A Logic of Secure Systemsand its Application to Trusted Computing

Jason Franklin
jfrankli@cs.cmu.edu

Anupam Datta
danupam@cmu.edu

Abstract

We present a logic for reasoning about properties of
secure systems. The logic is built around a concurrent
programming language with constructs for modeling ma-
chines with shared memory, a simple form of access
control on memory, machine resets, cryptographic oper-
ations, network communication, and dynamically loading
and executing unknown (and potentially untrusted) code.
The adversary’s capabilities arenstrained by theystem
interface as defined in the programming model (leading
to the namecsI-ADVERSARY). We develop a sound proof
system for reasoning about programs without explicitly
reasoning about adversary actions. We use the logic to
characterize trusted computing primitives and prove code
integrity and execution integrity properties of two remote
attestation protocols. The proofs make precise assump-
tions needed for the security of these protocols and reveal
an insecure interaction between the two protocols.

1. Introduction

Contemporary secure systems are complex and de-
signed to provide subtle security properties in the face
of attack. Examples of such systems include hypervi-
sors, virtual machine monitors, security kernels, opecati
systems, web browsers, and secure co-processor-based
systems such as those utilizing the Trusted Computing
Group'’s Trusted Platform Module (TPM) [1]. In this paper
we initiate a program to formally model abstractions
of such systems and specify and analyze their security
properties in the presence of a general class of adver-
saries. Specifically, we introduce the Logic of Secure
Systems I(S?) and use it to carry out a detailed analysis
of Trusted Computing systems. The logic is built around
a programming language for modeling systems and is
inspired by a logic for network protocol analysis, Protocol
Composition Logic (PCL) [2]-[5].

Programming Model. The programming language is
designed to be expressive enough to model practical
secure systems while still maintaining a sufficiently high
level of abstraction to enable simple reasoning. Following

Deepak Garg
dg@cs.cmu.edu

Dilsun Kaynar
dilsun@cs.cmu.edu

PCL, the language includes process calculi and func-
tional constructs for modeling cryptographic operations,
straightline code, and network communication. We in-
troduce constructs for modeling machines and shared
memory, a simple form of access control on memory,
machine resets, and dynamically loading and executing
unknown (and potentially untrusted) code. The primitives
for reading and writing to memory are inspired by the
treatment of memory cells in impure functional languages
like Standard ML [6]. We model memory protection, a
fundamental building block for secure systems [7], by
allowing programs to acquire exclusive-write locks on
memory locations. The treatment of dynamically loading
and executing unknown code is novel to this work.

While these constructs are the common denominator
for many secure systems, including the trusted comput-
ing systems examined in this paper, they are by no
means sufficient to model all systems of interest. The
language, however, iextensiblein a modular fashion, as
we illustrate by extending the core language (presented
in Section 2) with a trusted computing subsystem (in
Section 3). At a high level, each system component can be
viewed as exposing an interface. For example, the inter-
face for memory includes read, write, and reset operations.
Adding a new component to the system involves adding
operations in the programming language corresponding
to the interface exposed by it. Platform Configuration
Registers (PCR) in the TPM are an example since they
can be modeled as a special form of memory that may be
accessed via read, reset, and a new extend operation. Some
extensions can have a more global effect on the language
semantics. For instance, adding the reset operation to the
language affects both how state of local memory and TPM
PCRs may be updated.

Interfaces to system components also provide a useful
conceptual view of the adversary. Since the capabilities
of the adversary areonstrained by theystem nterface,
we refer to her as &sSI-ADVERSARY. For example, the
adversary can write to unprotected memory locations, but
can only update PCRs through the extend operation in
its interface. Formally, the adversary may execute any
program expressible in our programming model, i.e. the
adversary can perform symbolic cryptographic operations,

intercept messages on the network, inject messages that it
can create, read and write memory locations that are not
explicitly locked by another thread, and reset machines.
Because of these capabilities, the adversary can launch
a broad range of attacks on the network and the local
machines including replay attacks, modifying and inject-
ing malicious code on local machines, and exploiting race
conditions to compromise systems.

Logic. Security properties of programs are expressed
in LS using modal formulas of the fornjP|>* A,
which means that formula holds whenever threadl
executes exactly the prograenin the time interval(ty, te],
irrespective of the actions executed concurrently by other
threads including the adversary. The thréadentifies the
principal executing the program, the machine on which the
program is being executed, and includes a unique identi-
fier. The formulaA expresses security properties, such as
confidentiality, integrity, authentication, as well as eod
and execution integrity. The logic includes predicates$ tha
reflect the programming language constructs for shared
memory, memory protection, machine resets and a form
of unconditional jump to model branching to dynamically
loaded code.

Security properties are established using a proof system
for LS?. A central design goal thaiS? achieves (following
PCL) is thatthe proof system does not mention adversary
actions Instead, the semantics and soundness of the
proof system guarantee that [iP]”"*A is provable, then
A holds in all traces in whichH completes execution
of programP, including those that contain adversarial
threads. This implicit treatment of adversaries simplifies
proofs significantly. Designing a sound proof system that
supports this local style of reasoning, in spite of the
global nature of shared memory changes and execution
of dynamically loaded unknown code, turned out to be a
significant technical challenge.

We formalize local reasoning principles about shared
memory with axioms that reason about invariance of
values in memory based on local actions of threads that
hold locks (see Section 2). This approach is technically
similar to concurrent separation logic, whose regions
resembld_S”’s locks [8], but distinct from formal systems
which support global reasoning about concurrent shared
memory programs [9]. Our initial idea to reason about
execution of dynamically loaded code was to treat the
code being branched to as a continuation of the code
calling it. However, this approach does not work for the
case where the code being branched to is either read from
memory or received over the network, because nothing
can be determined about the called code by looking at
the caller’'s program. As a result, traditional methods for
proving program invariants such as those based on Hoare
logic and its extensions [10]-[12] do not apply to this
setting. Yet this is exactly what we needed to reason in

the face of adversaries who can modify or inject code
into the system. Our final technical approach for reasoning
about execution of dynamically loaded code is based on
a program invariance rule, which we elaborate on in
Section 2 and illustrate in Section 4.1.

Trusted Computing. We model and analyze two trusted
computing protocols that rely on TPMs to provide in-
tegrity properties: load-time attestation using a Static
Root of Trust for Measurement (SRTM) [13] and late-
launch-based attestation using a Dynamic Root of Trust
for Measurement (DRTM) [14]—-[16]. In doing so, we
make the following contributions. First, we formalize,
using axioms, the behavior of core trusted computing
primitives including the TCG’s widely-deployed secure
co-processor, the Trusted Platform Module (TPM), as
well as recently introduced hardware to support ldte
launch of a security kernel in a protected execution
environment. Hardware implementations of late launch are
publicly available in both AMD’s Secure Virtual Machine
Architecture (SVM) [15] and Intel's Trusted eXecution
Technology (TXT) [16]. These axioms provide a succinct
specification of the primitives, which serve as building
blocks in the proofs of the protocols (see Section 3).

Second, we formally define and prove code integrity and
execution integrity properties of the attestation proteco
(Section 4; Theorems 2-4). To the best of our knowledge,
these are the first logical security proofs of these protocol

Finally, the formal proofs yield insights about the secu-
rity of these protocols. The invariants used in the proofs
make precise the properties that the Trusted Computing
Base (TCB) must satisfy. In Section 4, we describe these
invariants and manually check that an invariant holds on
a security kernel implementation used in an attestation
protocol. We demonstrate that newly introduced hardware
support for late launch actually adversely affects the
security of previous generation attestation protocols. We
describe an attack that utilizes hardware support for late
launch to exploit load-time attestation protocols that mea
sure software starting at system boot. The attack enables
an adversary to report false system integrity measurements
that are not tied to the actual state of the platform. This
attack could be used to exploit Digital Rights Management
(DRM) protocols that rely on load-time attestation.

2. Logic of Secure Systems

We introduce the syntax of the Logic of Secure Systems
(LS?) in this section. The next section introduces features
of LS that are specific to trusted computing. Due to lack
of space, we restrict technical descriptions to the extent
necessary to explain the main concepts and application,
and refer the reader to a technical report for details [17].

