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Abstract

The security of systems such as operating systems, hypervisors, and web

browsers depend critically on reference monitors to correctly enforce their

desired security policy in the presence of adversaries. Recent progress in
developing reference monitors with small code size and narrow interfaces has

made automated formal verification of reference monitors a more tractable

goal. However, a significant remaining factor for the complexity of automated

verification is the size of the data structures (e.g., access control matrices)
over which the programs operate. This paper develops a parametric verifi-

cation technique that scales even when reference monitors and adversaries

operate over unbounded, but finite data structures. Specifically, we develop
a parametric guarded command language for modeling reference monitors

and adversaries. We also present a parametric temporal specification logic

for expressing security policies that the monitor is expected to enforce. The

central technical results of the paper are a set of small model theorems. These
theorems state that in order to verify that a policy is enforced by a reference

monitor with an arbitrarily large data structure, it is sufficient to model check

the monitor with just one entry in its data structure. We apply our methodology
to verify the designs of two hypervisors, SecVisor and the sHype mandatory-

access-control extension to Xen. Our approach is able to prove that sHype

and a variant of the original SecVisor design correctly enforces the expected

security properties in the presence of powerful adversaries.

1. Introduction

A central focus of system security is on the design and

implementation of reference monitors. A reference monitor

observes execution of a target system and prevents actions

that violate the relevant security policy [1]. For example, a

virtual machine monitor might mediate access to memory

and enforce a separation policy, i.e. it may prevent one

virtual machine from accessing memory regions allocated to a

different virtual machine. There are numerous other examples

of reference monitors in practical systems such as operating

systems, hypervisors, and web browsers. The security of these

systems depend critically on whether the reference monitor

correctly enforces the desired security policy in the presence

of adversaries. Therefore, providing assurance in the security

of reference monitors is of critical importance.

A major challenge in verifying reference monitors in sys-

tems software and hardware is scalability: typically, the ver-

ification task either requires significant manual effort (e.g.,

using interactive theorem proving techniques) or becomes

computationally intractable (e.g., using automated finite state

model checking techniques). The development of systems

software such as microkernels and hypervisors with relatively

small code size and narrow interfaces alleviates the scalability

problem. However, another significant factor for automated

verification techniques is the size of the data structures over

which the programs operate. For example, the complexity of

finite state model checking reference monitors in hypervisors

and virtual machine monitors grows exponentially in the size

of the page tables used for memory protection.

This paper develops a verification technique that scales

even when reference monitors and adversaries operate over

very large data structures. The technique extends parametric

verification techniques developed for system correctness to the

setting of a class of secure systems and adversaries. Specifi-

cally, we develop a parametric guarded command language for

modeling reference monitors and adversaries and a parametric

temporal specification logic for expressing security policies

that the monitor is expected to enforce. Data structures such

as page tables are modeled in the language using an array

where the number of rows in the array is a parameter that

can be instantiated differently to obtain systems of different

sizes. The security policies expressed in the logic also refer

to this parameter. The central technical results of the paper

are a set of small model theorems that state that for any

system M expressible in the language, any security property

ϕ expressible in the logic, and any natural number n, M(n)
satisfies ϕ(n) if and only if M(1) satisfies ϕ(1) where M(i)
and ϕ(i) are the instances of the system and security policy

respectively when the data structure size is i. For example,

M(n) may model a hypervisor operating on page tables of size

n in parallel with an adversary that is interacting with it, and

ϕ(n) may express a security policy that any of the n pages

(protected by the page table) containing kernel code is not

modified during the execution of the system. The consequence

of the small model theorem is that in order to verify that

the policy is enforced for an arbitrarily large page table, it

is sufficient to model check the system with just one page

table entry. The small model analysis framework is described

in Section 3.

The twin design goals for the programming language are

expressivity and data independence: the first goal is important

in order to model practical reference monitors and adversaries;

the second is necessary to prove small model theorems that

enable scalable verification. The language provides a para-

metric array where the number of rows is a parameter and

the number of columns is fixed. In order to model reference

monitor operations such as synchronizing kernel page tables

with shadow page tables (commonly used in software-based

memory virtualization), it is essential to provide support for

atomic whole array operations over the parametric array. In



addition, such whole array operations are needed in order

to model an adversary that can non-deterministically set the

values of an entire column of the parametric array (e.g.,

the permission bits in the kernel page table if the adversary

controls the guest operating system). On the other hand, all

operations are row-independent, i.e., the data values in one row

of the parametric array do not affect the values in a different

row. Also, the security properties expressible as reachability

properties in the specification logic refer to properties that hold

either in all rows of the array or in some row. Intuitively, it

is possible to prove a small model theorem (Theorem 1) for

all programs in the language with respect to such properties

because of the row-independent nature of the operations.

That is also the reason for the existence of the simulation

relations necessary to prove the small model theorem for the

temporal formulas in our specification logic (Theorem 2).

The logic is expressive enough to capture separation-style

access control policies commonly enforced by hypervisors and

virtual machines as well as history-dependent policies (e.g., no

message send after reading a sensitive file).

We apply this methodology to verify that the designs of two

hypervisors—SecVisor [40] and the sHype [39] mandatory-

access-control extension to Xen [3]—correctly enforce the

expected security properties in the presence of adversaries. For

SecVisor, we check the security policy that a guest operating

system should only be able to execute user-approved code

in kernel mode. The original version of SecVisor does not

satisfy this property in a small model with one page table

entry. We identify two attacks while attempting to model check

the system, repair the design, and then successfully verify the

small model. For sHype, we successfully check the Chinese

Wall Policy [5], a well-known access control policy used

in commercial settings. These applications are presented in

Section 4. In addition, we further demonstrate the expressivity

of the programming language by showing in Section 5 how

to encode any finite state reference monitor that operates in a

row-independent manner as a program; the associated security

policy can be expressed in the logic.

This work builds on a line of work on data independence, in-

troduced in an influential paper by Wolper [45]. He considered

programs whose control flow behavior was completely inde-

pendent of the data over which they operated. The motivating

example for him was the alternating bit protocol. Subsequent

work on parametric verification, which we survey in the related

work section (Section 6), has relaxed this strong independence

assumption to permit the control flow of the program to depend

in limited ways on the data. The closest line of work to ours

is by Emerson and Kahlon [9], and Lazic et al. on verifying

correctness of cache coherence protocols [28], [29]. However,

there are significant differences in our technical approach and

results. In particular, since both groups focus on correctness

and not security, they do not support the form of whole array

operations that we do in order to model atomic access control

operations in systems software as well as a non-deterministic

adversary. Conclusions and directions for future work appear

in Section 7.
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Fig. 1. Functional overview of SecVisor; K = GUEST kernel;
A = adversary; S = SecVisor; PM = physical memory; KPT
and SPT = kernel and shadow page tables; shaded shape =
active element; unshaded shape = data structure; direction of
arrows indicate kind of access (read or write) of data structure
by element.

2. Motivating Example: SecVisor

We use SecVisor [40], a security hypervisor, as our moti-

vating example. We informally discuss the design of SecVisor

below, and in subsequent sections show how our small model

analysis approach enables us to model SecVisor, and verify

that it satisfies the desired security properties even with

arbitrarily large protection data structures (page tables).

SecVisor supports a single guest operating system, GUEST,

which executes in two privilege levels – user mode and kernel

mode. In addition, GUEST supports two types of executable

code – approved and unapproved. We assume that the set of

approved code is fixed in advance, and remains unchanged dur-

ing system execution. Figure 1 shows a functional overview of

SecVisor. We now describe SecVisor’s protection mechanisms,

adversary model and security properties.

Protection Mechanisms Memory is organized in pages,

which are indexed and accessed via page tables. Each page

table entry contains the starting address and other attributes

(e.g., read-write-execute permissions, approved or unapproved

status) of the corresponding page. GUEST maintains a Kernel

Page Table (KPT). However, in order to provide the desired se-

curity guarantees even when GUEST is compromised, SecVisor

sets its memory protection bits in a separate shadow page table

(SPT). The SPT is used by the Memory Management Unit

(MMU) to determine whether a process should be allowed

to access a physical memory page. To provide adequate

functionality, the SPT is synchronized with the KPT when

necessary. This is useful, for example, when GUEST transitions

between user and kernel modes, and when the permissions in

KPT are updated.

