
A Framework for Interactive and Automatic Refinement of
Transfer-based Machine Translation

Ariadna Font Llitjós, Jaime G Carbonell and Alon Lavie

Language Technologies Institute, Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh PA 15213
USA

aria@cs.cmu.edu

Abstract. Most current Machine Translation (MT) systems do not improve with feedback
from post-editors beyond the addition of corrected translations to parallel training data (for
statistical and example-base MT) or to a memory database. Rule based systems to date
improve only via manual debugging. In contrast, we propose a largely automated method
for capturing more information from human post-editors, so that corrections may be
performed automatically to translation grammar rules and lexical entries. This paper
introduces a general framework for incorporating a refinement module into rule-based
transfer MT systems. This framework allows for generalizing post-editing efforts in an
effective way, by identifying and correcting rules semi-automatically on order to improve
coverage and overall translation quality.

1. Introduction
Although Machine Translation (MT) has
advanced recently for language pairs with large
amounts of parallel data, translation quality has
not yet reached satisfactory levels, especially
not for resource-poor languages with little if
any parallel text to train statistical or example-
based MT systems. Examples of resource poor
languages are Quechua and Mapudungun,
which contrast with languages that have more
economic, and therefore also electronic,
resources, such as Spanish and English.

Rule-based transfer MT systems are the only
feasible solution for resource-poor scenarios.
Developing and expanding such systems
manually can, however, prove very costly and
time consuming. On the other hand, finding
trained computational linguists with knowledge
of resource-poor languages is a real challenge.
Moreover, if the translation rules are written
manually, no matter how many rules there
already are, coverage and accuracy can always
be increased. If they are automatically learned,
they might be either too general or too specific.
In both cases, the translation rules can be

refined to account for new data. The goal of our
research is to generalize post-editing efforts in
an effective way, by identifying and correcting
rules semi-automatically in order to improve
coverage and overall translation quality.

In this paper, we introduce a novel approach
that proposes an MT module for automatically
refining translation rules based on the feedback
provided by bilingual speakers.

There are two main challenges in this
approach. First, the elicitation of accurate
correction information from non-expert
bilingual speakers. Second, the automatic
refinement of existing translation rules, given a
corrected and word-aligned translation pair, and
information about the MT errors.

The approach described in this paper
automatically determines the appropriate rule
refinement operations that need to be applied to
a grammar and a lexicon in order for the system
to output the correct translation, as given by the
native speaker.

The resulting refinements and extensions
can therefore apply not only to the translation
instance corrected by the user, but also to other
similar cases where the same error would be
encountered.

EAMT 2005 Conference Proceedings 1

Font Llitjós et al.

2. Related Work

2.1. On Post-editing to Improve MT
Post-editing has often been defined as the

correction of MT output by human linguists or
editors. In the case of native and minority
languages on which we are working, the editors
are actually bilingual speakers with no expertise
in linguistics or translation, and their goal is to
evaluate and minimally correct MT output, in a
way that is similar to what has been referred to
as minimal post-editing in the literature (Allen,
2003).

The minimal correction method we are
proposing for the task of rule refinement
involves grammar correctness and fluency, in
addition to meaning preservation. Stylistic
changes are not considered minimal post-
editing.

Some researchers have looked at ways of
including user feedback in the MT loop. Su et
al. (1995) have explored the possibility of using
feedback for a corpus-based MT system to
adjust the system parameters so that the user
style could be respected in the translation
output. They proposed that the distance
between the translation output of the system
and the translation preferred by the user should
be proportional to the amount of adjustment to
the parameters involved in the score evaluation
function, and should be minimized over time.
We could not find, however, any papers
reporting testing of these ideas.

In the case of languages with limited data,
such a system is not feasible, though, since
there is not enough data to estimate and train
system parameters. Moreover, we are interested
in improving the translation rules themselves,
which in the case of automatically learned
grammars typically lack some of the feature
constraints required for the correct application
of the rule, rather than just tweaking the
evaluation parameters, which in their system
are conditional probabilities and their weights.