Expressions/Values e t=n Number
| XY Agent
| K Key
| K1 Inverse of keyK
| X Variable
| (e€) Pair
| SIG{€e} Value e signed by private ke
| ENG{lel} Value e encrypted by public ke
| SYMENG{e} Value e encrypted by symmetric kel
| H(e Hash ofe
| P Program reified as data
Machine m
Location | = mRAMK | mdiskk | m.pcrk | m.dpcrk
Action a = read| Read location
| writel,e Write e to locationl
extend |,e Extend PCR with e
lock | Obtain write lock on location
unlock | Release write lock on location
send e Sende as a message
receive Receive a message
sign e K Sign e with private keyK
| verify gK Check thate= SIG¢{|€/[}
enc e K Encrypte with public key K
dec e K Decrypte with private keyK
symenc e K Encrypte with symmetric keyK
symdec e K Decrypte with symmetric keyK
hash e Hash the expressioa
eval f,e Evaluate functionf with argumente
proji € Project the 1st component of a pair
projs € Project the 2nd component of a pair
| match e€ Check thate= €
| new Generate a new nonce
Program PQ := .| jumpe]| latelaunch |x:=aP
Thread id 1, = (X,n,m)
Thread identifier n
Thread TS == [P
Store g Locations— Expressions
Lock map I : Locations— (Thread ids)U {_}
Configuration C t= 1,0,Tq...|Th

Figure 1. Syntax of the programming language

2.1. Programming Model

The programming language definition includes its syn-
tax and operational semantics. The syntax is summarized
in Figure 1. The current language includes process cal-
culi and functional constructs for modeling cryptographic
operations, straightline code, and network communication
among concurrent processes, but does not have condition-
als (if...then..else..), returning function calls or loops.
Instead, it has a match construct that tests equality of
expressionsnatch e €) and blocks if the test fails, as
well as unconditional jumps to arbitrary codgufip €).
These constructs are sufficient for applications we have
considered so far. In future work, we plan to investigate
the technical challenges associated with adding condition
als, returning function calls, and loops to the language.
We describe below the core language constructs, the ad-
versary model, and the form of the operational semantics.

Examples of programs in the language can be found in
Section 4.

Data, agents, and keys. Data is represented in the
programming model symbolically as expressi@agalso
called values). Expressions may be numbeyrddenti-
ties of agents (principalsX, keys K, variablesx, pairs
(e,€), signatures using private key& G¢{|e|} (denoting
the signature ore made using the keK), asymmetric
key encryptionsENGc{|e|}, symmetric key encryptions
SYMENG{|€}, hashedH (e), or code reified as datB.

All expressions are assumed to be simply typed (e.g. a
pair can be distinguished from a number), but we elide
the details of the types. Agents, denotédy, are users
associated with a system on behalf of whom programs
execute. Keys are denoted by the letterThe inverse of
key K is denoted byk 1. We assume that the expression
e may be recovered from the signatuséGg {|e|} if the

verification keyK is known. We also assume that hashes
are confidentiality preserving.

Systems, programs, and actions. A secure systens
specified as a set of progranfsin the programming
language. For example, a trusted computing attestation
system will contain two programs, one to be executed by
the untrusted platform and the other by the remote verifier.
Eachprogramconsists of a number of actioms= a that

are executed in a straight line. The naxtaginds the value
returned by the action, and is used to refer to the value
in subsequent actions. Our model of straightline code
execution is thus functional. This design choice simplifies
reasoning significantly. For some actions such as sending a
message, the value returned is meaningless. In such cases
we assume that the value returned is the constant 0. A
program ends with either an empty actioror one of the
special actionsjump e or latelaunch . The expression
jump e is described below antlatelaunch is covered

in the next section. A single executing program is called
athread [P], (threads are referred to with variabl€sS).

It contains a prograr®, and a descriptor for the thread
that is a tuple(X,n,m). X is the agent that owns the
thread,m is the machine on which the thread is hosted,
and n is a unique identifier (akin to a process id). The
abstract runtime environment of the language is called
a configuration C written 1,0, Ty|...|T,. It contains all
executing threadsT(| ... |Tn), the state of memory on all
machines (represented by the majp and the state of
memory locks held by threads (represented by the map
1.

Cryptography and network primitives. The program-
ming language includes actions for standard operations
like signing and signature verification, encryption and
decryption (both symmetric and asymmetric), nonce gen-
eration, hashing, expression matching, projection from a
pair, and evaluation of arbitrary side-effect free funetio
(eval f,e). Threads can communicate with each other
using actions to send and receive values over the network.
Network communication is untargeted, i.e., any thread
may intercept and read any message (dually, a received
message could have been sent by any thread). Information
being sent over the network may be protected using
cryptography, if needed. The treatment of cryptography
and network communication follows PCL. The language
constructs we present next are new to this work.
Machines and shared memory. Threads can also share
data through memory. The programming model contains
machinesm explicitly. Each machine contains a number
of memory locationsl that are shared by all threads
running on the machine. Each location is classified as
either RAM, persistent store (hard disk), or other special
purpose location (such as Platform Configuration Regis-
ters that are described in the next section). The machine on
which a location exists and the location’s type are made

explicit in the location’s name. For instancen RAM.k

is the kth RAM location on machinen. The behavior

of a location depends on its type. For example, RAM
locations are set to a fixed value when a machine resets,
whereas persistent locations are not affected by resets.
Despite these differences, the prominent characteristics
of all locations are that they can kread and written
through actions provided in the programming language,
and that they arsharedby all threads on the machine.
Consequently, any thread, including an adversarial thread
has the potential to read or modify any location.

Access control on memory. Shared memory, by its
very nature, cannot be used in secure programs unless
some access control mechanism enforces the integrity and
confidentiality of data written to it. Access control varies
by type of memory and application (e.g., memory seg-
mentation, page table read-only bits, access control lists
in file systems, etc). Our programming model provides
an abstract form of access control through locks. Any
running thread may obtain an exclusive-write lock on any
previously unlocked memory locatidnby executing the
action lock |. Information on locks held by threads is
included in a configuration as a mapfrom locations

to identities of threads that hold locks on them. The
semantics of the programming language guarantee that
while a lock is held by a thread, no other thread will
be able to write the location. A thread may relinquish a
lock it holds by executing the actiamlock |. Locking in

this manner may be used to enforce integrity of contents
of memory. Similarly, one may add read locks that provide
confidentiality of memory contents. Although technically
straightforward, read locks are omitted from this paper
since we are focusing on integrity properties.

Machine resets. The language allows a machine to be
spontaneously reset. There is no specific action that causes
a reset. Instead, there is a reduction in the operational
semantics that may occur at any time to reset a machine.
When this happens, all running threads on the machine
are killed, all its RAM and PCR locations are set to
a fixed value, and a single new thread is created to
reboot the machine. This new thread executes a fixed
booting program. We model the reset operation since it has
significant security implications for secure systems [18].
In the context of trusted computing, e.g., the fact that a
TPM's Platform Configuration Registers (PCRs) are set
to a fixed value is critical in reasoning about the security
properties of attestation protocols. In addition, it hasrbe
shown that adversaries can launch realistic attacks agains
trusted computing systems using machine resets [19].
Untrusted code execution. The last salient feature of
our programming model is an actigrump e that dynami-
cally branches to code represented by the expression
The codee is arbitrary; it may have been read from
memory or disk, or even have been received over the net-

work. As a result, it could have come from an adversary.
Execution of untrusted code is necessary to model several
systems of interest, e.g., trusted computing systems and
web browsers.

Adversary Model. We formally model adversaries as
extra threads executing concurrently with protocol par-
ticipants. Such an adversary may contain any number of
threads, on any machines, and may execute any program
expressible in our programming model. However, the
adversary cannot perform operations that are not permitted
by the language semantics. For example, the adversary can
neither write to memory locked by another thread, nor can
she break cryptography.

Operational semantics. The operational semantics of
the language captures how systems execute to produce
traces. It is defined using process calculus-style reductio
rules that specify how a configuration may transition to
another. Atrace G — C;... — C, is a sequence of
configurations, such that successive configurations in the
sequence can be obtained by applying one reduction rule.
A timed trace @ b, C;... & C, associates monotonically
increasing time points, ..., ty with reductions on a trace.
These time points may be drawn from any totally ordered
set, such as integers or real numbers.

2.2. Logic

The logic LS is used to specify and reason about
properties of secure systems.

Syntax. Figure 2 summarize$S”’s syntax, including
predicates specific to trusted computing that we discuss
in the next section. Predicates for representing network
communication and cryptographic operations are taken
from PCL. Other predicates that capture information about
state, unconditional jumps, and resets are new to this work.
A significant difference from PCL is thaiS? incorporates
time explicitly in formulas and semantics. All predicates
and formulas are interpreted relative to not only a timed
trace but also a point of time (modal formulas, described
below, are an exception since they are interpreted relative
to a timed trace only). In the proof system, time is used to
track the relative order of actions on a trace and to specify
program invariants.

Action predicategapture actions performed by threads.
For instance,Send(l,e) holds on a trace at time if
thread| executes actiorsend e at timet in the trace.
Write(1,1,e) holds on a trace whenever threbéxecutes
write |,e. Similarly, we have predicates to capture cryp-
tographic operationsGeneral predicatescapture other
information, including information about the state of the
environment. Particularly prominent are the two predisate
Mem(l,e) which holds whenever locatidncontains value
e, andJump(l,e) which holds whenever threddexecutes
jump e. Access control on memory is reflected in the

logic through three predicated:ock(l,l), Unlock(l,I),
andlsLocked(l,1). The first two of these capture actions:
Lock(l,1) holds on a trace when a threddobtains an
exclusive-write lock on locatiort, whereasUnlock(l,I)
holds when threatl releases the lock. The third predicate
IsLocked(l,l) captures state: it holds whenever thrdad
has an exclusive-write lock on locatibnAs an example,
suppose that threddexecutes an action to obtain the lock
on location| at timet and executes another action to
release the lock at a later poitit Then Lock(l,l) will
hold exactly at timet, Unlock(l,l) will hold exactly at
time t’, andlIsLocked(l,1) will hold at all points of time
betweent andt’. The predicateReset(m,1) holds at time

t if machinem is reset at timd, creating the new thread
| to boot it. We define the abbreviatiof&set(m) and
Jump(l) as 3l. Reset(m,I) and Je. Jump(l,e) respec-
tively. Contains(e €) means tha€ is a sub-expression of
e. The predicatéonest(X, P) is described in Section 3.1.

