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Abstract 
In this paper, we present a new algorithm for parallel and anti-parallel beta-sheet 
prediction using conditional random fields. In recent years, various approaches have 
been proposed to capture the long-range interactions of beta-sheets.  However, most of 
them are not very successful: either the learning models are not general enough to 
capture the non-local information, or the features they used do not contain the 
information, for example, the window based profiles. Our new method has the 
advantages over previous methods in two aspects: (1) It takes into account both the local 
information and long-range interaction information (2) The condition random fields are 
powerful models that are able to capture long-range interaction features.  The 
experimental results show that our algorithm performs significantly better than the 
state-of-art secondary structure prediction methods.   

1. Introduction 
Protein secondary structure prediction involves the projection of primary protein 
sequences onto a string of secondary assignments, such as helix, sheet or coil, for each 
residue. It is widely believed that secondary structure prediction can contribute valuable 
information to discerning how proteins fold in three-dimensions.  In Recent years, the 
performance of protein secondary structure prediction has improved to as high as 78% 
in accuracy in general and 80-85% for predicting helix and coils. The major bottleneck 
lies in predicting beta-sheets, which involves long-range interactions between regions of 
the protein chain that are not necessarily consecutive in the primary sequence.  
Therefore designing an effective algorithm for detecting beta-sheets will help to improve 
the performance for secondary structure predictions and is the main focus of this paper.  
 
As we know, most beta-sheet structures consist of either parallel or anti-parallel strands, 
or mixed sheets (both parallel and anti-parallel). In some reduced 3-class definitions for 
protein secondary structures, the beta-bridge, with only one amino acid on each strand, 
is also counted as sheets. In this paper, we  only focus on the prediction of beta-sheets 
using the first definition. We are interested in answering the following questions: given 
a protein sequence,  which residues belong to beta-sheets class, in particular we try to 
predict the strand pairing in parallel or anti-parallel strands.  
 
Various approaches have been proposed to capture the long-range interactions of beta-
sheets.  Mamitsuka & Abe used stochastic tree grammas for beta-sheet detection 
[Mamitsuka & Abe, 1994]. However, their experimental results are based on only two 
protein sequences.  Baldi et al. computed a number of beta-sheet and beta-strand 



statistics, including the first order statistics, i.e. frequencies for each amino acids in 
background and in the beta-sheet structures, second order statistics, i.e. the pairings of 
amino acids, and length distribution [Baldi et al, 2000]. These statistics are then fed into a 
bi-directional recurrent neural networks(BRNN). Their experiments on 836 protein 
sequences shows an accuracy of 84%.  Although the numbers are very encouraging, the 
data sets they used are very unbalanced so that the negative residues cover around 90% 
of the data. Recently, Steward & Thornton developed to a set of tables with pair-
information values for each amino acids using information theory approach [Steward & 
Thornton, 2002].  Using the tables, they can correctly aligned two beta-strands 45% and 
48% of anti-parallel and parallel alignments.  
 
Most of previous attempts to solve the non-local interactions are not very successful for 
two reasons: either the learning models are not general enough to capture the non-local 
information, or the features they used do not contain the information, for example, the 
window based profiles.  To solve the first problems,  we proposed to use the conditional 
random fields (CRFs). CRFs, as a graphical chain model, is similar to hidden markov 
models (HMMs), but it is more general than HMMs in two aspects: (1) the optimization 
function in CRFs is convex, so the solution is global optimal. (2) CRFs is able to take into 
any features from the observation sequences, which enable CRFs to deal with long-range 
interaction problem.  To solve the second problem, we propose to use the both the local 
information, i.e. the profiles from PSI-blast and the non-local pairing information values 
by Steward & Thornton.   
 
The rest of the paper is organized as follows: in section 2, we discuss the problem 
definition in detail;  Then the features, i.e. the statistics we used for our prediction are 
described; in section 4, we introduce our algorithm and show the experimental results; 
finally, we give discussion and shed light on how to use our results to help improve 
secondary structure predictions. 