Menezes and Richardson (2001) and
Imamura et al. (2003) have proposed the use of
reference translations to “clean” incorrect or
redundant rules after automatic acquisition. The
method of Imamura et al. consists of selecting
or removing translation rules to increase the
BLEU score of an evaluation corpus. In contrast

to filtering out incorrect or redundant rules, we
propose to actually refine the translation rules
themselves, by editing valid but inaccurate rules
that might be lacking a constraint, for example.

2.2. On Rule Refinement
The idea of rule adaptation to correct or

expand an initial set of rules is an appealing one
and researchers have indeed looked at rule
adaptation for several natural language
processing applications.

Lin et al. (1994) report research on
automatically refining models to decrease the
error rate of part-of-speech tagging.

Brill (1993) introduced a new technique for
parsing free text: a transformational grammar is
automatically learned that is capable of
accurately parsing text into binary-branching
syntactic trees with non-terminals unlabeled.
The system learns a set of simple structural
transformations that can be applied to reduce
error. Brill's method can be used to obtain high
parsing accuracy with a very small training set.
Although small, the learning algorithm does
need the training corpus to be partially
bracketed and annotated with part-of-speech
information, which is a scarce resource for
minority languages.

Even if we had such a small initial annotated
corpus, transforming translation rules is non-
trivial and cannot be done with simple patterns
like the ones proposed in Brill's method.

The rule refinement algorithm proposed here
needs to deal with the lexicon, the syntax and
the feature constraints in the rules.

Corston-Oliver and Gamon (2003) learned
linguistic representations for the target language
with transformation-based learning (Brill style)
and used decision trees to correct binary
features describing a node in the logical form to
reduce noise.

Yamada et al. (1995) use structural
comparison (parse tree) between machine
translations and manual translations in a
bilingual corpus to adapt a rule-based MT
system to different domains. In order for this
method to work, though, a parser for the target
language (TL) needs to be readily available,
which is typically not the case for resource-poor
languages. Moreover, such a parser must have
coverage for the manually corrected output as

2 EAMT 2005 Conference Proceedings

Introducing a Framework for Interactive and Automatic Refinement of Machine Translation Systems

well as the incorrect MT output to compute the
differences. The actual adaptation technique is
not described in the paper.

In sum, even though adaptation has been
researched for MT and other natural language
processing applications before, to this day,
work so far has not attempted to refine the
translation rules themselves, and thus the
framework described in this paper constitutes
an interesting and novel approach to
automatically refine and expand MT systems.

3. Automating the Post-editing
process

Current solutions to improve MT output are
limited to manually correcting the output and,
in the best-case scenario, to some post-
processing to alleviate the tedious task of
manual post-editing by correcting the most
frequent errors beforehand (Allen & Hogan,
2000). Currently, there exists no solution to
fully automating the post-editing process.

There are at least two different approaches
one could take in order to do that. First, one
could try to learn post-editing rules
automatically from concrete corrections, which
has the advantage of being system independent.
With this approach, however, one cannot
generalize over specific corrections to correct
the same structural error with a different word,
say; furthermore, several thousands of
sentences would need to be corrected for the
same error.

Alternatively, we could go to the root of the
problem, and try correcting the source of the
error by refining existing translation rules
automatically.

This way, by just fixing one or two
translation rules, we can avoid the generation of
a structural error that would otherwise creep in
thousands of sentences. This approach naturally
requires access to translation rules that can be
refined.

Therefore, the approach proposed by this
framework is to attack the core of the problem
and refine the incorrect translation rules
themselves guided by user corrections. In other
words, we propose to automate post-editing
efforts by recycling these corrections back into
the MT system.

4. Elicitation of Translation
Correction Information

Even in resource-poor contexts, there is usually
at least one resource available, namely,
bilingual speakers. Our approach exploits this
fact and relies on non-expert bilingual users to
extract as much accurate information as
possible to determine error location and cause,
which can then be used by the Rule Refinement
(RR) module.