Predicates can be combined using the usual logical
connectives:A (conjunction),V (disjunction),> (impli-
cation), and— (negation) as well as first-order universal
and existential quantifiers that may range over expressions
keys, principals, threads, locations, and time. There is a
special formulaA @t, which captures time explicitly in
the logic. A@t means that formula holds at timet.

We often write intervals in the usual mathematical sense;
they may take the forméy,tp), [t1,t2], (t1,t2], @and|ty,t2).

For an intervali, we also define the formul&oni as

vt. ((tei) D A@t), wheret € is the obvious membership
predicate Aon i means tha®A holds at each point in the
intervali. This treatment of time in the logic draws ideas
from work on hybrid modal logic [20]-[22].

Security properties of programs are expressed.$A
using one of two forms of modal formulas. The principal
of these,[P]t,b’te A, means that formul& holds whenever
threadl executes exactly the prograPsequentially in the
semi-open intervalty,te]. A may mention any variables
occurring unbound inP. It usually expresses a safety
property about the prograim. For example, ifP is the
client program of a key exchange protocél,may say
that P generated a key aftdp, sent it to a server, and
received a confirmation that it was received. Examples of
security properties for trusted computing systems can be
found in Section 4.

Proof System. Security properties of a program are
established using a proof system fbE?. This proof
system contains some basic rules for reasoning about
modal formulas, and a number of axioms that capture
intuitive properties of program behavior. Parts of the firoo
system, particularly the part dealing with cryptographic
primitives were easily designed using existing ideas from
PCL. As mentioned in the introduction, a central design
goal thatLS? achieves is that the proof system does not
mention adversary actions. We elaborate below on the

Action Predicates R =

General PredicatesM n=
e=¢€ | t>t'| Honest(X,P)
Formulas AB =

Modal Formulas J t= PP A | (Al A

Receive(l,€) | Send(l,e) | Sign(l,e K) | Verify(l,e,K) | Encrypt(l,eK)
SymEncrypt(l,e K) | SymDecrypt(l,e,K) | Hash(l,e) | Eval(l, f,e €) |)
New(l,n) | Write(l,l,e) | Read(l,l,e) | Lock(l,l) | Unlock(l,l) | Extend(l,l,€)

Mem(l,e) | IsLocked(l,1) | Reset(m,1) | Jump(l,e) | LateLaunch(m,l) | Contains(e,€)

| Decrypt(l, e K) |
Match(l,e€) |

RIM|T|L|AAB|AVB|ADB|-A|VxA|3xA|A@t

Figure 2. Syntax of LS

technical approach for designing a sound proof system
that supports this local style of reasoning in spite of the

global nature of shared memory changes and execution of
dynamically loaded code.

We reason about memory locally using axioms that es-
tablish invariance of values in memory, using information
about locks and actions of threads that hold the locks.
These axioms are modular (there is one set of axioms for
each type of memory) and extensible (more axioms can
be added for new types of memory, as we do for Platform
Configuration Registers in Section 3). As examples, the
following two axioms are invariance rules for locations of
RAM and disk respectively. The first axiom says that if
locationm.RAMKk (denoting a location with addregsin
the RAM of machinam) contains value at timety, during
the interval (tp,te) threadl has a lock on this location,
threadl does not write to the location, and machimds
not reset during the interval, then RAM.k must contain
the valuee throughout the intervalty,te). The second
axiom is similar, but it applies to locations on disk. In
this case, the precondition that machimenot be reset is
unnecessary because contents of the disk do not change
due to a reset.

(MemIR) F (Mem(m.RAMk,e) @tp)
A (IsLocked(m.RAMK, 1) on (tp,te))
A (V€. ~Write(I,mRAMK, €) on (tp,te))
A (—Reset(m) on (tp,te))
D (Mem(m.RAMK, €) on (tp,te))

(MemID) F (Mem(m.diskk,e) @ty)
A (IsLocked(m.diskk,) on (tp,te))
A (V€. =Write(l,m.diskk, €) on (tp,te))
O (Mem(m.diskk,e) on (tp,te))

For reasoning about execution of dynamically loaded
code, we introduce the following rule that allows us
to combine information about the invariants of a pro-
gram P with the knowledge that the program was
branched to. We define a program invariant as a prop-
erty that holds whenever any prefix of the sequence
of actions of the program executes. The prefixes or
initial sequencesiS(P) of a programP are formally
defined as followstS(-) = {-}, IS(jump €) = {-, jump €},
IS(1atelaunch) = {-,latelaunch }, IS(x := &P) =

{tu{x:=a,Q | QelIS(P)}.

For everyQ in IS(P): + [Q]P"™ A(tp,te)
(tp, te fresh constants)

FJump(l,P) @t D Wt'. (' >t) DA(L,t)

In its premise the rule requires that for every initial
sequence®) of P, there be a proof, generic in the constants
tp, andte, that established\(ty,te) given thatQ executes
in threadl during the intervalty,te]. The conclusion says
that if threadl branches to prograr at timet (assump-
tion Jump(l,P) @t), then for any time’ > t, A(t,t’) must
hold. Informally, we may explain the soundness of this
rule as follows. If thread branches to codP at timet,
then for anyt’ > t, the thread must execute some prefix
of P in the interval(t,t’]. Instantiating the premise with
this prefixQ, andt,t’ for t,,te, we get exactly the desired
propertyA(t,t’).

The above rule is central amondgs's principles for
reasoning about dynamically loaded code, which we be-
lieve to be novel. Both a discussion of the novelty and
an example of the reasoning principles are postponed to
Section 4.1. Whereas their application to reasoning about
dynamically loaded code is new, invariants over initial
segments of code are not a contribution of this work. PCL
uses invariants similar to ours to reason about principals
who are executing known pieces of codes also uses
invariants for many other purposes besides reasoning
about jumps, including reasoning about resets. The latter
is simpler than reasoning about jumps, because we assume
that when a machine is reset fiaed program is started
to reboot the machine. The code markBR®TMm) in
Figure 3 is one example of the form this program may
have.

Semantics and Soundness. Formulas ofLS? are inter-
preted over timed traces obtained from execution of a
program in the programming language. The proof system
of LS? is formally connected to the programming language
semantics through a program independamindness the-
orem which guarantees that any property established in
the proof system actually holds over all traces obtainable
from the program and any number of adversarial threads.
Let I' denote a set of formulas, ard denote a formula

or a modal formula. Further, |ét+ ¢ denote provability

in LS”'s proof system, andl |= ¢ denote semantic entail-
ment. Our main technical result f&rS? is the following

Jump

soundness theorem.
Theorem 1 (Soundness)If '+ ¢ thenT E ¢.

The proof of this theorem, as well as those of all
later theorems, can be found in the full version of this
paper [17].

3. Modeling Trusted Computing Primitives

This section describes extensionsLi® to model and
reason about hardware primitives used with protocols
specified by the Trusted Computing Group (TCG). These
hardware primitives include the TCG’s Trusted Platform
Module (TPM) and static Platform Configuration Regis-
ters (PCRs), as well as the more recent hardware support
for late launch and dynamic PCRs as implemented by
AMD’s Secure Virtual Machine (SVM) extensions [23]
and Intel's Trusted eXecution Technology (TXT) [16].
We describe below the hardware primitives and their for-
malization inLS? at a high level. In subsequent sections,
we use our formalizations to prove security properties of
trusted computing protocols.

3.1. Trusted Platform Module

The Trusted Platform Module (TPM) is a secure co-
processor that performs cryptographic operations such as
encryption, decryption, and creation and verification of
digital signatures. Each TPM includes a uniqgue embedded
private key (called the Attestation Identity Key or AIK).
The public key corresponding to each AIK is published in
a manufacturer-signed certificate. The private component
of the AIK is assumed to be protected from compromise
by malicious software. As a result, signatures produced
by a TPM are guaranteed to be authentic, and unique to
the platform on which the TPM resides.

