
Attacking, Repairing, and Verifying SecVisor:
A Retrospective on the Security of a Hypervisor∗

Jason Franklin, Arvind Seshadri, Ning Qu
Carnegie Mellon University

Sagar Chaki
Software Engineering Institute

Anupam Datta
Carnegie Mellon University

Abstract

SecVisor is a hypervisor designed to guarantee that only
code approved by the user of a system executes at the
privilege level of the OS kernel [17]. We employ a model
checker to verify the design properties of SecVisor and
identify two design-level attacks that violate SecVisor’s
security requirements. Despite SecVisor’s narrow in-
terface and tiny code size, our attacks were overlooked
in both SecVisor’s design and implementation. Our at-
tacks exploit weaknesses in SecVisor’s memory protec-
tions. We demonstrate that our attacks are realistic by
crafting exploits for an implementation of SecVisor and
successfully performing two attacks against a SecVisor-
protected Linux kernel. To repair SecVisor, we design
and implement an efficient and secure memory protec-
tion scheme. We formally verify the security of our
scheme. We demonstrate that the performance impact of
our proposed defense is negligible and that our exploits
are no longer effective against the repaired implemen-
tation. Based on this case study, we identify facets of
secure system design that aid the verification process.

1 Introduction

Operating system kernels in common use are becoming
increasingly complex in order to support new hardware
and applications. The complexity of the kernel leads to

∗This research was supported in part by CyLab at Carnegie Mel-
lon under grants DAAD19-02-1-0389 and MURI W 911 NF 0710287
from the Army Research Office, grant CNS-0347807 from the National
Science Foundation, a faculty fellowship from the Sloan Foundation,
the Predictable Assembly from Certifiable Components (PACC) initia-
tive at the Software Engineering Institute (SEI), and the NSF Science
and Technology Center TRUST. Jason Franklin performed thisresearch
while on appointment as a U.S. Department of Homeland Security
(DHS) Fellow under the DHS Scholarship and Fellowship Program.
The views and conclusions contained here are those of the authors and
should not be interpreted as necessarily representing the official poli-
cies or endorsements, either express or implied, of ARO, CMU, DHS,
NSF, SEI, or the U.S. Government or any of its agencies.

security vulnerabilities in its design and implementation.
Since kernel code typically executes at the highest priv-
ilege level, an attacker can gain complete control of the
system by exploiting such a vulnerability. A spate of re-
cent research in the OS and system security communities
seeks to address this important problem by incorporating
various security mechanisms into newly designed ker-
nels [5, 19, 22] or by using additional components such
as hypervisors to provide security guarantees even if the
kernel is compromised [20, 3].

Issues involved in the design, implementation, and
performance of such systems have received considerable
research attention. However, a critical missing piece in
many cases is the absence of formal assurance that these
systems actually provide their desired security proper-
ties. Such assurance is important since secure system
designs are complex and security properties have to be
guaranteed even in the presence of concurrently execut-
ing attackers who actively try to subvert the system.

Recently, a subset of the co-authors (along with col-
laborators) designed and implemented a security hyper-
visor1 called SecVisor [17]. SecVisor’s design goal is to
guarantee that only user-approved code executes in the
OS kernel mode. It’s Trusted Computing Base (TCB)
consists of only the CPU, memory controller and system
memory. SecVisor aims to guarantee its design objective
against an attacker who has complete control over the
rest of the system; in particular, the attacker can compro-
mise the kernel.

The design and implementation considerations of
SecVisor have been presented previously [17]. In this pa-
per, we fill in an important missing piece: we report on
the results of, and lessons learned from, a formal secu-
rity analysis of SecVisor against its design goal using the
Murϕ model checker [4]. Our analysis identified serious
vulnerabilities in the SecVisor design and implementa-
tion. We repaired the design and fixed the implemen-

1A hypervisor is software that executes at a CPU privilege greater
than that of the supervisor (the OS kernel).

1

tation of SecVisor and verified that the resulting design
satisfied the desired properties without significant perfor-
mance loss. During the course of our analysis, we identi-
fied three general facets of secure systems design that aid
the verification process: (1) clear specification of the ad-
versary model, (2) explicit statement of the top-level se-
curity requirements that the system aims to provide, and
(3) clean separation between these requirements and the
mechanisms used to achieve them. We elaborate further
on these facets in Section 6.
Overview of Contributions. First, we develop a Murϕ
model (see Section 3 for details) of the SecVisor design.
Our model consists of three parts: (1) thehardware plat-
form (2) a model ofSecVisor, and (3) a model of the
attacker.

Our model also includes a precise formulation of the
security properties asinvariants2. The invariants refer
to two distinct models—anideal model and anactual
model. In the ideal model, the system is executed free
from the influences of the adversary. In contrast, the ac-
tual model includes an adversary. The invariants express
an agreement between the actual and ideal models on the
values of certain variables. Our use of two models is in-
spired by Lie et al.’s use of two worlds in the verification
of the XOM architecture [11].

A central challenge in developing this model was to
find the right level of abstraction for capturing the es-
sential features of SecVisor, while ensuring verification
completes. We focus on SecVisor’s software memory
virtualization subsystem primarily because it is a secu-
rity critical interface where data is copied from an un-
trusted domain under the control of the adversary (the
kernel page table) to a trusted domain (the shadow page
table maintained by SecVisor).

Second, we automatically verify our SecVisor model
using Murϕ. During verification, Murϕ found execu-
tions that violate execution and code integrity. The
vulnerabilities result from flaws in SecVisor’s soft-
ware memory virtualization subsystem, specifically, the
shadow page table synchronization code3. Furthermore,
we demonstrate that the vulnerabilities enable an attacker
to take control of a SecVisor-protected kernel by imple-
mentingexploits and launching two successful code in-
jection attacks. The first exploit is 37 lines of C code
while the second is 15 lines. Section 4 describes the at-
tacks on the design as well as the code for the exploits.

Finally, to repair SecVisor, we design and implement
an efficient and secure memory protection scheme. We

2Technically, an invariant is a condition that holds on all reachable
states of a system. Thus, our goal is to verify that the proposed invari-
ants are valid on our model.

3These vulnerabilities were identified independently on SecVisor’s
implementation by two of the co-authors, but not reported inany peer-
reviewed publication. However, an informal update to the SecVisor
paper [17] detailing the vulnerabilities is available.

incorporate the fix in our SecVisor model and use Murϕ

to verify that the augmented model is free from vul-
nerabilities. Furthermore, we incorporate our protection
scheme in SecVisor’s implementation by modifying 105
lines of C code, and check that the exploits on the orig-
inal version of SecVisor no longer compromise code or
execution integrity. Last, but not least, we demonstrate
that our defense is efficient by running benchmarks on
the repaired implementation; performance loss due to our
memory protection scheme ranges from1–7%. The re-
paired design, implementation, verification and perfor-
mance results are reported in Section 5.

