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ABSTRACT
Learning effective feature-based ranking functions is a fun-
damental task for search engines, and has recently become
an active area of research [10, 3, 2]. Many of these recent al-
gorithms are based on the pairwise preference framework,
in which instead of taking documents in isolation, docu-
ment pairs are used as instances in the learning process.
One disadvantage of this process is that a noisy relevance
judgment on a single document can lead to a large number
of mis-labeled document pairs. This can jeopardize robust-
ness and deteriorate overall ranking performance. In this
paper we study the effects of outlying pairs in rank learning
with pairwise preferences and introduce a new meta-learning
algorithm capable of suppressing these undesirable effects.
This algorithm works as a second optimization step in which
any linear baseline ranker can be used as input. Experiments
on eight different ranking datasets show that this optimiza-
tion step produces statistically significant performance gains
over various state-of-the-art baseline rankers.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.3.4 [Systems and Software]: Performance eval-
uation (efficiency and effectiveness)

General Terms
Algorithms, Design, Experimentation

Keywords
Learning to rank, Empirical Risk

1. INTRODUCTION
The “Learning to Rank” problem has gained much atten-

tion from the information retrieval research and industry
communities recently. This is the problem of using queries
previously submitted to a search engine and relevance in-
formation on the retrieved results to improve performance
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of a document ranking algorithm. One goal of this machine
learning task is to automatically adjust the parameters in
the ranking algorithm to return more relevant documents
higher in the results list for future queries.

Much of the recent research in rank learning has focused
on document ranking, but Learning to Rank (LETOR) is
a widely applicable machine learning task. Ranking (or
re-ranking) has long been important in machine transla-
tion [20], named-entity extraction [7] and expert finding [6]
to name just a few areas. In all of these tasks, objects
(named entity labels, target-language translations, candi-
date experts) are ranked in response to some “query” (text
span, source-language sentences, keyword query).

One popular approach to learning ranking functions is to
learn a preference function over pairs of documents given a
query. This preference function indicates to which degree
one document is expected to be more relevant than another
with respect to the query. When these preference functions
are transitive, as is typically the case, the document collec-
tion can be ranked in descending order of preference.

There is evidence that assessment of pairwise preferences
is easier for assessors and yields higher inter-annotator
agreement [5]. There are also many practical advantages
in adopting a pairwise preference approach for automatic
learning of feature-based ranking functions. First, most
classification methods can be easily adapted to this formu-
lation of the ranking problem. Second, this framework can
be generalized to any graded relevance levels (e.g. definitely
relevant, somewhat relevant, non-relevant). Third, in many
scenarios it is easier to obtain large amounts of pairwise
preference data [14].

Using pairwise preferences, however, does pose some risks.
In the presence of labeling errors or other “noise” in the doc-
ument relevance information, creating a training set by pair-
ing documents causes a quadratic increase in the number of
noisy outlier observations. As we will show, this can have a
strong negative impact on the quality of the learned ranking
function.

In this paper, we propose a two-stage optimization strat-
egy for learning ranking functions that is robust to outliers
and applicable to any method that learns a linear ranking
function. This meta-ranker is computationally economical
and, although developed for document ranking, this method
generalizes across many ranking tasks. Experimental results
on eight different ranking collections show consistent and
significant improvements over a range of baseline ranking
functions.



2. LEARNING TO RANK

2.1 Related Work
Learning feature-based ranking functions has become an

active area of research, with the recent introduction of sev-
eral new ranking algorithms. RankNet [2] learns a ranking
function by minimizing the number of mis-ranked pairs via
gradient descent on a probabilistic loss function. RankBoost
[11] and AdaRank [25] are examples of algorithms that use
the boosting framework to learn feature-based ranking func-
tions. Various methods based on the Perceptron algorithm
have also been proposed to learn ranking functions for appli-
cations such as information retrieval [12, 10], reranking for
named-entity extraction [7] and machine translation [20].