Adversary Model. SecVisor’s attacker controls everything

except a minimal trusted computing base (TCB) – the CPU,

MMU, and physical memory (PM). The attacker is able to

read and write the KPT, and thus modify the SPT indirectly



via synchronization. Therefore, to achieve the desired security

properties, it is critical that SecVisor’s page table synchro-

nization logic be correct. These capabilities model a very

powerful and realistic attacker who is aware of vulnerabilities

in GUEST’s kernel and application software, and uses these

vulnerabilities to locally or remotely exploit the system.

Security Properties. SecVisor’s design goal is to ensure

that only approved code executes in the kernel mode of

GUEST. To this end, SecVisor requires that the following two

properties be satisfied: (i) execution integrity, which mandates

that GUEST should only execute instructions from memory

pages containing approved code while in kernel mode, and (ii)

code integrity, which stipulates that memory pages containing

approved code should only be modifiable by SecVisor and its

TCB. We now describe these two properties in more detail. We

refer to memory pages containing approved and unapproved

code as approved and unapproved pages, respectively.

Execution Integrity. We assume that only code residing

in executable memory pages can be loaded and executed.

Any attempt to violate this condition results in an exception.

Therefore, to satisfy execution integrity we require that, in

kernel mode, the executable permission of all unapproved

memory pages are turned off.

Code Integrity. In general, memory pages are accessed by

software executing on the CPU and peripheral devices (via

DMA). Since all non-SecVisor code and all peripheral devices

are outside SecVisor’s TCB, the code integrity requirement

reduces to the following property: approved pages should not

be modifiable by any code executing on the CPU, except

SecVisor, or by any peripheral device. Thus, to satisfy code

integrity, SecVisor marks all approved pages as read-only to

all entities other than itself and its TCB.

3. Small Model Analysis

In this section, we describe our small model analysis

approach to analyze security properties of parametric systems.

In our approach, a parametric system is characterized by

a single parametric array P, which is instantiated to some

finite but arbitrary size during any specific system execution

(e.g., SecVisor’s page tables). In addition, the system has

a finite number of other variables (e.g., SecVisor’s mode

bit). Parametric systems are modeled as programs in our

model parametric guarded command language (PGCL), while

security properties of interest are expressed as formulas in

our parametric temporal specification logic (PTSL). We prove

small model theorems that imply that a PTSL property ϕ holds

on a PGCL program Prog for arbitrarily large instantiations of

P if and only if ϕ holds on Prog with a small instance of P. In

the rest of this section, we present PGCL and PTSL, interleaved

with the formal SecVisor model and security properties, as

well as the small model theorems that enable parametric

verification of SecVisor and other similar systems.

3.1. PGCL Syntax

For simplicity, we assume that all variables in PGCL are

Boolean. The parametric array P is two-dimensional, where

the first dimension (i.e., number of rows) is arbitrary, and

the second dimension (i.e., number of columns) is fixed. All

elements of P are also Boolean. Note that Boolean variables

enable us to encode finite valued variables, finite arrays with

finite valued elements, records with finite valued fields, and

relations and functions with finite domains over such variables.

Let K be the set of numerals corresponding to the natural

numbers {1,2, . . .}. We fix the number of columns of P to

some q ∈ K. Note that this does not restrict the set of systems

we are able to handle since our technical results hold for any

q. Let ⊤ and ⊥ be, respectively, the representations of the truth

values true and false. Let B be a set of Boolean variables, I

be a set of variables used to index into a row of P, and n be

the variable used to store the number of rows of P.

The syntax of PGCL is shown in Figure 2. Expressions in

PGCL include natural numbers, Boolean variables, a parame-

terized array Pn,q, a variable i for indexing into Pn,q, a variable

n representing the size of Pn,q, propositional expressions over

Boolean variables and elements of Pn,q. For notational simplic-

ity, we often write P to mean Pn,q. The commands in PGCL

include guarded commands that update Boolean variables and

elements of Pn,q, and parallel and sequential compositions of

guarded commands. A guarded command executes by first

evaluating the guard; if it is true, then the command that

follows is executed. The parallel composition of two guarded

commands executes by non-deterministically picking one of

the commands to execute. The sequential composition of two

commands executes the first command followed by the second

command.

3.1.1. SecVisor in PGCL. We give an overview of our PGCL

model of SecVisor followed by the PGCL program for SecVi-

sor.

For our purposes, the key unbounded data structures main-

tained by SecVisor are the KPT and the SPT. Hence, we

represent these two page tables using our parameterized array

Pn,q. Without loss of generality, we assume that the KPT and

the SPT have the same number of entries. Thus, each row of

Pn,q represents a KPT entry, and the corresponding SPT entry.

The columns of Pn,q – KPTRW,KPTX,KPTPA,SPTRW,SPTX and

SPTPA – represent the permissions and page types of KPT and

SPT entries. Specifically, P[i][KPTRW] and P[i][KPTX] refer to

read/write and execute permissions for the i-th KPT entry.

Also, P[i][KPTPA] refers to the type, i.e., kernel code (KC),

kernel data (KD), or user memory (UM), of the page mapped

by the i-th KPT entry. The SPTRW, SPTX, and SPTPA columns

are defined analogously for SPT entries. Finally, the variable

MODE indicates if the system is in KERNEL or USER mode.
The overall SecVisor program is a parallel composition of

four guarded commands, as follows:

SecVisor ≡
Kernel Entry ‖ Kernel Exit ‖ Sync ‖ Attacker



Natural Numerals K

Index Variable i

Boolean Variables B

Parametric Variable n

Expressions E ::= ⊤ | ⊥ | ∗ | B | E∨E | E∧E | ¬E
Parameterized Expressions Ê ::= E | Pn,q[i][K] | Ê∨ Ê | Ê∧ Ê | ¬Ê
Instantiated Guarded Commands G ::= GC(K)
Guarded Commands GC ::= E ? C Simple guarded command

| GC ‖ GC Parallel composition
Commands C ::= B := E Assignment

| for i : Pn,q do Ê ? Ĉ Parametric
| C;C Sequencing

Parameterized Commands Ĉ ::= Pn,q[i][K] := Ê Parameterized array assignment

| Ĉ; Ĉ Sequencing

Fig. 2. PGCL Syntax

These four guarded commands represent, respectively, entry

to kernel mode, exit from kernel mode, page table synchro-

nization, and attacker action. We now describe each of these

commands in more detail. Note, in particular, the extensive use

of whole array operations to model the protection mechanisms

in SecVisor as well as the non-deterministic adversary updates

to the KPT.

Kernel Entry. If the system is in user mode then a valid

transition is to kernel mode. On a transition to kernel mode,

SecVisor’s entry handler sets the SPT such that the kernel

code becomes executable and the kernel data and user memory

become non-executable. This prevents unapproved code from

being executed during kernel mode, and is modeled by the

guarded command shown in Figure 3(a).

Kernel Exit. If the system is in kernel mode then a valid

transition is to transition to user mode. On a transition to user

mode, the program sets: (i) the mode to user mode, and (ii) the

SPT such that user memory becomes executable and kernel

code pages become non-executable. This is modeled by the

guarded command shown in Figure 3(b).

Page Table Synchronization. SecVisor synchronizes the

SPT with the KPT when the kernel: (i) wants to use a new

KPT, or (ii) modifies or creates a KPT entry. An attacker can

modify the kernel page table entries. Hence, SecVisor must

prevent the attacker’s modifications from affecting the SPT

fields that enforce code and execution integrity. SecVisor’s

design specifies that to prevent adversary modification of

sensitive SPT state, SecVisor may not copy permission bits

from the kernel page table during synchronization with the

shadow page table. We model this by the guarded command

shown in Figure 3(c).

Attacker Action. The attacker arbitrarily modifies every

field of every KPT entry, including the read/write permissions,

execute permissions, and physical address mapping for user

memory, kernel code, and kernel data. We model this by the

guarded command shown in Figure 3(d) where the expression

∗ non-deterministically evaluates to either true or false.

