A Logic of Secure Systems and its Application to Trusted
Computing

Anupam Datta Jason Franklin Deepak Garg Dilsun Kaynar
danupam@cmu.edu jfrankli@cs.cmu.edu dg@cs.cmu.edu dilsun@cs.cmu.edu
Abstract Programming Model. The programming language is

designed to be expressive enough to model practical se-
We present a logic for reasoning about properties of seeure systems while still maintaining a sufficiently high
cure systems. The logic is built around a concurrent protevel of abstraction to enable simple reasoning. Follow-
gramming language with constructs for modeling ma-ing PCL, the language includes process calculi and func-
chines with shared memory, a simple form of accesgional constructs for modeling cryptographic operations,
control on memory, machine resets, cryptographic operstraightline code, and network communication. We in-
ations, network communication, and dynamically load-troduce constructs for modeling machines and shared
ing and executing unknown (and potentially untrusted)memory, a simple form of access control on memory,
code. The adversary’s capabilities aomstrained by the machine resets, and dynamically loading and executing
system _nterface as defined in the programming modelunknown (and potentially untrusted) code. The prim-
(leading to the namesI-ADVERSARY). We develop a itives for reading and writing to memory are inspired
sound proof system for reasoning about programs withby the treatment of memory cells in impure functional
out explicitly reasoning about adversary actions. Welanguages like Standard ML [26]. We model memory
use the logic to characterize trusted computing primitivegrotection, a fundamental building block for secure sys-
and prove code integrity and execution integrity proper-tems [34], by allowing programs to acquire exclusive-
ties of two remote attestation protocols. The proofs makewrite locks on memory locations. The treatment of dy-
precise assumptions needed for the security of these praxamically loading and executing unknown code is novel
tocols and reveal an insecure interaction between the twip this work.
protocaols. While these constructs are the common denominator
for many secure systems, including the trusted comput-
ing systems examined in this paper, they are by no means
1 Introduction sufficient to model all systems of interest. The language,
however, isextensiblein a modular fashion, as we il-
Contemporary secure systems are complex and designédastrate by extending the core language (presented in
to provide subtle security properties in the face of attackSection 2) with a trusted computing subsystem (in Sec-
Examples of such systems include hypervisors, virtuation 3). At a high level, each system component can be
machine monitors, security kernels, operating systemsyiewed as exposing an interface. For example, the inter-
web browsers, and secure co-processor-based systerfaxe for memory includes read, write, and reset opera-
such as those utilizing the Trusted Computing Group'stions. Adding a new component to the system involves
Trusted Platform Module (TPM) [38]. In this paper we adding operations in the programming language corre-
initiate a program to formally model abstractions of suchsponding to the interface exposed by it. Platform Con-
systems and specify and analyze their security propertieguration Registers (PCR) in the TPM are an example
in the presence of a general class of adversaries. Specigince they can be modeled as a special form of memory
ically, we introduce the Logic of Secure Systerh§}) that may be accessed via read, reset, and a new extend
and use it to carry out a detailed analysis of Trusted Comeperation. Some extensions can have a more global ef-
puting systems. The logic is built around a program-fect on the language semantics. For instance, adding the
ming language for modeling systems and is inspired byreset operation to the language affects both how state of
a logic for network protocol analysis, Protocol Composi- local memory and TPM PCRs may be updated.
tion Logic (PCL) [10, 11,13, 33]. Interfaces to system components also provide a use-