In order to elicit MT error information from
naïve speakers reliably, we designed and
implemented a graphic user interface, called the
Translation Correction Tool (TCTool), that is
intuitive and easy to use and that does not
assume any knowledge about translation or
linguistics. For details on how the TCTool
works to elicit translation error information,
please refer to Font-Llitjós and Carbonell
(2004).

A set of English-Spanish user studies
showed that bilingual speakers with no
linguistics or translation skills, are able to use
the TCTool to evaluate and correct MT output
with 90% and 72% accuracy, respectively
(Font-Llitjós and Carbonell 2004).

Given the evidence that non-expert bilingual
speaker judgments and corrections of MT
output are reliable, automating a rule
refinement mechanism based on this
information becomes an option.1

5. MT Error typology
As part of the initial research mostly based on
English to Spanish translation, a preliminary
MT error typology was defined, and it is shown
in a simplified form in Figure 1.

Figure 1: Initial MT Error Typology

1 To reduce noise, a threshold can be set so that only
if 90% of the speakers agree on any particular
correction is the information considered reliable.

EAMT 2005 Conference Proceedings 3

Font Llitjós et al.

Not coincidentally, these errors nicely
correspond to correction actions that can be
performed by bilingual speakers when using the
Translation Correction Tool.

6. Rule Refinement Approach

After eliciting the error-locus, namely the
location of the error in the translated sentence,
and error-type information from non-expert
bilingual speakers, we are half way towards
being able to automatically refine the
translation rules that generated a specific error.
The other half involves using the error
information available to trace back through the
incorrect translation rules and fix them
automatically so as to improve coverage and
translation quality.

6.1. Formalizing Error Information

In order for any system to apply refinement
operations efficiently in an automatic way, we
need to formalize the different kinds of user
corrections and the refinement operations that
they should trigger.

We represent target language (TL)
sentences, i.e. translations, as vectors of words
from 1 to n (sentence length), indexed from 1 to
m (corpus length) and
the corrected sentences (TL’) as follows:

),...,...(1 nim WWWTL =

 where W),...,...',...('
'1 ncim WWWWTL = i

represents the error, namely the word that needs
to be modified, deleted or dragged into a
different position by the user in order for the
sentence to be correct; and Wi’ represents the
correction, namely the user modification of Wi
or the word that needs to be added by the user
in order for the sentence to be correct.

Wc represents a word that provides a clue
with respect to what triggered the correction,
namely the cause of the error. For example, in
the case of lack of agreement between a noun
and the adjective that modifies it, as in *el
coche roja (the red car), Wc should be
instantiated to coche, namely the word that
gives us the clue about what the gender
agreement feature value of Wi, roja, should be.
Wc can also be a phrase or constituent like a
plural subject (eg. *[Juan y Maria] cayó, where
the plural is implied by the conjoined NP).

Wc is not always present and it can be before
or after Wi. They can be contiguous or
separated by one or more words.

The TCTool is designed so that if such a
clue word were present in the sentence, it would
be easy for a non-expert bilingual speaker to
give us this information.

6.2. Finding Triggering Features
After users correct a word Wi, the RR module
can compare Wi and its correction, Wi’ at the
feature level and try to find out which is the
triggering feature, namely what feature attribute
(or set of attributes, in cases where a correction
fixes two errors) has a different value in Wi and
Wi’.

For RR purposes, we define the difference
between an incorrect word and its correction as
the set of feature attributes for which they have
different values. We can extract the set of
features and their values from the lexicon.2

We call this the feature delta function and it
can be written as)',(ii WWδ .

The resulting δ set can be a single feature
attribute, a set of feature attributes, which are
all responsible for the correction, or the empty
set. If the δ set has one or more elements, this
indicates that there is a missing feature
constraint for all the attributes in the set.
Examples of this can be found when comparing
Spanish variations for red δ(rojo,roja) =
{gender} and eat, δ(comían,comías) = {person,
number}.3

If the δ set is empty, this indicates that the
existing feature set is insufficient to explain the
difference between the error and the correction
and, therefore, a new binary feature is
postulated by the RR module, feat1, say. An
example of two words that would not have any
attribute with a differing value is
δ(mujer,guitarra) = {Ø}4, since the lexical
entries in our grammar are not marked for
animacy.