3.2. PGCL Semantics

We present the operational semantics of PGCL as a relation

on “stores”. Let N be the set of natural numbers and B be

the truth values {true, false}. For any numeral k we write

⌈k⌉ to mean the natural number represented by k in standard

arithmetic. Often, we write k to mean ⌈k⌉ when the context

disambiguates such usage. For two natural numbers j and k

such that j ≤ k, we write [ j,k] to mean the set { j, . . . ,k}
of numbers in the closed range between j and k. We write

Dom( f ) to mean the domain of a function f . Then, a store σ

is a tuple (σB
,σn

,σP) such that:

• σB : B→ B maps Boolean variables to B;

• σn : N is the value of n;

• σP : [1,σn]× [1,⌈q⌉] → B is a function that maps P to a

two-dimensional Boolean array.

Equivalently, by Currying, we also treat σP as a function

of type [1,σn] → [1,⌈q⌉] → B. In the rest of this paper, we

omit the relevant superscript of σ when it is clear from the

context. For example, we write σ(b) to mean σB(b). The rules

for evaluating PGCL expressions under stores are presented in

Figure 4. These rules are defined via induction on the structure

of expressions. To define the semantics of PGCL, we have to

first present the notion of store projection.

Definition 1 (Store Projection). Let σ = (σB
,σn

,σP) be any

store. For i ∈ [1,σn] we write σ ⇃ i to mean the store (σB
,1,X)

such that X(1) = σP(i).

Intuitively, σ ⇃ i is constructed by retaining σB, setting σn to

1, and projecting away all but the i-th row from σP. Note that

since projection retains σB, it does not affect the evaluation of

expressions that do not refer to elements of Pn,q.

We overload the ·[· 7→ ·] operator in the following way. First,

for any function f : X →Y , x∈ X and y∈Y , we write f [x 7→ y]
to mean the function that is identical to f , except that x is

mapped to y. Second, for any PGCL expression or guarded

command X, variable v, and expression e, we write X[v 7→
e] to mean the result of replacing all occurrences of v in X

simultaneously with e.



Kernel Entry ≡
¬kernelmode ? kernelmode := ⊤;
for i : Pn,q do

Pn,q[i][SPTPA] = UM ?
Pn,q[i][SPTRW] := ⊤;Pn,q[i][SPTX] := ⊥;

for i : Pn,q do

Pn,q[i][SPTPA] = KC ?
Pn,q[i][SPTRW] := ⊥;Pn,q[i][SPTX] := ⊤;

for i : Pn,q do

Pn,q[i][SPTPA] = KD ?
Pn,q[i][SPTRW] := ⊤;Pn,q[i][SPTX] := ⊥

Kernel Exit ≡
kernelmode ? kernelmode := ⊥;
for i : Pn,q do

Pn,q[i][SPTPA] = UM ?
Pn,q[i][SPTRW] := ⊤;Pn,q[i][SPTX] := ⊤;

for i : Pn,q do

Pn,q[i][SPTPA] = KC ?
Pn,q[i][SPTRW] := ⊥;Pn,q[i][SPTX] := ⊥;

for i : Pn,q do

Pn,q[i][SPTPA] = KD ?
Pn,q[i][SPTRW] := ⊤;Pn,q[i][SPTX] := ⊥

Sync ≡
⊤ ? for i : Pn,q do

⊤ ? Pn,q[i][SPTPA] :=
Pn,q[i][KPTPA]

(c)

Attacker ≡
⊤ ? for i : Pn,q do

Pn,q[i][KPTPA] := ∗;
Pn,q[i][KPTRW] := ∗;
Pn,q[i][KPTX] := ∗

(a) (b) (d)

Fig. 3. PGCL program for SecVisor.

Store Transformation. For any PGCL command c and

stores σ and σ′, we write {σ} c {σ′} to mean that σ is

transformed to σ′ by the execution of c. The rules defining

{σ} c {σ′}, via induction on the structure of c, are shown

in Figure 5. Most of the definitions are straightforward. For

example, the “GC” rule states that σ is transformed to σ′

by executing the guarded command e ? c if: (i) the guard

e evaluates to true under σ, and (ii) σ is transformed to σ′

by executing the command c.

The “Unroll” rule states that if c is a for loop, then

{σ} c {σ′} if there exists appropriate intermediate stores that

represent the state of the system after the execution of each

iteration of the loop. The premise of the “Unroll” rule involves

the instantiation of the loop variable i with specific values.

This is achieved via the ≫ notation, which we define next.

Definition 2 (Loop Variable Instantiation). Let σ and σ′ be

two stores such that σn = σ′n = N, and ê ? ĉ ∈ Ê ? Ĉ be a

guarded command containing the index variable i. Then for

any ⌈j⌉ ∈ [1,N], we write {σ} (ê ? ĉ)(i≫ j) {σ′} to mean:

{σ ⇃ ⌈j⌉} (ê ? ĉ)[i 7→ 1] {σ′ ⇃ ⌈j⌉}
^

∀k ∈ [1,N] � k 6= ⌈j⌉ ⇒ σP(k) = σ′P(k)

Thus, {σ} (ê ? ĉ)(i≫ j) {σ′} means that σ′ is obtained

from σ by first replacing i with j in ê ? ĉ, and then executing

the resulting guarded command.

3.3. Specification Logic

Next we present our specification logic. We support two

types of specifications – reachability properties and temporal

logic specifications. Reachability properties are useful for

checking whether the target system is able to reach a state

that exhibits a specific condition, e.g., a memory page storing

kernel code is made writable. Reachability properties are

expressed via “state formulas”. In addition, state formulas are

also used to specify the initial condition under which the target

system begins execution.

Syntax. The syntax of state formulas is defined in Fig-

ure 6. Note that we support three distinct types of state for-

mulas – universal, existential, and generic – which differ in the

way they quantify over rows of the parametric array P. Specif-

ically, universal formulas allow one universal quantification

over P, existential formulas allow one existential quantification

over P, while generic formulas allow one universal and one

existential quantification over P.

In contrast, temporal logic specifications enable us to verify

a rich class of properties over the sequence of states observed

during the execution of the target system, e.g., once a sensitive

file is read, in all future states network sends are forbidden. In

our approach, such specifications are expressed as formulas of

the temporal logic PTSL. In essence, PTSL is a subset of the

temporal logic ACTL* [7] with USF as atomic propositions.

SecVisor’s Security Properties in PTSL. We now formal-
ize SecVisor’s security properties in our specification logic.
We assume that only kernel code is approved by SecVisor,
and vice versa. We require that SecVisor begins execution in
KERNEL mode, where only kernel code pages are executable.
Thus, the initial state of SecVisor is expressed by the following
USF state formula:

ϕinit , MODE = KERNEL∧∀i �P[i][SPTX] ⇒ (P[i][SPTPA] = KC)

In addition, the execution and code integrity properties are

expressed in our specification logic as follows:

1) Execution Integrity: Recall that this property requires
that in kernel mode, only kernel code should be exe-
cutable. It is stated as follows:

ϕexec , MODE= KERNEL⇒ (∀i�P[i][SPTX]⇒ (P[i][SPTPA] = KC))

To verify this property, we check if the system is able
to reach a state where its negation holds. The negation
of ϕexec is expressed as the following ESF state formula:

¬ϕexec , MODE= KERNEL∧(∃i�P[i][SPTX]∧¬(P[i][SPTPA] = KC))

2) Code Integrity: Recall that this property requires that ev-
ery kernel code page should be read-only. It is expressed
as follows:

ϕcode , ∀i � ((P[i][SPTPA] = KC) ⇒ (¬P[i][SPTRW]))



〈⊤,σ〉 → true 〈⊥,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false

b ∈ dom(σB)

〈b,σ〉 → σB(b)

⌈k⌉ ≤ σn ⌈l⌉ ≤ ⌈q⌉

〈Pn,q[k][l],σ〉 → σP(⌈k⌉,⌈l⌉)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t ′′
where t ′′ = true if t = true or t ′ = true, and t ′′ = false otherwise.

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t ′′
where t ′′ = true if t = true and t ′ = true, and t ′′ = false otherwise.

〈e,σ〉 → t

〈¬e,σ〉 → t ′
where t ′ = true if t = false, and t ′ = false otherwise.

Fig. 4. Rules for expression evaluation. Recall that σ = (σB
,σn

,σP).

