cluster tree. Subsequent re-clustering reduces thesystematic bias of the initial bucketing, and therefore re-sults in tighter clusters than those obtained without re-clustering.Tunable parametersSeveral tunable parameters are used in our algorithm,including:1. the bucket size (number of clusters) which limitsthe scope of the GAC clustering in each iteration;2. the reduction factor � in each iteration;3. the minimum similarity threshold for two clustersto be combined;4. the number of terms to keep in each cluster proto-type;5. the term weighting scheme;6. the number of iterations between re-clustering.Parameter tuning is an empirical issue. Table 2 showsparameter values typical of those used in our retrospec-tive detection experiments.Table 2. Typical parameters used in retrospective GACbucket size = 400clustering threshold = .2terms per vector = 100term weighting = ltcreduction factor � = 0.5# of iterations b/w re-clustering = 53.3 Single-pass clusteringThe incremental clustering algorithm is quite simple. Itsequentially processes the input documents, one at atime, and grows clusters incrementally. A new documentis absorbed by the most similar cluster generated previ-ously, if the similarity between this document and theprototype of that cluster is above a pre-selected thresh-old; otherwise, the document is treated as the seed of anew cluster. By adjusting the threshold, one can obtainclusters at di�erent levels of granularity. We made addi-tional e�orts to exploit the dynamic nature of the inputdata and the temporal properties of events; these e�ortsare described in the following sections.

Incremental IDFA task-speci�c constraint in on-line detection is the pro-hibited use of any information about future stories, i.e.,documents posterior to the current point of processing.This raises the issue about how to deal with the growingvocabulary from incoming documents and the dynamicupdating of corpus-level statistics such as IDF, which im-pact term weighting and vector normalization and thusa�ect document clustering.Two possible approaches to the above problems wouldbe to:1. Obtain a �xed vocabulary and static IDF statisticsusing a retrospective corpus in a similar applicationdomain (e.g., CNN or WSJ news stories prior to theperiod of the TDT stories), and use this vocabularyand IDF values for term weighting in newly comingdocuments/clusters. Assign a constant weight tothe out-of-vocabulary (OOV) terms, or use someother kind of smoothing of term weights.2. Incrementally update the document vocabulary andrecompute IDF each time a new document is pro-cessed. An empirical analysis shows that an incre-mental IDF approach can be e�ective in documentretrieval after a su�cient number of \past" docu-ments have been processed[1].We chose to combine both approaches, starting withIDF statistics of a retrospective corpus, and updatingthe IDF with each incoming document. The incrementalInverted Document Frequency (IDF) is de�ned to be:IDF(t;p) = log2(N(p)=n(t;p))where p is the current time, t is a term, N(p) is the num-ber of accumulated documents up to the current point(including the retrospective corpus if used), and n(t;p) isthe number of documents which contain term t up to thecurrent point.Time window and decaying functionFor on-line detection, we use a time window to limit priorcontext tom previous stories. For each current documentin the sequential processing, the similarity score of eachdocument in the time window is computed. A ag of Newis assigned to the document if all the similarity scores inthe window are below a pre-determined threshold. Thecon�dence score for this decision is de�ned to be:score(x) = 1� maxdi2windowfsim(~x; ~di)gwhere x is the current document, di is the i-th documentin the window, and i = 1; 2; : : : ;m.We also tested a decaying-weight function where doc-uments further removed in time have progressively lessinuence on the current decision. We use a modi�ed for-mula for the con�dence score of document x:score(x) = 1� maxdi2windowf imsim(~x; ~di)g:This method provides a smoother way to use the tempo-ral proximity than a uniformly-weighted window. Notethat for simplicity we de�ne the time window over doc-uments, rather than clusters or time periods; however, itis easy to generalize these de�nitions from documents tosuch larger groupings.



These windowing strategies yielded measurable im-provements in our on-line detection experiments, enhanc-ing precision with only a small sacri�ce in recall. The i=mlinear-decay temporal window yielded consistently betterresults than the uniformly-weighted window.Similarly, we investigated time windowing in INCRclustering for retrospective detection. In the experimentswith other parameters �xed, using a window of 2000 doc-uments (covering about 1.5 months of time) improved theperformance score from 0.64 to 0.70 in the F1 measure[7](de�ned in the evaluation section).Detection thresholdingWe use two user-speci�ed thresholds to control the de-tection decisions by the incremental algorithm: the clus-tering threshold (tc), and the novelty threshold (tn). Theformer determines the granularity of the resulting clus-ters, which is essential for retrospective event detection,and the latter determines the sensitivity to novelty, whichis crucial for on-line detection.Letting tc � tn, and simmax(x) = 1 � score(x), ouron-line detection rules are de�ned to be:� If simmax(x) > tc, then set the ag to OLD, andadd document x to the most similar cluster in thewindow;� if tc � simmax(x) > tn, then set the ag to Old,and treat document x as a new singleton cluster;� if tn � simmax(x), then set the ag to New, andtreat document x as a new singleton cluster.Using both thresholds permits better empirical op-timization for di�erent tasks. For instance, tc = tn isappropriate for retrospective clustering (i.e., tn is notneeded), but for on-line detection we found that not us-ing clustering (tc =1) is better. Tables 3 and 4 show theparameter values typically used for in our retrospectivedetection and on-line detection experiments with INCR.Table 3. Typical parameter values in retro. INCRwindow size = 2000clustering threshold = .23terms per doc vector = 125term weighting = ltcTable 4. Typical parameter values in on-line INCRwindow size = 2500 linear decayclustering threshold = 1novelty threshold = .16terms per doc vector = no limitterm weighting = ltcIDF = retro + on-line updating4 EvaluationDetection e�ectiveness was evaluated using the 25 human-labeled events (about 7% of the total stories) in theTDT corpus, although the detection systems were runon the entire corpus and (presumably) detected manymore events outside these 25 on which they were notevaluated.