We model relevant aspects of the TPM kf? as
follows. The private attestation identity key of the TPM
on machinem is modeled as a value IS, de-
notedAIK—1(m). Its corresponding public key is denoted
AIK(m). The TPM itself is represented as a principal,
denotedAlK(m). Of the many programs hardcoded into
the TPM, only two are relevant for our purposes. These
are idealized by th&S? programs marked PMsrtm M)
andT PMprTm(M) in Figures 3 and 4 respectively, and are
explained in the next section. Both the fact that the TPM
executes only one of these programs, and the fact that the
TPM’s private key cannot be leaked are modeled
by a single predicate:

Honest(AIK (m), {TPMsrTMM), T PMorTM(M)})

This predicate entails (through the rules and axioms of
the proof system) that any signature created by the key
AIK~1(m) could only have been created in the TPM on

machinem. It can also be used to prove invariants about
threads which are known to execute on the TPM, using a
rule similar to (Jump) that was described in Section2.2.
We emphasize that the predicate mentioned above is not
an axiom inLS?, since its soundness cannot be established
directly. Instead, we always assume it explicitly when we
reason about the TPM.
Static PCRs. Static Platform Configuration Registers
(PCRs) are protected registers contained in every TPM.
From our perspective, the relevant property of PCRs is that
their contents can only be modified in two ways: (a) by re-
setting the machine on which the TPM resides; this sets all
the static PCRs to a special value that we denote symboli-
cally using the namsinit (sinit is zero on most platforms),
and (b) through a special TPM interfaeetend , which
takes two arguments: a PCR to modify, and a valtieat
is appended to the PCR. Since each PCR is of a fixed
length but may be asked to store arbitrarily many values,
extend replaces the current value of the PCR with a hash
of the concatenation of its current value and a hast. of
In pseudocode, the effect of extending P@Rvith value
v may be described as the assignmprt H(p || H(v)),
where || denotes concatenation ardl denotes a hash
function. More generally, if the values extended into a
PCR after a reset arg,...,Vv, in sequence, its contents
will be H(... (H(sinit|[H(v1))||H(v2)) ... |[|[H(vn)). We use
the notationsedsinit,vy,...,v,) to denote this value. A
common use for PCRs is to extend integrity measurements
of program code into them during the boot process, then
to have the TPM sign them with its AIK, and to submit
this signed aggregate to a remote party as evidence that
the values were generated in sequence on the machine.
We model PCRs as a special class of memory$.
The kth static PCR on machinen is denotedm.pcr.k.
PCRs can be read using the usual read actiohJfis
programming language, and they can be locked for access
control, but the usual write action does not apply to them.
Instead, theextend program is modeled as a primitive
action in the programming language. It has exactly the
effect described in the previous paragraph. Properties of
PCRs are captured through axiomsLi&. For example,
the following axiom models the fact thatnit is written
to every PCR when a machine is reset. In words, it states
that if machinemis reset at timet, then any PCR onm
contains valuesinit at timet.

(MemPR) I (Reset(m) @t) D (Mem(m.pcrk,sinit) @t)

Several other important properties of PCRs arise as a
consequence of their restricted interface. First, if a PCR
containssinit at timet, then the machinen on which it

1. The predicateHonest is adapted from a predicate of the same
name in PCL. PCLs predicate is slightly weaker since it facke
second argument, but the reasoning principles associaitbdtive two
are similar.

resides must have been reseost recentlyat some time
t’ since a reset is the only way to psinit into a PCR.
This is captured by the following axiom:

(PCR2) F (Mem(m.pcrk,sinit) @t)
D (3. (' <t) A (Reset(m) @t')
A (—Reset(m) on (t',t]))

Second, if a PCR containsedsinit,v,...,vy) at time

t, it must also have containesedsinit,vy,...,vh_1) at
some prior time’, without any reset in the interim. Thus
the contents of a PCR are witness to every extension
performed on it since its last reset. Formally, this propert
is captured inLS? by the following axiom:

(PCR1) I (Mem(m.pcrk,seqsinit,vy,...,vn)) @t)
S(EY. (' <t)
A (Mem(m.pcrk, seqsinit,va,...,v,_1)) @t')
A (—Reset(m) on (t',t])) (n>1)

In many cases of interest, we need to prove that the value
in a PCR does not change over a period of time. To this
end, we introduce an invariance axiom for PCRs, similar
to axioms (MemlIR) and (MemID) from Section 2.2. The
modular design of the logic eases the introduction of this
axiom.

(MemlIP) F (Mem(m.pcrk,e) @tp)
A (IsLocked(m.pcrk, 1) on (tp,te))
A (V€. =Extend(l,m.pcrk,€) on (ty,te))
A (—Reset(m) on (tp,te))
D (Mem(m.pcrk,e) on (tp,te))

3.2. Late Launch and Dynamic PCRs

Another hardware feature available in trusted comput-
ing platforms is late launch. Late launch provides the
ability to measure and invoke a program, typically a
security kernel or Virtual Machine Monitor (VMM), in
a protected environment. Upon receiving a late launch
instruction SKI NI T on the AMD SVM andSENTER on
the Intel TXT), the processor switches from the currently
executing operating system to a Dynamic Root of Trust
for Measurement (DRTM) from which it is possible to
later resume the suspended operating system. The program
to be executed in a late launch session is specified by
providing the physical address of the Secure Loader Block
(SLB). When a late launch is performed, interrupts are
disabled, direct memory access (DMA) is disabled to all
physical memory pages containing the SLB and debugging
access is disabled. The processor then jumps to the code
in the SLB. This code may load other code. In addition to
providing a protected environment, a special set of PCRs
calleddynamicPCRs are reset with a special value that we
call dinit symbolically and the code in the SLB is hashed
and extended into the dynamic PCR Hin(t is distinct
from sinit). The dynamic PCRs can then be extended with

other values, and the contents of the PCRs, signed by the
TPM's key AIK, can be submitted as evidence that a late
launch was performed.

We formally model late launch by adding a new action
latelaunch toLS?’s programming language. This action
can be executed by any thread. The operational semantics
of the language are extended to ensure that whenever
latelaunch executes a new threddis created with a
special progranLL(m), which extends the SLB into a
dynamic PCR and branches to it. This program is shown
in Figure 4. Protection ol is modeled using locks —
when started] is given locks to all dynamic PCRs on
the machinam it uses.l may subsequently acquire more
locks to protect itself. In the logic, the implicit locking
of dynamic PCRs is captured by the following axiom,
which means that if some thread executeselaunch
on machinem at timet, creating the threadl, thenl has
a lock on any dynamic PCR om at timet. m.dpcrk
denotes thdéth dynamic PCR on machina.

(LockLL) F (LateLaunch(m,l) @t)
D (IsLocked(m.dpcrk, 1) @t)

Dynamic PCRs have properties very similar to static
PCRs. For example, the following axiom, similar to
(MemPR) described above, means tHatit is written to
every dynamic PCR when a late launch happens.

(MemLL) F (LateLaunch(m,l) @t)
D (Mem(m.d pcrk,dinit) @t)

Axioms corresponding to (PCR1) and (PCR2) are also
sound for dynamic PCRs. The difference is tRatet and
sinit must be replaced byateLaunch and dinit respec-
tively. The following axiom is used to prove invariance
properties of dynamic PCRs.

(MemldP) + (Mem(m.dpcrk,e) @ty)
A (IsLocked(m.dperk, 1) on (tp,te))
A (V€. =Extend(l,m.d pcrk,€) on (tp,te))
A (—Reset(m) on (tp,te))
A (=3l LateLaunch(m,1) on (tp,te))
D (Mem(m.dpcrk,e) on (tp,te))

4. Trusted Computing Protocols

We analyze two trusted computing protocols that rely on
TPMs to provide integrity properties: load-time attestati
using an SRTM and late-launch-based attestation using a
DRTM. In an attestation protocol, a platform utilizes a
TPM to attest to platform state by performing two steps:
integrity measurement and integrity reporting. Integrity
measurement consists of collecting cryptographic hashes
of local software events such as program loading. Integrity
reporting consists of transmitting collected measuremsent
in a signed aggregate to an external verifier. The external
verifier may then use the measurements to make trust

SRTMm) = b=read mbl_loc;
extend m.pcr.s,b;
jump b

BL(m) = o0=read mos loc;
extend M.PCr.S, O;
Jjump O

OoSm) = a=read mapploc;
extend M.pPCrs, a;
jump a

APP(m) =

TPMsgTM(m) = w=read m.pcrs,
r =sign (PCR(s),w), AIK~1(m);
send r

Verifier(m) = sig=receive ;

v=verify sig AIK(m);
match v, (PCR(s),
sedsinit, BL(m), O§m), APP(m)))

Figure 3. Security Skeleton for SRTM Attestation Protocol

decisions. We first analyze an attestation protocol using
a Static Root of Trust for Measurement (SRTM), then
we consider an attestation protocol utilizing hardware
support for late launch and a Dynamic Root of Trust
for Measurement (DRTM). We simplify both protocols
by assuming the AIK has been certified as authentic by a
manufacturer certificate and by verifying a fixed sequence
of system integrity measurements.

4.1. Attestation Using a Static Root of Trust

We start by performing an analysis of a load-time
attestation protocol using an SRTM. The security skeleton
of the protocol is specified in Figure 3. A security skeleton
retains only relevant actions, in this case, actions per-
forming integrity measurement and reporting. The SRTM
protocol is composed of code that performs measurement
followed by code that performs integrity reporting. We
analyze the components separately.