σn = σ′n = ⌈k⌉ {σ} gc {σ′}

{σ} gc(k) {σ′}
Parameter Instantiation

{σ} c {σ′′} {σ′′} c′ {σ′}

{σ} c;c′ {σ′}
Sequential

σn = N ∃σ1, . . . ,σN+1 �σ = σ1 ∧σ′ = σN+1 ∧∀⌈j⌉ ∈ [1,N] �{σ⌈j⌉} (ê ? ĉ)(i≫ j) {σ⌈j⌉+1}

{σ} for i : Pn,q do ê ? ĉ {σ′}
Unroll

〈e,σ〉 → true {σ} c {σ′}

{σ} e ? c {σ′}
GC

〈e,σ〉 → t

{σ} b := e {σ[σB 7→ σB[b 7→ t]]}
Assign

〈e,σ〉 → t ⌈i⌉ ≤ σn ⌈j⌉ ≤ ⌈q⌉

{σ} Pn,q[i][j] := e {σ[σP 7→ σP[(⌈i⌉,⌈j⌉) 7→ t]]}
Parameterized Array Assign

{σ} gc {σ′}∨{σ} gc′ {σ′}

{σ} gc ‖ gc′ {σ′}
Parallel

Fig. 5. Rules for commands

To verify this property, we check if the system is able
to reach a state where its negation holds. The negation
of ϕcode is expressed as the following ESF state formula:

¬ϕcode , ∃i � ((P[i][SPTPA] = KC)∧P[i][SPTRW])

Semantics. We now present the semantics of our specifica-

tion logic. We start with the notion of satisfaction of formulas

by stores.

Definition 3. The satisfaction of a formula π by a store σ

(denoted σ |= π) is defined, by induction on the structure of π,

as follows:

• σ |= b iff σB(b) = true.

• σ |= Pn,q[k][l] iff ⌈k⌉ ≤ σn and σP(⌈k⌉,⌈l⌉) = true.

• σ |= ¬π iff σ 6|= π.

• σ |= π1 ∧π2 iff σ |= π1 and σ |= π2.

• σ |= π1 ∨π2 iff σ |= π1 or σ |= π2.

• σ |= ∀i �π iff ∀i ∈ [1,σn] �σ ⇃ i |= π[i 7→ 1].
• σ |= ∃i �π iff ∃i ∈ [1,σn] �σ ⇃ i |= π[i 7→ 1].

The definition of satisfaction of Boolean formulas and the

logical operators are standard. Parametric formulas, denoted

Pn,q[k][l], are satisfied if and only if the index k is in bounds,

and the element at the specified location is true. An universally

quantified formula, ∀i � π, is satisfied by σ if and only if

all projections of σ satisfy π[i 7→ 1]. Finally, an existentially

quantified formula, ∃i �π, is satisfied by σ if and only if there

exists a projection of σ that satisfies π[i 7→ 1].
We now present the semantics of a PGCL program as a

Kripke structure. We use this Kripke semantics subsequently

to prove a small model theorem for PTSL specifications.

Kripke Semantics. Let gc be any PGCL guarded com-

mand and k ∈ K be any numeral. We denote the set of stores

σ such that σn = ⌈k⌉, as Store(gc(k)). Note that Store(gc(k))
is finite. Let Init be any formula and AP = USF be the

set of atomic propositions. Intuitively, a Kripke structure

M(gc(k), Init) over AP is induced by executing gc(k) starting

from any store σ ∈ Store(gc(k)) that satisfies Init.

Definition 4. Let Init ∈ USF be any formula. Formally,

M(gc(k), Init) is a four tuple (S ,I ,T ,L), where:

• S = Store(gc(k)) is a set of states;

• I = {σ|σ |= Init} is a set of initial states;

• T = {(σ,σ′) | {σ}gc(k){σ′}} is a transition relation

given by the operational semantics of PGCL; and

• L : S → 2AP is the function that labels each state with

the set of propositions true in that state; formally,

∀σ ∈ S �L(σ) = {ϕ ∈ AP | σ |= ϕ}



Basic Propositions BP ::= b , b ∈ B
| ¬BP

| BP∧BP

Parametric Propositions PP(i) ::= {Pn,q[i][l] | ⌈l⌉ ≤ ⌈q⌉}
| ¬PP(i)
| PP(i)∧PP(i)

Universal State Formulas USF ::= BP

| ∀i �PP(i)
| BP∧∀i �PP(i)

Existential State Formulas ESF ::= BP

| ∃i �PP(i)
| BP∧∃i �PP(i)

Generic State Formulas GSF ::= USF

| ESF

| USF∧ESF

PTSL Path Formulas TLPF ::= TLF “state formula”
| TLF∧TLF “conjunction”
| TLF∨TLF “disjunction”
| X TLF “in the next state”
| TLF U TLF “until”

PTSL Formulas TLF ::= USF | ¬USF “propositions and their negations”
| TLF∧TLF “conjunction”
| TLF∨TLF “disjunction”
| A TLPF “for all computation paths”

Fig. 6. Syntax of PTSL

If φ is a PTSL formula, then M,σ |= φ means that φ holds

at state σ in the Kripke structure M. We use a standard

inductive definition of the relation |= [7]. Informally, an atomic

proposition π holds at σ iff σ |= π; A φ holds at σ if φ holds

on all possible (infinite) paths starting from σ. TLPF formulas

hold on paths. Informally, a TLF formula φ holds on a path Π

iff it holds at the first state of Π; X φ holds on a path Π iff φ

holds on the suffix of Π starting at second state of Π; φ1 U φ2

holds on Π if φ1 holds on suffixes of Π until φ2 begins to

hold. The definitions for ¬, ∧ and ∨ are standard.

3.4. Small Model Theorem

We now present two small model theorems – one for

reachability properties, and one for PTSL specifications. Both

theorems relate the behavior of a PGCL program when P has

arbitrarily many rows to its behavior when P has a single row.

We defer the proofs of the theorems to Section 3.5.

Definition 5. A Kripke structure M(gc(k), Init) exhibits a

formula ϕ iff there is a reachable state σ of M(gc(k), Init)
such that σ |= ϕ.

Theorem 1 (Small Model Safety 1). Let gc(k) be any

instantiated guarded command. Let ϕ ∈ GSF be any generic

state formula, and Init ∈ USF be any universal state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1), Init) exhibits ϕ.

We now prove a small model theorem that relates Kripke

structures via simulation. The following example motivates the

form of Theorem 2.

Example 1. Consider the example of a system that restricts

message transmission after a principal accesses sensitive data.

Suppose the system consists of an arbitrary number of princi-

pals, each of whom is modeled by a row of P. Also, suppose

that the columns READ and SEND represent, respectively, that

the sensitive data has been read, and that a message has been

transmitted. Then, the fact that no principal has read sensitive

data is encoded by the following USF proposition:

NotRead , ∀i �¬Pn,q[i][READ]

Also, the fact that no principal has sent a message is encoded

by the following USF proposition:

NotSent , ∀i �¬Pn,q[i][SEND]

Therefore, our security property is expressed by the following

PTSL formula:

AG(NotRead∨AXG(NotSent))

where Gφ is a path formula meaning that φ holds at all states

of a path, and is a shorthand for (φ U false). Proving this

temporal formula with a small model requires the following

small model theorem.

Simulation. The following small model theorem relies

on that fact that PTSL formulas are preserved by simulation

between Kripke structures. We use the standard definition of

simulation [7], as presented next.

Definition 6. Let M1 = (S1,I1,T1,L1) an M2 = (S2,I2,T2,L2)
be two Kripke structures over sets of atomic propositions AP1

and AP2 such that AP2 ⊆ AP1. Then M1 is simulated by M2,

denoted by M1 � M2, iff there exists a relation H ⊆ S1 × S2

such that the following three conditions hold:

(C1) ∀s1 ∈ S1 �∀s2 ∈ S2 �(s1,s2)∈ H ⇒ L1(s1)∩AP2 = L2(s2)
(C2) ∀s1 ∈ I1 �∃s2 ∈ I2 � (s1,s2) ∈ H

(C3) ∀s1,s
′
1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H ∧ (s1,s

′
1) ∈ T1 ⇒

∃s′2 ∈ S2 � (s2,s
′
2) ∈ T2 ∧ (s′1,s

′
2) ∈ H

It is known [7] that the satisfaction of ACTL* formulas is

preserved by simulation. Therefore, since PTSL is a subset of

ACTL*, it is also preserved by simulation. This is expressed

formally by the following fact, which we state without proof.