One limitation of these algorithms is that they do not di-
rectly maximize information retrieval performance metrics,
such as NDCG (Normalized Discounted Cumulative Gain)
[13] or MAP (Mean Average Precision) [1]. Instead, different
approximations for these metrics have been used as proxies
in the learning procedure. Matveeva et al. [17] and Taylor
et al. [22] present two distinct ways to tailor RankNet to op-
timize NDCG. The first approach iteratively reranks smaller
and smaller portions of an originally produced ranked list of
documents in order to focus on the portion of the ranked list
that has a higher likelihood of being relevant. The second
adapts RankNet’s cost function to directly optimize parame-
ters in the BM25 ranking function while maximizing NDCG
on a held-out set. In recent work, Yue et al. [26] presented
a method for adapting RankSVM to maximize an approxi-
mation of average precision. More recently, Taylor et al.[21]
described SoftRank, a method that optimizes “softNDCG”,
an approximation of the NDCG metric.

Other common approaches to optimizing specific retrieval
performance metrics include grid-search, coordinate ascent
and line-search [18]. These methods perform heuristic ex-
ploration of ranking function parameters (the hypothesis
space), evaluating sampled hypotheses against the target
performance measure. Although these methods directly op-
timize any given performance metric on the training set,
they are generally very expensive when applied to ranking
functions with more than just a few parameters.

2.2 Pairwise-preference Ranking
Many of the recently proposed approaches to learn

feature-based ranking functions take a pairwise preference
approach [2, 3, 14, 10, 26]. In the pairwise framework,
instead of taking documents in isolation, document pairs
are taken as instances in the learning process. The goal in
this setting is to learn a preference function over document
pairs, where the output of the learned function indicates
the degree to which one document is preferred over another
for a given query.

This approach is appealing for several reasons. First,
learning a preference function on pairs of documents reduces
the ranking problem to a binary classification problem: a
correct (or incorrect) classification corresponds to correctly
(or incorrectly) ordering a document pair. Many classifica-
tion algorithms have been adapted to this task, including
support vector machines [14], perceptron algorithms [10, 12]
as well as gradient descent algorithms [2].

Second, this approach imposes very few assumptions on
the structure of the training data — only that preferences
among documents are somehow expressed. Explicit docu-

ment preferences assessment [5] can clearly be used with this
learning approach. Additionally, traditional absolute rele-
vance judgements (binary or graded relevance) can be easily
converted to a pairwise preference training set by taking
all pairs of document with differing relevance levels. Click-
through data has also been used by assuming that a clicked-
on document expresses a preference for that document over
documents occurring higher in the document ranking [14].

We represent our learning setting as follow: a ranking
dataset consists of a set of queries q ∈ Q, and a set of docu-
ments for each query di ∈ Dq with some associated relevance
judgement of document d for query q, yqi. Our training set
for a single query is then Sq = {(dq1, yq1) , (dq2, yq2) , ...}.
The relevance judgements y are discrete and ordered, with
values such as {Probably Relevant, Possibly Relevant, Not
Relevant}, and a total ordering . exists between relevance
levels, e.g. Probably Relevant . Possibly Relevant . Not Rel-
evant.

Documents are represented by a vector of query-
dependent feature weights fk. For instance, document
di given query q is represented as:

dqi = [f0(di, q), f1(di, q), ..., fm(di, q)] (1)

where each feature scoring functions fk represents some mea-
sure of similarity between the document and query. These
can be derived from low-level features typically used in in-
formation retrieval systems (such as query term frequency
or inverse document frequency), higher-level features such as
the score assigned by a baseline ranking algorithm for docu-
ment di on query q (such as BM25), or even query indepen-
dent document quality measurements (such as PageRank).

The goal of the learning procedure in the pairwise frame-
work is to induce a document score function s(•) such that

yqi . yqj ⇐⇒ s(dqi) > s(dqj) (2)

i.e., whenever document dqi is preferred over (.) dqj , the
scoring function s will return a larger value for dqi than for
dqj . This formulation makes clear the connection between
pairwise-preference learning and binary classification: given
the preference relationship on the left in Equation 2 a correct
(or incorrect) classification corresponds to maintaining (or
violating) the inequality on the right.