4.1 Retrospective detection resultsThe o�cial evaluation in the TDT project required eachretrospective detection system to generate a partition ofthe corpus, i.e., non-overlapping clusters which togetherspan the entire TDT corpus. A system may generateany number of clusters, but is only evaluated on the 25reference events. After the partition is generated, thecluster that best matches each of the 25 labeled events isused for evaluation, via 25 contingency tables.Table 5. A cluster-event contingency tablein event not in eventin cluster a bnot in cluster c dTable 5 illustrates the two-by-two contingency tablefor an cluster-event pair, where a; b; c and d are documentcounts in the corresponding cases. Five evaluation mea-sures are de�ned using the contingency table, includingmiss, false alarm (f), recall (r), precision (p) and the F1measure (F1):� miss = c=(a+ c) if a+ c > 0, otherwise unde�ned;� f = b=(b+ d) if b+ d > 0, otherwise unde�ned;� r = a=(a+ c) if a+ c > 0, otherwise unde�ned;� p = a=(a + b) if a+ b > 0, otherwise unde�ned;� F1 = 2rp=(r+p) = 2a=(2a+b+c) if (2�a+b+c) > 0,otherwise unde�ned.To measure global performance, two averaging meth-ods are used. The micro-average is obtained by mergingthe contingency tables of the 25 events (by summing thecorresponding cells), and then using the merged tableto produce global performance measures. The macro-average is obtained by producing per-event performancemeasures �rst, and then averaging the correspondingmeasures.Table 6 shows our best result by the incremental clus-tering algorithm in the o�cial TDT retrospective detec-tion evaluation where each detection system is requiredto produce a partition of the entire corpus. Table 7 showsthe improved results that are obtained when potentially-overlapping clusters are permitted. The CMU resultscorrespond to the modi�ed GAC method described ear-lier. The (available) results by UMass and Dragon arealso included for comparison, according to their reportsat the TDT workshop[10].Table 6. Retrospective detection results{ partition requiredCMU UMass Dragon(INCR) (no-dupl) (multi-pass)Recall (%) 62 34 61Precision (%) 82 53 69Miss (%) 38 66 39False Alarm (%) .04 .09 .08micro-avg F1 .71 .42 .65macro-avg F1 .79 .60 .75



Table 7. Retrospective detection results{ cluster overlap and hierarchy allowedCMU UMass(GAC) (dupl)Recall (%) 75 73Precision (%) 90 78Miss (%) 25 27False Alarm (%) .02 .06micro-avg F1 .82 .75macro-avg F1 .84 .81These results show that allowing cluster hierarchy(CMU:GAC) and cluster overlap (UMass: dupl) yieldedbetter results than requiring a corpus partition. We be-lieve the main reason for the better performance of GACis the multi-leveled clusters which enable the detectionof events at any degree of granularity. This representa-tional power of GAC comes with a cost of resulting alarger number of clusters (about 12,000 in this particularrun), than the number of clusters (5,907) in the partitionby INCR. This di�erence, however, may not have a sig-ni�cant e�ect on the end-user, if the cluster hierarchieswill be used for a scatter-gather type of navigation orquery-driven retrieval, where the search steps needed aremuch less than the total number of clusters.In the results of the partition-producing algorithms,we were surprised that the simplest approach { the single-pass clustering by INCR (CMU) { worked as well asthe multi-pass k-means clustering method by Dragon.This may be partly because of the temporal proximityof events which simpli�es the clustering problem.4.2 On-line detection resultsThe required output of an on-line detection system is adecision of New or Old for an incoming document with acon�dence score for that decision. Since there are only25 events (containing 1131 stories) de�ned in the TDTcorpus, and each event has only one story as the �rst re-port of that event, only 25 stories should have a ag ofNew for the entire corpus. This is too small a numberfor a statistically reliable estimation of performance. Toimprove the reliability, an 11-pass detection evaluationwas conducted. After each pass, the �rst story of eachevents is removed, and detection and evaluation are ap-plied again to the corpus. The eleven passes are labeledby Nskip = 0; 1; : : : ; 10. For each pass, a contingencytable is constructed for evaluation, as shown in Table 8.Table 8. On-line detection contingency tableNew is true Old is truePredicted New a bPredicted Old c dTable 9 and Figures 3 and 4 summarize the resultsby CMU, UMass and Dragon. Both CMU and UMassconducted multiple runs with di�erent parameter set-tings; here we present the best result for each site withrespect to the F1 measure. CMU's results correspondto the parameters discussed earlier (Table 4). Note thatboth CMU and UMass chose to use individual documentsinstead of clusters to represent the past in on-line detec-tion, while Dragon used a single pass of their k-meansclustering approach3 . We interpret the better results of3Multi-pass clustering is not allowed because, by the task def-inition, future knowledge is not available at the decision makingpoint.

