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Abstract. Most current Machine Translation (MT) systems do not improve with feedback 
from post-editors beyond the addition of corrected translations to parallel training data (for 
statistical and example-base MT) or to a memory database. Rule based systems to date 
improve only via manual debugging. In contrast, we propose a largely automated method 
for capturing more information from human post-editors, so that corrections may be 
performed automatically to translation grammar rules and lexical entries. This paper 
introduces a general framework for incorporating a refinement module into rule-based 
transfer MT systems. This framework allows for generalizing post-editing efforts in an 
effective way, by identifying and correcting rules semi-automatically on order to improve 
coverage and overall translation quality. 

1. Introduction 
Although Machine Translation (MT) has 
advanced recently for language pairs with large 
amounts of parallel data, translation quality has 
not yet reached satisfactory levels, especially 
not for resource-poor languages with little if 
any parallel text to train statistical or example-
based MT systems. Examples of resource poor 
languages are Quechua and Mapudungun, 
which contrast with languages that have more 
economic, and therefore also electronic, 
resources, such as Spanish and English. 

Rule-based transfer MT systems are the only 
feasible solution for resource-poor scenarios. 
Developing and expanding such systems 
manually can, however, prove very costly and 
time consuming.  On the other hand, finding 
trained computational linguists with knowledge 
of resource-poor languages is a real challenge. 
Moreover, if the translation rules are written 
manually, no matter how many rules there 
already are, coverage and accuracy can always 
be increased. If they are automatically learned, 
they might be either too general or too specific. 
In both cases, the translation rules can be 

refined to account for new data. The goal of our 
research is to generalize post-editing efforts in 
an effective way, by identifying and correcting 
rules semi-automatically in order to improve 
coverage and overall translation quality. 

In this paper, we introduce a novel approach 
that proposes an MT module for automatically 
refining translation rules based on the feedback 
provided by bilingual speakers. 

There are two main challenges in this 
approach. First, the elicitation of accurate 
correction information from non-expert 
bilingual speakers. Second, the automatic 
refinement of existing translation rules, given a 
corrected and word-aligned translation pair, and 
information about the MT errors. 

The approach described in this paper 
automatically determines the appropriate rule 
refinement operations that need to be applied to 
a grammar and a lexicon in order for the system 
to output the correct translation, as given by the 
native speaker. 

The resulting refinements and extensions 
can therefore apply not only to the translation 
instance corrected by the user, but also to other 
similar cases where the same error would be 
encountered. 
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2. Related Work 

2.1. On Post-editing to Improve MT  
Post-editing has often been defined as the 

correction of MT output by human linguists or 
editors. In the case of native and minority 
languages on which we are working, the editors 
are actually bilingual speakers with no expertise 
in linguistics or translation, and their goal is to 
evaluate and minimally correct MT output, in a 
way that is similar to what has been referred to 
as minimal post-editing in the literature (Allen, 
2003).  

The minimal correction method we are 
proposing for the task of rule refinement 
involves grammar correctness and fluency, in 
addition to meaning preservation. Stylistic 
changes are not considered minimal post-
editing. 

Some researchers have looked at ways of 
including user feedback in the MT loop. Su et 
al. (1995) have explored the possibility of using 
feedback for a corpus-based MT system to 
adjust the system parameters so that the user 
style could be respected in the translation 
output. They proposed that the distance 
between the translation output of the system 
and the translation preferred by the user should 
be proportional to the amount of adjustment to 
the parameters involved in the score evaluation 
function, and should be minimized over time. 
We could not find, however, any papers 
reporting testing of these ideas.  

In the case of languages with limited data, 
such a system is not feasible, though, since 
there is not enough data to estimate and train 
system parameters. Moreover, we are interested 
in improving the translation rules themselves, 
which in the case of automatically learned 
grammars typically lack some of the feature 
constraints required for the correct application 
of the rule, rather than just tweaking the 
evaluation parameters, which in their system 
are conditional probabilities and their weights. 

Menezes and Richardson (2001) and 
Imamura et al. (2003) have proposed the use of 
reference translations to “clean” incorrect or 
redundant rules after automatic acquisition. The 
method of Imamura et al. consists of selecting 
or removing translation rules to increase the 
BLEU score of an evaluation corpus. In contrast 

to filtering out incorrect or redundant rules, we 
propose to actually refine the translation rules 
themselves, by editing valid but inaccurate rules 
that might be lacking a constraint, for example. 