It is often useful to explicitly model this task as bi-
nary classification. In this view, one can build a new
“paired” dataset S′ for each query q by creating docu-
ment pairs from documents with different relevant levels
(dqi, dqj)l and associated preference labels zl. That is,
S′

q = {((dqi, dqj)l, zql) |yqi 6= yqj ,∀i, j} and

zql =

�
+1 if yqi . yqj ;
−1 if yqi / yqj .

Analogously, we can write Equation 2 with this notation,
letting Pl be the pairwise score of document pair (dqi, dqj)l

Pl = zql × (s(diq)− s(djq)) > 0. (3)

Minimizing the number of misranks, i.e. incorrectly or-
dered document pairs, is in principle a good criterion for
rank optimization. It has been shown that minimizing the
number of misranks is equivalent to maximizing a lower-
bound on various information retrieval performance metrics,
such as average precision and reciprocal rank [10]. However,
the direct optimization of the number of misranks is an NP-
hard problem [14], so approximations are necessary. We will



show below several approaches to approximating this mini-
mization.

In this paper we are concerned with linear score functions
s(•) that can be parameterized by a single weight vector
w = [w1, w2, ..., wm]. Thus the learning algorithms out-
put scoring functions can be expressed as s(dqi) = 〈dqi, w〉,
where 〈•, •〉 is the inner product operation. After learn-
ing this score function, the final document rankings can be
derived from this function by ranking in descending order
according to their score1.

2.3 Outliers in Pairwise Preference Ranking
Creating pairwise training data from absolute judgements

may have some undesirable consequences. Specifically, mis-
labeling of a single document’s absolute judgement will lead
to many “mis-labeled” document pair preferences. When
using graded relevance levels, confusion or inconsistencies
between different relevance levels may make mis-labeling a
common problem. If we consider each mis-labeled document
a noisy observation or outlier, the process of pairing each
document with all others of differing relevance levels yields
a quadratic increase in the number of outliers in the training
data. This increase can have a serious detrimental effect on
performance, as we will show below.

Mis-labeling the absolute relevance level of a document is
not the only source of outliers. Due to the nature of key-
word search, we have an extremely impoverished view of the
information need — typically only 2-3 terms per query. For
this reason, the query-document features (fi in Equation
1) may not be expressive enough to truly distinguish rele-
vant from non-relevant documents. This may result in many
non-relevant documents “looking similar” to relevant in the
query-document feature space. These non-relevant docu-
ments can also be considered outliers, and similar to mis-
judged documents, yield a quadratic increase in the number
of pairwise outliers.

To illustrate the effect of outliers on rank learning, we
trained a RankSVM model (see Section 3.1) on SEAL-1, a
subset of the Set Expansion ranking dataset described in
Section 4.1. Given the model learned w, we calculated the
pairwise decision scores Pl (Equation 3) for all training data
instances and constructed a histogram, as shown in the top
of Figure 1. Most pairwise instances had positive scores
Pl (top right in the figure), showing that the learned rank-
ing model correctly ordered most of the training instances.
Some instances, however, had negative scores and the few
having the most negative scores may be outliers (top left,
Figure 1).

In order to measure the previously mentioned outlier ef-
fect, we then retrained our model on a smaller training set
after removing increasing numbers of outlier instances. That
is, we trained the same RankSVM model excluding from the
training data a few instances whose scores were below a cut-
off value, P ′

l , and then evaluated the learned model on the
same test set. The bottom of Figure 1 shows test MAP
results when training is performed excluding outliers with
pairwise score below a threshold from the training data. In
this figure, the dashed horizontal line shows performance
when all instances are used for training. The leftmost point
shows the performance when instances with score below −15
were removed from training. As the removal cuttoff increases

1Notice that the score function s(•) takes a single document
as argument, and not the document pair.
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Figure 1: Example of outliers in pairwise Ranking.
(top) Histogram of pairwise scores. (bottom) Mean
Average Precision on the same test collection when
excluding training instances whose scores were be-
low cutoff.

up to −4, performance goes up, indicating that the removal
of outliers improves the ranker’s performance. For larger
cutoffs, this effect is curtailed by the larger numbers of in-
stances being discarded and performance drops.