2 If the lexicon contains roots, some kind of
morphological analyzer is needed to extract the
features for each word.
3 comían is 3rd person plural and comías 2nd person
singular.
4 In Spanish, women and guitar are both singular,
feminine nouns.

4 EAMT 2005 Conference Proceedings

Introducing a Framework for Interactive and Automatic Refinement of Machine Translation Systems

Once the RR module has determined the
triggering features, and assuming the user was
able to identify a Wc with the TCTool, it
proceeds to refine the relevant grammar and
lexical rules by adding the appropriate feature
constraints between Wi and Wc.

6.3. Rule Refinement Schemata
In general, if the new refined rule needs to
translate the same sentences as before plus the
corrected sentence, the original rule (R) is
substituted by the refined rule (R’). However, if
the refined rule should only apply to the
corrected sentence, then R bifurcates into a
general, default rule, R1, and a more specific
rule, R2.

Figure 2 illustrates the two types of RR
operations that we anticipate being able to deal
with our system. If user corrections require a
brand new rule not already in the original
grammar, this is outside the scope of the
framework. In this case, in our MT system, an
automatic rule learner (Probst et al., 2002)
would be invoked, instead.

In the first refinement schema shown in
Figure 2 (RS1), the original rule is not tight
enough, and needs to be made more specific for
all instances of such rule application. A good
example of this is if the NP rule was missing
number and gender agreement constraints in
Spanish; the noun, adjective and determiner
always need to agree. This requires adding a
constraint equation.

The second rule refinement schema (RS2)
represents the case when the original grammar
rule (GR0) bifurcates into a general rule, GR1,
which should apply by default, and a more
specific rule, GR2, perhaps with a different
word order.

In order to prevent the application of the
general rule (GR1) to the current translation
pair, a blocking constraint is added to it. In the
case of a binary constraint, the RR module
would assign it value −.

 At the same time, the specific rule needs to
be applied in the special cases only, and not in
the general case, and thus the same binary
constraint will also be added to GR2 but with
value +.

An instantiation of when it is appropriate to
apply this schema can be found in object

pronouns in Spanish. Spanish object pronouns
often appear in a pre-verbal position (I saw you

 *vi te te vi), instead of following the verb
like other object NPs, and thus the VP rule ([V
NP(pron −)]) would need to be bifurcated into a
rule like the original but with a new constraint
to block its application when the object NP is a
pronoun (thus decreasing the ambiguity of the
refined grammar), and a more specific rule with
the order flipped and a constraint enforcing its
application to TL sentences where the object is
realized with a pronoun (VP [NP(pron +) V]).

The constraint added to the more specific
rule (GR2) enforces that the lexical entry be
tagged as + (this is done with the use of =c), so
that if the lexical entry is underspecified with
respect to constr, only the general rule (GR1)
will apply.

Grammar
Refine
RS1: GR0 GR1 [=GR0 + constr]

Cov(GR0) > Cov(GR1)
Bifurcate
RS2: GR0 GR1 [=GR0 + constr = −]

 GR2 [≈GR0 + constr =c +]
 Cov(GR0) ≤ Cov(GR1&GR2)

Lexicon
Refine
RS3: Lex0 Lex1 [=Lex0 + constr]
Bifurcate
RS4: Lex0 Lex1 [=Lex0 + constr = −]

 Lex2 [≠ TLword + constr = +]

RS5: Ø Lex1
Figure 2: Main types of Refinement Schemata (RS) for

grammar rules (GR) and lexical entries (Lex), and
their effect on the rule's coverage (Cov).

The reason the coverage (Cov) of GR0
might be smaller than the coverage of GR1 plus
GR2 in RS2 is that the modification undergone
by GR2 might allow different kinds of TL
sentences to be correctly generated.