2 SecVisor Overview

In this section we present a brief overview of SecVisor.
We first present the assumptions and threat model for
SecVisor, and then present SecVisor’s conceptual design.
Assumptions. We assume that the CPU on which
SecVisor executes has secure virtualization support, sim-
ilar to AMD’s Secure Virtual Machine (SVM) [1] and
Intel Trusted Execution Technology (TXT) [9]. We also
assume that the kernel executes non-self-modifying code
in 32-bit mode on the x86 architecture. Finally, we as-
sume that the CPU has two levels of execution privilege –
user mode andkernel mode – with kernel being the more
privileged mode in which the kernel executes.
Threat Model. We consider an attacker who controls
everything in the system except its TCB – the CPU,
memory controller, and system memory. Also, the at-
tacker is aware of zero-day vulnerabilities in the kernel
and application software, and uses these vulnerabilities
to locally or remotely exploit the system.
Conceptual Design. Recall that SecVisor aims to en-
sure that only user-approved code executes in kernel
mode. SecVisor uses a user-supplied policy to approve
code for execution in kernel mode. Achieving the goal
of user-approved code execution in the kernel requires
fulfilling two requirements: (1) execution integrity and
(2) code integrity. The execution integrity requirement
says that the CPU should only execute instructions from
memory regions containing approved code while the sys-
tem is in kernel mode. The code integrity requirement
says that approved code in system memory should only
be modifiable by SecVisor and SecVisor’s TCB. SecVi-
sor aims to achieve these two integrity requirements via
a set of four lower-level properties (P1-P4) , which we
present next.
Execution Integrity. Recall that every CPU has an In-
struction Pointer (IP) register containing the address of
the next instruction to be fetched for execution. To sat-
isfy the execution integrity requirement we require that
when in kernel mode, the IP always point inside memory
regions containing approved kernel code. Since the CPU

2

transitions between user and kernel mode, the above re-
quirement boils down to the following three properties:

• P1: Every entry into kernel mode (which occurs
at the instant the privilege of the CPU changes to
kernel mode) should set the IP to an address within
memory that contains approved code.

• P2: The IP should continue to point to memory re-
gions containing approved code as long as the CPU
executes in kernel mode.

• P3: Every exit from kernel mode (which occurs at
the instant the IP is set to an address in user mem-
ory) should modify the privilege level of the CPU to
user mode.

Code Integrity. To satisfy code integrity, we first ex-
amine what entities on a computer system can perform
memory writes. Then, we construct SecVisor so that it
marks all memory pages containing approved code as
read-only to all entities other than itself and its TCB. On
any computer system, memory can be written by soft-
ware executing on the CPU and by DMA writes by pe-
ripheral devices. Since all non-SecVisor code and all pe-
ripheral devices are outside SecVisor’s TCB, the code in-
tegrity requirement reduces to the following property:

• P4: Memory containing approved code should not
be modifiable by any code executing on the CPU,
except SecVisor, or by any peripheral device.

The question then is: how can SecVisor achieve these
four properties while only relying on a TCB consisting of
the CPU, the memory controller, and the system mem-
ory chips? In the rest of this section, we first discuss
how SecVisor achievesP1 throughP3 by controlling all
kernel mode entries and exits using a combination of
the CPU architecture specification and hardware mem-
ory protections, and then discuss how it achievesP4 us-
ing hardware memory protections.
Achieving P1: Kernel Mode Entry. Each control
transfer to kernel mode has an associated data struc-
ture, such as the Interrupt Vector Table (IVT). The ker-
nel writes the address of the kernel entry point for each
control transfer method in the corresponding data struc-
ture. Henceforth, we will call these theentry point-
ers. To achieveP1, SecVisor ensures that all CPU-
architecturally-defined control transfers to kernel mode
sets the IP to an address within memory containing ap-
proved code. To this end, SecVisor ensures that all en-
try pointers point to addresses within memory containing
approved code.
Achieving P2: Kernel Mode Execution. In order to
achieveP2, when in kernel mode, SecVisor must give
execute permissions to only memory regions contain-
ing approved code. However, this is complicated by

User Memory

Kernel Code

Kernel Data

RWX

R

RW

User Mode Kernel Mode

RW

RX

RW

Figure 1: Memory protections for user and kernel modes.
R = read, R = write, X = execute. If the kernel’s permis-
sions differ from those of SecVisor the actual permis-
sions is the more restrictive of the two. For example, if
the kernel marks its data segment read-only in user mode,
then, in user mode, the actual permissions for the kernel
data segment is R instead of the RW.

the fact that in most popular OSes the kernel and user
memories share the same address space. It is clear that
the user memory must have execute permissions in user
mode. Therefore, we require a mechanism to turn off
execute permissions for user memory when entering ker-
nel mode. To this end, SecVisor intercepts all transitions
from user to kernel mode to modify user memory execute
permissions. To intercept all user mode to kernel mode
transitions, SecVisor uses the fact that all entry pointers
point to memory regions containing approved code (via
P1). In user mode, SecVisor makes all memory regions
containing approved code non-executable. Since every
entry pointer points to non-executable memory, the CPU
throws an exception as soon as it enters kernel mode. The
handler for this exception (which is also part of SecVisor)
removes execute permission for user memory and makes
approved code regions executable.

Achieving P3: Kernel Mode Exits. To achieveP3,
SecVisor intercepts all kernel mode exits and sets the
privilege level of the CPU to user mode. All legiti-
mate methods for exiting kernel mode transfer control to
code in user memory. Recall, from above, that on every
kernel mode entry, SecVisor makes user memory non-
executable. Then, all kernel exits cause the CPU to try
to execute non-executable memory, and throw an excep-
tion. The handler for this exception (which is also part of
SecVisor) makes memory regions containing approved
code non-executable and user memory executable. Note
that the mechanisms for achievingP2 and P3 rely on
each other. Figure 1 shows how SecVisor sets execute
permissions for user memory and memory containing ap-
proved code during execution in user and kernel modes.

3

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

����
����
����

����
����
����

CPU

MMU

IOMMU

MC

D1

D2

Peripheral Bus

Memory Bus

Main Memory

Figure 2: System-level overview of memory protections
used by SecVisor. MC is the memory controller, D1 and
D2 are peripheral devices. The MMU enforces mem-
ory protections for accesses from the CPU while the
IOMMU enforces DMA write protections.

Achieving P4: Protecting Integrity of Kernel Code.
SecVisor uses hardware memory protections provided
by the CPU’s Memory Management Unit (MMU) and
the memory controller’s IO Memory Management Unit
(IOMMU) to achieveP4. Specifically, SecVisor removes
write permissions from memory regions that contain ap-
proved code. This prevents any code executing on the
CPU (except SecVisor) from writing to these memory
regions, thereby satisfying part of propertyP4. SecVi-
sor uses the DMA write protection functionality of the
IOMMU to protect approved code pages from being
modified by DMA writes. These protections along with
the read-only protections ensure that propertyP4 is satis-
fied. Figure 2 shows a system-level overview of the two
hardware memory protections used by SecVisor.

3 Modeling SecVisor

In this section, we present an overview of our model
for SecVisor, provide background on the Murϕ model
checker, and detail our formal SecVisor model for Murϕ,
including the state transition system, adversary model,
and security properties.

3.1 Overview of Model

We first present a functional overview of the hardware
memory protections used by SecVisor. In this context,
we describe the relevant memory protection data struc-
tures, the entities that use and manipulate these data
structures, and the functional relationship between these
entities. After the functional overview, we discuss which
parts of SecVisor we choose to incorporate in our formal
model and reasons for making these choices.
Hardware Memory Protections. Figure 3 shows the
functional overview of the memory protections used by

SecVisor. From the description of SecVisor in Section 2,
we see that managing hardware memory protections is
the principal technique that SecVisor uses to achieve
the properties of code integrity and execution integrity.
SecVisor sets up suitable data structures for use by the
MMU and the IOMMU, and relies on the MMU and
IOMMU to enforce the memory protections.