Empirical evidence from several studies also suggests
that performance of pairwise learning algorithms can be
improved by removing or down-weighting these outliers. In
perceptron-based learning algorithms, outliers were identi-
fied as document pairs that were consistently mis-ranked in
several iterations through the training data, and removal of
these document-pairs improved the performance and stabil-
ity of the learned ranking function [10, 12]. This technique,
known as the α-bound [15], limits the influence of potential
outlier observations on the final learned hypothesis.

Although the α-bound is reported to work well with
perceptron-based learners, it is unclear how it generalizes to
other learning algorithms. In this work we develop a general
mechanism to down-weight the influence of these outliers
in pairwise preference learning and apply this technique to
a variety of learning algorithms. Results show significantly
improved performance of learned ranking functions across a
variety of ranking tasks.

3. ROBUST PAIRWISE RANKING
In this section we propose a new learning algorithm to

counteract the effect of outliers in pairwise rank learning.
The algorithm takes as input the linear model learned by
any linear ranker (a base model), and uses a non-convex op-
timization procedure to output a more robust and effective
final linear ranking model. To help explain the algorithm,
we start with a brief explanation of RankSVM.



3.1 RankSVM
One of the most successful algorithms for classification,

Support Vector Machines (SVM), has recently been success-
fully adapted to ranking using the pairwise framework [14].
Given a binary paired dataset S′ from a set of queries, an
SVM classifier can be naturally adapted to model this prob-
lem. The SVM model will attempt to solve the following
quadratic optimization problem:

min
w

1

2
‖w‖2 + C

X
q,l

ξql (4)

subject to

ξql > 0, zql 〈w, dqi − dqj〉 ≥ 1− ξql ∀q, l

where non-negative slack variables ξql were introduced, and
the tradeoff between margin size and training error [14] is
controlled by the parameter C.

The optimization problem in equation 4 is equivalent to:

min
w

λ ‖w‖2 +
X
q,l

[1− zql 〈w, dqi − dqj〉]+ (5)

where λ = 1
2C

and [ ]+ is hinge operator:

[x]+ =

(
x if x > 0

0 otherwise.
(6)

The first term in Equation 5 is a regularization term, and
the second is frequently referred to as the hinge loss[3]. The
hinge loss, a convex function, is an approximation to the
empirical 0/1 loss of minimizing all misranks. Minimization
of the hinge loss places an upper bound on the number of
misranks in the paired dataset [14]. An illustration of the
hinge loss function can be seen in Figure 2, the dashed line.

3.2 Sigmoid Approximation
One of the disadvantages of the hinge loss function is its

sensitivity to outliers. Outlier points produce large negative
scores (the far left of the score range in Figure 2). Because
the hinge loss linearly increases with larger negative scores,
these outliers have a strong contribution to the global loss.
This large loss contribution in turn gives these outliers an
important role in determining the final learned hypothesis.

To address this problem, we propose to approximate the
number of misranks (the empirical 0/1 loss) using a non-
linear sigmoidal function. This function can be expressed
as g(σ, Pl) = 1 − sigmoid(σ, Pl), where Pl is the pairwise
score (Equation 3), and σ is a parameter that determines
the steepness of the sigmoid function. The sigmoid function
is defined as:

sigmoid(σ, x) =
1

1 + e−σx
.

The sigmoid loss with several values of σ is illustrated as the
solid lines in Figure 2.

There are at least two advantages in using this particu-
lar loss function. First, this non-linear penalty suppresses
the effect of outliers, i.e., not giving larger loss values to
instances with very large negative pairwise scores. Second,
this penalty can arbitrarily approximate the empirical 0/1
loss by increasing the σ parameter.
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Figure 3: Meta ranking scheme: non-convex opti-
mization procedure is seeded with the output of a
base ranking model.

Similar to equation 5, the optimization problem with the
sigmoid-based loss function can then be expressed as:

min
w

L(w) = λ ‖w‖2+
X
q,l

[1− sigmoid(σ, zql 〈w, dqi − dqj〉)] .

(7)
The sigmoid loss function is not convex, thus the learn-

ing procedure is only guaranteed to reach a local maximum.
To avoid learning poor locally optimal solutions, the sig-
moid ranker is used as a second optimization step, refining
the hypothesis produced by another ranker. Specifically,
sigmoid-based optimization is seeded with the hypothesis
learned from a base ranker, such as RankSVM, and then
it converges to a local optimum close to the (presumably
good) seed hypothesis. The complete meta learning scheme
is illustrated in Figure 3.