2.2. On Rule Refinement 
The idea of rule adaptation to correct or 

expand an initial set of rules is an appealing one 
and researchers have indeed looked at rule 
adaptation for several natural language 
processing applications. 

Lin et al. (1994) report research on 
automatically refining models to decrease the 
error rate of part-of-speech tagging. 

Brill (1993) introduced a new technique for 
parsing free text: a transformational grammar is 
automatically learned that is capable of 
accurately parsing text into binary-branching 
syntactic trees with non-terminals unlabeled. 
The system learns a set of simple structural 
transformations that can be applied to reduce 
error. Brill's method can be used to obtain high 
parsing accuracy with a very small training set. 
Although small, the learning algorithm does 
need the training corpus to be partially 
bracketed and annotated with part-of-speech 
information, which is a scarce resource for 
minority languages. 

Even if we had such a small initial annotated 
corpus, transforming translation rules is non-
trivial and cannot be done with simple patterns 
like the ones proposed in Brill's method. 

The rule refinement algorithm proposed here 
needs to deal with the lexicon, the syntax and 
the feature constraints in the rules.  

Corston-Oliver and Gamon (2003) learned 
linguistic representations for the target language 
with transformation-based learning (Brill style) 
and used decision trees to correct binary 
features describing a node in the logical form to 
reduce noise. 

Yamada et al. (1995) use structural 
comparison (parse tree) between machine 
translations and manual translations in a 
bilingual corpus to adapt a rule-based MT 
system to different domains. In order for this 
method to work, though, a parser for the target 
language (TL) needs to be readily available, 
which is typically not the case for resource-poor 
languages. Moreover, such a parser must have 
coverage for the manually corrected output as 
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well as the incorrect MT output to compute the 
differences. The actual adaptation technique is 
not described in the paper. 

In sum, even though adaptation has been 
researched for MT and other natural language 
processing applications before, to this day, 
work so far has not attempted to refine the 
translation rules themselves, and thus the 
framework described in this paper constitutes 
an interesting and novel approach to 
automatically refine and expand MT systems. 

3. Automating the Post-editing 
process  

Current solutions to improve MT output are 
limited to manually correcting the output and, 
in the best-case scenario, to some post-
processing to alleviate the tedious task of 
manual post-editing by correcting the most 
frequent errors beforehand (Allen & Hogan, 
2000). Currently, there exists no solution to 
fully automating the post-editing process. 

There are at least two different approaches 
one could take in order to do that. First, one 
could try to learn post-editing rules 
automatically from concrete corrections, which 
has the advantage of being system independent. 
With this approach, however, one cannot 
generalize over specific corrections to correct 
the same structural error with a different word, 
say; furthermore, several thousands of 
sentences would need to be corrected for the 
same error.  

Alternatively, we could go to the root of the 
problem, and try correcting the source of the 
error by refining existing translation rules 
automatically. 

This way, by just fixing one or two 
translation rules, we can avoid the generation of 
a structural error that would otherwise creep in 
thousands of sentences. This approach naturally 
requires access to translation rules that can be 
refined. 

Therefore, the approach proposed by this 
framework is to attack the core of the problem 
and refine the incorrect translation rules 
themselves guided by user corrections. In other 
words, we propose to automate post-editing 
efforts by recycling these corrections back into 
the MT system. 

4. Elicitation of Translation 
Correction Information 

Even in resource-poor contexts, there is usually 
at least one resource available, namely, 
bilingual speakers. Our approach exploits this 
fact and relies on non-expert bilingual users to 
extract as much accurate information as 
possible to determine error location and cause, 
which can then be used by the Rule Refinement 
(RR) module.  

In order to elicit MT error information from 
naïve speakers reliably, we designed and 
implemented a graphic user interface, called the 
Translation Correction Tool (TCTool), that is 
intuitive and easy to use and that does not 
assume any knowledge about translation or 
linguistics. For details on how the TCTool 
works to elicit translation error information, 
please refer to Font-Llitjós and Carbonell 
(2004). 

A set of English-Spanish user studies 
showed that bilingual speakers with no 
linguistics or translation skills, are able to use 
the TCTool to evaluate and correct MT output 
with 90% and 72% accuracy, respectively 
(Font-Llitjós and Carbonell 2004).  