The first lexical refinement schema is
equivalent to the first grammar schema. One
possible instantiation of SR3 is when adding a
constraint (feat0 = +) to all animated nouns,
such as woman, boy, Mary, and in contrast with
trees, book and feather, which basically

EAMT 2005 Conference Proceedings 5

Font Llitjós et al.

distinguishes nouns with animate referents from
nouns with inanimate referents.

The reason we might want to do something
like this, is that in Spanish animacy is marked
explicitly in the sentence in front of the object
NP (e.g. I saw Mary Vi a Maria).

RS4 adds a missing sense to the lexicon.
Namely, the translation of an SL word required
for a sentence is not the one in the lexicon, but a
different one. In this case, the RR module
bifurcates Lex0 into Lex1 and Lex2 and
changes the TL side of Lex2 to match the
translation proposed by the user. For example,
if bilingual speakers were given Wally plays
guitar *Wally juega guitarra, they would
correct the translation of plays and change
juega into toca, which is the right sense for
play+[instrument] in Spanish. If the lexicon
only had an entry for [plays] [juega], then
RR6 would apply and generate a new entry
[plays] [toca] with the same feature
constraints, but with the TL word modified.

Finally, RS5 represents the schema required
for out-of-vocabulary words, i.e. there is no
lexical entry for the SL word aligned to it, and
thus the system does not output a translation for
it.

7. Refinement Coverage
In order to determine the refinement space, we
organized the rule refinement cases according
to the type of action users can perform to
correct a sentence using the TCTool (add,
delete or modify a word, change word order),
and then according to what error information is
available to the RR module at refinement time.

The tree in Figure 3 sketches the different
Rule Refinement conditions identified so far.

Figure 3: Different Rule Refinement cases, given
TCTool correction actions and error information

available.

When the user identifies a triggering word,
indicated as “+Wc” in Figure 3, there usually is
a fully automatic way to refine the appropriate
rules, even though further interaction with users
might make the refinement more robust. Most
cases where the user did not identify a
triggering word (“−Wc”) will require some
amount of further user interaction to be
solvable, possibly using Active Learning
techniques to minimize the number of
translation pairs that the user needs to correct.

When there is an alignment to the corrected
word, this is indicated with “+al” in the tree
above; “−al” indicates lack of alignment to the
corrected word.

8. Rule Refinement Module
The philosophy behind the RR module is to
extend the grammar to account for exceptions
not originally encoded in the translation rules,
to make overly general rules more specific so as
to reduce grammar ambiguity, and to correct
rule errors.

In the case of automatically learned
grammars, the RR module also has the role of
adding missing constraints to the context-free
rules that need them.

Given specific user feedback, the RR
module will first use the parse tree produced by
the transfer engine5 to trace back to the rules
and lexical entries that applied and, if it has all
the information required, it will determine the
type of refinement required to fix the rules. If it
needs to add a feature constraint between two
positions, a rule covering those positions must
already exist in the grammar. If such a rule does
not exist in the grammar, the RR module cannot
perform any refinements and just feeds the
user-corrected SL-TL pair back to the Rule
Learner as a new training example.

The refinement schemata defined in Figure 2
will work when considering user corrections in
isolation. However, when users perform more
than one correction action allowed by the
TCTool to address a single MT error, it

5 The transfer engine may produce multiple
translations, possibly generated by different parse
trees, as a function of the ambiguity inherent in the
grammar and the lexicon; however, users pick which
sentence to correct and thus the corresponding parse
tree is retrieved for RR purposes.

6 EAMT 2005 Conference Proceedings

Introducing a Framework for Interactive and Automatic Refinement of Machine Translation Systems

becomes very hard to automatically detect
whether such actions are part of one single
correction and should be considered together by
the RR module, or are intended to correct
multiple errors.