This sigmoidal meta-ranker is closely related to the two-
stage optimization scheme proposed by Perez-Cruz et al.
[19]. These researchers presented different loss functions, in-
cluding a sigmoidal one, to be applied for classification tasks
after being seeded by a traditional SVM classifier model.
Their main goal was to better approximate the empirical
classification loss (number of classification mistakes), and
not to suppress outliers[19].

Tsai et. al. [23] also found that substituting a sub-linear
fidelity loss function for RankNet’s asymptotically linear
cross-entropy loss improved ranking performance. In this
regard, their algorithm, FRank, bears some similarity to
the sigmoid meta-ranker proposed here. Although these two
algorithms share a similar motivation, the algorithm pre-
sented here acts as a general-purpose meta-ranker for any
linear seed ranker and provides added flexibility of the σ pa-



rameter, controlling the steepness of the loss. Additionally,
the FRank algorithm uses a boosting framework to opti-
mize the fidelity loss, whereas the algorithm presented here
is optimized through gradient descent (see below). Boost-
ing tends to have slower convergence properties, taking sev-
eral hundred iterations through the dataset to converge [23].
As we describe below, even when seeded with a weak base
learner, the gradient descent approach typically converges
much faster.

3.3 Learning
We utilized a gradient descent technique to learn the fi-

nal ranking model w. Specifically, we can differentiate the
sigmoid-based loss function (Equation 7) with respect to the
parameter vector w to obtain:

∂L(w)

∂w
= 2wλ−

X
q,l

σF (σ, q, l) [1− F (σ, q, l)] (8)

where F (σ, q, l) = sigmoid(σ, zql 〈w, dqi − dqj〉).
The gradient descent algorithm can then be written as:

w(k+1) = w(k) − ηk
∂L(w(k))

∂w
(9)

where, the index k defines the number of iterations (epochs)
and the step size ηk in principle can be chosen based on a
line search along the descent direction, i.e.,

ηk = argmin
η≥0

L(w(k) − η
∂L(w(k))

∂w
).

In practice, however, we used a step-size-halving heuristic
for η, initially setting η = 0.05. Whenever η was too large
to yield a decrease in the loss function, η was set to η/2,
and learning stops when the relative decrease in loss was
less than 10−8.

4. EXPERIMENTS

4.1 Datasets
We performed experiments on eight different ranking

datasets. The first three ranking datasets are part of the
Learning to Rank (LETOR) Benchmark dataset [16]. This
dataset attempts to provide a standard set of document-
query features over several test collections. These features
were extracted from all the query-document pairs in the
OHSUMED collection and the .GOV test collection us-
ing the queries and judgments from the TREC 2003 and
2004 web track topic distillation tasks [9, 8]. The rele-
vance judgments in the TREC collections are binary and
in the OHSUMED collection are graded in three levels:
“definitely relevant”, “possibly relevant” and “not rele-
vant”. The LETOR dataset also contains standardized
train/validation/test splits for 5-fold cross validation. The
OHSUMED collection contains 106 queries and 25 features,
TREC 2003 has 50 documents and 44 features, and there
are 75 queries and 44 features in the TREC 2004 collection.
Please refer to the original reference [16] for a detailed
explanation of the feature sets. In our experiments, the
query-document feature values were normalized on a per
query basis to the [0, 1] interval using the linear scaling
suggested by the producers of the LETOR dataset and no
additional feature selection or processing was done.

The next two ranking datasets were collected from the
Recipient Recommendation task [6], where the goal is to
find persons who are potential recipients of an email mes-
sage under composition given its current contents and its
previously-specified recipients. This is a ranking task in a
sense that, compared to traditional document retrieval, the
email under composition is the equivalent of a query, and
the email addresses in the address book are the analogous
of documents.