Given the evidence that non-expert bilingual 
speaker judgments and corrections of MT 
output are reliable, automating a rule 
refinement mechanism based on this 
information becomes an option.1

5. MT Error typology 
As part of the initial research mostly based on 
English to Spanish translation, a preliminary 
MT error typology was defined, and it is shown 
in a simplified form in Figure 1.  

 

       
Figure 1: Initial MT Error Typology 

                                                      
1 To reduce noise, a threshold can be set so that only 
if 90% of the speakers agree on any particular 
correction is the information considered reliable. 
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Not coincidentally, these errors nicely 
correspond to correction actions that can be 
performed by bilingual speakers when using the 
Translation Correction Tool. 

6. Rule Refinement Approach 

After eliciting the error-locus, namely the 
location of the error in the translated sentence, 
and error-type information from non-expert 
bilingual speakers, we are half way towards 
being able to automatically refine the 
translation rules that generated a specific error. 
The other half involves using the error 
information available to trace back through the 
incorrect translation rules and fix them 
automatically so as to improve coverage and 
translation quality. 

6.1. Formalizing Error Information 

In order for any system to apply refinement 
operations efficiently in an automatic way, we 
need to formalize the different kinds of user 
corrections and the refinement operations that 
they should trigger. 

We represent target language (TL) 
sentences, i.e. translations, as vectors of words 
from 1 to n (sentence length), indexed from 1 to 
m (corpus length)  and 
the corrected sentences (TL’) as follows: 

),...,...( 1 nim WWWTL =

  where W),...,...',...('
'1 ncim WWWWTL = i 

represents the error, namely the word that needs 
to be modified, deleted or dragged into a 
different position by the user in order for the 
sentence to be correct; and Wi’ represents the 
correction, namely the user modification of Wi 
or the word that needs to be added by the user 
in order for the sentence to be correct.  

Wc represents a word that provides a clue 
with respect to what triggered the correction, 
namely the cause of the error.  For example, in 
the case of lack of agreement between a noun 
and the adjective that modifies it, as in *el 
coche roja (the red car), Wc should be 
instantiated to coche, namely the word that 
gives us the clue about what the gender 
agreement feature value of Wi, roja, should be. 
Wc can also be a phrase or constituent like a 
plural subject (eg.  *[Juan y Maria] cayó, where 
the plural is implied by the conjoined NP). 

Wc is not always present and it can be before 
or after Wi. They can be contiguous or 
separated by one or more words. 

The TCTool is designed so that if such a 
clue word were present in the sentence, it would 
be easy for a non-expert bilingual speaker to 
give us this information. 

6.2. Finding Triggering Features 
After users correct a word Wi, the RR module 
can compare Wi and its correction, Wi’ at the 
feature level and try to find out which is the 
triggering feature, namely what feature attribute 
(or set of attributes, in cases where a correction 
fixes two errors) has a different value in Wi and 
Wi’. 

For RR purposes, we define the difference 
between an incorrect word and its correction as 
the set of feature attributes for which they have 
different values. We can extract the set of 
features and their values from the lexicon.2

We call this the feature delta function and it 
can be written as )',( ii WWδ . 

The resulting δ set can be a single feature 
attribute, a set of feature attributes, which are 
all responsible for the correction, or the empty 
set. If the δ set has one or more elements, this 
indicates that there is a missing feature 
constraint for all the attributes in the set. 
Examples of this can be found when comparing 
Spanish variations for red δ(rojo,roja) = 
{gender} and eat, δ(comían,comías) = {person, 
number}.3

If the δ set is empty, this indicates that the 
existing feature set is insufficient to explain the 
difference between the error and the correction 
and, therefore, a new binary feature is 
postulated by the RR module, feat1, say. An 
example of two words that would not have any 
attribute with a differing value is 
δ(mujer,guitarra) = {Ø}4, since the lexical 
entries in our grammar are not marked for 
animacy. 

                                                      
2 If the lexicon contains roots, some kind of 
morphological analyzer is needed to extract the 
features for each word. 
3 comían is 3rd person plural and comías 2nd person 
singular. 
4 In Spanish, women and guitar are both singular, 
feminine nouns. 
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Once the RR module has determined the 
triggering features, and assuming the user was 
able to identify a Wc with the TCTool, it 
proceeds to refine the relevant grammar and 
lexical rules by adding the appropriate feature 
constraints between Wi and Wc.  