For example when a user deletes a word and
then adds a different word in a different
position, it could be that the user modified a
word and that the modification caused it to have
to move in a different position, or it could be
that s/he performed two independent
corrections. The appropriate way to show that
there is a correlation with the TCTool is to drag
and drop the word to the right position and then
modify the dragged word, but there is no
guarantee that users will always do it that way.

In any case, and as a starting point, we adopt
the Occam’s razor principle and assume that
when affecting the same word, different
correction actions are due to the same error.

The generalization power of the Rule
Refinement approach is greatest if the
refinements involve existing feature constraints
(e.g. gender, number, person), since all the
relevant lexical entries will already be
appropriately tagged for the correct rule to
apply.

If the RR module needs to postulate a new
binary feature attribute (to distinguish between
two different senses of a word, say), only local
improvements will be observed. The problem is
that newly hypothesized features would not
populate lexical entries, and in the absence of a
generalization mechanism, this process would
require one-by-one addition.

This work can be seen as the first step
towards semantic correction, in the sense that it
annotates the specific examples corrected by
users in the appropriate way, which may be
used later by a system with Wordnet to make
the appropriate generalizations.

8.1. Batch Mode vs. Interactive Mode
One of the main goals of this framework is

to automate the refinement process as much as
possible. And since initial examination of the
English-Spanish data shows that a significant
amount of sentences can be automatically
refined with just the correction and error
information elicited by the TCTool, we are

currently implementing a RR module that
operates in batch mode.

In batch mode, however, it is not always
possible to automatically decide whether a
refinement or a bifurcation of the original rule
is the appropriate operation. When no evidence
is available to determine that the original rule
can never be applied, the system adopts a
conservative approach and applies the bifurcate
operation, leaving the original unchanged and
refining the duplicate rule.

Moreover, when the system is running in
batch mode, the default settings are to add the
constraints at the most specific level possible,
namely the word. Sometimes, the ideal
refinement would have been at the POS level.
But further refinements and generalizations on
the specific constraints can only be made
automatically at a later stage, when the system
has more labeled examples, or when it can
interact with the user.

While processing all the available
information, the RR module might detect that it
is missing some crucial information about the
error or the type of rule refinement operation
required to fix the error, and that this crucial
information could be retrieved by having other
minimal-pair sentences evaluated and corrected.

An interactive mode of operation allows the
RR module to prompt users with new sentences
to evaluate at run time, so as to obtain any
additional information required to determine the
appropriate refinement operation that can be
applied reliably.

To minimize further user interaction as
much as possible, Active Learning methods can
be used to optimize user time by presenting
them with most informative sentences first.

9. Refinement simulation
A comprehensive set of end-to-end simulations
has been developed to cover all the refinement
cases identified in Figure 3. For illustration
purposes and to provide with better insight into
the refinement process, one simulation is
described below.

The simulation example requires a word to
be changed into a different position in the TL
sentence and to be slightly modified. This
corresponds to the first branch of the subtree
rooted at “Change W Order” in Figure 3, as

EAMT 2005 Conference Proceedings 7

Font Llitjós et al.

well as the branch rooted at the “Modify” node
following by “+Wc” and “δ=∅”.

SL: Gaudí was a great artist
TL: Gaudí era un artista grande
User corrections:

 *Gaudí era un artista grande
 Gaudí era un gran artista

Figure 4: Source language (SL) sentence, translation in

Spanish as it is output by the MT system (TL) and
correction information given by the user.

Simulation steps
1. Error Information Elicitation
Given the SL and TL sentences in Figure 4, a
bilingual speaker will move grande before
artista and change grande to gran, as can be
seen from the two snapshots showing the initial
and final screens of the TCTool.

2. Variable Instantiation
All the actions users perform with the TCTool
are properly logged, and thus by parsing a
session log file, the system can instantiate the
error information variables with the logged

information. In this example, the log file will
contain the following correction actions
allowing the three variable instantiations
indicated below:

1. Word order change: grande is moved in
front of artista) Wi = grande

2. Edited grande into gran Wi’ = gran
 3. User selected the following option from a
menu: “The word great can be translated as
grande but not in this sentence. The key word
in the sentence that indicates this is [artista]”.