Page tables are the basis of SecVisor’s MMU-based
hardware memory protections. SecVisor uses a separate
set of page tables than the kernel’s page tables in order to
set its memory protections. To this end, SecVisor virtu-
alizes physical memory, which causes the addresses sent
on the memory bus to be different from the physical ad-
dresses seen by the kernel.
Hardware and Software Virtualization. Physical
memory can be virtualized using either software or hard-
ware virtualization techniques. Software memory virtu-
alization requires SecVisor to maintain a new set of page
tables called the Shadow Page Tables (SPT). The SPT
translate virtual addresses to the physical addresses sent
on the memory bus. SecVisor synchronizes the SPT with
the kernel’s page tables (KPT) to reflect the changes the
kernel makes to the KPT in the SPT. According to our
threat model, the adversary is able to read and write the
KPT. Thus, synchronization of the SPT with the KPT al-
lows the adversary to indirectly influence the contents of
the SPT by altering the KPT. Hardware memory virtual-
ization uses Nested Page Tables (NPT). Unlike the SPT,
the NPT do not need to be synchronized with the KPT.
This makes the NPT handling code simpler than code
that handles the SPT.

The IOMMU-based DMA write protection uses the
Device Exclusion Vector (DEV). The DEV is a bit vec-
tor with one bit per page of physical memory. Setting the
bit corresponding to a page causes the IOMMU to disal-
low DMA reads and writes to the page from peripheral
devices. Unlike the SPT, the DEV is isolated from the
adversary and is only accessible to SecVisor.
Modeling Choices. Our formal model of SecVisor
encompasses two major modeling choices. First, our
model focuses on SecVisor’s software memory virtual-
ization subsystem, which includes the management and
synchronization of the shadow page tables maintained by
SecVisor. We choose to focus on the software memory
virtualization for the following reasons:

1. Software memory virtualization is a security-
critical interface where data is copied from an un-
trusted domain under the control of the adversary to
a trusted domain.

2. Management and synchronization of the shadow
page table requires careful design and exhaustive
safety checks; a single flaw is capable of rendering
SecVisor vulnerable to attack.

4

K

A

A

KPT

S

SPT

MMU

IOMMU

DEV

PM

Figure 3: Functional overview of the memory protec-
tions used by SecVisor. K is the OS kernel, A the adver-
sary, S is SecVisor, PM is physical memory, KPT are the
kernel’s page tables, SPT are the shadow page tables, and
DEV is the device exclusion vector. The shaded shapes
in the picture represent the active elements of the system.
The direction of arrows joining the active elements to the
data structures indicate the kind of access (read or write)
the element performs on that data structure.

3. Our primary focus in this paper is on software de-
sign rather than on hardware; in terms of implemen-
tation size, the software memory protection runtime
is more than double the hardware memory virtual-
ization runtime.

Second, our model includes both of SecVisor’s design
requirements – execution integrity and code integrity –
but to varying degrees.Execution integrity requires that
the CPU only execute SecVisor approved code in kernel
mode. As discussed in Section 2, this requirement trans-
lates to propertiesP1-P3. Verifying P1 andP3 requires
a detailed model of the x86 hardware and, we believe,
does not lead to interesting insights into SecVisor’s de-
sign. In contrast, propertyP2 states that if the system is
in kernel mode then the instruction pointer must point to
approved kernel code. Clearly, this property depends on
SecVisor’s design and hence is included in our model.

On the other hand,code integrity requires that ap-
proved code should only be modifiable by SecVisor.
SecVisor makes two critical assumptions: (a) memory
can only be modified by code executing on the CPU or
through Direct Memory Access (DMA) writes by periph-
eral devices, and (b) kernel code remains static, i.e., self-
modifying code is disallowed. Under these two assump-
tions, we cast code integrity as stating that once code is
approved by SecVisor, it cannot be altered during the ex-
ecution of the system.

3.2 Murϕ Background

We use the Murϕ model checker to verify SecVisor.
Murϕ is an explicit-state enumeration tool that searches
finite state systems to determine if only “safe” states are
reachable. The state space to be searched is determined
by a set of states, and rules that specify (possibly non-
deterministic) transitions between states. Each transition
rule is a guarded command, and consists of a condition
(guard) and an action (command). An action, which is
executed iff the corresponding guard is satisfied, yields
successor states. The set of “safe” states is specified via
an invariant condition Inv . In other words, a state is
“safe” iff it satisfiesInv .

Murϕ exhaustively searches the state space, starting
from the initial states and continuing until all states
reachable via the transition rules have been explored.
The invariant specifying the desired safety property is
evaluated on every reachable state. If Murϕ finds a state
s that does not satisfyInv , it terminates withFAILURE

and a counterexample consisting of a finite sequence of
states leading from an initial state tos via legal transi-
tions. Otherwise, if all explored states satisfyInv , Murϕ
terminates withSUCCESS.

We express security properties as invariants involving
two distinct models, an ideal model and an actual model.
In the ideal model, the system is free from the influences
of the adversary. In contrast, the actual model includes
an adversary, and thus deviates from the ideal model. In
particular, the ideal model represents the “ground truth”
and provides a point of reference with which we com-
pare the actual model to gauge the effectiveness of the
adversary. Our use of two models is inspired by Lie et
al.’s use of two worlds in the verification of the XOM
architecture [11].

3.3 Formal Model

We now present our Murϕ model of SecVisor. The vari-
ables in the model abstractly represent the hardware plat-
form, memory, and various data structures (such as page
tables) which are manipulated by SecVisor, the kernel,
and the adversary. The initial states are specified by as-
signing appropriate values to the model variables. The
transition rules of the model correspond to entries into
(and exits from) kernel mode, and adversary actions. As
mentioned before, these transition rules determine the
evolution (and hence the reachable states) of the system.
The desired security properties are stated as invariants
on the model variables. The overall model consists of
around 500 lines of Murϕ code.

It is noteworthy that in order to tackle the state space
explosion problem our Murϕ model bounds the number
of memory pages and the size of the page tables. Thus,

5

our model is an abstraction of the actual SecVisor im-
plementation. In general, if a modelM is not a faithful
representation of a systemS, then the results of model
checking onM do not carry over toS. We address this
issue in two ways:

1. We model SecVisor conservatively, i.e., our model
is an over-approximation of SecVisor in terms of
the initial states and transitions (and hence reach-
able states). Thus, when Murϕ terminates on our
model with SUCCESS, we conclude that SecVisor
satisfies the desired security property as well.

2. Since our model is an over-approximation, coun-
terexamples reported by Murϕ on the model may
not correspond to actual attacks on SecVisor. To
this end, for each security vulnerability of the model
identified by Murϕ, we construct a corresponding
concrete attack against the SecVisor implementa-
tion. Further details of this step, with actual exploit
code, are presented in Section 4.

3.3.1 Modeling Data

In order to model the hardware platform, memory, and
other data structures, we use a number of basic data
types including a bit, word, and indexes into the page ta-
bles and physical memory, as well as arrays and records.
We now present each data type in our model, with
a textual description followed by a snippet of Murϕ

code. All undefined identifiers (e.g.,page_index and
KRNL_DATA) are pre-defined integer constants.
Hardware Platform. The hardware platform is mod-
eled as a record data type containing a physical memory,
a CPU mode bit corresponding to either kernel or user
mode, an instruction pointer (program counter), and a
Device Exclusion Vector (DEV). The DEV is an array
of bits, one for each page of physical memory, that con-
trols DMA to physical memory pages by DMA-capable
devices. Physical memory is modeled as an array of one
bit pages. One bit per page of physical memory is suffi-
cient to model SecVisor’s code integrity property. In our
model, a physical page with value zero corresponds to
an integrity-preserved page while a page with value one
corresponds to an integrity violation.