6.3. Rule Refinement Schemata 
In general, if the new refined rule needs to 
translate the same sentences as before plus the 
corrected sentence, the original rule (R) is 
substituted by the refined rule (R’). However, if 
the refined rule should only apply to the 
corrected sentence, then R bifurcates into a 
general, default rule, R1, and a more specific 
rule, R2. 

Figure 2 illustrates the two types of RR 
operations that we anticipate being able to deal 
with our system. If user corrections require a 
brand new rule not already in the original 
grammar, this is outside the scope of the 
framework. In this case, in our MT system, an 
automatic rule learner (Probst et al., 2002) 
would be invoked, instead. 

In the first refinement schema shown in 
Figure 2 (RS1), the original rule is not tight 
enough, and needs to be made more specific for 
all instances of such rule application. A good 
example of this is if the NP rule was missing 
number and gender agreement constraints in 
Spanish; the noun, adjective and determiner 
always need to agree. This requires adding a 
constraint equation. 

The second rule refinement schema (RS2) 
represents the case when the original grammar 
rule (GR0) bifurcates into a general rule, GR1, 
which should apply by default, and a more 
specific rule, GR2, perhaps with a different 
word order. 

In order to prevent the application of the 
general rule (GR1) to the current translation 
pair, a blocking constraint is added to it. In the 
case of a binary constraint, the RR module 
would assign it value −.  

 At the same time, the specific rule needs to 
be applied in the special cases only, and not in 
the general case, and thus the same binary 
constraint will also be added to GR2 but with 
value +.  

An instantiation of when it is appropriate to 
apply this schema can be found in object 

pronouns in Spanish. Spanish object pronouns 
often appear in a pre-verbal position (I saw you 

 *vi te  te vi), instead of following the verb 
like other object NPs, and thus the VP rule ([V 
NP(pron −)]) would need to be bifurcated into a 
rule like the original but with a new constraint 
to block its application when the object NP is a 
pronoun (thus decreasing the ambiguity of the 
refined grammar), and a more specific rule with 
the order flipped and a constraint enforcing its 
application to TL sentences where the object is 
realized with a pronoun (VP  [NP(pron +) V]). 

The constraint added to the more specific 
rule (GR2) enforces that the lexical entry be 
tagged as + (this is done with the use of =c), so 
that if the lexical entry is underspecified with 
respect to constr, only the general rule (GR1) 
will apply. 

 
Grammar 
Refine 
RS1: GR0  GR1 [=GR0 + constr] 

Cov(GR0) > Cov(GR1)  
Bifurcate 
RS2: GR0  GR1 [=GR0 + constr = −] 

 GR2 [≈GR0 + constr =c +]        
     Cov(GR0) ≤  Cov(GR1&GR2) 

Lexicon 
Refine 
RS3: Lex0  Lex1 [=Lex0 + constr] 
Bifurcate 
RS4: Lex0  Lex1 [=Lex0 + constr = −] 

      Lex2 [≠ TLword + constr = +] 
 

RS5:   Ø     Lex1  
Figure 2: Main types of Refinement Schemata (RS) for 

grammar rules (GR) and lexical entries (Lex), and 
their effect on the rule's coverage (Cov).  

The reason the coverage (Cov) of GR0 
might be smaller than the coverage of GR1 plus 
GR2 in RS2 is that the modification undergone 
by GR2 might allow different kinds of TL 
sentences to be correctly generated. 

The first lexical refinement schema is 
equivalent to the first grammar schema. One 
possible instantiation of SR3 is when adding a 
constraint (feat0 = +) to all animated nouns, 
such as woman, boy, Mary, and in contrast with 
trees, book and feather, which basically 
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distinguishes nouns with animate referents from 
nouns with inanimate referents. 

The reason we might want to do something 
like this, is that in Spanish animacy is marked 
explicitly in the sentence in front of the object 
NP (e.g. I saw Mary  Vi a Maria). 