Fact 1. Let M1 and M2 be two Kripke structures over

propositions AP1 and AP2 such that M1 � M2. Hence, by

Definition 6, AP2 ⊆ AP1. Let ϕ be any PTSL formula over

AP2. Therefore, ϕ is also a PTSL formula over AP1. Then

M2 |= ϕ ⇒ M1 |= ϕ.

Theorem 2 (Small Model Simulation). Let gc(k) be any

instantiated guarded command. Let Init ∈ GSF be any

generic state formula. Then M(gc(k), Init) � M(gc(1), Init)
and M(gc(1), Init) � M(gc(k), Init).

The following is a corollary of Theorem 2. Note that this

corollary is the dual of Theorem 1 obtained by swapping the

types of ϕ and Init.

Corollary 3 (Small Model Safety 2). Let gc(k) be any

instantiated guarded command. Let ϕ ∈USF be any universal

state formula, and Init ∈ GSF be any generic state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1), Init) exhibits ϕ.

Proof: Follows from: (i) the observation that exhibition

of a USF formula φ is expressible in PTSL as the TLF formula

F φ, (ii) Theorem 2, and (iii) Fact 1.

3.5. Proofs of Small Model Theorems

In this section, we prove our small model theorems1. We

first present a set of supporting lemmas for the proof of

Theorem 1. The proofs of these lemmas, along with the

statements and proofs of lemmas on which they rely, can be

found in the full version [17].

Two types of lemmas follow: (i) store projection lemmas

that show that the effect of executing a PGCL program

carries over from larger stores to unit stores and (ii) store

generalization lemmas that show that the effect of executing a

PGCL program carries over from the unit store to larger stores.

Intuitively, the two types of lemmas enable the forward and

backward reasoning necessary for the proof of Theorem 1’s

forward and reverse implications, respectively.

The first lemma states that a store σ satisfies an universal

state formula ϕ iff every projection of σ satisfies ϕ.

Lemma 4. Let ϕ ∈ USF and σ be any store. Then:

σ |= ϕ ⇔∀i ∈ [1,σn] �σ ⇃ i |= ϕ

The next lemma states that if a store σ satisfies a generic

state formula ϕ, then some projection of σ satisfies ϕ.

Lemma 5. Let ϕ ∈ GSF and σ be any store. Then:

σ |= ϕ ⇒∃i ∈ [1,σn] �σ ⇃ i |= ϕ

The next lemma states that if a store σ is transformed to σ′

by executing an instantiated guarded command gc(k), then

every projection of σ is transformed to the corresponding

projection of σ′ by executing gc(k).

1. The reader may skip this section without loss of continuity.

Lemma 6 (Instantiated Command Projection). For any stores

σ,σ′ and instantiated guarded command gc(k):

{σ} gc(k) {σ′}⇒ ∀i ∈ [1,σn] �{σ ⇃ i} gc(1) {σ′ ⇃ i}

The last lemma relating store projection and formulas states

that if every projection of a store σ satisfies a generic state

formula ϕ, then σ satisfies ϕ.

Lemma 7. Let ϕ ∈ GSF and σ be any store. Then:

∀i ∈ [1,σn] �σ ⇃ i |= ϕ ⇒ σ |= ϕ

So far, we used the concept of store projection to show

that the effect of executing a PGCL program carries over from

larger stores to unit stores (i.e., stores obtained via projection).

To prove our small model theorems, we also need to show

that the effect of executing a PGCL program propagate in the

opposite direction, i.e., from unit stores to larger stores. To

this end, we first present a notion, called store generalization,

that relates unit stores to those of arbitrarily large size.

Definition 7 (Store Generalization). Let σ = (σB
,1,σP) be any

store. For any k ∈N we write σ ↿ k to mean the store satisfying

the following condition:

(σ ↿ k)n = k∧∀i ∈ [1,k] � (σ ↿ k) ⇃ i = σ

Intuitively, σ ↿ k is constructed by duplicating k times

the only row of σP, and leaving the other components of

σ unchanged. We now present a lemma related to store

generalization, which is needed for the proof of Theorem 1.

The lemma states that if a store σ is transformed to σ′

by executing an instantiated guarded command gc(k), then

every generalization of σ is transformed to the corresponding

generalization of σ′ by executing gc(k).

Lemma 8 (Instantiated Command Generalization). For any

stores σ,σ′ and instantiated guarded command gc(1):

{σ} gc(1) {σ′}⇒ ∀⌈k⌉ ∈ N �{σ ↿ ⌈k⌉} gc(k) {σ′ ↿ ⌈k⌉}

3.5.1. Proof of Theorem 1. We now prove Theorem 1. We

utilize the preceding store projection lemmas for the forward

implication and the generalization lemmas for the reverse

implication.

Proof: For the forward implication, let σ1,σ2, . . . ,σn be

a sequence of states of M(gc(k), Init) such that:

σ1 |= Init
^

σn |= ϕ
^

∀i ∈ [1,n−1] �{σi} gc(k) {σi+1}

Since ϕ ∈ GSF, by Lemma 5 we know that:

∃ j ∈ [1,⌈k⌉] �σn ⇃ j |= ϕ

Let j0 be such a j. By Lemma 4, since Init ∈ USF:

σ1 ⇃ j0 |= Init

By Lemma 6, we know that:

∀i ∈ [1,n−1] �{σi ⇃ j0} gc(1) {σi+1 ⇃ j0}



Therefore, σn ⇃ j0 is reachable in M(gc(1), Init) and σn ⇃
j0 |= ϕ. Hence, M(gc(1), Init) exhibits ϕ. For the reverse

implication, let σ1,σ2, . . . ,σn be a sequence of states of

M(gc(1), Init) such that:

σ1 |= Init
^

σn |= ϕ
^

∀i ∈ [1,n−1] �{σi} gc(1) {σi+1}

For each i ∈ [1,n], let σ̂i = σi ↿ ⌈k⌉. Therefore, since Init ∈
USF, by Lemma 4, we know:

∀ j ∈ [1,⌈k⌉] � σ̂1 ⇃ j |= Init ⇒ σ̂1 |= Init

Also, since ϕ ∈ GSF, by Lemma 7 we know that:

∀ j ∈ [1,⌈k⌉] � σ̂n ⇃ j |= ϕ ⇒ σ̂n |= ϕ

Finally, by Lemma 8, we know that:

∀i ∈ [1,n−1] �{σ̂i} gc(k) {σ̂i+1}

Therefore, σ̂n is reachable in M(gc(k), Init) and σ̂n |= ϕ.

Hence, M(gc(k), Init) exhibits ϕ. This completes the proof.

3.5.2. Proof of Theorem 2. We now prove Theorem 2.

Proof: Recall the conditions C1–C3 in Definition 6 for

simulation. For the first simulation, we propose the following

relation H and show that it is a simulation relation:

(σ,σ′) ∈ H ⇔∃i ∈ [1,⌈k⌉] �σ′ = σ ⇃ i

C1 holds because our atomic propositions are USF formulas,

and Lemma 4; C2 holds because Init ∈GSF and Lemma 5; C3

holds by Definition 4 and Lemma 6. For the second simulation,

we propose the following relation H and show that it is a

simulation relation:

(σ,σ′) ∈ H ⇔ σ′ = σ ↿ ⌈k⌉

Again, C1 holds because our atomic propositions are USF

formulas, Definition 7, and Lemma 4; C2 holds because Init ∈
GSF, Definition 7, and Lemma 7; C3 holds by Definition 4

and Lemma 8. This completes the proof.

Note the asymmetry between Theorem 1 and Theorem 2.

Ideally, we would like to prove a dual of Theorem 2 with

Init ∈ USF, and the atomic propositions of PTSL being GSF.