The TOCCBCC prediction subtask aims at predicting all
recipients of a message being composed, while the CCBCC
subtask ranks all recipients inserted in the CC or BCC fields
of the message under composition. Thus the CCBCC task,
in addition to the text, can use information extracted from
the recipients already specified in the TO field of the email.
The collection contains more than 44000 queries from 36 dif-
ferent users, where an average of 1267 queries per user are
used for training. For testing, the TOCCBCC tasks uses an
average of 144 queries per user, while 20 queries per user
are used for CCBCC testing. The number of documents
(email addresses) to be ranked averages 377 per user [6].
The TOCCBCC task utilizes four different features for rank-
ing (derived from frequency, recency and summarized tex-
tual scores). The CCBCC task dataset contains 7 features:
the same 4 features from the TOCCBCC task, and three
additional co-occurrence features (derived from the already-
specified addresses in the TO field of the message).

The last three ranking datasets were derived from SEAL,
a Set Expander for Any Language system [24]. Set Expan-
sion is the task of expanding an initial set of objects into a
larger and more complete set2 of objects of the same type.
More specifically, SEAL expands textual seeds (such as“Cal-
ifornia”, “Colorado” and “Florida”) by automatically finding
semi-structured web pages having lists of items, and then ag-
gregating these lists and ranking the “most promising” items
higher. The ranking then considers different set of features
such as the ones derived from proximity metrics, suffixes
and prefixes extracted from wrappers, and similarity scores
calculated from random walks in an entity graph [24]. Our
sample dataset from SEAL contains queries in three differ-
ent languages. Each language contained approximately 60
queries, and each document (entity) was represented with 18
features. Experiments were carried out with a 3-fold cross-
validation split with two of the languages used for training,
and the remaining language use for testing.

4.2 Performance
In this section we describe experiments conducted with

the sigmoid ranker using three baseline rankers: RankSVM,
the averaged ranking perceptron [10] and ListNet [4].

The averaged perceptron ranking algorithm [10] is a sim-
ple and fast online ranking algorithm that scales linearly
with the number of training examples. Although recent re-
sults suggested that this algorithm may require thousands
of iterations to produce reasonable performance [10], in this
paper we trained it with five iterations only. By crippling
the algorithm we produced a low quality input model to the
meta ranker, and investigated how the meta ranker responds
to a weak initialization.

ListNet is a recent feature-based ranking algorithm [4]
that instead of learning by minimizing a document pair loss

2Google Sets is a well-known example of a set expansion
system on the web.



functions, it minimizes a probabilistic listwise loss function.
That is, it utilizes document lists, instead of document pairs,
as instances in the learning procedure. Although it is not a
pairwise ranking algorithm, ListNet outputs a linear ranking
model that can be used as input in the sigmoid optimiza-
tion. Hence, not only can we investigate how ListNet com-
pares with other pairwise baseline learners, but also study
if the sigmoid meta ranker can improve a non-pairwise base
ranking model.

Unless otherwise noted, in all experiments the sigmoid σ
parameter was set to 1.0, and the regularization parameter C
for RankSVM was selected from a search within the discrete
set C ∈

�
10−5, 10−4, .., 101

	
using a holdout set.

We start with experimental results from the largest rank-
ing collection, the two recipient recommendation tasks. Per-
formance results for these ranking tasks are illustrated in
Figures 4, showing AUC (Area Under the ROC Curve), R-
Precision and Mean Average Precision results for both TOC-
CBCC and CCBCC ranking tasks.

It is noticeable from these figures the large performance
gains that the sigmoid optimization achieves with the per-
ceptron algorithm baseline. On both tasks, the meta ranker
produced significantly better results than the averaged per-
ceptron ranker. There are also visible performance gains for
sigmoid ranker applied to RankSVM, although more mod-
est. The sigmoid optimization applied after ListNet did not
seem to improve performance on the TOCCBCC tasks, even
though it boosted results for the CCBCC task.

Performance on the LETOR collections are illustrated in
Figure 5, showing MAP for each test collection and base
learner. Mean average precision results are shown for each
one of the LETOR collections (TREC-04, TREC-03 and
OHSUMED) and for each ranker. In all tasks, the sigmoid
optimization significantly improved results for the averaged
perceptron ranker. For RankSVM, the sigmoid ranker pro-
duced improvements in all collections, with the largest gain
for TREC-03. The ListNet + sigmoid ranker, on the other
hand, experienced its largest performance improvement on
the TREC-04 collection, although a small gain was also ob-
served in TREC-03 as well.