RS4 adds a missing sense to the lexicon. 
Namely, the translation of an SL word required 
for a sentence is not the one in the lexicon, but a 
different one. In this case, the RR module 
bifurcates Lex0 into Lex1 and Lex2 and 
changes the TL side of Lex2 to match the 
translation proposed by the user. For example, 
if bilingual speakers were given Wally plays 
guitar  *Wally juega guitarra, they would 
correct the translation of plays and change 
juega into toca, which is the right sense for 
play+[instrument] in Spanish. If the lexicon 
only had an entry for [plays] [juega], then 
RR6 would apply and generate a new entry 
[plays] [toca] with the same feature 
constraints, but with the TL word modified. 

Finally, RS5 represents the schema required 
for out-of-vocabulary words, i.e. there is no 
lexical entry for the SL word aligned to it, and 
thus the system does not output a translation for 
it. 

7. Refinement Coverage 
In order to determine the refinement space, we 
organized the rule refinement cases according 
to the type of action users can perform to 
correct a sentence using the TCTool (add, 
delete or modify a word, change word order), 
and then according to what error information is 
available to the RR module at refinement time.  

The tree in Figure 3 sketches the different 
Rule Refinement conditions identified so far. 

 

 
Figure 3: Different Rule Refinement cases, given 
TCTool correction actions and error information 

available. 

When the user identifies a triggering word, 
indicated as “+Wc” in Figure 3, there usually is 
a fully automatic way to refine the appropriate 
rules, even though further interaction with users 
might make the refinement more robust. Most 
cases where the user did not identify a 
triggering word (“−Wc”) will require some 
amount of further user interaction to be 
solvable, possibly using Active Learning 
techniques to minimize the number of 
translation pairs that the user needs to correct. 

When there is an alignment to the corrected 
word, this is indicated with “+al” in the tree 
above; “−al” indicates lack of alignment to the 
corrected word.

8. Rule Refinement Module 
The philosophy behind the RR module is to 
extend the grammar to account for exceptions 
not originally encoded in the translation rules, 
to make overly general rules more specific so as 
to reduce grammar ambiguity, and to correct 
rule errors. 

In the case of automatically learned 
grammars, the RR module also has the role of 
adding missing constraints to the context-free 
rules that need them. 

Given specific user feedback, the RR 
module will first use the parse tree produced by 
the transfer engine5 to trace back to the rules 
and lexical entries that applied and, if it has all 
the information required, it will determine the 
type of refinement required to fix the rules. If it 
needs to add a feature constraint between two 
positions, a rule covering those positions must 
already exist in the grammar. If such a rule does 
not exist in the grammar, the RR module cannot 
perform any refinements and just feeds the 
user-corrected SL-TL pair back to the Rule 
Learner as a new training example. 

The refinement schemata defined in Figure 2 
will work when considering user corrections in 
isolation. However, when users perform more 
than one correction action allowed by the 
TCTool to address a single MT error, it 

                                                      
5 The transfer engine may produce multiple 
translations, possibly generated by different parse 
trees, as a function of the ambiguity inherent in the 
grammar and the lexicon; however, users pick which 
sentence to correct and thus the corresponding parse 
tree is retrieved for RR purposes. 
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becomes very hard to automatically detect 
whether such actions are part of one single 
correction and should be considered together by 
the RR module, or are intended to correct 
multiple errors. 

For example when a user deletes a word and 
then adds a different word in a different 
position, it could be that the user modified a 
word and that the modification caused it to have 
to move in a different position, or it could be 
that s/he performed two independent 
corrections. The appropriate way to show that 
there is a correlation with the TCTool is to drag 
and drop the word to the right position and then 
modify the dragged word, but there is no 
guarantee that users will always do it that way. 

In any case, and as a starting point, we adopt 
the Occam’s razor principle and assume that 
when affecting the same word, different 
correction actions are due to the same error. 

The generalization power of the Rule 
Refinement approach is greatest if the 
refinements involve existing feature constraints 
(e.g. gender, number, person), since all the 
relevant lexical entries will already be 
appropriately tagged for the correct rule to 
apply.  

If the RR module needs to postulate a new 
binary feature attribute (to distinguish between 
two different senses of a word, say), only local 
improvements will be observed. The problem is 
that newly hypothesized features would not 
populate lexical entries, and in the absence of a 
generalization mechanism, this process would 
require one-by-one addition. 

This work can be seen as the first step 
towards semantic correction, in the sense that it 
annotates the specific examples corrected by 
users in the appropriate way, which may be 
used later by a system with Wordnet to make 
the appropriate generalizations. 