-- Device Exclusion Vector
dev_t: array [page_index] of bit;
phy_mem_t: array [page_index] of bit;
-- Hardware Platform
hardware_platform_t: record

phy_mem : phy_mem_t;
mode: bit; -- CPU Mode
IP: word; -- Instruction Pointer
DEV : dev_t; -- Device Exclusion Vector

end;

Virtual Memory. We model virtual memory at the
granularity of a page. Each page table entry includes a
read/write bit, execute bit, and a physical address map-
ping.

pte_t: record -- Page Table Entry
rw: bit; -- Read/Write
x: bit; -- Execute
PA: word; -- Physical Address

end;

Page tables (PTs) are a basic data type and are mod-
eled as arrays of page table entries.

page_table_t: array[index_PTEs] of pte_t;

Variables in our model include a hardware platform,
actual world shadow page tables (SPTs) and kernel page
tables (KPTs), and an ideal world copy of the shadow
page tables called the secure SPT (denoted assec SPT
in the code).

hw : hardware_platform_t;
-- Actual World
SPT : page_table_t; -- Shadow PT
KPT : page_table_t; -- Kernel PT
-- Ideal World
sec_SPT : page_table_t; -- Shadow PT

3.3.2 Modeling SecVisor

We model SecVisor’s initialization, kernel entry and exit
handlers, and shadow page table synchronization code.
For each component of the model, we ensure that it is
a conservative abstraction of the corresponding fragment
of SecVisor via manual inspection.
SecVisor Initialization. SecVisor’s initialization code
initializes SecVisor’s shadow page tables under the as-
sumption that the kernel executes first on system start up.
This is captured in our model as follows:

procedure secvisor_init_kernel_mode();
begin
-- Start in kernel mode

hw.mode := KRNL_MODE;
hw.IP := KRNL_CODE;

-- Init. DEV to protect kernel code
hw.DEV[KRNL_CODE] := 1;

-- 1) Initialize actual model PTs
-- User memory permissions RW

SPT[USER_MEM].rw := RW;
SPT[USER_MEM].x := NON_eXe;
SPT[USER_MEM].PA := USER_MEM;

-- Kernel code permissions RX
SPT[KRNL_CODE].rw := R;
SPT[KRNL_CODE].x := eXe;
SPT[KRNL_CODE].PA := KRNL_CODE;

-- Kernel data permissions RW

6

SPT[KRNL_DATA].rw := RW;
SPT[KRNL_DATA].x := NON_eXe;
SPT[KRNL_DATA].PA := KRNL_DATA;

-- 2) Initialize ideal model SPT
-- Set user memory permissions to RW

sec_SPT[USER_MEM].rw := RW;
sec_SPT[USER_MEM].x := NON_eXe;
sec_SPT[USER_MEM].PA := USER_MEM;

-- Set kernel code permissions to RX
sec_SPT[KRNL_CODE].rw := R;
sec_SPT[KRNL_CODE].x := eXe;
sec_SPT[KRNL_CODE].PA := KRNL_CODE;

-- Set kernel data permissions to RW
sec_SPT[KRNL_DATA].rw := RW;
sec_SPT[KRNL_DATA].x := NON_eXe;
sec_SPT[KRNL_DATA].PA := KRNL_DATA;

end;

The permissions set in the actual as well as secure
shadow page tables correspond to those in Figure 1 for
kernel mode execution.
Kernel to User Mode. On a transition to user mode,
SecVisor’s kernel exit handler sets: (a) the mode to user
mode, and (b) the shadow page tables such that user
memory becomes executable and kernel code pages be-
come non-executable. This is modeled by the following
Murϕ procedure:

procedure secvisor_kernel_exit();
begin
-- User mode

hw.mode := USER_MODE;
hw.IP := USER_MEM;

-- Set user mem. to executable
SPT[USER_MEM].rw := RW;
SPT[USER_MEM].x := eXe;

-- Set kernel code non-exec.
SPT[KRNL_CODE].x := NON_eXe;
SPT[KRNL_DATA].x := eXe;
SPT[KRNL_DATA].rw := RW

-- Set ideal world SPT
sec_SPT[USER_MEM].rw := RW;
sec_SPT[USER_MEM].x := eXe;
sec_SPT[KRNL_CODE].x := NON_eXe;
sec_SPT[KRNL_DATA].x := eXe;
sec_SPT[KRNL_DATA].rw := RW

end;

Note that the Murϕ code above only models the set
of permissions that are required to achieve the proper-
ties of code integrity and execution integrity. The per-
missions in the SPT in the implementation of SecVisor
are likely to be more restrictive. For example, a page
containing kernel data is unlikely to be writable or exe-
cutable in user mode. Modeling only the minimal set of
permissions simplifies our formal model, which reduces
the state space that Murϕ needs to explore.

User to Kernel Mode. On a transition to kernel mode,
SecVisor’s entry handler sets the shadow page tables
such that the kernel code becomes executable and the
kernel data and user memory become non-executable.
This prevents unapproved code from being executed dur-
ing kernel mode, and is captured in our model as follows:

procedure secvisor_kernel_entry();
begin
-- Kernel mode

hw.mode := KRNL_MODE;
hw.IP := KRNL_CODE;

-- 1) Set actual model PTs
-- User memory permissions RW

SPT[USER_MEM].rw := RW;
SPT[USER_MEM].x := NON_eXe;

-- Kernel code permissions RX
SPT[KRNL_CODE].rw := R;
SPT[KRNL_CODE].x := eXe;

-- Kernel data permissions RW
SPT[KRNL_DATA].rw := RW;
SPT[KRNL_DATA].x := NON_eXe;

-- 2) Set ideal model SPT
-- User memory permissions RW

sec_SPT[USER_MEM].rw := RW;
sec_SPT[USER_MEM].x := NON_eXe;

-- Kernel code permissions RX
sec_SPT[KRNL_CODE].rw := R;
sec_SPT[KRNL_CODE].x := eXe;

-- Kernel data permissions RW
sec_SPT[KRNL_DATA].rw := RW;
sec_SPT[KRNL_DATA].x := NON_eXe;

end;

An interesting point about the code snippet above is
that it explicitly sets thehw.IP variable to approved ker-
nel code. In other words, the code assumes that property
P1 is axiomatically satisfied. This is consistent with our
modeling choices.
Page Table Synchronization. For correct operation,
SecVisor synchronizes the shadow page table with the
kernel pages table when the kernel: (i) wants to use a
new page table, (ii) modifies an existing page table en-
try, and (iii) creates a new entry in its page tables. An
attacker can modify the kernel page table entries. Hence,
SecVisor must prevent the attacker’s modifications from
affecting the SPT fields that enforce code and execution
integrity. SecVisor’s design specifies that to prevent ad-
versary modification of sensitive SPT state, SecVisor-
may not copy permission bits from the kernel page table
during synchronization with the shadow page table. We
model this in Murϕ as follows:

procedure secvisor_spt_synchronize();
begin

SPT[KRNL_CODE].PA := KPT[KRNL_CODE].PA;
SPT[KRNL_DATA].PA := KPT[KRNL_DATA].PA;
SPT[USER_MEM].PA := KPT[USER_MEM].PA;

end;