2. Problem Definition 
2. 1 Parallel and anti-parallel beta-sheets 
 
The beta-sheets consists of either parallel or anti-parallel  strands, or mixed parallel and 
anti-parallel strands. A beta-strand can have 1 or 2 pairing strands, i.e. each individual 
amino acid can have one or two pairing residues. However, how far apart the amino 
acids can find on another to form a beta-sheets is still poorly understood. Sometimes, the 
beta-strand partner are even located on a different protein chain. All of these properties 
of  make it difficult to predict the beta-sheets accurately.   
 
In some reduced 3-class definitions for protein secondary structures, the beta-bridge, 
with only one amino acid on each strand, is also counted as sheets. We exclude the 
discussion for beta-bridge prediction since they have different properties and possibly 
different formation reasons from parallel and anti-parallel beta-sheets.    
 
Without loss of generosity, we formularize our target problem as follows: given a 
protein sequence R1R2R3… RN, and a label set {N, E}, where N refers to NOT beta-sheets 



and E refers to beta-sheets, the output is a sequence of labels L1L2L3…LN, where Li = N, 
E.  
 
2. 2 Data collection and label assignment 
 
In our experiments, we used two datasets: one is the RS126 dataset, on which many 
previous secondary structure prediction methods were developed and tested. It is a non-
homologous dataset and was developed by Rost & Sander: no two proteins of 126 
protein chains share more than 25% sequence identity over a length of more than 80 
residues [Rost B & Sander C, 1993]. The other is the CB513 dataset, constructed by Cuff 
& Barton. It consists of 513 non-homologous protein chains which have an SD score, i.e. 
Z score for comparison of the native sequences given by (V- x)/σ, of less than 5 [Cuff & 
Barton, 1999]. The two datasets can be downloaded from the web 
http://barton.ebi.ac.uk/. 
 
The definition we followed in our experiments is the DSSP definition [Kabsch & Sander, 
1983], which is based on hydrogen bonding patterns and geometrical constraints. In 
DSSP, a beta-sheet is beta-sheet (“E”) is defined when it forms two H-bonds in the sheet 
or is surrounded by two H-bonds in the sheet.  The minimal sheet length is 2.  A 
standard example of how the pair assignments are made is shown in figure-1.   
 

 
Figure –1. The assignment criterion for sheet partners. Notice that the in the special case of beta-
bulge, B3 and C3 are also counted as partner even though there are no H-bonds in-between.  

 

3. Useful features for prediction 
3.1 Pair-information Values for Parallel and Anti-parallel strands 
 
The pair-information values for beta-sheets are used to predict the correct alignment of 
two beta-strands  [Steward & Thornton, 1999].  The score for two sequences consists of 
an intra-strand score (S) and inter-strand score (P). Particularly, for a pair of residue Ri 



and Rj at position i and j on adjacent strands, the score consists of the self-information (Si 
and Sj), i.e. the information as to whether Ri and Rj in a beta-sheet, and pair-information 
(Pi,j and Pj, i), i.e. the information contributed by interacting residues on adjacent strand.  
 
Self Information Score (Si) for a residue Ri at position i in a parallel (or anti-parallel) 
beta-strand is defined as )/log()/log( ,, ββββ ffffS NRNRi ii

+= . Seen from probability 
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Pair-information (Pi,j) is the information for residue Ri, held by  a residue Rj on an 
adjacent beta-strand.  The pair-information for residue Ri is calculated for all the 
residues Rj+m offset by m from position j. It is defined as follows: 
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Total score for a particular alignment is the sum of, for each position on both strands, 
the self-information value given by the residue type on the same beta-strand, and the 
pair-information value given by residue types on adjacent strand. The definition is as 
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Therefore the total score can be seen as the log ratio of the joint probability of the paired 
beta-strands.   
 
The score tables were first developed to predict the alignment of two beta-strands given 
the knowledge of the length of the beta-ladder, the direction of the strands and the 
sequence of one strand.  However, how to use the pair information values for parallel 
and anti-parallel strand prediction has not been explored and in section 3.3 we will 
discuss in detail our methods of using this pair information. 
 