 Wc = artista
In this case, even if the user had not

identified a Wc, the RR module could still
refine the grammar and lexicon automatically,
but it would not be able to make the refined
grammar tighter.

3. Retrieve Relevant Lexical Entries
Assuming there is no entry for [great gran]
in the lexicon, the system will apply RS6
(Figure 2) and duplicate the lexical entry for
[great grande] and change TL side to gran: 6

4. Finding Triggering Feature(s)
Since the delta set between grande and gran is
empty (δ(grande,gran) = ∅), precisely because
their lexical entries have the same features, the
system postulates a new binary feature, let’s
call it feat1.7

5. Blame assignment
The MT system output provides with all the
information required to trace what rules were
involved in producing the error:

6 The Spanish morphological analyzer gives us the
information that grande and gran have the same
features.
7 A more mnemonic name for feat1 would be pre-
nominal.

8 EAMT 2005 Conference Proceedings

Introducing a Framework for Interactive and Automatic Refinement of Machine Translation Systems

6. Variable Instantiation in the Rules

Since the system has access to the part-of-
speech of grande (ADJ) through the MT system
output shown in the previous step, the RR
module can trace what variables refer to grande
by the position of its POS in the TL-side of the
relevant grammar rule.

But first, a few words about the rule
formalism used by our MT system. The
translation rules include all information
necessary for parsing, transfer, and generation,
and have 6 components: 1) type, which in most
cases corresponds to a syntactic constituent
type; 2) part-of-speech/constituent sequence for
both the SL (x-side) and the TL (y-side); 3)
alignments between the SL constituents and the
TL constituents; 4) x-side constraints, which are
defined as equality of grammatical features in
the SL sentence; 5) y-side constraints, which
are defined as equality of grammatical features
in the TL sentence, and 6) xy-constraints, which
provide information about which feature values
or agreements transfer from the source into the
target language.

Back to the variable instantiation in the
grammar rules, in the NP,8 rule, ADJ is in the
third position on the TL side (y-side) and thus
the variable that refers to it is y3:

7. Refining Rules
Assuming the system has the information that
NP,8 has applied correctly in the past (perhaps
because users have evaluated the translation
pair I saw a black bird – vi un pájaro negro as
correct), the RR module proceeds to bifurcate
the original rule, following the second rule
schema in Figure 2 (SR2). It then modifies the
copy (NP,8’) by flipping the order of the
constituents, as indicated by the user, and by
adding the constraint that the Spanish adjective
(y2) needs to have the feat1 with value +:

8. Refining Lexical Entries
For this refinement to be effective, the lexical
entries need to be expanded with the new
feature postulated by the RR module in step 4:

9. Add Blocking Constraints
In addition to this, the system already has the
information that un artista gran is not a correct
sequence in Spanish8, and thus the grammar can
be further refined to also rule out the incorrect
translation. This can be done by restricting the
application of the general rule (NP,8) to just
post-nominal adjectives, which in this example
are marked in the lexicon with feat1 = − .

But can the system also eliminate other
incorrect translations automatically? In addition
to generating the correct translation, we would
also like the RR module to produce a refined
grammar that is as tight as possible, given the
data that is available.

In this case, the system can only further
tighten the grammar if it knows what the clue
word is (Wc=artista). If it does, then it can add
the constraint feat = + to the lexical entry for
artista and add an agreement constraint

8 Since instead of just changing grande to gran, the
user proceeded to move it to the pre-nominal
position.

EAMT 2005 Conference Proceedings 9

Font Llitjós et al.

between the N position (y2) and the ADJ
position (y3) for the original rule (NP,8).

The resulting refined grammar would now
correctly translate a great artist into un gran
artista as well as rule out all the incorrect
combinations of N and ADJ (*un artista
grande, *un artista gran, * un grande artista)

10. Conclusions and Future Work
Non-expert bilingual speakers can provide us
with accurate translation error information, by
using the Translation Correction Tool, so that
automatic rule refinement becomes an option.