4.1.1. Integrity Measurement. In the SRTM protocol,
integrity measurement starts after a machine reset. The
programs marke®&RTMm), BL(m), and OSm) in Fig-

ure 3 represent those portions of the SRTM, boot loader,
and operating system that participate in the measurement
process. Th&&RTMm) program is always the first pro-
gram invoked when a machine reboots. It first reads the
boot loader’s codé from the fixed disk address.bl_loc,

then measures the code by extending it into a static PCR
m.pcr.s (which in this case stores all measurements),
and then branches to the the boot loader by executing
the instructionjump b. The boot loaderBL(m)) in turn

reads the operating system’s caglérom a fixed location
m.os loc, extends it into PCRn.pcr.s, and branches to it.
The operating systemOSm)) performs similar actions
with the application’s cod@. The application APP(m))

may perform any actions. In practice, the sequence of
measurement and loading may continue beyond the first
application but we have chosen to terminate it here be-
cause extending the chain further does not lead to any
new insights about the security of the system.

Security Property. We summarize the integrity measure-
ment security property as follows: if.pcr.s is protected
while a machine boots, and the contentsnapcr.s are
seqsinit,BL(m),0OSm),APP(m)), then the initial soft-
ware loaded on machinen since its last reboot was
BL(m) followed by OSm). We now state this property
formally. We define the formulaBrotectedSRTM(m) and
MeasuredBootsgrm(m,t) as follows.

ProtectedSRTM(m) =
Vt,1. (Reset(m,1) @t) D (IsLocked(m.pcrs,) @t)

MeasuredBootsgrm(m,t) =
Jtr. Jtg. Jto. FJ. (tr <ts <to <t) A
(Reset(m,J) @t1) A (Jump(J,BL(M)) @tg) A
(Jump(3,09m)) @to) A (—Reset(m) on (tr,t])
(~Jump(3) on (tr,t8)) A (~Jump(d) on (ts, o))

ProtectedSRTM(m) means that any thread created
to boot machinem after a reset obtains an exclusive-
write lock onm.pcr.s. MeasuredBootsgrm(m,t) identifies
software events om such as the boot loader and operating
system being branched to before tirhelt comprises
four facts: (1) There exists a timg beforet at which
m was reset, creating a threadto boot the machine
(Reset(m,J) @ tr), (2) This threadJ branched to the
programsBL(m) and OSm) at later time points¢g and
to (Jump(J,BL(m)) @tg andJump(J,0Sm)) @to), (3)J
did not make any other jumps in the interimJump(J) on
(tr,tg)) and Jump(Jd) on (tg,to)), and (4) Machinem
was not reset betweerr andt (—Reset(m) on (t1,t]).
Equivalently, after its last reboot before timethe first
programs loaded om wereBL(m) andOSm). We believe
this is a natural property to expect from a system integrity
measurement protocol.

The following theorem formalizes our security prop-
erty. It states that under the assumptions thapcr.s
is protected during booting, and that.pcrs contains
seqsinit,BL(m),0Sm),APP(m)) at timet, it is guaran-
teed that the boot loader and operating system used to
boot the machine arBL(m) and OSm) respectively.

Theorem 2 (Security of Integrity Measurement)lhe

following is provable in L&

ProtectedSRTM(m) +-
Mem(m.pcr.s,seqsinit, BL(m),OSm),APP(m))) @t
D MeasuredBootsgrm(m,t)

We refer the reader to the full version of this paper for
a detailed proof of this theorem [17]. Major steps in the
proofs are discussed below to illustrate novel reasoning
principles inLS?. All programs mentioned below refer to
Figure 3.

(1) Using axioms (PCR1) and (PCR2)
in succession on the antecedent
Mem(m.pcr.s, seqsinit,BL(m),OSm), APP(m))) @

t, we show that all sub-sequences of
seqsinit,BL(m),OSm),APP(m)) must have
appeared ifm.pcr.s at times earlier thab, and that
machinem must have been reset at some titqe
creating a thread to boot it. Formally, we obtain

Jtr,ta,to,13,d. (tr <ty <th <tz <t)

A (Mem(m.pcr.s, sedsinit,BL(m),OSm))) @t3)
A (Mem(m.pcr.s, sedsinit,BL(m))) @t,)

A (Mem(m.pcr.s, sinit) @tz)

A (Reset(m,J) @tt)

A (—Reset(m) on (tr,t])

A~ S S

(2) Sincem was reset creating threal (second from
last conjunct above), it follows in our model that the
threadJ above must have started with the program
SRTMm). (We have omitted a description of the
rules that force this to be the case.) Thus, we
would like to proceed by proving an invariant of
SRTMm). However, we can sagothingabout the
programb loaded at the end dBRTMm). This is
becausd is read from a memory locatiam.bl_loc,
which could potentially have been written by an
adversarial thread earlier. Fortunately, the extension
of b into m.pcr.s in the second line 0SRTMm)
lets us proceed. Precisely, this extension along with
some basic properties of PCRs lets us prove the
following property that isparametric (universally
guantified) in the codé. tt andJ were obtained in

property (1).
vt', b, 0.
(((Mem(m.pcr.s,seqsinit,b,0)) @t’)
A (tr <t/ <t))
D dtg. ((tr <tg < t/) A (Jump(J,b) @1g)))
A (IsLocked(m.pcrs,J) @tg))

This property means that if at any tintfebetweerty
andt, m.pcr.s containedsedsinit,b,0), then thread
J must have branched toat some timdg between
tt andt’, and thatJ must hold a lock orm.pcr.s
at tg. Informally this holds because the action im-
mediately following the extension iISRTMm) is

jump b, so if there is a further extension with,
jump b must have happened in the interim. The
assumptiorProtectedSRTM(m) is used to rule out
the possibility that a thread other thdrextendecb
into m.pcr.s before jump b happened, and to show
thatJ holds the lock omrm.pcr.s at tg.

(3) We instantiate the property in (2), choosibg=
BL(m), o = OSm), andt’ =t3 (t3 was obtained
in (1)). Eliminating the antecedents of the impli-
cation using facts from (1), we obtain:

Ste. ((tr <ts <ts) A (Jump(J,BL(M)) @'e)
A (IsLocked(m.pcr.s,J) @tg))

(4) From (3) we knowJump(J,BL(m)) @ tg. Next
we use the (Jump) rule from Section 2.2. In the
premise we show thatty,te. VQ € IS(BL(M)). +
[Q*" A(th,te) for a suitable invariantA(ty,te),
whose details we omit here (see [17] for details).
The main difficulty here is similar to that in (2): we
do not know whab in the program oBL(m) may
be. Again, the invariant we prove is parametric in
0. Using the (Jump) rule, we obtain the following
property.

vt’,0,a.
(((Mem(m.pcr.s, seqdsinit, BL(m),0,a)) @t’)
Atg <t/ <t))

D Jto. ((ts <to <t) A (Jump(J,0) @to)))

This property is very similar to that in (2), except
that it follows from an invariant ofBL(m), not
SRTMm). The factlsLocked(m.pcr.s,J) @tg from
(3) is needed to rule out the possibility that a thread
other than) extendeda into m.pcr.s.

(5) We instantiate the property in (4), choosing=
OSm), a= APP(m) andt’ =t. Combining with
facts from (1), we obtain:

Jto. ((ts <to <t) A (Jump(J,0Sm)) @to))

The facts (Reset(m,J) @ tt), (—Reset(m) on (tr,t]),
(Jump(J,BL(m)) @ tg), and (Jump(J,OSm)) @
to) in (1), (3), and (5) establish part of
MeasuredBootsgrm(m,t). The remaining part follows
from a similar analysis with slightly stronger invariants
in (2) and (4).

The hardest part in designifgs®’s proof system was
coming up with sound principles for reasoning about dy-
namically branching to unknown code that are illustrated
above, and in particular, the (Jump) rule. Although the
final design is simple to use, it was not obvious at first.
We believe that this method for reasoning about branching
to completely unknown code (likke ando) is new to this
work. Prior work on reasoning about dynamically loaded
code, usually based on higher-order extensions of Hoare
logic [24]-[28], assumes that at least the invariants of the

code being branched to are known at the point of branch in
the program. In our setting, this assumption is unrealistic
because we allow executable code to either be obtained
over the network or be read from memory, and hence,
potentially, to come from an adversary.

4.1.2. Insights From Analysis. A number of insights
follow from the analysis. These insights include high-
lighting an unexpected property, clarifying assumptions
on the TCB, and identifying program invariants required
for security.

Property Excludes Last Jump. A key insight from the
analysis is that the integrity measurement protocol does
not provide sufficient evidence to deduce that the last pro-
gram in a chain of measurements is actually executed. For
example, an adversary can reboot the platform &¥&m)
extendsAPP(m), but before it is jumped to. Alternatively,

a race may occur between two application-level processes
whereby the OS extends the first inb@pcr.s and then

the other process reads the valueninpcr.s before the
first process is branched to.