7

3.3.3 Modeling System Transitions

Our model includes two system transition rules that cor-
respond to kernel entries and exits. These two rules
enable the non-deterministic exploration of the entire
reachable state space by Murϕ. A transition rule in-
cludes a guard that must be satisfied for the rule to be
enabled, and a command that yields successor states. In
Murϕ syntax, the guard and the command are separated
by ==>.
Kernel Exit. The kernel exit transition rule specifies
that if the system is in kernel mode then a valid tran-
sition is to transition to user mode. The transition rule
sets the IP to point to user memory while the system
is executing in kernel mode. Recall that since SecVi-
sor removes execute permission for user memory, the
exit causes the CPU to throw an exception. SecVisor in-
tercepts the exception an executes an exception handler,
which we model with thesetIP(new_IP) procedure.
We model the entire kernel exit in Murϕ as follows (note
that the proceduresecvisor_kernel_exit() is
defined earlier in this section):

rule "Kernel Exit"
hw.mode = KRNL_MODE ==> setIP(USER_MEM);

end;

-- Set IP to USER_MEM (unapproved)
procedure setIP(new_IP : page_index);
begin

if (SPT[new_IP].x = NON_eXe) then
secvisor_kernel_exit();

else
hw.IP := new_IP;

endif
end;

Kernel Entry. The kernel entry transition rule spec-
ifies that if the system is in user mode then a valid
transition is to kernel mode. The transition is mod-
eled in Murϕ by the procedure defined previously in this
section:secvisor_kernel_entry() .

rule "Kernel Entry"
hw.mode = USER_MODE ==>

secvisor_kernel_entry();
end;

3.3.4 Modeling Adversary Actions

The adversary can write to memory pages with the
read/write bit set, perform DMA writes to physical pages
whose DEV bit is not set, arbitrarily modify kernel page-
table entries, and create new kernel page table entries.
We model the adversary’s write abilities as follows:

rule "Attacker writes through MMU"
true ==> write();
end;

procedure write();
begin
for i : index_PTEs do

-- If SPT entry is writable
if (SPT[i].rw = RW) then

-- Modify page integrity bit
hw.phy_mem[SPT[i].PA] := 1;

endif
endfor
end;

rule "Attacker attempts DMA write"
true ==> dma_write();
end;

procedure dma_write();
begin
for i : page_index do

-- If DEV protections are not set
if (hw.DEV[i] = 0) then

-- Modify page integrity bit
hw.phy_mem[i] := 1;

endif
endfor
end;

We provide the adversary with the ability to arbitrarily
modify every field of every kernel page table entry in-
cluding the read/write permissions, execute permissions,
and physical address mapping for user memory, kernel
code, and kernel data. After modification, SecVisor syn-
chronizes the kernel page table with the shadow page ta-
ble as specified in SecVisor’s design.

--General KPT attacker
ruleset va : index_PTEs do
ruleset pa : page_index do
ruleset rw: bit do
ruleset x: bit do

rule "Modify KPT entries"
true ==>

begin
-- Create arbitrary entry

KPT[va].rw := rw;
KPT[va].x := x;
KPT[va].PA := pa;

secvisor_synchronize();
end;

endruleset; endruleset;
endruleset; endruleset;

8

3.3.5 Specifying Security Properties

We model SecVisor’s security properties as invariants.
Recall that an invariant is a condition that holds in all
(and only) safe states of the model. Our invariants state
a necessary relationship for security by comparing be-
tween the ideal world (without the adversary) and the
actual world (with the adversary). Intuitively, our invari-
ants stipulate that the actual world never deviates from
the ideal world with respect to our desired security prop-
erty, and thus is secure.
Execution Integrity. The execution integrity invari-
ant ExecInt states that if the system is in kernel mode
then the IP must point to an approved code region. Thus,
ExecInt corresponds to SecVisor’s P2 property. In our
model, we expressExecInt as an equality between the
approved status of a page in the secure SPT and the ap-
proved status of the same page in the SPT of the actual
model. The violation ofExecInt implies the adversary
has managed to alter the approved status of a page in a
way that is disallowed in the ideal world, and indicates a
possible attack on SecVisor.

hw.mode = KRNL_MODE ->
sec_SPT[sec_SPT[hw.IP].PA].x

= SPT[SPT[hw.IP].PA].x;

Code Integrity. The code integrity invariantCodeInt

states that approved code must not be modified by any
agent other than SecVisor and its TCB. In our model, we
initialize physical memory to all zeros. The attacker then
attempts to set a kernel code page to one, and thus violate
code integrity. The following invariant, which we use
asCodeInt , states that SecVisor prevents the adversary
from ever modifying approved kernel code, and hence
approved code is always set to zero.

hw.phy_mem[KRNL_CODE] = 0;

3.4 Modeling Initial States

Our model begins with a call toskinit() , which in
turn invokessecvisor_init_kernel_mode() as
defined earlier.

startstate
begin
-- Model Hardware Reset

clear hw; clear SPT;
clear KPT; clear sec_SPT;

-- Start SecVisor in isolation
skinit();

end;

Subsequently a transition rule fires and moves the sys-
tem to a new state. Since the system is currently in ker-
nel mode, the only valid transition rules are a kernel exit

or one of the adversary’s transition rules. If the kernel
exit transition fires, the instruction pointer is set to point
to user memory. If the page of user memory is marked
as non-executable in the shadow page tables, then the
SecVisor kernel exit handler is invoked.

Subsequently, the only valid transition is to re-enter
kernel model which results in an execution of the SecVi-
sor kernel entry handler. The entry handler sets the
shadow page tables according to the code above, after
which a non-deterministic transition occurs. The process
completes when either an invariant is violated or when
executing enabled transitions does not lead to any previ-
ously unexplored states.

4 Analysis

We used Murϕ to check whether our SecVisor model
satisfied the two security properties. Murϕ identified
an execution that violatesExecInt , and one execution
that violatesCodeInt . Based on these counterexam-
ples, we identifiedvulnerabilities in SecVisor’s design
and implementation. Both vulnerabilities result from
flaws in SecVisor’s shadow page table synchronization
code. Furthermore, we demonstrate that the vulnerabili-
ties could be utilized by an attacker to take control of a
SecVisor-protected kernel by implementingexploits and
launching two successful code injection attacks against a
SecVisor-protected Linux kernel. The rest of this section
presents these vulnerabilities and exploits in detail.

4.1 Approved Page Remapping

Our first vulnerability, called Approved Page Remap-
ping, was derived from Murϕ’s counterexample to
ExecInt . The counterexample ends with the adver-
sary modifying an approved kernel page table (KPT)
entry. Specifically, the adversary alters the KPT entry
that translates the virtual addresses of approved code to
point to a physical page containing unapproved code.
The modified KPT entry is then copied by SecVisor’s
synchronization procedure into the shadow page table
(SPT). The key flaw here is that the KPT entry is copied
into the SPT without checking that approved code virtual
pages are not mapped to physical pages containing unap-
proved code. Subsequently, the CPU is in a position to
execute unapproved (and possibly malicious) code. Fig-
ure 4 illustrates this attack.
Exploiting the Remapping Vulnerability. Our exploit
for the Remapping flaw sets the physical address of a ker-
nel page table entry for kernel code to point to user mem-
ory4. After synchronizing the SPT with the KPT, the re-

4Alternatively, the exploit could set the kernel code entry to point
to kernel data.