Then, Theorem 1 would be a corollary of this dual theo-

rem. Unfortunately, such a dual of Theorem 2 is difficult to

prove. Specifically, the problem shows up when proving that

M(gc(k), Init)� M(gc(1), Init). Suppose we attempt to prove

this by showing that the following relation is a simulation:

(σ,σ′) ∈ H ⇔∃i ∈ [1,⌈k⌉] �σ′ = σ ⇃ i

Unfortunately, Lemma 5 is too weak to imply that H satisfies

even condition C1. Specifically, this is because in the conse-

quent of the implication in Lemma 5 we have ∃i instead of

∀i. Indeed, since GSF subsumes ESF, replacing ∃i with ∀i in

Lemma 5 results in an invalid statement. Essentially, this loss

of validity stems from the fact that the whole-array updates in

PGCL allow different rows to be assigned different values. On

the other hand, Lazic et al. [29] allow only a more restricted

form (i.e., reset) of whole-array updates. This enables Lazic

et al. to prove simulation, but reduces the expressivity of their

modeling language. As noted earlier, we found this additional

expressivity in PGCL to be crucial for modeling SecVisor.

4. Applications

We demonstrate our methodology on two hypervisors:

SecVisor and the sHype [39] mandatory-access-control exten-

sion to Xen [3].

4.1. SecVisor

Recall our model of SecVisor from Section 3.1.1 and the

expression of SecVisor’s security properties as PTSL formulas

from Section 3.3.

4.1.1. Initial Failed Verification and Vulnerabilities. We

used the Murϕ model checker to verify ϕexec and ϕcode on

our SecVisor model. Murϕ discovered counterexamples to

both properties. Based on these counterexamples, we identified

vulnerabilities in SecVisor’s design. We crafted exploits to

ensure that the vulnerabilities were also exploitable in SecVi-

sor’s implementation.2 Both vulnerabilities result from flaws

in Sync.

Approved Page Remapping. The first vulnerability, called

Approved Page Remapping, was derived from Murϕ’s coun-

terexample to ϕexec. The counterexample involves the attacker

modifying a Pn,q row with SPTPA = KC and SPTX = ⊤.

Specifically, the attacker changes the value of KPTPA from

KC to UM. The new KPTPA value is then copied by Sync into

SPTPA. Since SPTX=⊤, this results in a violation of ϕexec. The

key flaw here, in terms of SecVisor’s operation, is that a KPT

entry is copied into the SPT without ensuring that kernel code

virtual addresses are not mapped to physical pages containing

kernel data or user memory. Subsequently, the CPU is in a

position to execute arbitrary (and possibly malicious) code.

To demonstrate that this vulnerability is present in SecVi-

sor’s implemenation, we crafted an exploit (about 37 lines

of C) as a kernel module. This exploit modifies the physical

address of a page table entry mapping an approved code page,

to point to a page containing unapproved code. When executed

on a SecVisor-protected Linux kernel running on an AMD

SVM platform, our exploit overwrote a page table entry which

originally mapped a physical page containing approved code

to point to an arbitrary (unapproved) physical page. SecVisor

copied this entry into the SPT, potentially permitting the CPU

to execute unapproved code in kernel mode.

Our current exploit implementation requires that SecVisor

approve the kernel module containing the exploit code for exe-

cution in kernel mode. This is unrealistic since any reasonable

2. These vulnerabilities were identified independently by two of SecVisor’s
authors during an audit of SecVisor’s implementation, but were not reported in
any peer-reviewed publication. However, an informal update to the SecVisor
paper [40] detailing the vulnerabilities is available.



approval policy will prohibit the execution of kernel modules

obtained from untrusted sources. However, it could be possible

for the attacker to run our exploit without loading a kernel

module. This could be done by executing pre-existing code

in the kernel that modifies the kernel page table entries with

attacker-specified parameters. The attacker could, for example,

exploit a control-flow vulnerability (such as a buffer overflow)

in the kernel to call the kernel page table modification routine

with attacker-supplied parameters.

Writable Virtual Alias. The second vulnerability, called

Writable Virtual Alias, was derived from Murϕ’s counterex-

ample to ϕcode. The counterexample involves the attacker

modifying a Pn,q row with SPTPA = UM and SPTRW = ⊤.

Specifically, the attacker changes the value of KPTPA from

UM to KC. The new KPTPA value is then copied by Sync into

SPTPA. Since SPTRW= ⊤, this results in a violation of ϕcode.

The key flaw here, in terms of SecVisor’s operation, is that

a KPT entry is copied into the SPT without ensuring that

virtual addresses mapped to kernel data or user memory are

not replaced by virtual addresses mapped to kernel code. Then,

the attacker uses the writable virtual alias to inject arbitrary

(and possibly malicious) code into kernel code pages.

To demonstrate that this vulnerability is present in SecVi-

sor’s implementation, we created an exploit using about 15

lines of C code. Our exploit opens /dev/mem, maps a user

page with write permissions to a physical page (at address

KERNEL_CODE_ADDR) containing approved kernel code, and

writes an arbitrary value into the target physical page via

the virtual user page. When executed against SecVisor on

an AMD SVM platform running Linux 2.6.20.14, our exploit

successfully overwrote an approved kernel code with arbitrary

code. An interesting aspect of the exploit is that it can be

executed from user mode by an attacker that has administrative

privileges.

4.1.2. Repair and Final Successful Verification. Both vul-

nerabilities in SecVisor are due to Sync copying untrusted

data into the SPT without validation. Our fix introduces two

checks into Sync, resulting in a Secure Sync, shown by the

following guarded command:

Secure Sync ≡
⊤ ? for i : Pn,q do

(¬Pn,q[i][SPTX] ∧ ¬(Pn,q[i][KPTPA] = KC)) ?
Pn,q[i][SPTPA] := Pn,q[i][KPTPA]

The two checks ensure that: (i) executable SPT entries are

not changed by Secure Sync, eliminating the Approved Page

Remapping attack, and (ii) KPT entries pointing to kernel code

are never copied over to the SPT by Secure Sync, eliminating

the Writable Virtual Alias attack. Murϕ is no longer able to

find any attacks that violate ϕexec or ϕcode in the fixed SecVisor

program. Note that the initial condition, ϕinit, is expressible

in USF, and the negations of ϕexec and ϕcode are expressible

in GSF. Therefore, by Theorem 1, we know that the fixed

SecVisor satisfies both ϕexec and ϕcode for SPTs and KPTs of

arbitrary size.

We added the two checks shown above to SecVisor’s SPT

synchronization procedure by modifying 105 lines of C code.

We checked that our exploits failed against the patched version

of SecVisor. More details on the fixes to SecVisor’s imple-

mentation including pseudo-code are available in a companion

technical report [18].

4.1.3. Strength of Our Approach. To highlight the power of

our approach, we used Murϕ to verify the correct SecVisor

with an increasing number of KPT and SPT entries. We

used a 3.20GHz Pentium 4 machine with 2GB of memory.

Each verification includes three pages of physical memory

representing, respectively, kernel code, kernel data, and user

memory.

Initially, we included three entries in both the KPT and the

SPT. Murϕ reported a successful verification after searching

over 55,000 states, firing over 2 million rules, and running

for 2.5 seconds, with a maximum memory utilization of less

than 8MB. We increased the number of entries in both the

KPT and the SPT to four and repeated the verification. Murϕ

successfully verified the new model after searching over 1.7

million states, firing more than 88 million rules, and running

around 6 minutes, with a maximum memory utilization of less

than 256MB. Since the adversary arbitrarily modifies every bit

of a page table entry (about 4 bits), and we add two additional

pages, we expected the resulting model to be between 9 and

27 times larger. The actual observed explosion was 25 times

in terms of explored states and required memory.

The verification of a model with five KPT and SPT entries

exceeded available memory. Given the observed statespace

explosion, we estimate that this verification would require

about 8GB of memory. Verifying a realistic model with

256MB of paged memory (216 4KB pages) would require

multiple terabytes of memory to represent the state space

explicitly. More importantly, successful verification of such a

model would not demonstrate the correctness of larger models.

In contrast, our approach handles models of unbounded size.

4.2. sHype Security Architecture

Next, we explore the expressiveness of PGCL and PTSL by

analyzing the Chinese Wall Policy as implemented in sHype

hypervisor security architecture [39]. sHype is a mandatory-

access-control-based system implemented in the Xen hyper-

visor [3], the research hypervisor rHype [36], and the PHYP

commercial hypervisor [43].

4.2.1. Chinese Wall Policy. Access control policies distin-

guish between two primary types: principals and objects. The

Chinese Wall Policy (CWP) [5] aims to prevent conflicts

of interest when a principal can access objects owned by

competing parties. It is both a confidentiality and integrity

policy since it governs all accesses (e.g., reads and writes). It

can be viewed as a two-level separation policy as it partitions



resources based on their membership in sets that are contained

in other sets.