ful conceptual view of the adversary. Since the capawhich support global reasoning about concurrent shared
bilities of the adversary areoastrained by theystem memory programs [23]. Our initial idea to reason about
interface, we refer to her as@sI-ADVERSARY. For execution of dynamically loaded code was to treat the
example, the adversary can write to unprotected memeode being branched to as a continuation of the code call-
ory locations, but can only update PCRs through the exing it. However, this approach does not work for the case
tend operation in its interface. Formally, the adversarywhere the code being branched to is either read from
may execute any program expressible in our programmemory or received over the network, because nothing
ming model, i.e. the adversary can perform symboliccan be determined about the called code by looking at
cryptographic operations, intercept messages on the nethe caller’s program. As a result, traditional methods for
work, inject messages that it can create, read and writproving program invariants such as those based on Hoare
memory locations that are not explicitly locked by an- logic and its extensions [17,29, 32] do not apply to this
other thread, and reset machines. Because of these capstting. Yet this is exactly what we needed to reason in
bilities, the adversary can launch a broad range of attackihe face of adversaries who can modify or inject code
on the network and the local machines including replayinto the system. Our final technical approach for reason-
attacks, modifying and injecting malicious code on localing about execution of dynamically loaded code is based
machines, and exploiting race conditions to compromisen a program invariance rule, which we elaborate on in
systems. Section 2 and illustrate in Section 4.1.
Logic. Security properties of programs are expressedirusted Computing. We model and analyze two
in LS? using modal formulas of the forr[ﬁ’]t,b’te A, which trusted computing protocols that rely on TPMs to pro-
means that formulé holds whenever threddexecutes vide integrity properties: load-time attestation using a
exactly the progranf in the time interval(ty,te], irre- Static Root of Trust for Measurement (SRTM) [40] and
spective of the actions executed concurrently by othefate-launch-based attestation using a Dynamic Root of
threads including the adversary. The thrdailenti- Trust for Measurement (DRTM) [2, 4, 37]. In doing so,
fies the principal executing the program, the machineve make the following contributions. First, we formal-
on which the program is being executed, and includes &e, using axioms, the behavior of core trusted comput-
unique identifier. The formul& expresses security prop- ing primitives including the TCG’s widely-deployed se-
erties, such as confidentiality, integrity, authenticatio cure co-processor, the Trusted Platform Module (TPM),
as well as code and execution integrity. The logic in-as well as recently introduced hardware to support the
cludes predicates that reflect the programming languagkate launchof a security kernel in a protected execution
constructs for shared memory, memory protection, maenvironment. Hardware implementations of late launch
chine resets and a form of unconditional jump to modelare publicly available in both AMD’s Secure Virtual Ma-
branching to dynamically loaded code. chine Architecture (SVM) [4] and Intel's Trusted eXe-
Security properties are established using a proof syscution Technology (TXT) [2]. These axioms provide a
tem forLS?. A central design goal th&aiS? achieves (fol- ~ succinct specification of the primitives, which serve as
lowing PCL) is thatthe proof system does not mention building blocks in the proofs of the protocols (see Sec-
adversary actionsInstead, the semantics and soundnesgion 3).
of the proof system guarantee tha@FPﬁb’teA is provable, Second, we formally define and prove code integrity
thenA holds in all traces in which completes execution and execution integrity properties of the attestation pro-
of programP, including those that contain adversarial tocols (Section 4; Theorems 2—4). To the best of our
threads. This implicit treatment of adversaries simpli-knowledge, these are the first logical security proofs of
fies proofs significantly. Designing a sound proof systemthese protocols.
that supports this local style of reasoning, in spite of the Finally, the formal proofs yield insights about the se-
global nature of shared memory changes and executiogurity of these protocols. The invariants used in the
of dynamically loaded unknown code, turned out to be aproofs make precise the properties that the Trusted Com-
significant technical challenge. puting Base (TCB) must satisfy. In Section 4, we de-
We formalize local reasoning principles about sharedscribe these invariants and manually check that an in-
memory with axioms that reason about invariance of val-variant holds on a security kernel implementation used
ues in memory based on local actions of threads thain an attestation protocol. We demonstrate that newly
hold locks (see Section 2). This approach is technicallyintroduced hardware support for late launch actually ad-
similar to concurrent separation logic, whose regions reversely affects the security of previous generation attes-
semblel.S?’s locks [6], but distinct from formal systems tation protocols. We describe an attack that utilizes hard-

ware support for late launch to exploit load-time attes-keyK is denoted bK< ~1. We assume that the expression
tation protocols that measure software starting at systera may be recovered from the signatuB&G<{|€|} if the
boot. The attack enables an adversary to report false syserification keyK is known. We also assume that hashes
tem integrity measurements that are not tied to the actuadre confidentiality preserving.
state of the platform. This attack could be used to ex-Systems, programs, and actions. A secure system
ploit Digital Rights Management (DRM) protocols that is specified as a set of programsn the programming
rely on load-time attestation. language. For example, a trusted computing attestation
system will contain two programs, one to be executed
. by the untrusted platform and the other by the remote
2 Logic of Secure Systems verifier. Eachprogramconsists of a number of actions
X ;= a that are executed in a straight line. The naxme
We introduce the syntax of the Logic of Secure Systemsinds the value returned by the actianand is used to
(LS?) in this section. The next section introduces featuregefer to the value in subsequent actions. Our model of
of LS? that are specific to trusted computing. We restrictstraightline code execution is thus functional. This de-
technical descriptions to the extent necessary to explaigign choice simplifies reasoning significantly. For some
the main concepts and application, and refer the readeictions such as sending a message, the value returned is
to Appendix A for details. meaningless. In such cases we assume that the value re-
turned is the constant 0. A program ends with either an
empty action., or one of the special actiongmp e or
latelaunch. The expressiojump e is described be-

