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Example Secure Systems: OpenSSH

Client Server

> ssh  server.cmu.edu

  …

   Verifying signature

   Reading public key from Mem[0]

  …

Mem[0] = PK

Widely used remote secure shell [RFC 4253]

Based on network and memory primitives
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Example Secure Systems: Virtual Machine Monitors

Hardware

Virtual Machine Monitor

Virtual

Server

Virtual

Machine…
Client

Widely deployed (e.g., VMware, Xen)

Use memory protection and restricted APIs
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Example Secure Systems: Trusted Computing

Client
Server

>Verify server code integrity

    …

   sending system integrity measurements

    validating integrity measurements

    …

Secure 

Co-processor

System Integrity

Measurement Log

Upcoming technology (Intel TXT, AMD SVM, Microsoft Bitlocker)

Uses special registers, restricted APIs
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Motivation and Project Goals

Model secure systems and adversaries

Specify security properties

Prove that systems satisfy properties

Composition of systems and proofs (e.g., SSH over VMM)

Insights into implementation (e.g., trusted Grub bootloader)

Comparison of alternative system designs (e.g., remote
attestation vs late launch)
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Technical Contributions

Framework: Logic of Secure Systems (LS2)
I Based on Protocol Composition Logic (PCL)

Programming language to specify systems and adversaries
I Operational semantics defines reduction traces

Logic to specify security properties
I Predicates interpreted over traces

Proof system to establish security properties
I Soundness theorem ensures provable properties hold over all

traces
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Outline

1 Design choices

2 Programming language and logic

3 Semantics and soundness

4 Conclusion
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Secure System Primitives and Adversaries

Client Server

Nonce (n)

SIG(n, K
S

-1)

Primitives Adversary

Network
(Standard)

- Send, receive
- Crypto (sign, encrypt)

- Symbolic(Dolev-Yao)

Local
(New)

- Shared RAM and files
- Protection (access control)

- Steal, corrupt data
- Corrupt code

- Identify secure system primitives
- Model adversary capabilities, as opposed to enumerating attacks
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New Primitives and Adversary Capabilities in LS2

Secure system primitives
I Read, write locations of memory (RAM and persistent storage)
I Exclusive-write locks for integrity
I (Extension with exclusive-read locks for secrecy)

Adversary capabilities
I Read memory
I Write to unlocked memory
I Lock unlocked memory
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Programming Language
Thread-oriented (process-calculus + explicit state)

I Secure systems and adversaries modeled as threads

Action a ::= send e
| receive
| sign e, K−1

| verify e, K
| read l
| write l , e
| lock l
| unlock l
| proj 1 e
| proj 2 e
| match e, e′

| new
Program P, Q ::= x1 := a1; . . . ; xn := an

See paper for details and operational semantics
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Specifying Security Properties

Properties specified in a logic

Logic models explicit time (real numbers)
I Action happened at a specific time
I A program executed in a specified interval of time

Time needed to model some systems of interest
I E.g., Pioneer, Genuinity, TESLA

In reasoning,
I Time used to order events
I Time used to state invariants
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Logic: Syntax

Predicates R ::= Send(U, e) | Receive(U, e)
| Sign(U, e, K ) | Verify(U, e, K )
| Read(U, l , e) | Write(U, l , e)
| Lock(U, l) | Unlock(U, l)
| Match(U, e, e′) | New(U, n)

M ::= Mem(l , e)
| IsLocked(l , U)
| Contains(e, e′)
| e = e′ | t ≥ t ′

| Honest(X̂ )

| Honest(X̂ , ~P)
Formulas A, B ::= R | M | > | ⊥ | A ∧ B | A ∨ B |

A ⊃ B | ¬A | ∀x .A | ∃x .A | A @ t
Defined Formula A on i = ∀t . ((t ∈ i) ⊃ (A @ t))
Modal Formulas J ::= [P]tb,te

U A | [a]tb,te
U,x A
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Proof System of the Logic

Some axioms
I Memory persists:

` (IsLocked(l , U) on [tb, te) ∧ (Mem(l , e) @ tb)
∧ (∀e′. ¬Write(U, l, e′) on [tb, te))) ⊃ (Mem(l, e) on [tb, te))

I Locks persist:
` ((IsLocked(l, U) @ t) ∧ (¬Unlock(U, l) on [t , t ′)))

⊃ (IsLocked(l , U) on [t , t ′])

Local reasoning: Proofs analyze only system components, not
adversaries (cf. Hoare Logic and PCL)

I Non-trivial with shared memory (what if another thread changes
memory?)

I Feasible because of appropriate memory protections

In ongoing work we are using the proof system to analyze trusted
computing protocols
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Correctness Theorem for Example

Γ ` J in LS2’s proof system

Γ = Honest(K̂s, Server(K−1
S )), Û 6= K̂

J = [Client(m, KS)]tb,te
U ∃n.∃tg .∃ts.∃U ′. ((tb < tg < ts < te)

∧ (New(U, n) @ tg) ∧ (Û ′ = K̂S) ∧
(Sign(U ′, n, K−1

S ) @ ts))

Proof reasons about memory and network primitives

Protocol secure in presence of local and network adversary

See full paper for details

Deepak Garg (CMU) Secure Systems FCS-ARSPA-WITS ’08 16 / 24



Outline

1 Design choices

2 Programming language and logic

3 Semantics and soundness

4 Conclusion

Deepak Garg (CMU) Secure Systems FCS-ARSPA-WITS ’08 17 / 24



Semantics and Soundness

Semantics of logic defined w.r.t. traces of programs (T )
I A trace is a sequence of reductions of a set of threads
I We associate monotonically increasing time points with reductions

Semantic relations:
I T |=t A
I T |= [P]tb,te

U A

Example:
I T |= [P]tb,te

U A if whenever the reductions of thread U in the interval
[tb, te) on trace T match P, it is the case that A holds.

Soundness Theorem:
If Γ ` ϕ then Γ |= ϕ
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Ongoing Work

Application to trusted computing
I E.g., remote attestation protocol
I E.g., sealed storage protocol

More primitives and stronger adversary
I Special hardware: PCRs, secure coprocessor
I Adversaries that can reset machines
I Adversaries that can modify code

Unchanged memory model

Composition of systems and proofs
I E.g., sealed storage after remote attestation

Deepak Garg (CMU) Secure Systems FCS-ARSPA-WITS ’08 20 / 24



Conclusion

Advanced secure systems, formal techniques lacking
Identifying relevant primitives, and modeling them

I E.g., shared memory, memory protection, . . .

Specifying adversary capabilities instead of enumerating attacks
I E.g., steal and corrupt data, corrupt code, reset machines

Reasoning about security properties in presence of such
adversaries

I LS2 supports local reasoning

Technical contribution:
I Programming language, logic, proof system, semantics
I Soundness theorem
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Thank You

Questions?
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Extra Slides
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Dense Time

We assume a dense model of time

Density does not appear in proof system

Density needed to prove soundness

` [a]tb,tm
I,x A1 ` [P]tm,te

I A2 (tm fresh)

` [x := a; P]tb,te
I ∃tm.∃x . ((tb < tm < te) ∧ A1 ∧ A2)

Seq
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