9

IP=00)Hardware State = (mode = KERNEL,

10:

01:

00: User Mem.

Kernel Code

Kernel Data 10:

01:

00: User Mem.

Kernel Code

Kernel Data

00

10

00

10

00

01

10

00

01

1010:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

10:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

Initial Hardware State = (mode = KERNEL, IP = 01)

Initial Secure State After Synchronization

00 00

Kernel Page Table Shadow Page Table Physical Memory Kernel Page Table Shadow Page Table Physical Memory

Figure 4: This figure depicts a transition from an initial secure state to the compromised state resulting from an
Approved Page Remapping exploit. The attacker modifies the kernel page table entry 01 to point to the writable
physical page 00. Subsequently, the CPU executes the unapproved code in page 00 in kernel mode.

sulting SPT entry for kernel code points to user memory,
which is unapproved.

procedure remapping_exploit();
begin
-- Approved page --> user memory

KPT[KERNEL_CODE].PA := USER_MEM;
-- Variant: Approved page --> kernel data
-- KPT[KERNEL_CODE].PA := KERNEL_DATA;
-- Synchronize SPT with KPT

secvisor_synchronize();
end;

After adding the exploit to the adversary in the model,
Murϕ discovers a counterexample that identifies a spe-
cific attack which violatesExecInt . To further en-
sure that the Remapping Vulnerability is also inherent in
SecVisor, we crafted a SecVisor exploit (about 37 lines of
C) as an kernel module. This exploit modifies the physi-
cal address of a page table entry mapping an approved
code page, to point to a page containing unapproved
code. When executed on a SecVisor-protected Linux
kernel running on an AMD SVM platform, our exploit
overwrote a page table entry which originally mapped a
physical page containing approved code to point to an
arbitrary (unapproved) physical page. SecVisor copied
this entry into the SPT, potentially permitting the CPU to
execute unapproved code in kernel mode.

Our current exploit implementation requires that
SecVisor approve the kernel module containing the ex-
ploit code for execution in kernel mode. This is un-
realistic since any reasonable approval policy will pro-
hibit the execution of kernel modules obtained from un-
trusted sources. However, it could be possible for the
attacker to run our exploit without loading a kernel mod-
ule. This could be done by executing pre-existing code
in the kernel that modifies the kernel page table entries
with attacker-specified parameters. The attacker could,
for example, exploit a control-flow vulnerability (such as
a buffer overflow) in the kernel to call the kernel page
table modification routine with attacker-supplied param-
eters.

4.2 Writable Virtual Alias

Our second vulnerability, called Writable Virtual Alias,
was derived from Murϕ’s counterexample toCodeInt .
The counterexample indicates that the adversary can cre-
ate a writable virtual alias to (i.e., another page table en-
try with write permissions pointing to) a physical page
containing approved code. SecVisor’s synchronization
code copies the alias into the shadow page table without
checking that the alias is pointing to an approved phys-
ical page. Then, the adversary uses the writable virtual
alias to inject arbitrary code into approved kernel code
pages. The result is a violation of code integrity. Fig-
ure 5 illustrates this attack.
Exploiting the Alias Vulnerability. Our exploit causes
a writable virtual page of user memory to point to kernel
code. After synchronization, the resulting SPT entry for
user memory points to an approved physical page of ker-
nel code.

procedure alias_exploit();
begin
-- Create writable alias to approved page

KPT[USER_MEM].rw := RW;
KPT[USER_MEM].x := NON_eXe;
KPT[USER_MEM].PA := KERNEL_CODE;

-- Synchronize SPT with KPT
secvisor_synchronize();

end;

After adding the exploit to the adversary in the model,
Murϕ discovers a counterexample that identifies a spe-
cific attack which violatesCodeInt . To further verify
that this flaw is also inherent in SecVisor, we created an
exploit using about 15 lines of C code. Our exploit opens
/dev/mem , maps a user page with write permissions
to a physical page (at addressKERNELCODEADDR)
containing approved kernel code, and writes an arbitrary
value into the target physical page via the virtual user
page. When executed against SecVisor on an AMD SVM
platform running Linux 2.6.20.14, our exploit success-
fully overwrote an approved kernel code with arbitrary
code. An interesting aspect of the exploit is that it can be
executed from user mode by an attacker that has admin-
istrative privileges.

10

10:

01:

00: User Mem.

Kernel Code

Kernel Data 10 10

00

01

10

00

01

1010:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

10:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

Initial Hardware State = (mode = KERNEL, IP = 01)

Initial Secure State After Synchronization

Kernel Page Table Shadow Page Table Physical Memory Kernel Page Table Shadow Page Table Physical Memory

01

01

01

01

Kernel Data10:

01:

00: User Mem.

Injected Code

Hardware State = (mode = KERNEL, IP = 01)

Figure 5: This figure depicts a transition from an initial secure state to the compromised state resulting from a Writable
Virtual Alias exploit. The attacker modifies the kernel pagetable entry 00 to be a writable alias for physical page 01
then injects code into 01 using the alias.

void remap_kernel_code() {
// Open /dev/mem device
fd = open("/dev/mem", O_RDWR);
// Map kernel code with RW access
// into user address space
user_mem = mmap(0,

KERNEL_CODE_SIZE,
PROT_READ|PROT_WRITE,
MAP_SHARED,fd,
KERNEL_CODE_ADDR);

// Overwrite kernel code
memset(user_mem, ATTACK_CODE_ADDR,

ATTACK_CODE_SIZE);
}

5 Repairing and Verifying SecVisor

In this section, we describe the design and implementa-
tion of a secure synchronization procedure that repairs
both the vulnerabilities described in Section 4. We fix
SecVisor’s implementation by modifying105 lines of C
code. We verify the correctness of our fix by augment-
ing the formal model; Murϕ no longer finds any attacks.
We further check that our exploits on the original version
of SecVisor no longer compromise code or execution in-
tegrity in the repaired version. We demonstrate that our
defense is efficient by running benchmarks on the re-
paired implementation of SecVisor; the performance loss
due to our fix ranges from1–7%.

5.1 Design of Defense

The vulnerabilities in SecVisor are due to the fact that
the SPT synchronization procedure copies untrusted data
into the SPT without validating the data fully. A se-
cure synchronization must validate all fields in each en-
try of the kernel page tables before copying that entry
into the SPT. In the original version of SecVisor, the
SPT synchronization procedure misses two checks that
lead to the two vulnerabilities we describe in Section 4.
Therefore, our fix introduces the two checks into SecVi-
sor’s SPT synchronization procedure. Since Murϕ is no

longer able to find any attacks that violate either code or
execution integrity, we obtain the guarantee that the SPT
synchronization procedure is correctly validating the ker-
nel’s page table entries. The two checks our fix intro-
duces are: 1) all virtual aliases of an approved physical
page must disallow writes to the physical page, and 2)
kernel page table entries that map approved virtual pages
must contain addresses of approved physical pages.