The programming language definition includes its syntaXOW andlatelaunch is covered in the next section. A
and operational semantics. The syntax is summarized ifingle executing program is calledtead [P]; (threads
Figure 5. The current language includes process calcufire referred to with variables, S). It contains a pro-
and functional constructs for modeling cryptographic op-9ramP, and a descriptok for the thread that is a tuple
erations, straightline code, and network communicatior{X./7,m). X is the agent that owns the threauis the
among concurrent processes, but does not have condiachine on which the thread is hosted, a@nid a unique
tionals (if...then..else..), returning function calls or identifier (akin to a process id). The abstract runtime en-
loops. Instead, it has a match construct that tests equalityironment of the language is calledcanfiguration C

of expressionaratch e, €) and blocks if the test fails, as Written 1,0, Ta|...[Ty. It contains all executing threads
well as unconditional jumps to arbitrary codpufip). (Ta|...[Tn), the state of memory on all machines (repre-
These constructs are sufficient for applications we havéented by the map), and the state of memory locks held
considered so far. In future work, we plan to investigateDy threads (represented by the map

the technical challenges associated with adding condiCryptography and network primitives. The pro-
tionals, returning function calls, and loops to the lan-gramming language includes actions for standard oper-
guage. We describe below the core language constructgfions like signing and signature verification, encryp-
the adversary model, and the form of the operational setion and decryption (both symmetric and asymmetric),
mantics. Examples of programs in the language can baonce generation, hashing, expression matching, projec-
found in Section 4. tion from a pair, and evaluation of arbitrary side-effect
Data, agents, and keys. Data is represented in the free functions ¢val f,e). Threads can communicate
programming model symbolically as expressierfalso ~ with each other using actions to send and receive val-
called values). Expressions may be numberglenti- ues over the network. Network communication is untar-
ties of agents (principals, keysK, variablesx, pairs ~ geted, i.e., any thread may intercept and read any mes-
(e,€), signatures using private ke$sGc {|} (denoting sage (dually, a received message could have been sent
the signature ore made using the kei), asymmetric by any thread). Information being sent over the network
key encryption€£ NG {|e[}, symmetric key encryptions may be protected using cryptography, if needed. The
SYMENG {|ef}, hashedd (e), or code reified as daf. treatment of cryptography and network communication
All expressions are assumed to be simply typed (e.g. #ollows PCL. The language constructs we present next
pair can be distinguished from a number), but we elideare new to this work.

the details of the types. Agents, deno¥ed, are users Machines and shared memory. Threads can also
associated with a system on behalf of whom programshare data through memory. The programming model
execute. Keys are denoted by the leierThe inverse of contains machines explicitly. Each machine contains

2.1 Programming Model

Expressions/Values e = n Number
| XY Agent
| K Key
| K1 Inverse of keyK
| X Variable
| (e€) Pair
| SIG{le} Valuee signed by private keik
| ENG{lel} Valuee encrypted by public keik
| SYMENG{|€e} Valuee encrypted by symmetric ke
| H(e Hash ofe
| P Program reified as data
Machine m
Location I m= mRAMk| mdiskk | m.pcrk | m.dpcrk
Action a i= readl Read location
| writel,e Write e to locationl
| extendl,e Extend PCR with e
| lockl Obtain write lock on locatioth
| unlockl Release write lock on locatidn
| sende Sende as a message
| receive Receive a message
| signeK Signe with private keyK
| verifyeK Check thae = SIG«{|€|}
| enceK Encrypte with public keyK
| deceK Decrypte with private keyK
| symenc K Encrypte with symmetric keyK
| symdec K Decrypte with symmetric keyK
| hashe Hash the expression
| eval f.e Evaluate functiorf with argumenie
| projie Project the 1st component of a pair
| projae Project the 2nd component of a pair
| matcheé€ Check thae=¢
| new Generate a new nonce
Program PQ := | jumpe|latelaunch |x:=aP
Thread id 1, == (X,n,m)
Thread identifier n
Thread T,S == [P}
Store g Locations— Expressions
Lock map I Locations— (Thread ids)u {_}
Configuration C = 1,0,T1]...|Th