In sHype’s CWP implementation, principals are virtual ma-

chine (VM) instances, and objects are abstract workloads, rep-

resented concretely by sets of executable programs and their

associated input and output data. Workloads are grouped into

Chinese Wall types (CW-types), and CW-types are grouped

further into Conflict of Interest (CoI) classes. The ability

of a VM to gain access to a new workload is constrained

by workloads it already has access to. Specifically, a VM

may access workloads of at most one CW-type for each CoI

class, with its first workload access being arbitrary. We now

formalize the sHype CWP security property.

Definition 8. Formally, a sHype CWP is a five tuple

(WL,CW Types,CoIClasses,TypeMap,ClassMap) where: (i)

WL = {w1, . . . ,wL} is a finite set of L workloads, (ii)

CWTypes = {cwt1, . . . ,cwtT } is a finite set of T CWTypes,

(iii) CoIClasses = {coi1, . . . ,coiC} is a finite set of C Conflict

of Interest classes, (iv) TypeMap maps W L to CW Types, and

(v) ClassMap maps WL to CoIClasses.

4.2.2. Encoding sHype CWP in PGCL. Each row of the

parameterized array P represents a VM, and each column of

P represents a workload. Thus, P[i][ j] = ⊤ iff the i-th virtual

machine vmi has access to the j-th workload w j.

The CWP confidentiality (read) policy in sHype says that

a VM vm may access a workload w iff for all other work-

loads w′ that vm can access already, either TypeMap(w′) =
TypeMap(w), or ClassMap(w′) 6= ClassMap(w). Moreover,

sHype’s CWP write policy is equivalent to its read policy.

Hence, we can combine the two policies, and express the

combination as a safety property as follows:

Definition 9 (sHype CWP Access Property).

∀i �
^

w∈WL

(P[i][w] ⇒ (φ1(i,w) ∨ φ2(i,w))) ,where

φ1(i,w)≡
_

w′∈WL\{w}

P[i][w′]∧ (TypeMap(w′)= TypeMap(w))

φ2(i,w)≡
^

w′∈WL\{w}

P[i][w′]⇒ (ClassMap(w′) 6=ClassMap(w))

Note that WL, CWTypes and CoIClasses are all finite

sets, and TypeMap and ClassMap have finite domains and

ranges. Therefore, sHype’s CWP policy is expressible as a

USF formula, and its negation as a ESF formula.

Initial State. A system implementing CWP starts in an

initial state when no previous accesses have occurred. This is

expressed by the following USF formula:

Init , ∀i �
^

w∈WL

¬P[i][w]

4.2.3. Reference Monitor. We compile an arbitrary CWP
policy P = (W L,CW Types,CoIClasses,TypeMap,ClassMap)
into a reference monitor that enforces the CWP Access
Property for P by restricting VM accesses to workloads.
Specifically, for each w ∈ WL, let g(i,w) be the guard that
allows the i-th VM access to workload w under the CWP
Access Property. For example, consider the following policy:

P = (W L = {w1,w2,w3,w4,w5},

CW Types = {BankA,BankB,TechA,TechB},

CoIClasses = {Banks,TechCompanies},

TypeMap(w1) = BankA,TypeMap(w2) = BankA,

TypeMap(w3) = BankB,TypeMap(w4) = TechA,

TypeMap(w5) = TechB,ClassMap(w1) = Banks,

ClassMap(w2) = Banks,ClassMap(w3) = Banks,

ClassMap(w4) = TechCompanies,

ClassMap(w5) = TechCompanies.)

Following Definition 9:

g(i,w1) , φ1(i,w1)∨φ2(i,w1) ⇔

(P[i][w2] ∨ (¬P[i][w2]∧¬P[i][w3])) ⇔ (P[i][w2] ∨ ¬P[i][w3])

g(i,w3) , (¬P[i][w1]∧¬P[i][w2])

The other guards are defined analogously. Let there be

a variable hypercall such that the monitor runs whenever

hypercall = ⊤. Moreover, for each w ∈ WL, the column

ACCESS(w) is used to request access to w. Then, the following

PGCL guarded command implements the CWP policy:

access ref monitor ≡
hypercall ?
hypercall := ⊥;
for i : Pn,q do

Pn,q[i][ACCESS(w1)]∧g(i,w1) ? Pn,q[i][w1] := ⊤;
..
.

Pn,q[i][ACCESS(wL)]∧g(i,wL) ? Pn,q[i][wL] := ⊤;

The attacker attempts any sequence of accesses of any

workloads from any VM. It is expressed by the following

guarded command:

CWP Adv ≡
⊤ ?
hypercall := ∗;
for i : Pn,q do

⊤ ? Pn,q[i][ACCESS(w1)] := ∗;
...

⊤ ? Pn,q[i][ACCESS(wL)] := ∗

Finally, we define the overall sHype system:

sHype CWP ≡ access ref monitor ‖ CWP Adv



sHype is expressible as a PGCL program, its initial state

is expressible in USF, and the negation of the sHype CWP

access property is expressible in GSF. Therefore, Theorem 1

applies and we need only verify the system with one VM (i.e.,

a system parameter of one).

We used the Murϕ model checker to verify the CWP

Access property of our sHype model. As before, verifications

were run on a 3.20GHz Pentium 4 machine with 2GB of

memory. Our initial verification checked a model with one

VM, corresponding to a single row in the parameterized array.

No counterexamples were found after searching 230 states,

firing 1,325 rules, and running for 0.10s while utilizing less

than 1MB of memory. By applying Theorem 1, this successful

verification extends to any finite number of VMs.

Although no additional verification is necessary to demon-

strate the absence of counterexamples, we explore scaling

trends and demonstrate the utility of our technique by increas-

ing the number of virtual machines instances. With two virtual

machines instances, the verification completed in less than

one second after exploring 34,000 states, firing over 370,000

rules, and using close to 8MB of memory. With three virtual

machines, the verification required more than one hour and

twenty minutes and explored greater than 5,600,000 states,

firing over 89,000,000 rules and utilizing almost 1GB of mem-

ory. Subsequent verifications with larger numbers of virtual

machines exceeded the memory capacity of the machine.

5. Expressiveness and Limitations

We demonstrate that our approach is expressive enough to

model and analyze any “parameterized” reference monitor and

policy that is expressible as finite state automata (FSA). We

say that a reference monitor is parameterized if it operates

over the rows of a parameterized data structure in a “row-

independent” and “row-uniform” manner. Specifically, row-

uniform means that the same policy is enforced on each row,

while row-independent means that the policy does not refer to

or depend on the content of any other row.

A FSA is defined as a five-tuple FSA =
(States, Init,Actions,T,Accept) where: (i) States is a

finite set of states of size S, (ii) Init ⊆ States is the set of

initial states, (iii) Actions is a finite set of actions with size

A, (iv) T ⊆ States×Action×States is the transition relation,

and (v) Accept ⊆ States is the set of accepting states. Note

that FSA are in general non-deterministic. While this does

not provide additional expressive power, it enables us to

represent policies compactly.

Consider the policy from Example 1 that restricts message

transmission after a principal accesses sensitive data. When

parameterized over processes, this policy can be viewed as

the following FSA (both states are accepting, indicated by the

double circle). In other words, a process respects the policy

as long as its behavior is a string of actions accepted by the

FSA.

start noSnd

error

¬read

read

¬send

send

Actions

Implementing a reference monitor in PGCL that enforces the

policy represented by FSA = (States, Init,Actions,T,Accept)
is straightforward, and involves the following steps:

• Encode the finite but unbounded aspect of the policy (i.e.,

VMs, processes, memory pages, etc...) as the rows of P.

• Each state σi ∈ States is encoded by two columns, σi

and σ′
i, which represent the current and next states of the

FSA respectively. We need the σ′
i columns to simulate

FSA since FSA is non-deterministic, and could end up in

multiple possible states after a sequence of actions.

• Each ai ∈Actions is encoded as a column of P. The action

columns represent the action performed by the system.