TCB Assumptions. The value ofm.pcr.s does not guar-
antee that the measured software was also executed unless
it is also guaranteed that no other process had write access
to m.pcr.s. If the latter assumption fails, an attack exists: a
malicious process may extend a piece of code infocr.s
without executing it. This assumption usually holds in
practice because booting is generally single threaded, but
may fail if for example a malicious thread executes on
another processor core concurrently with the measurement
thread. Formally, this shows up as thetectedSRTM(m)
formula, which is a necessary assumption for the proof.
Program Invariants. To establish Theorem 2, we prove
program invariants for theSRTMm) and BL(m) pro-
grams. These invariants provide a specification of the
properties that an SRTM and a boot loader program must
satisfy to be secure in an integrity measurement protocol,
i.e. the assumptions about the TCB. TBRTMm) in-
variant states that there exists a time pdinand thread

J such thatJ branches to the boot loadér J does not
branch to any program at any time point befdram.pcr.s
contains the hashed value of the boot lodgemndm.pcr.s

is locked byJ att’. The invariant oBL(m) states that there
exists a time point and thread) such thatJ branches

to program code only after the entire program code

has been measured intapcrs. Kauer [29] performed a
manual source code audit of a number of TPM-enabled
boot loaders to check the informal security condition
that “no code...is executed but not hashed.” Our invari-
ant on the boot loadeBL was developed independently
during the course of proving the above theorem and
is a formal specification of this condition. We envisage
that these invariants can be used to derive properties
to automatically check against implementations of TCB

components, thereby providing greater assurance that the
trusted components are trustworthy.

4.1.3. Integrity Reporting. After the integrity measure-
ment protocol loads the PCRs with measurements, the
measurements can be used by the TPM to attest to the
identify of the software loaded on the local platform.
This protocol, called integrity reporting, involves two
participants. One of the participants is the remote party
itself, called the verifier. Its code is mark&terifier(m)
in Figure 3. The other participant in the protocol is the
TPM of machinemin the role ofT PMsgrrM(m). This code
is also shown in the same figure.

The integrity reporting protocol contains two steps. In
the first, the TPM on machinen reads the content&
of m.pcrs, signs them and an identifier (denote@GR(s))
that uniquely identifiesn. pcr.s with its embedded private
key AIK~1(m) and sends the signed aggregate to the
remote verifier. In the second step, the remote verifier
verifies this signature with the known public k&yK(m),
and checks that the contents of the signature match the
pair of PCR(s) and sedsinit,BL(m),OSm), APP(m)).
Security Properties. The security properties of integrity
reporting are formalized by the following twoS? formu-
las, which we call); and J, respectively.

[\/erifier(m)]i‘,”te dt. (t<te) A
(Mem(m.pcr.s, seqsinit,BL(m),OSm), APP(m))) @t)

Verifier(m)}2"™ 3t. (t < te) A MeasuredBootsgrm(m,t)

The first property &) states that if the cod€erifier(m)

is executed successfully between the time potptand

te, then there must be a timebeforete at whichm.pcr.s
containedsedsinit, BL(m),OSm),APP(m)). The second
property () means that a remote verifier can identify the
boot loader and operating system that were loadednon
at some time prior tde.

To prove these properties, we require two new assump-
tions, which we combine in the séisgtm below. The
first of these assumptions states that the remote verifier
is distinct from the TPM. This assumption is needed to
distinguish protocol participants, and is true in practice
The second assumption is the honesty assumption for the
TPM from Section 3.1 that guarantees that the TPM’s
signature cannot be forged, and that the TPM always
executes only specified programs.

FsrTm =
{V £ AIK(m),
Honest(AIK(m),{T PMSRTM(m),TPI\/bRTM(m)})}
Theorem 3 (Security of Integrity Reporting)The follow-
ing are provable in L3s proof system:

(1) TsrTm-d
(2) FSRTM, ProtectedSRTM(m) = Jz

The proof of (1) critically relies on the assump-
tion Honest(ATK (M), {TPMsgrim), TPMprTm(M)}) to
establish both that the TPM om actually produced a
signature in the past, and that the value signed by the
TPM was actually read froom.pcr.s. The latter follows
from knowledge of the programs that the TPM may be
executing. (2) follows from (1) and Theorem 2.

4.1.4. Insights From Analysis. The security analysis
lead to a number of insights including highlighting
weaknesses in the property provided by the protocol and
identifying program invariants required for security.

Staleness of Measurements. A key insight from the
analysis is that after executing the integrity reporting
protocol, the verifier has no knowledge of how recent
the time of measuremerttis in comparison tde, the
time the verifier's execution finished. This staleness of
measurements is inherent in the protocol: it is possible
to reboot the machine with a different boot sequence after
sending the signature to the remote verifier, as is known
from prior work [19]. Formally, one can only prove that
m.pcr.s contained the reported measurements at time
but not after.

Program Invariants. In the process of proving the above
theorem, we prove a program invariant for the roles of
the TPM (i.e., TPMsrrM(m) and TPMprrm(m)). This
invariant provides a specification of the properties that a
TPM's signing role must satisfy. In particular, the invatia
requires that if the TPM returns a value then the value is
a signature over the value storedrmpcr.s and that the
TPM does not write to any memory locations. The latter
constraint is necessary to prevent previously measured
code from being modified after being measured.

4.2. Attestation Using a Dynamic Root of Trust

We perform an analysis of DRTM attestation using our
model of hardware support for late launch. We jointly
analyze the protocol code that performs integrity measure-
ment and reporting.

4.2.1. DRTM Protocol. We describe the security skeleton
of the DRTM attestation protocol in Figure 4. The DRTM
protocol is a four agent protocol. The processes are: (1)
OSm), executed by the machine itself (called, that
receives a nonce from the remote verifier, and performs a
late launch. (2).L(m), executed by the hardware platform,
that reads the binary of the progrd®m) from the secure
loader block (SLB), and measures then branche¥to),

(3) P(m) that measures the nonce, evaluates the function
f on input O (the functiorf and its input may be changed
depending on application), and extends a distinguished
string EOL into m.dpcrk to signify the end of the late

launch session. (4) PMprTm(M), executed by the TPM

of m, that signs the dynamic PCR.dpcrk, and sends

it to the verifier. (5)Verifier(m), executed by a remote
verifier, that generates and sends a nonce, receives signed
measurements, verifies the signature, and checks that the
measurements match the seque(diait, P(m),n,EOL).
Security Property. We summarize the DRTM security
property as follows: if the verifier is not the TPM, the
TPM does not leak its signing key, and the TPM executes
only the processeEPMprTm(m) and T PMsgrTp(m), then

the remote verifier is guaranteed tlaberformed a single

late launch on machinen at some timet_, J branched

to P(m) only once attc, J evaluatedf once attg (and

this happened after the verifier generated the nonce),
J extendedEOL into m.dpcrk at some timetx, and
m.d.pcr.k was locked for the thread from t_ to tx. We
formalize this security property callethrtm below.

Verifier(m)[o™ 33, tx, te, tn, tr, te, .

AL <tc<te<tx <te)

A (tp <tn <tg)
New(V,n) @tn)
LateLaunch(m,J) @1.)
—LateLaunch(m) on (t.,tx])
—Reset(m) on (t,tx])
Jump(3,P(m)) @tc)
~Jump(J) on (tL,tc))
Eval(J, f) @te)
Extend(J,m.dpcrk,EOL) @tx)
—Eval(J, f) on (tc,tg))
—Eval(J, f) on (tg,tx))
IsLocked(m.d pcrk, J)on(t,tx])

NN AN N N N N N S S S

A\
A\
A
A
A
A\
A
A
A
A
A\

In order to prove the property, we have to make the
following assumptions.

lobRTM =
{V #AIK(m),
Honest(AIK (m), {TPMgrTm{(m), TPMprTM(M)})}

We also made the same assumptions in the SRTM protocol
(FTsrTm= FpbrTM). We prove the following theorem:

Theorem 4 (Security of DRTM) The following is prov-
able in Lgl orTME JDRTM

As in the SRTM protocol, the security of the DRTM
protocol relies on PCRs being append-only and write-
protected in memory. In addition, the DRTM protocol
relies on (1) write locks on all dynamic PCRs that are
provided by the late launch and (2) a dynamic reset of
m.d pcrk , to reset the values in the dynamic PCRsl it
and signal thafP(m) was executed with the protections
provided by late launch.

n =receive ;
write m.noncer’;
late_launch

OSm)

LL(m) P =read mSLB
extend m.dpcrk,P;

jump P

n’ = read m.nonce
extend m.dpcrk,n’;
eval f,0;

extend m.dpcrk, EOL

TPMprTM(M)

w = read m.dpcrk;
r =sign (dPCRK),w),AIK~1(m);
send r

Verifier(m) = nN=newv,

send N;

sig=receive ;

v =verify sig AIK(m);

match Vv, (dPCRK),
seddinit,P(m),n,EOL))

Figure 4. Security Skeleton for DRTM Attestation Protocol

4.2.2. Insights From Analysis. The security analysis lead
to a number of insights including revealing an insecure
protocol interaction between the DRTM and SRTM attes-
tation protocols, highlighting differences with the SRTM
protocol, and identifying program invariants required for
DRTM security that we subsequently used to manually
audit a security kernel implementation.