8.1. Batch Mode vs. Interactive Mode 
One of the main goals of this framework is 

to automate the refinement process as much as 
possible. And since initial examination of the 
English-Spanish data shows that a significant 
amount of sentences can be automatically 
refined with just the correction and error 
information elicited by the TCTool, we are 

currently implementing a RR module that 
operates in batch mode.  

In batch mode, however, it is not always 
possible to automatically decide whether a 
refinement or a bifurcation of the original rule 
is the appropriate operation.  When no evidence 
is available to determine that the original rule 
can never be applied, the system adopts a 
conservative approach and applies the bifurcate 
operation, leaving the original unchanged and 
refining the duplicate rule. 

Moreover, when the system is running in 
batch mode, the default settings are to add the 
constraints at the most specific level possible, 
namely the word. Sometimes, the ideal 
refinement would have been at the POS level. 
But further refinements and generalizations on 
the specific constraints can only be made 
automatically at a later stage, when the system 
has more labeled examples, or when it can 
interact with the user. 

While processing all the available 
information, the RR module might detect that it 
is missing some crucial information about the 
error or the type of rule refinement operation 
required to fix the error, and that this crucial 
information could be retrieved by having other 
minimal-pair sentences evaluated and corrected. 

An interactive mode of operation allows the 
RR module to prompt users with new sentences 
to evaluate at run time, so as to obtain any 
additional information required to determine the 
appropriate refinement operation that can be 
applied reliably. 

To minimize further user interaction as 
much as possible, Active Learning methods can 
be used to optimize user time by presenting 
them with most informative sentences first. 

9. Refinement simulation  
A comprehensive set of end-to-end simulations 
has been developed to cover all the refinement 
cases identified in Figure 3. For illustration 
purposes and to provide with better insight into 
the refinement process, one simulation is 
described below. 

The simulation example requires a word to 
be changed into a different position in the TL 
sentence and to be slightly modified. This 
corresponds to the first branch of the subtree 
rooted at “Change W Order” in Figure 3, as 
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well as the branch rooted at the “Modify” node 
following by “+Wc” and “δ=∅”.  

 
SL: Gaudí was a great artist  
TL: Gaudí era un artista grande 
User corrections:  

 *Gaudí era un artista grande  
   Gaudí era un  gran artista 

 
Figure 4: Source language (SL) sentence, translation in 

Spanish as it is output by the MT system (TL) and 
correction information given by the user. 

   
Simulation steps 
1. Error Information Elicitation  
Given the SL and TL sentences in Figure 4, a 
bilingual speaker will move grande before 
artista and change grande to gran, as can be 
seen from the two snapshots showing the initial 
and final screens of the TCTool.  

 

 

        
 
2. Variable Instantiation 
All the actions users perform with the TCTool 
are properly logged, and thus by parsing a 
session log file, the system can instantiate the 
error information variables with the logged 

information. In this example, the log file will 
contain the following correction actions 
allowing the three variable instantiations 
indicated below: 

1. Word order change: grande is moved in 
front of artista)  Wi = grande  

2.  Edited grande into gran   Wi’ = gran  
     3. User selected the following option from a 
menu: “The word great can be translated as 
grande but not in this sentence. The key word 
in the sentence that indicates this is [artista]”.  

 Wc = artista 
In this case, even if the user had not 

identified a Wc, the RR module could still 
refine the grammar and lexicon automatically, 
but it would not be able to make the refined 
grammar tighter. 

 
3. Retrieve Relevant Lexical Entries 
Assuming there is no entry for [great  gran] 
in the lexicon, the system will apply RS6 
(Figure 2) and duplicate the lexical entry for 
[great  grande] and change TL side to gran: 6

 

 
    
4. Finding Triggering Feature(s) 
Since the delta set between grande and gran is 
empty (δ(grande,gran) = ∅), precisely because 
their lexical entries have the same features, the 
system postulates a new binary feature, let’s 
call it feat1.7

 
5. Blame assignment  
The MT system output provides with all the 
information required to trace what rules were 
involved in producing the error: 

 
                                                      

6 The Spanish morphological analyzer gives us the 
information that grande and gran have the same 
features. 
7 A more mnemonic name for feat1 would be pre-
nominal. 
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6. Variable Instantiation in the Rules 

Since the system has access to the part-of-
speech of grande (ADJ) through the MT system 
output shown in the previous step, the RR 
module can trace what variables refer to grande 
by the position of its POS in the TL-side of the 
relevant grammar rule.  