The pseudo-code for these two checks appear be-
low. SecVisor internally maintains the list of mappings
between approved virtual pages and approved physical
pages. This list is referred to as therefset in the code
given below. Further,refset.virt refers to set of
all virtual addresses in therefset andrefset.phys
refers to all physical addresses in therefset . PA refers
to the physical address field of a page table entry. The
functionvirt takes an index into a page table as input
and returns the virtual address corresponding to that in-
dex.

procedure check aliasing()
begin

for i in index PTEs do
//alias of approved physical page?
if (KPT[i].PA ∈ refset.phys)

//remove write permission
SPT[i].rw := R;
SPT[i].x := eXe;
SPT[i].PA := KPT[i].PA;
// add new mapping to refset
refset ← refset ∪ {virt(i),KPT[i].PA }

endif
endfor

end;

procedure check phy addr()
begin

for i in index PTEs do
//mapping of approved virtual page?
if (virt(i) ∈ refset.virt)

SPT[i].PA := refset[virt(i)].phys
endif

endfor
end;

11

Verification States Rules Fired Time Memory Result
3 PTEs 55,296 2,156,544 2.52 sec. 8MB Success
4 PTEs 1,744,896 88,989,696 343.97 sec 256MB Success

Figure 6: Verification results for models with 3 and 4 page table entries including the number of states searched,
number of rules fired, the time required, and the memory required.

We added the two checks shown above to SecVisor’s
SPT synchronization procedure by modifying 105 lines
of C code. We verified that our exploits failed against the
patched version of SecVisor.

5.2 Verification

We augment our model with the defense and perform a
number of verifications with Murϕ. We ran each verifica-
tion on a 3.20GHz Pentium 4 with 2GB of memory. Fig-
ure 6 details our results. Each verification includes three
pages of physical memory representing kernel code, ker-
nel data, and user memory. In the first verification, we
include three page table entries in both the kernel page
tables and the shadow page tables. Murϕ reported a suc-
cessful verification after searching over 55,000 states, fir-
ing over 2 million rules, and running for 2.5 seconds with
a maximum memory utilization of less than 8MB. We in-
creased the number of page table entries in both the ker-
nel page table and the shadow page table to four entries
and reran the verification. Since the adversary can arbi-
trary modify every bit of a kernel page table entry (about
4 bits) and we add two additional pages, we expect the
resulting model to be at least9 times larger than the pre-
vious model, but no more than27 times larger. Murϕ
successfully verified the four page model after search-
ing over 1.7 million states, firing more than 88 million
rules and completing in around 6 minutes with a max-
imum memory utilization of less than 256MB. Com-
pared to the three entry verification, the resulting verifi-
cation searched approximately25 times more states and
required25 times more memory. We attempted to add
a fifth page table entry, but the verification exceeded the
memory capacity of the machine. Given the exponential
dependence on the number of page table entries, a five
page verification would require close to 8GB of memory.
Continuing to verify larger models adds little insight into
SecVisor’s security. Since the adversary’s abilities do not
fundamentally increase with additional pages, the same
attacks exist regardless of the number of page table en-
tries.

5.3 Performance Evaluation

In order to evaluate the performance impact of our secu-
rity fixes, we ran kernel microbenchmarks, standardized
benchmarks, and application benchmarks. We use the

same benchmarks as were used in the original SecVisor
paper. We find that the overhead of our security fixes
is less than 7%. Our experimental platform is the HP
Compaq dc5750 Microtower PC. This PC uses an AMD
Athlon64 X2 dual-core CPU running at 2200 MHz with
2 GB of RAM and runs the i386 version of the Fedora
Core 6 Linux distribution. All our experiments run on the
uniprocessor version of Linux kernel 2.6.20.14, which
executes on top of SecVisor. The source of the over-
head in the patched version of SecVisor are the extra
checks introduced into the SPT synchronization proce-
dure. Therefore, it is natural that workloads with rapidly
varying working sets, which increase the rate of updates
to the kernel’s page tables, will exhibit the maximum
overhead.
lmbench Microbenchmarks. We use the lmbench
benchmarking suite to measure overheads of different
kernel operations when using SecVisor with vulnerabil-
ities (SecVisor-vul) and the patched version SecVisor
(SecVisor-fix). The worst case overhead is about 7%.
Our results are presented in Figure 7.
Application Benchmarks. We execute both compute-
bound and I/O-bound applications in order to eval-
uate the overhead of our security fixes. For our
compute-bound applications we choose benchmarks
from SPECint 2006 suite. Our I/O bound applications
consist of the gcc benchmark from SPECint 2006, Linux
kernel compile, unzipping and untarring the Linux kernel
source, and the Postmark file system benchmark.

In the Linux kernel compile, we compile the sources of
the kernel version 2.6.20 by executing “make” in the top-
level source directory. For unzipping and untarring the
kernel source we execute “tar xfvz” on the source tarball
of the version 2.6.20 of the Linux kernel. For Postmark,
we choose 20,000 files, 100,000 transactions, and 100
subdirectories, and all other parameters are set at their
default values. We run each of these applications five
times each on the vulnerable version of SecVisor and the
patched version of SecVisor.

Our results are presented in Figure 8. We show the
result of only one of the compute-bound SPEC bench-
marks since none of these benchmarks exhibit any over-
head. The gcc SPEC benchmark, Linux kernel compile,
and Postmark which are I/O bound have greater over-
heads than the compute bound SPEC benchmarks. This
is because of rapidly varying working sets which leads to
frequent SPT synchronization operations.

12

Null Call Fork Exec Prot Fault PF 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K
1.0211 1.0170 1.0250 1.0217 1.0652 1.0690 1.0551 1.0662 1.0613 1.0687

Figure 7: Normalized execution times oflmbench process, memory and context switch microbenchmarks. All times
are normalized with respect to the execution times of the vulnerable version of SecVisor. PF stands for page fault.

SPEC h264ref SPEC gcc Kernel Build Kernel Unzip Postmark
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
un

tim
e

(N
or

m
al

iz
ed

 to
 S

ec
V

is
or

−
vu

l,
lo

w
er

 is
 b

et
te

r)

1.001.00 1.00
1.04

1.00
1.06

1.001.01 1.00
1.07

SecVisor−vul
SecVisor−fix

Figure 8: Application performance comparison between
SecVisor-vul and SecVisor-fix, normalized to SecVisor-
vul.

6 Lessons Learned

Given the choice between manual audit and formal verifi-
cation, secure system designers overwhelmingly choose
manual audits, despite well-known weaknesses [15], for
several specific reasons. While formal analysis can re-
sult in higher-assurance systems, it requires consider-
ably more investment in terms of both time and techni-
cal effort, making it less practical. Formal analysis re-
quires not only an understanding of the system design,
but also that the design be translated to a formal model
in a way that preserves the desirable security properties
of the original system.

During this project, we identified the following three
general facets of secure system design that reduce the
code size and complexity of verification, while facilitat-
ing an accurate correspondence between our model and
the design: (1) clear specification of the adversary model,
(2) explicit statement of the top-level security require-
ments that the system aims to provide, and (3) clean sep-
aration between these requirements and the mechanisms
used to achieve them. We now elaborate on these facets
since we believe that they are relevant to the design, mod-
eling and verification of secure systems in general.
Explicit Adversary Model. In SecVisor’s design, the
adversary is endowed with two distinct abilities: using
DMA to write to memory and modifying the kernel’s

page tables. These abilities correspond exactly to the ex-
ternal interface SecVisor provides. By using a narrow
interface between trusted and untrusted domains, the ca-
pabilities of the adversary are clearly specified. If the ad-
versary’s interface or equivalently, the interface between
trusted and untrusted domains, is underspecified, the im-
plementation of the adversary model is both more com-
plicated and less likely to accurately reflect reality.
Top-Level Security Requirements. The security of
SecVisor depends on two requirements, code integrity
and execution integrity. SecVisor’s specification clearly
relates these requirements with its security goals. The
explicit statement of requirements helped focus our veri-
fication. In our model, these requirements lead to proper-
ties, which in turn map to invariants with minimal modi-
fications. Such a clean mapping inspires confidence that
a successful verification implies a secure system design.
Separation of Requirements and Mechanism. One
aspect of SecVisor’s design that was clarified during our
analysis was the interplay between design requirements
and the mechanisms used to achieve them. In the orig-
inal presentation of SecVisor’s design [17], the two top
level requirements are decomposed to propertiesP1-P4.
During our verification, we see that propertiesP1-P3are
actually mechanisms used to achieve execution integrity,
while P4 is the mechanism to achieve code integrity.