Experimental results on the Set Expansion ranking collec-
tions are pictured in Figure 6. Again, visible MAP improve-
ments in all three datasets can be observed for the sigmoid
ranker on the top of the averaged perceptron. More surpris-
ing perhaps are the even larger performance gains obtained
on the top of ListNet for all three datasets. Although smaller
in magnitude, the sigmoid ranker also produced visible per-
formance gains for all three SEAL datasets when applied to
RankSVM.

Full results for Mean Average Precision are given in Table
1. Statistical significance tests of the “+sigmoid” columns
over the values on the previous columns are indicated with
? or ?? (for paired t-test with p < 0.05 or 0.01, respectively)
and † or †† (for the Wilcoxon Matched-Pairs Signed-Ranks
test with p < 0.05 or 0.01, respectively).

Improvements provided by the sigmoid ranker were sta-
tistically significant for all base learners on all three SEAL
ranking datasets. The sigmoid optimization also increases
average perceptron in all ranking problems. MAP values
obtained by ListNet+Sigmoid were also significantly better
for the TREC-04 and CCBCC ranking tasks. Additionally,
the meta ranker significantly improved RankSVM on the
TOCCBCC ranking task.
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Figure 5: Performance (MAP) on LETOR Dataset.
Whisker shows baseline + sigmoid.

It is interesting to note how significantly the perceptron
ranker can be improved by the meta ranker. Its final per-
formance numbers were comparable, and sometimes slightly
better, than those obtained using the sigmoid optimization
on top of the stronger base rankers. Although the sigmoid
meta-ranker is only guaranteed to find a local optima, this
local optima is sometimes better when the learner is seeded
with a relatively weak ranking model. This may be an in-
dication that initially using a method that is sensitive to
outliers can lead the learner astray, yielding a seed model
that is too strongly influenced by those outliers. The per-
ceptron learner, however, was intentionally crippled, only
making a small number of passes through the data. This
training process doesn’t allow the outliers to have such a
strong influence on the seed model, potentially yielding a
better final model.

Overall, the sigmoid meta ranker significantly improved
ranking performances for most test cases in Table 1. In the
LETOR datasets, however, this was not the case — although
the meta ranker improved performance on average, these
improvements were not statistically significant. Because the
LETOR collections have a relatively larger number of fea-
tures and a smaller number of queries, we speculate that
these ranking models are overfitting the training data. In
fact, we observed that very small changes in the RankSVM
regularization parameter C produced very different ranking
performance on these three collections.

These results also highlight that the sigmoid ranker is in
fact a general purpose linear meta ranker. Not only can it
improve pairwise ranking functions, but also fine-tune any
linear ranking model — as attested by the ListNet + sigmoid
performance.

4.3 Learning Curve
Typical sigmoid ranker learning curves can be seen in Fig-

ure 7. This curve illustrates training set AUC (i.e., perfor-
mance on the training set in terms of Area Under the ROC
Curve) versus the number of sigmoid gradient descent iter-
ations for a particular CCBCC prediction task 3.

The initial points (epoch=0) in Figure 7 show the AUC
values obtained by the base rankers. This is the starting
point of the sigmoid rank optimization. In this particular
example, RankSVM provides a higher initial AUC than List-
Net, which in turn outperforms the averaged perceptron.

3The training set AUC was shown here because it corre-
sponds directly to minimizing the number of misranks in
the training set [26].
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Figure 4: Performance for the recipient recommendation ranking tasks. Whisker shows baseline + sigmoid.