Insecure Protocol Interaction. In extendingLS? to
model DRTM, we discovered that adding late launch
required us to weaken some axioms related to reason-
ing about invariance of values in memory in order to
retain soundness in the proof system. With these weaker
axioms, we were unable to prove the safety property
of the SRTM protocol. Soon after, we realized that
SRTM'’s safety property can actually be violated using
latelaunch . Specifically, during the execution of the
SRTM protocaol, a late launch instruction may be issued
by another thread befor@Sm) has been extended into
m.pcr.s. The invoked program may then extend the code
of the program®Sm) and APP(m) into m.pcr.s without
executing them, and send signed measurements to the
remote verifier. Since the contentsrofpcr.s would be the
sequencesedsinit, BL(m),0Sm),APP(m)), the remote
verifier would believe incorrectly th&@®Sm) was executed
and the SRTM protocol would fail to provide its expected
integrity property. This vulnerability can be countered if
the program loaded in a DRTM session were unable to
change the contents afi.pcr.s if SRTM were executing

in parallel. In the final design of our formal model, we
force this to be the case by letting the thread booting a

machine to retain an exclusive-write lock onpcr.s even
in the face of a concurrent late launch, thus allowing a
proof of correctness of SRTM.

Late launch also opens the possibility of a code mod-
ification attack on SRTM. Specifically, after the code of
a program such aBL(m) or OSm) has been extended
into m.pcr.sin SRTM, a concurrent thread may invoke a
DRTM session and change the code in memory before it
is executed. Any subsequent attestation of integrity of the
loaded code to a remote party would then be incorrect.
Our model prevents this attack by assuming that code
measured in PCRs during SRTM cannot be modified in
memory.

Comparison to SRTM. The property provided by the
DRTM protocol is stronger than the SRTM protocol for a
number of reasons:

Fewer Assumptions. The proof of security
for the DRTM protocol does not rely on the
ProtectedSRTM(m) assumption that static PCRs are
locked. Instead thelatelaunch action locks all
dynamic PCRs. If the machind is a multi-processor
or multi-core machine that is capable of running
multiple threads in parallel, the locks on the dynamic
PCRs will prevent attacks where malicious threads
running concurrently with the measurement thread
extend additional programs intan.dpcrk in an
attempt to attest to their execution within a late
launch session.

Smaller TCB. The security proof of the DRTM does
not reason about the measurements of the BIOS,
boot loader, or operating system stored in the static
PCRs (e.g.m.pcr.s), indicating that the security of
the DRTM protocol does not depend on these large
software components. This considerably reduces the
trusted computing base to juB{m) and LL(m) and
opens up the possibility of verifying that the TCB
satisfies the required program invariants.

Execution Integrity. Unlike the SRTM protocol that
does not provide sufficient evidence to deduce that
the last program in a sequence of measurements is
branched to, thelprTm property states that all pro-
grams measured during the protected session where
executed. The property goes further to state that the
programs completed execution. Specifically, the end of
session measurement EOL proves tRah) executes

to completion.

Program Invariants. In the process of proving the above
theorem, we prove program invariants for the roles of
the TPM (i.e.,TPMsgrTMm) and T PMprTm(M)), and the
programsLL(m) and P(m). These invariants specify the
properties thal PMsgtMm), TPMprTm(M), LL(M), and

P(m) must satisfy for the DRTM protocol to be secure.
The invariant over the roles of the TPM is similar to
the TPM’s role invariant used for SRTM. The invariant
for LL(m) states that the code must maintain a lock on
m.dpcrk and measure then branch to the progfafm).
The invariant forP(m) is shown below. The invariant
states that if there are no resets or late launches fsom

ty to te, mdpcrk is locked atty, and m.dpcrk contains
the sequenceseddinit,P(m)) at t, and later contains
seddinit, P(m),x, EOL)), then there exists a threddsuch
that J extended a valu& (e.g., a nonce) inton.d pcrk,
then evaluated, then extended the end of session symbol
EOL, and that each action was performed once, in the
order specified, anth.d pctk was locked fronty, to tx.

[Q%" wt,x. ((—Reset(m) on (ty, te])
A (—LateLaunch(m) on (ty,te])

D Jtn,te,tx. ((th <th <tg <tx <t)
A (Extend(J,m.d pcrk,x) @tn)
Extend(J,m.d pcrk,EOL) @tx)
Eval(J,f) @te)

—Eval(J, f) on (tp,te))

—Eval(J, f) on (tg,tx))
IsLocked(m.d pcrk,J) on (tp,tx]))

A
A
A
A

Py

A

Manual Audit of DRTM Implementation. To check that
the invariants required by our security analysis are correc
we performed a manual source code audit of the Flicker
implementation of the DRTM protocol [30]. We checked
that Flicker's security kernel implementation, represent
by our programP(m), respects the invariant above. We
were able to quickly extract the security skeleton of the
security kernel from Flicker's approximately 250 lines of
C code. To verify that the skeleton respects the exact
invariant from our security proof, we checked that instruc-
tions were present to evaluate the functigrihat theEOL
marker was subsequently extended imtd pcrk, and that
each of the instructions would only be executed once on
all code paths. In several cases, we matched multiple C
instructions to a single action since the instructions are a
refinement of the action. For example, the extension of
EOL consists of two instructions, menset to create the
sequence of characters corresponding toE®L and a
call to a wrapper for the extend instruction. The entire
manual process of extracting the security skeleton and
auditing the invariant took less than one hour for an
individual with no previous experience with the Flicker
security kernel. Although we did not formally verify the
property, one interesting direction for future work is te@us
these invariants to derive refined invariants to check on the

implementation, possibly using software model checking
techniques.

5. Related Work

LS? draws on certain conceptual ideas from PCL [3],
in particular, the local reasoning style by which security
properties of protocols are proved without explicitly rea-
soning about adversary actions. In PCL, global security
properties are derived by combining properties achieved
by individual protocol steps with invariants proved by
induction over the protocol programs executed by honest
parties.LS? supports this form of reasoning for a much
richer language that includes not only network communi-
cation and cryptography as in PCL, but also shared mem-
ory, memory protection, machine resets, and dynamically
loaded unknown pieces of code. The insights on which the
new proof rules are based are described in Section 2.2.
The technical definition of.S? also differs significantly
from PCL: instead of associating pre-conditions and post-
conditions with all actions in a process (as PCL does),
we model time explicitly, and associate monotonically
increasing time points with events on a trace. The presence
of explicit time allows us to express invariants about
memory; for instance, we may express li¥’ that a
memory location contains the same value throughout the
interval [t1,t>]. Explicit time is also used to reason about
the relative order of events. Whereas explicit use of time
may appear to be low-level and cumbersome for practical
use, the proof system farS? actually uses time in a very
limited way that is quite close to temporal logics such as
LTL [31]. Indeed, it seems plausible to rework the proof
system in this paper using operators of LTL in place of
explicit time. However, we refrain from doing so because
we believe that a model of real time may be needed to
analyze some systems of interest (e.g., [32]-[34]).

LS also shares some features with other logics of
programs [8], [10], [35]. Hoare logic and dynamic logic
focus on sequential imperative programs, and do not
consider concurrency, network communication and adver-
saries.LS?s abstract locks are similar to regions that are
used to reason about synchronized access to memory in
concurrent separation logic [8]. However, the two primi-
tives differ in application. Whereas we use locks to enforce
integrity of data stored in memory, regions are intended to
prevent race conditions. Another key difference between
concurrent separation logic arlds® is that the former
does not consider network communication. Furthermore,
concurrent separation logic and other approaches for ver-
ifying concurrent systems [36] typically do not consider
an adversary model. An adversary could be encoded as
a regular program in these approaches, but then proving
invariants would involve an induction over the steps of the
honest parties programs and the attacker.

Prior proposals for reasoning about dynamically loaded
code use higher-order extensions of Hoare logic [24]-[28].
However, they are restricted to reasoning about sequential
programs only and require that invariants of code being
called be known in the program at the point of the call.
LS”s method addresses the problem of reasoning about
dynamically loaded code in the more general context of
concurrent program execution where one thread is allowed
to modify code that is loaded by another. As illustrated
in Section 4.1, using the (Jump) rule, evidence #whe
code executed can be combined with separate evidence
about the identity of the code to reason precisely about
the effects of the jump. Such reasoning is essential in
some applications including trusted computing, and is
impossible in all prior work known to us.