3.2 PSI-blast profile  
 
In recent years, one of the major improvement in protein secondary structure prediction 
is due to the use of position-specific scoring matrices (PSSM), i.e. the PSI-blast  
profile[Jones, 1999]. PSSM was initially used for searching sequences in the database by 
PSI-blast. It is an 20*N matrix A, where N is the length of the sequence. A(i , j) is the  



estimation of the probabilities of amino acid i occur at the position j. It has been proved 
that PSSM is a more sensitive scoring matrices and can relatively precisely detect the 
boundaries of important motifs.   
 
In order to use effectively of the sensitive PSI-blast profile, a custom sequence data bank 
was constructed. The databank contains all the protein sequences in PDB and Swissprot, 
which are then filtered with SEG program to remove regions with very low information 
content, transmembrane segments, and coiled-coil regions.  In our experiments, the 
position specific scoring matrix generated from the PSI-BLAST after three iterations are 
fed into SVM classifiers. The matrix elements are scaled by using linear transformation 
proposed in [Kim & Park, 2003]: 
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where x is the value from the PSSM.   
 
3.3 Long-range interaction feature construction 
 
It has long been known that the major bottleneck for protein secondary structure 
prediction is the beta-sheets, which involve long-range interactions.  In this paper, we 
present  a new kind of features that tries to combine the local information with the 
pairing values to provide the relatively reliable long-range interaction features.   
 
The basic idea of our method is:  given the predictions from the window-based method 
using PSI-blast profiles, we can have certain confidence that some of the residues Rx 
belong to beta-sheets. Then we can search in the whole sequence to identify the 
corresponding paired beta-strand in the long range. If Rx has a potential paired beta-
strand Ry with a high score, then  we can successfully identify Ry as beta-sheets. On the 
other hand, if there are no suitable beta-strand in the sequence, then Rx may not belong 
to beta-sheet at all.  In this way, we can reinforce the correct prediction and at the same  
time adjust the incorrect predictions.  The detailed algorithm is shown below: 
 
Step1: Given a protein sequence  X1X2…XN, extract the Position specific score matrices A 
using PSI-blast.  
 
Step 2: Input PSSM A as features to SVM classifiers. The output is a score matrix S, 
which is a 3*N matrix since there are 3 classes, N is the length of the protein sequence.  
 
Step 3: Build an N*N paired scoring matrix Kpara, Kanti for the sequence using parallel 
and anti-parallel paired-value separately. K(i, j)  is the paired score between residue Xi 
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score by (K-k)/σ, where k is the mean and σ is the variance.  
 



For the following steps, we maintain a active list L. For step 4 and 5, we only discuss the 
case for parallel strands prediction, the anti-parallel cases can be developed similarly.  
 
Step 4: For each of the residues Ri in the sequence: if Ri is predicted as belong to E, then 
find all the possible pair residues Rj  with the score K(i, j) above some threshold T1.  Ri 
and Rj must be 7 residues since local interactions can be captured the by Step-2. Then we 
extend the pair (Ri, Rj) to neighbor residues with the constraint that K(i+/-m, j+/-m)  is 
above threshold T1.  The total score for the two strands will be the sum of the scores for 
each pair. We add the extended strands to the active list L if the total score is above some 
threshold T2.  
 
Step 5: Sort the strands in the active list L in descending order of the corresponding 
scores.  Filter the strands with common residues by leaving the strand with the highest 
scores and deleting all the others from the active list L.  
 
Finally we get the active list L containing the possible strands involving non-local 
interactions.  
 

4. Conditional random fields for Beta-sheet prediction 
4.1 Conditional random fields 
 

 
Figure-2 Graphical Structures of simple HMM(A), MEMM(B), and chain-structured CRF(C) 

 
 
After getting the long-range interaction information, the next step is to discover where 
how to use them.  Conditional Random Fields(CRFs, also known as  Makov random 
fields) , proposed by Lafferty et al., are undirected graphical models to calculate the 
conditional likelihood P(y|x) [Lafferty et al, 2001]. In chain-form, the CRFs graphical 
structure is shown in Figure –1. Unlike Hidden Markov Model(HMMs), CRFs are un-
directed graphical models.  
 