7 Related Work

Our use of two models – ideal and actual – is inspired
by the work of Lie et al. on specifying and verify-
ing XOM [11] using Murϕ. XOM is a hardware-based
approach to ensuring tampering-resistance and copy-
resistance. In contrast, SecVisor aims at achieving mem-
ory protection. Murϕ has also been used by Mitchell
et al. [12, 13] to successfully verify the correctness of
(and find bugs in) security protocol specifications. Even
though we use Murϕ, our approach is amenable to ver-
ification via other model checkers, such asSPIN [8],
TLA + [10] andSMV 5.

A number of projects [6, 2, 21] have used software
model checking and static analysis to find a general class
of bugs in source code, without a specific attacker model.
In contrast, our focus is on bug detection, and verifica-
tion, in the presence of an adversary with precisely de-
fined capabilities.

5http://www.cs.cmu.edu/ modelcheck/smv.html

13

Prior work has explored the problem of verifying the
design of secure systems [14, 16, 18]. These works are
similar to our own in spirit, but differ in the methods ap-
plied. They suggest an approach where properties are
manually proven using a logic and without an explicit
adversary model. In contrast, our focus is on automated
verification of manually constructed models that include
an explicit adversary model.

Heitmeyer et al. [7] used the PVS theorem prover to
verify the correctness of a data separation kernel. In con-
trast, we use model checking to verify the correctness of
a hypervisor aimed at memory protection.

8 Conclusion

We verified the design of SecVisor, a security hypervi-
sor, using the Murϕ model-checker. During the verifica-
tion, Murϕ identified executions that violated both of the
desired security requirements of SecVisor—execution
integrity and code integrity. Based on these design-
level attacks, we crafted2 exploits and successfully
launched code injection attacks on a SecVisor-protected
Linux kernel. The exploits consisted of37 and 15

lines of C code respectively. We repaired SecVisor by
designing and implementing a secure memory protec-
tion scheme by modifying105 lines of code. We also
incorporated the fix in the formal model and verified
using Murϕ that the resulting design is secure. The
verification completes in about6 minutes after explor-
ing approximately1.7 million states. The repaired im-
plementation is still efficient: performance loss is in
the range of1-7% on a standard benchmark suite for
SecVisor. All source code for this project is available
at www.cs.cmu.edu/˜jfrankli/secvisor . Fi-
nally, we identified general facets of secure system de-
sign that facilitate formal analysis.

References

[1] A DVANCED M ICRO DEVICES. AMD64 Architecture Program-
mer’s Manual Volume 2: System Programming, 3.12 ed., Septem-
ber 2006.

[2] CHEN, H., AND WAGNER, D. MOPS: an infrastructure for ex-
amining security properties of software. InACM Conference on
Computer and Communications Security (2002), pp. 235–244.

[3] CHEN, X., GARFINKEL , T., LEWIS, E. C., SUBRAHMANYAM ,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND

PORTS, D. R. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. InAS-
PLOS XIII: Proceedings of the 13th international conference on
Architectural support for programming languages and operating
systems (New York, NY, USA, 2008), ACM, pp. 2–13.

[4] D ILL , D. L. The murphi verification system. InCAV (1996),
pp. 390–393.

[5] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZI ÈRES, D.,

KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. InSOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems principles
(New York, NY, USA, 2005), ACM, pp. 17–30.

[6] HALLEM , S., CHELF, B., XIE, Y., AND ENGLER, D. A system
and language for building system-specific, static analyses. In Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation (PLDI ’02) (Berlin,
Germany, June 2002), vol. 37(5) ofSIGPLAN Notices, Associa-
tion for Computing Machinery, pp. 69–82.

[7] HEITMEYER, C. L., ARCHER, M., LEONARD, E. I., AND

MCLEAN, J. D. Formal specification and verification of data sep-
aration in a separation kernel for an embedded system. InACM
Conference on Computer and Communications Security (2006),
pp. 346–355.

[8] HOLZMANN , G. J. The Model Checker SPIN.IEEE Trans. Soft-
ware Eng. 23, 5 (1997), 279–295.

[9] I NTEL CORPORATION. Trusted eXecution Technology – Pre-
liminary Architecture Specification and Enabling Considerations.
Document number 31516803, Nov. 2006.

[10] LAMPORT, L. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

[11] L IE, D., MITCHELL , J., THEKKATH , C. A., AND HOROWITZ,
M. Specifying and Verifying Hardware for Tamper-Resistant
Software. InProceedings of the 2003 IEEE Symposium on Se-
curity and Privacy (2003).

[12] M ITCHELL , J. C., MITCHELL , M., AND STERN, U. Auto-
mated Analysis of Cryptographic Protocols Using Murϕ. In Pro-
ceedings of the 1997 IEEE Symposium on Security and Privacy
(1997).

[13] M ITCHELL , J. C., SHMATIKOV , V., AND STERN, U. Finite-
State Analysis of SSL 3.0. InProceedings of the Seventh USENIX
Security Symposium (1998), pp. 201–216.

[14] NEUMANN , P., BOYER, R., FEIERTAG, R., LEVITT, K., AND

ROBINSON, L. A provably secure operating system: The system,
its applications, and proofs. Tech. rep., SRI International, 1980.

[15] OPENBSD.ORG. Source code auditing process.
http://www.openbsd.org/security.html#process, May 2008.

[16] RUSHBY, J. The design and verification of secure systems. In
Eighth ACM Symposium on Operating System Principles (SOSP)
(Asilomar, CA, Dec. 1981), pp. 12–21. (ACMOperating Systems
Review, Vol. 15, No. 5).

[17] SESHADRI, A., LUK , M., QU, N., AND PERRIG, A. SecVisor:
A Tiny Hypervisor to Provide Lifetime Kernel Code Integrityfor
Commodity OSes. InProceedings of the ACM Symposium on
Operating Systems Principles (SOSP) (Oct. 2007).

[18] SHAPIRO, J. S.,AND WEBER, S. Verifying the eros confinement
mechanism. InProceedings of the 2000 IEEE Symposium on
Security and Privacy (2000).

[19] WITCHEL, E., RHEE, J., AND ASANOVIĆ, K. Mondrix:
memory isolation for linux using mondriaan memory protection.
SIGOPS Oper. Syst. Rev. 39, 5 (2005), 31–44.

[20] YANG, J., AND SHIN , K. G. Using hypervisor to provide data
secrecy for user applications on a per-page basis. InVEE ’08:
Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments (New York, NY,
USA, 2008), ACM, pp. 71–80.

[21] YANG, J., TWOHEY, P., ENGLER, D. R., AND MUSUVATHI ,
M. Using Model Checking to Find Serious File System Errors.
In OSDI (2004), pp. 273–288.

[22] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND

MAZI ÈRES, D. Making information flow explicit in histar. In
OSDI (2006), USENIX Association, pp. 263–278.

14