not using clustering as the following: in order to pass thenovelty test, a story has to be su�ciently di�erent fromall of the past stories; this is a stronger condition thanbeing more novel than the average.Table 9. On-line new event detection resultsCMU UMass Dragonno clust no clust one-pass clustRecall (%) 50 49 42Precision (%) 37 45 21Miss (%) 50 51 58False Alarm (%) 1.89 1.31 3.47micro-avg F1 .42 .47 .28macro-avg F1 .42 .47 .28Note that the scores in Table 9 only measure how welleach system did at a speci�c trade-o� level of recall andprecision. In order to measure continuous trade-o� be-tween recall and precision, we present the recall-precisioncurves (Figure 3) and the Decision Error Trade-o� (DET)curves 4. These curves were obtained by moving thresh-olds on the confedence scores of detection decisions. Weused the DET software provided in the TDT project togenerate the DET curves, and converted each data point(a pair of miss/false-alarm values) in these DET curvesto the corresponding recall and precision values (non-interpolated) to obtain the recall-precision curves. TheCMU results are depicted by the solid lines, which showbetter performance at the high precision area. As is espe-cially evident in Figure 3, the CMU, UMass and Dragonapproaches exhibit very di�erent behaviors, inviting fur-ther detailed investigation.4.3 Behavior analysisIn order to compare the behavior of our algorithms tohuman judgments, we contrast the temporal histogramsof system-generated clusters for retrospective detectionwith corresponding histograms by human judgments.Figures 5-8 show the pairwise histograms on two eventsfor GAC and INCR, respectively. Figure 9 shows theGAC performance on all the 25 events. The upper halfof each graph is the histogram of human-labeled docu-ments for an event; the lower half is the histogram ofthe system-generated cluster for the same event. Theabsolute value on the Y-axis is the story count for theevent or cluster in a particular day. If an event and acluster are a perfect match, then their histograms will becompletely symmetric, mirroring each other.As the �gures show, GAC and INCR have comple-mentary strengths and weaknesses. GAC shows surpris-ingly symmetric graphs for most events except those withsigni�cant temporal extent, and GAC is particularly suit-able for recognition of large news bursts. INCR, on theother hand, has less symmetric performance compared toGAC, but is better at tracking long-lasting events (DNAin O.J. trail and Death of Kim Jong Il). The observedbehavior may come partly from the di�erent biases inthese algorithms and partly from the parameter settingsin the particular experiments.4The Decision Error curves, which plot miss and false alarm,are analogous to precision-recall trade-o� curves. Better per-formance corresponds to proximity to the origin. The originalDET software was provided by the TDT project sponsor, and theadapted version was implemented by the UMass group with richeroptions.
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Figure 4: On-line detection DET curves5 Concluding RemarksEvent detection, both retrospective and on-line, repre-sents a new family of tasks for IR. The results of ourpilot study on these tasks (reinforced by the results ofUMass and Dragon) show that basic techniques such asdocument clustering can be highly e�ective if the prob-lems are well de�ned, and when content information andtemporal information are jointly and properly used.For retrospective detection, when requiring a strictpartition of the document space, GAC, INCR and the k-mean clustering algorithm by Dragon exhibit comparableperformance; when the partition requirement is relaxed,the hierarchical GAC approach is the best.On-line novel-event detection is somewhat more dif-�cult than retrospective detection. Non-clustering tech-niques have demonstrated better detection accuracy thanclustering approaches, although further investigation isneeded for a better understanding.In spite of the reasonable results obtained by CMU,Dragon and UMass, much work remains to be done. Re-search questions for further investigation include:� How can we exploit multiple input streams (e.g.CNN, AP, UPI, ...) to reinforce each other, cross-validating topical clusters?� How can we better exploit the temporal patterns ofproper names or proximity phrases which appear tobe highly informative (to humans, at least) as eventindicators?
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Cluster 25. WTC Bombing trialFigure 9: Pairwise histograms of the 25 TDT events vs the best-�t clusters by GAC
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