There have been several previous analyses of trusted
computing. Abadi and Wobber used an authorization logic
to describe the basic ideas of NGSCB, the predecessor to
the TCG [37]. Their formalization documents and clarifies
basic NGSCB concepts rather than proving specific prop-
erties of systems utilizing a TPM. Chen et al. developed a
formal logic tailored to the analysis of a remote attestatio
protocol and suggested improvements [38]. Unlike?,
these logics are not tied to the execution semantics of
the protocols. Gurgens et al. used a model checker to
analyze the security of several TCG protocols [39]. Millen
et al. employed a model checker to understand the role
and trust relationships of a system performing a remote
attestation protocol [40]. Our analysis withs* is a
complementary approach: It proves security properties
even for an infinite number of simultaneous invocations
of attestation protocols, but with a more abstract model
of the TPM’s primitives.LS? is designed to be a more
general logic with TCG protocols providing one set of
applications. Lin [41] used a theorem prover and model
finder to analyze the security of the TPM against invalid
sequences of API calls.

6. Conclusion

In this paper, we presentddS® and used it to carry
out a substantial case study of trusted computing attesta-
tion protocols. The design dfS* was conceptually and
technically challenging. Specifically, it was difficult to
define a realistic adversary model and formulate sound
reasoning principles for dynamically loaded unknown (and
untrusted) code. The proof system was designed to support
reasoning at a high level of abstraction. This was partic-
ularly useful in the case studies where the proofs yielded
many insights about the security of trusted computing
systems.

In future work, we will build upon this work to model
and analyze security properties of web browsers, security
hypervisors and virtual machine monitors. We also plan

to develop further principles for modeling and reasoning
about security at the level of system interfaces, in partic-
ular, to support richer access control models and system
composition and refinement.

Acknowledgments. The authors would like to thank
Michael Hicks, Jonathan McCune, and the anonymous re-
viewers for their helpful comments and suggestions. This
work was partially supported by the U.S. Army Research
Office contract on Perpetually Available and Secure Infor-
mation Systems (DAAD19-02-1-0389) to CMU’s CyLab,
the NSF Science and Technology Center TRUST, and
the NSF CyberTrust grant “Realizing Verifiable Security
Properties on Untrusted Computing Platforms”. Jason
Franklin is supported in part by an NSF Graduate Re-
search Fellowship.

References

[1] “Trusted Computing Group (TCG),”
/Iwww.trustedcomputinggroup.org/, 2008.

https:

[2] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “A
derivation system and compositional logic for security
protocols,” Journal of Computer Securityol. 13, no. 3,
pp. 423-482, 2005.

[3] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol
Composition Logic (PCL)."Electr. Notes Theor. Comput.
Sci, vol. 172, pp. 311-358, 2007.

[4] N. Durgin, J. C. Mitchell, and D. Pavlovic, “A composi-
tional logic for proving security properties of protocdls,
Journal of Computer Securityol. 11, pp. 677-721, 2003.

[5] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seife
“Secrecy analysis in protocol composition logi&brmal
Logical Methods for System Security and Correctness
2008.

[6] R. Milner, M. Tofte, and R. HarperThe Definition of
Standard ML Cambridge, MA, USA: MIT Press, 1990.

[7] J. Saltzer and M. Schroeder, “The protection of inforiomat
in computer systems,Proceedings of the IEEEol. 63,
no. 9, pp. 1278-1308, September 1975.

[8] S. Brookes, “A semantics for concurrent separationdggi
in Proceedings of 15th International Conference on Con-
currency Theory2004.

[9] Z. Manna and A. PnueliTemporal Verification of Reactive
Systems: Safety Springer-Verlag, 1995.

[10] C. A. R. Hoare, “An axiomatic basis for computer pro-

gramming,” Communications of the ACMol. 12, no. 10,

pp. 576-580, 1969.

[11] P. W. O’'Hearn, J. C. Reynolds, and H. Yang, “Local

reasoning about programs that alter data structure®fan

ceedings of the 15th International Workshop on Computer

Science Logic London, UK: Springer-Verlag, 2001, pp.

1-19.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

J. C. Reynolds, “Separation logic: A logic for shared
mutable data structures,” ifroceeding of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS)
IEEE Computer Society, 2002, pp. 55-74.

Trusted Computing Group, “TCG Specification
Architecture Overview, Specification Revision 1.4,
https://www.trustedcomputinggroup.org/groups/TAGA_
Architecture Overview.pdf, August 2007.

TCG, “PC client specific TPM interface specification
(TIS),” Version 1.2, Revision 1.00, Jul. 2005.

Advanced Micro Devices, “AMD64 virtualization: Se&ur
virtual machine architecture reference manual,” AMD Pub-
lication no. 33047 rev. 3.01, May 2005.

“Intel Trusted Execution Technology: Software Deyelo
ment Guide,” Document Number: 315168-005, Intel Cor-
poration, June 2008.

A. Datta, J. Franklin, D. Garg, and D. Kaynar, “A logic of
secure systems and its application to trusted computing,”
Carnegie Mellon University, Tech. Rep. CMU-CyLab-09-
001, 2009.

E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and
R. H. Campbell, “BootJacker: Compromising computers
using forced restarts,” ifProceedings of 15th ACM Con-
ference on Computer and Communications Secu?idps.

S. Garriss, R. Caceres, S. Berger, R. Sailer, L. vanrioo
and X. Zhang, “Towards trustworthy kiosk computing,” in
Workshop on Mobile Computing Systems and Applications
Feb. 2006.

H. DeYoung, D. Garg, and F. Pfenning, “An authorization
logic with explicit time,” in Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSE-21).
2008.

J. Reed, “Hybridizing a logical framework,” itnterna-
tional Workshop on Hybrid Logic 2006 (HyLo 200&gr.
Electronic Notes in Computer Science, August 2006.

T. Brauiner and V. de Paiva, “Towards constructive ybr
logic,” in Electronic Proceedings of Methods for Modalities
3 (M4M3), 2003.

“Secure virtual machine architecture reference
manual.” AMD Corp., May 2005. [Online].
Available: http://www.amd.com/us-en/assets/contemte/
white_papersand tech docs/33047.pdf

N. Krishnaswami, “Separation logic for a higher-order
typed language,” 2006, in Workshop on Semantics, Pro-
gram Analysis and Computing Environments for Memory
Management, SPACEOQG6.

H. Thielecke, “Frame rules from answer types for code
pointers,” in33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages New York, NY,
USA: ACM, 2006, pp. 309-319.

Z. Ni and Z. Shao, “Certified assembly programming with
embedded code pointers,” 88rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
New York, NY, USA: ACM, 2006, pp. 320-333.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

H. Cai, Z. Shao, and A. Vaynberg, “Certified self-
modifying code,” inACM SIGPLAN Conference on Pro-
gramming Language Design and ImplementatiorNew
York, NY, USA: ACM, 2007, pp. 66-77.

A. Nanevski, G. Morrisett, and L. Birkedal, “Hoare type
theory, polymorphism and separatioddurnal of Func-
tional Programmingvol. 18, no. 5&6, pp. 865-911, 2008.

B. Kauer, “OSLO: Improving the security of trusted com-
puting,” in Proceedings of the USENIX Security Sympo-
sium Aug. 2007.

J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki, “Flicker: An execution infrastructure for tcb
minimization,” in Proceedings of the ACM European Con-
ference in Computer Systems (EuroSygjr. 2008.

A. Pnueli, “The temporal logic of programs,” ifro-
ceedings of 19th Annual Symposium on Foundations on
Computer Sciengel977.

R. Kennell and L. H. Jamieson, “Establishing the geityin
of remote computer systems,” Proceedings of the 2003
USENIX Security SymposiurAug. 2003.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla,
“SWATT: Software-based attestation for embedded de-
vices,” in Proceedings of the IEEE Symposium on Security
and Privacy May 2004.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla, “Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy platforms,”
in Proceedings of ACM Symposium on Operating Systems
Principles (SOSR)Oct. 2005.

D. Harel, D. Kozen, and J. TiuryrDynamic Logic ser.
Foundations of Computing. MIT Press, 2000.

L. Lamport, “The temporal logic of actionsACM Trans-
actions on Programming Languages and Systerok 16,
no. 3, May 1994.

M. Abadi and T. Wobber, “A logical account of NGSCB),”
in Proceedings of Formal Techniques for Networked and
Distributed System<004.

S. Chen, Y. Wen, and H. Zhao, “Formal analysis of
secure bootstrap in trusted computing,”Rnoceedings of
4th International Conference on Autonomic and Trusted
Computing 2007.

S. Gurgens, C. Rudolph, D. Scheuermann, M. Atts, and
R. Plaga, “Security evaluation of scenarios based on the
TCG’s TPM specification,” inProceedings of 12th Euro-
pean Symposium On Research In Computer Sec@fg7.

J. Millen, J. Guttman, J. Ramsdell, J. Sheehy, and Bf-Sni
fen, “Analysis of a measured launch,” The MITRE Corpo-
ration, Tech. Rep., 2007.

A. H. Lin, “Automated analysis of security apis,” Masge
thesis, Massachusetts Institute of Technology, 2005.