But first, a few words about the rule 
formalism used by our MT system. The 
translation rules include all information 
necessary for parsing, transfer, and generation, 
and have 6 components: 1) type, which in most 
cases corresponds to a syntactic constituent 
type; 2) part-of-speech/constituent sequence for 
both the SL (x-side) and the TL (y-side); 3) 
alignments between the SL constituents and the 
TL constituents; 4) x-side constraints, which are 
defined as equality of grammatical features in 
the SL sentence; 5) y-side constraints, which 
are defined as equality of grammatical features 
in the TL sentence, and 6) xy-constraints, which 
provide information about which feature values 
or agreements transfer from the source into the 
target language. 

Back to the variable instantiation in the 
grammar rules, in the NP,8 rule, ADJ is in the 
third position on the TL side (y-side) and thus 
the variable that refers to it is y3: 
 

        
 
7. Refining Rules  
Assuming the system has the information that 
NP,8 has applied correctly in the past (perhaps 
because users have evaluated the translation 
pair I saw a black bird – vi un pájaro negro as 
correct),  the RR module proceeds to bifurcate 
the original rule, following the second rule 
schema in Figure 2 (SR2). It then modifies the 
copy (NP,8’) by flipping the order of the 
constituents, as indicated by the user, and by 
adding the constraint that the Spanish adjective 
(y2) needs to have the feat1 with value +: 

 

          
 

8. Refining Lexical Entries 
For this refinement to be effective, the lexical 
entries need to be expanded with the new 
feature postulated by the RR module in step 4: 
 

          
 
9. Add Blocking Constraints 
In addition to this, the system already has the 
information that un artista gran is not a correct 
sequence in Spanish8, and thus the grammar can 
be further refined to also rule out the incorrect 
translation. This can be done by restricting the 
application of the general rule (NP,8) to just 
post-nominal adjectives, which in this example 
are marked in the lexicon with feat1 = − . 
 
But can the system also eliminate other 
incorrect translations automatically? In addition 
to generating the correct translation, we would 
also like the RR module to produce a refined 
grammar that is as tight as possible, given the 
data that is available.  

In this case, the system can only further 
tighten the grammar if it knows what the clue 
word is (Wc=artista). If it does, then it can add 
the constraint feat = + to the lexical entry for 
artista and add an agreement constraint 

                                                      
8 Since instead of just changing grande to gran, the 
user proceeded to move it to the pre-nominal 
position. 
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between the N position (y2) and the ADJ 
position (y3) for the original rule (NP,8). 

The resulting refined grammar would now 
correctly translate a great artist into un gran 
artista as well as rule out all the incorrect 
combinations of N and ADJ (*un artista 
grande, *un artista gran, * un grande artista) 

10. Conclusions and Future Work 
Non-expert bilingual speakers can provide us 
with accurate translation error information, by 
using the Translation Correction Tool, so that 
automatic rule refinement becomes an option. 

Once the error information is instantiated 
with the appropriate variables, we can 
automatically extract the set of feature attributes 
that triggered a particular correction. Using an 
error typology, which takes into account the 
correction action and the error information 
available to the system, the RR module is then 
able to automatically determine what 
refinement operations need to apply. The trace 
of the MT system is used to automatically 
perform the blame assignment and determine 
what rules need to be refined. 

When operating in batch mode, given a set 
of user corrections, the RR module can 
automatically refine some of the errors by just 
using the correction and the error information 
provided by the TCTool. 

If extra information is required to 
automatically determine what triggered the 
correction, the system will need to present users 
with other relevant translation pairs at run-time.  

Therefore, we are planning to expand the 
system to also include an interactive mode, 
which will allow the system to refine a larger 
set of translations, possibly using Active 
Learning techniques. 

Initial end-to-end simulations indicate that 
this framework for interactive and automatic 
refinement of transfer MT systems is 
appropriate for the task. We are currently 
developing a first prototype of the RR module 
and plan to fully test this framework for at least 
two language pairs: Mapudungun ↔ Spanish 
and Quechua ↔ Spanish. 
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