Once the error information is instantiated
with the appropriate variables, we can
automatically extract the set of feature attributes
that triggered a particular correction. Using an
error typology, which takes into account the
correction action and the error information
available to the system, the RR module is then
able to automatically determine what
refinement operations need to apply. The trace
of the MT system is used to automatically
perform the blame assignment and determine
what rules need to be refined.

When operating in batch mode, given a set
of user corrections, the RR module can
automatically refine some of the errors by just
using the correction and the error information
provided by the TCTool.

If extra information is required to
automatically determine what triggered the
correction, the system will need to present users
with other relevant translation pairs at run-time.

Therefore, we are planning to expand the
system to also include an interactive mode,
which will allow the system to refine a larger
set of translations, possibly using Active
Learning techniques.

Initial end-to-end simulations indicate that
this framework for interactive and automatic
refinement of transfer MT systems is
appropriate for the task. We are currently
developing a first prototype of the RR module
and plan to fully test this framework for at least
two language pairs: Mapudungun ↔ Spanish
and Quechua ↔ Spanish.

11. Acknowledgments
This research was funded in part by NSF

grant number IIS-0121-631.

12. References
ALLEN, Jeffrey (2003). Post-editing. ed. Harold
Somers. Benjamins Translation Library, 35.
ALLEN, Jeffrey & HOGAN, Christopher. (2000).
Toward the Development of a Post editing Module
for Raw Machine Translation Output: A Controlled
Language Perspective. CLAW.
BRILL, Eric (1993). Automatic Grammar Induction
and Parsing Free Text: A Transformation-Based
Approach. ACL.
CORSTON-OLIVER, Simon, & GAMON, Michael
(2003). Combining decision trees and
transformation-based learning to correct transferred
linguistic representations. MT Summit 2003.
FONT-LLITJÓS, Ariadna & CARBONELL, Jaime
(2004). The Translation Correction Tool: English-
Spanish user studies. LREC.
IMAMURA, Kenji, SUMITA, Eiichiro, & MATSUMOTO,
Yuji (2003). Feedback cleaning of Machine
Translation Rules Using Automatic Evaluation.
ACL.
LIN, Yi-Chung, CHIANG, Tung-lIui., & SU, Keh-Yih
(1994). Automatic Model Refinement with an
application to tagging. COLING-94.
MENEZES, Arul, & RICHARDSON, Stephen D. (2001).
A best-first alignment algorithm for automatic
extraction of transfer mappings from bilingual
corpora. Workshop on Example-Based Machine
Translation, in MT Summit VIII.
PROBST, Kathrin, LEVIN, Lori, PETERSON, Erik,
LAVIE, Alon, & CARBONELL, Jaime (2002). MT for
Resource-Poor Languages Using Elicitation-Based
Learning of Syntactic Transfer Rules. Machine
Translation Journal, vol. 17, No. 4. Special Issue on
Embedded MT Systems.
SU, Keh-Yih, CHANG, Jing-Shin, & HSU, Yu-Ling
Una (1995). A corpus-based statistics-oriented two-
way design for parameterized MT systems:
Rationale, Architecture and Training issues. TMI.
YAMADA, Setsuo, NAKAIWA, Hiromi, OGURA,
Kentaro, & IKEHARA, Satoru (1995). A Method of
Automatically Adapting a MT System to Different
Domains. TMI.

10 EAMT 2005 Conference Proceedings

	Introduction
	Related Work
	On Post-editing to Improve MT
	On Rule Refinement

	Automating the Post-editing process
	Elicitation of Translation Correction Information
	MT Error typology
	Rule Refinement Approach
	Formalizing Error Information
	Finding Triggering Features
	Rule Refinement Schemata

	Refinement Coverage
	Rule Refinement Module
	Batch Mode vs. Interactive Mode

	Refinement simulation
	Conclusions and Future Work
	Acknowledgments
	References