Collection Perceptron +Sigmoid RankSVM +Sigmoid ListNet +Sigmoid

OHSUMED 0.318 0.451??†† 0.447 0.448 0.450 0.449
TREC-03 0.067 0.254??†† 0.203 0.244 0.235 0.248
TREC-04 0.324 0.385?† 0.385 0.393 0.312 0.377??††

SEAL-1 0.851 0.866??†† 0.862 0.866†† 0.843 0.866??††

SEAL-2 0.869 0.893??†† 0.890 0.894†† 0.864 0.893??††

SEAL-3 0.906 0.924??†† 0.916 0.920?† 0.901 0.923??††

TOCCBCC 0.425 0.479??†† 0.472 0.480??†† 0.480 0.479
CCBCC 0.463 0.524??†† 0.516 0.521 0.513 0.524??††

Table 1: Mean Average Precision values for experiments in all collections. Statistical significance tests over the
values on the previous column are indicated with ? or ?? (for paired t-test with p < 0.05 or 0.01, respectively)
and † or †† (for the Wilcoxon Matched-Pairs Signed-Ranks test with p < 0.05 or 0.01, respectively).
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Figure 6: Performance (MAP) on Set Expansion Ex-
periments. Whisker shows baseline + sigmoid.

The RankSVM+Sigmoid optimization then proceeds
smoothly, with performance values reaching a plateau
around 13 gradient descent iterations. ListNet+Sigmoid
and Perceptron+Sigmoid start from different hypotheses,
but are able to reach relatively high performance levels
in less than three gradient descent iterations, and then
converge to approximately the same plateau in less than 17
iterations. For comparison, one more curve was included in
Figure 7: a sigmoid ranker with a random initial model. As
expected, it takes considerably longer to reach reasonable
AUC values, and converges to plateau levels in less than 30
iterations.

Figure 7 illustrates two reasons why the sigmoid meta
ranker can provide robust pairwise ranking with a small ex-
tra computational cost. First, the number iterations neces-
sary for convergence in the sigmoid ranker was usually small,
since the starting point (the output of base learner) was al-
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Figure 7: Learning curve of sigmoid ranker for sev-
eral baseline algorithms.

ready a well-tuned model. Second, the first few gradient
steps were usually responsible for most of the performance
gains observed. It is also important to note that this opti-
mization step is powerful even as a stand-alone rank learner
— the performance with a random initialization approaches
the maximum performance of the best seeded rankers in less
than 30 gradient descent steps.

4.4 Sigma Parameter
The steepness of the sigmoid function is controlled by the

parameter σ. In principle, one can arbitrarily approximate
the true 0/1 empirical loss function by increasing the values
for this parameter. Experiments below showed, however,
that increasing values of σ do not correspond to better over-
all ranking performance.
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Figure 8: Relative Improvements in MAP over
RankSVM for different sigma (σ) values.

Figure 8 shows, for both recipient prediction tasks, the
relative improvements in MAP over RankSVM obtained by
the sigmoid optimization, versus different values for the σ
parameter in the sigmoid function. The values of σ consid-
ered were {0.1, 1, 2, 5, 7, 10}. Figure 8 clearly shows a trend
that smaller values of σ produce better ranking performance
for both ranking tasks.

Arbitrarily increasing the σ parameter generates steeper
loss curves whose gradient information is largely concen-
trated around the decision region. We speculate that, for
large σ values, this lack or reduction of gradient information
from other regions of the loss function is responsible for the
observed lower performance.

5. CONCLUSIONS
We considered the effects of outliers in learning pairwise

feature-based ranking functions. In pairwise ranking, pairs
of documents with different label levels are taken as in-
stances in the learning process. While this process is known
to bring advantages to rank learning, it can also produce
many outliers, particularly when arbitrary label level judg-
ments are used or simply when human labelers make mis-
takes. Outliers in the learning procedure can compromise
ranking function robustness, and consequently deteriorate
ranking performance.

We illustrated the effects of outliers in pairwise ranking
functions, and then introduced a new meta-learning algo-
rithm able to suppress the undesirable outlier effects. The
algorithm is a non-convex optimization procedure using a
sigmoid loss, in which any linear baseline ranking function
can be used as input. Experiments on several different rank-
ing datasets showed that this meta ranker produced statisti-
cally significant performance gains over various state-of-the-
art baseline rankers.

This sigmoid meta-learning algorithm provided consistent
and significant performance improvements when seeded
by a weak rank learner, the average perceptron. When
seeded by strong baseline rankers, RankSVM and ListNet,
the meta-learning algorithm improved performance 88% of
the time, with 64% of those performance gains statistically
significant.
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