By the Hammersely-Clifford theorem, CRFs define the conditional probability P(y|x) to 
be proportional to the product of potential functions on the cliques of the graph, 
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C(x,y) is the set of cliques on the graph and Z0 is the normalization factor over all y 



values. Linear-chain CRFs obeys Markov properties, and the conditional probability 
P(y|x) is defined as 
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represents features that depend on yi and on any properties of the input sequence. 
Therefore CRFs can support long-distance interactions.  λ is learned via maximizing the 
conditional likelihood of the training data. Comparing with HMMs, the optimization 
function of CRFs are converx, so there is global optimal solution.  Besides, CRFs can 
support long-range information while HMMs cannot.  
 
The definition for the ``forward values'' αi(Y) is slightly modified to be the probability of 
being in state Y at time i given the observation up to time i. The recursive step is as 
follows: 
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Similarly, βi(Y) is the probability of starting from state Y at time i given the observation 
sequence after time i and the recursive step is 
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The backward procedure and the Viterbi algorithm can be derived accordingly.  
 
4.2 Beta-sheet prediction 
In this section, we will define the features for beta-sheet prediction using conditional 
random fields fk.  
 
In our method, there are two kinds of features involved: one is the prediction score from 
the SVM classifier S, i.e. the local information, the other is the active list L, i.e. the long-
range information.  To be exact, the features are defined as follows:  
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In this way, we can capture both the local information and long-range interactions of 
beta-sheets.  
 

5. Experimental Results 
In our experiments, we use the SVM classifier with the PSI-blast profile features as 
baseline to compare our algorithm. Various performance measures are used to evaluate 
the prediction accuracy, including overall per-residue accuracy Q3, Matthew's 
correlation coefficients for structure type (C). The per-residue accuracy for each type of 
secondary structure (Q; Qpre) was also calculated.  Qrec  and Qpre is distinguished as: 
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Seven-fold cross-validation was used for both datasets, which is the same setting as 
reported in [Rost & Sander, 1993].  
 
Table –1 lists the results of our new algorithm as compare to the state of art algorithm.  
From the results, we can see that our new algorithm is indeed good at predicting beta-
strands, even better than the state of art methods for protein secondary structure 
prediction. Our algorithm is also better than compared with the results reported by 
[Baldi et al, 2000], which is 84% in accuracy considering that they used a different 
dataset.  
 

 RS-126 dataset 
algorithm Accuracy(Q3) Qrec Qpre C 
PSI_pred 87.48 60.30 75.87 60.10 
Pairwise 

Information 
76.56 55.10 50.34 N/A 

New 
algorithm 

88.20 63.12 74.98 N/A 

Table-1 Comparison of our new algorithm and the SVM classifier using PSI-blast profile 
 

6. Discussion and Conclusion 
In this paper, we propose a new method for parallel and anti-parallel beta-sheet 
prediction using conditional random fields. This method overcomes the disadvantages 
of previous methods in two aspects (1) It takes into account both the local information 
and long-range interaction information (2) The condition random fields are powerful 
models that are able to capture long-range interaction features.  The experimental results 
show that our algorithm performs significantly better than the state-of-art secondary 
structure prediction methods.   
 
Currently the major bottleneck for secondary structure prediction lies in the beta-sheets. 
Recently Jones improved the prediction accuracy to 80% by using the neighboring 
information extracted from 3-D structures.  Our algorithm is able to adapt to secondary 
structure prediction by using the pairing information of two beta-strands.  Those paired 
residues should be close in 3-D structures.  In this way, we can get the neighboring 
information without going to 3-D structure prediction. Therefore how to use the results 
of our algorithm to improve the overall performance of secondary structure prediction is 
one direction for our further research. In addition, we only consider the parallel and 
anti-parallel beta-sheets. There are a lot of other structures, such as beta-bridage and 
beta-helix. How to adapt our algorithm to effectively identify those structures is also an 
interesting next step.  
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