• A formula Init constrains each FSA to start in an initial

state. Specifically:

Init , ∀i �
^

s∈Init

P[i][s]∧
^

s∈States\Init

¬P[i][s]

• The transition relation T is encoded as a finite number of

Boolean variables of the form:

∀σi,σk ∈ States,a j ∈ Action �bσi,a j ,σk
⇔ T (σi,a j,σk)

• Then a general reference monitor that enforces the policy

represented by FSA is a guarded command that loops

over the rows of P, considers the action performed by

the system by inspecting the action columns, and updates

each row in three steps:

1) Sets all σ′
k columns to ⊥.

2) Sets appropriate σ′
k columns to ⊤ based on the σi

and a j columns, and bσi,a j ,σk
.

3) Copies σ′
k columns into the σi columns.

Note that this essentially simulates the execution of FSA

from the states encoded by the σi columns upon seeing

the actions encoded by the a j columns. The reference

monitor is described by the following PGCL guarded

command.



universal reference monitor ≡
⊤ ?
for i : Pn,q do

Pn,q[i][σ
′
1] := ⊥; . . . ;Pn,q[i][σ

′
S] := ⊥;

for i : Pn,q do

Pn,q[i][σ1] ∧ Pn,q[i][a1] ∧ bσ1,a1,σ1
? Pn,q[i][σ

′
1] := ⊤;

...
for i : Pn,q do

Pn,q[i][σS] ∧ Pn,q[i][aA] ∧ bσS,aA,σS
? Pn,q[i][σ

′
S] := ⊤;

for i : Pn,q do

Pn,q[i][σ1] := Pn,q[i][σ
′
1]; . . . ;Pn,q[i][σS] := Pn,q[i][σ

′
S];

The following guarded command implements an adversary

that non-deterministically selects a sequence of input actions

(via the action columns of P) to the reference monitors.

Clearly, this is the strongest adversary that is constrained to

input actions alone.

universal adv ≡
⊤ ?
for i : Pn,q do

⊤ ? Pn,q[i][a1] := ∗; . . .Pn,q[i][aA] := ∗;

We model the FSA policy as a formula in PTSL. Our

specification logic admits parameterized row formulas of the

form ∀i ∈ N �ϕ(i) where the index i denotes the i-th formula

and it refers only to the variables in the i-th row of P. Given

this form, we can encode the security policy represented by

the parametric reference monitor as a row formula.

Finally, we can employ a model checker to determine if

the reference monitor running in parallel with the adversary

implementation satisfies the security property, equivalently:

universal reference monitor ‖ universal adv � ϕ

The restrictions of row-uniform and row-independent behav-

ior are required to express parameterized reference monitors in

PGCL. These restrictions are a limitation of this work. There

exist important cases of reference monitor policies, such as

type enforcement [4], that are not row-independent and row-

uniform. In general, safety analysis for access-control-based

systems in the style of the HRU model [22] allows for the

posssibility of enforcing richer policies that are not expressible

with our restrictions.

6. Related Work

We describe related work in parametric verification for cor-

rectness, parametric verification for security, model checking

for security, bug finding using model checking, and operating

system verification.

Parametric Verification for Correctness. Parametric ver-

ification has been applied successfully to a wide variety of

problems, including cache coherence [11], [13], bus arbitra-

tion [15], and resource allocation [10]. The general parametric

model checking problem is undecidable [2], [42]. However,

restricted versions of the problem, typically tailored to cache

coherence protocols, yield decision procedures [12], [19]. Not

surprisingly, these decision procedures are more efficient [9],

[11], [14] when the problem is restricted to a greater degree.

We consider data-independent systems [45], for which effi-

cient decision procedures [28], [29], that enable verification

of all finite parameter instantiations by considering only a

finite number of such instantiations, are available. However, to

our knowledge, all these approaches are either not expressive

enough to model reference monitors, or are less efficient

than our technique. In particular, the forms of whole-array

(i.e., for) operations supported by PGCL are critical for

modeling and verifying the security of reference monitor-based

systems that operate over unbounded data structures. Existing

formalisms for parameterized verification of data-independent

systems either do not allow whole-array operations [28], or

restrict them to a reset or copy operation that updates array

elements to fixed values [29]. Neither case can model our

adversary. Our whole-array operations allow atomic updates

across the array, a necessary feature for modeling reference

monitors that is missing in Emerson and Kahlon [9].

Parametric Verification for Security. Lowe et al. [31]

study parametric verification of authentication properties of

network protocols. Roscoe and Broadfoot [37] apply data

independence techniques to model check security protocols.

Durgin et al. [8] show that small model theorems do not exist

for a general class of security protocols. Millen [32] presents

a family of protocols such that for any k ∈ N, a member of

the family has a cutoff greater than k. To our knowledge, we

present the first small model theorems for system security.

Model Checking for Security. Guttman et al. [20] em-

ploy model checking to verify information-flow properties of

SELinux. Lie et al. verify XOM [30] using Murϕ3. XOM is

a hardware-based approach for tamper-resistance and copy-

resistance. In contrast, SecVisor’s goal is to protect the in-

tegrity of kernel code using memory protection. Mitchell et

al. [33], [34] use Murϕ to verify the correctness of (and

find bugs in) security protocol specifications. We use Murϕ

only as an exemplar of a model checker to verify the cutoff

instance. Our approach is amenable to verification via other

model checkers, such as SPIN [24], TLA+ [27] and SMV 4.

Bug Finding. A number of projects use software model

checking and static analysis to find errors in source code,

without a specific attacker model. Some of these projects [6],

[21], [46] target a general class of bugs. Others focus on

specific types of errors, e.g., Kidd et al. [25] detect atomic

set serializability violations, while Emmi et al. [16] verify

correctness of reference counting implementation. All these

approaches require abstraction, e.g., random isolation [25]

or predicate abstraction [16], to handle source code, and

therefore, are unsound and/or incomplete. In contrast, our

focus is on bug detection, and verification, in the presence

3. http://verify.stanford.edu/dill/murphi.html

4. http://www.cs.cmu.edu/∼modelcheck/smv.html



of an adversary with precisely defined capabilities. Also, we

do not require abstraction, and are both sound and complete.

Operating System Verification. Prior work [35], [38],

[41] has explored the problem of verifying the design of secure

systems. These works are similar to our own in spirit, but

differ in the methods applied. They suggest an approach where

properties are manually proven using a logic and without

an explicit adversary model. In contrast, our focus is on

automated verification of manually constructed models that

include an explicit adversary model.

A number of groups – Walker et al. [44] were one of the

first – have used theorem proving to verify security properties

of OS implementations. For example, Heitmeyer et al. [23] use

PVS to verify correctness of a data separation kernel, while

Klein et al. [26] use Isabelle to prove functional correctness

properties of the L4 microkernel. In contrast, we use model

checking to automatically verify security properties of systems

that enforce protections with unbounded data structures.

7. Conclusion and Future Work

The reference monitors in operating systems, hypervisors,

and web browsers must correctly enforce their desired security

policies in the presence of adversaries. Despite progress in

developing reference monitors with small code sizes, a sig-

nificant remaining factor in the complexity of automatically

verifying reference monitors is the size of the data structures

over which they operate. We developed a verification technique

that scales even when reference monitors and adversaries op-

erate over unbounded, but finite data structures. Our technique

significantly reduces the cost and improves the practicality

of automated formal verification for reference monitors. We

developed a parametric guarded command language for mod-

eling reference monitors and adversaries and a parametric

temporal specification logic for expressing security policies

that the monitor is expected to enforce. The central technical

results of the paper are a set of small model theorems that

state that in order to verify that a policy is enforced for a

reference monitor with an arbitrarily large data structure, it

is sufficient to model check the monitor with just one entry

in its data structure. We applied this methodology to verify

that the designs of two hypervisors – SecVisor and the sHype

mandatory-access-control extension to Xen – correctly enforce

the expected security properties in the presence of adversaries.

In future work we plan to extend PGCL and PTSL to include

security properties and programs that allow relations between

rows of the parameterized array. These extensions will enable

modeling and analysis of reference monitors that implement

more expressive access control policies. Such policies include

those with relationships (e.g., ownership, sharing, and commu-

nication) between principals. Our long term goal is to extend

these results and apply them to verify security properties of

reference monitor implementations.
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[28] Ranko Lazić, Tom Newcomb, and Bill Roscoe. On model checking data-

independent systems with arrays with whole-array operations. Lecture

Notes in Computer Science, 3525:275–291, July 2004.
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