Figure 1: Syntax of the programming language

a number of memory locatioristhat are shared by all fected by resets. Despite these differences, the prominent
threads running on the machine. Each location is classieharacteristics of all locations are that they carrdzd

fied as either RAM, persistent store (hard disk), or otherandwrittenthrough actions provided in the programming
special purpose location (such as Platform Configuratiomanguage, and that they asharedby all threads on the
Registers that are described in the next section). Thenachine. Consequently, any thread, including an adver-
machine on which a location exists and the location’ssarial thread, has the potential to read or modify any lo-
type are made explicit in the location’s name. For in-cation.

stance m.RAMKk is thekth RAM location on machine

m. The behavior of a location depends on its type. ForAccess control on memory. Shared memory, by its
example, RAM locations are set to a fixed value whenvery nature, cannot be used in secure programs unless

a machine resets, whereas persistent locations are not &#fome access control mechanism enforces the integrity
and confidentiality of data written to it. Access control

varies by type of memory and application (e.g., memorycan neither write to memory locked by another thread,
segmentation, page table read-only bits, access controlor can she break cryptography.

lists in file systems, etc). Our programming model pro-Operational semantics. The operational semantics of
vides an abstract form of access control through locksthe language captures how systems execute to produce
Any running thread may obtain an exclusive-write lock traces. It is defined using process calculus-style reduc-
on any previously unlocked memory locatibiby exe- tion rules that specify how a configuration may transition
cuting the actiorLock I. Information on locks held by to another. Atrace G — C;... — C, is a sequence
threads is included in a configuration as a m&émm lo- of configurations, such that successive configurations in
cations to identities of threads that hold locks on themthe sequence can be obtained by applying one reduction
The semantics of the programming language guarantegyle. A timed trace G - C;... ™ C, associates mono-
that while a lock is held by a thread, no other thread will topjcally increasing time points, .. ., t, with reductions

be able to write the location. A thread may relinquish aon a trace. These time points may be drawn from any

lock it holds by executing the actiamlock |. Locking totally ordered set, such as integers or real numbers.
in this manner may be used to enforce integrity of con-

tents of memory. Similarly, one may add read locks that)

provide confidentiality of memory contents. Although 2-2 LOgIC

technically straightforward, read locks are omitted frompq logicLS? is used to specify and reason about prop-
this paper since we are focusing on integrity properties. oties of secure systems.

Machine resets. The language allows a machine t0 syntax. Figure 2 summarizesS*'s syntax, includ-

be spontaneously reset. There is no specific action thahg predicates specific to trusted computing that we dis-
causes a reset. Instead, there is a reduction in the oRyss in the next section. Predicates for representing net-
erational semantics that may occur at any time to resefork communication and cryptographic operations are
a machine. When this happens, all running threads ofaken from PCL. Other predicates that capture informa-
the machine are killed, all its RAM and PCR locations tion about state, unconditional jumps, and resets are new
are set to a fixed value, and a single new thread is crep this work. A significant difference from PCL is that
ated to reboot the machine. This new thread eXeCUte§SZ incorporates “me exp“C'tly in formulas and seman-
a fixed booting program. We model the reset operationjcs, All predicates and formulas are interpreted relative
since it has significant security implications for securetg not only a timed trace but also a point of time (modal
systems [8]. In the context of trusted computing, €.9.formulas, described below, are an exception since they
the fact that a TPM's Platform Configuration Registersare interpreted relative to a timed trace only). In the proof
(PCRs) are set to a fixed value is critical in reasoningsystem, time is used to track the relative order of actions
about the security properties of attestation protocols. Iryn 3 trace and to specify program invariants.

addition, it has been shown that adversaries can launch action predicates capture actions performed by

realistic attacks against trusted computing systems usinhreads. For instanceSend(l,€) holds on a trace at

machine resets [14]. time t if thread | executes actiorsend e at timet in
Untrusted code execution. The last salient feature of the trace Write(1,1,€) holds on a trace whenever thread
our programming model is an actigamp ethat dynam- | executesirite |,e. Similarly, we have predicates to

ically branches to code represented by the expression capture cryptographic operationsGeneral predicates
The codeeis arbitrary; it may have been read from mem- capture other information, including information about
ory or disk, or even have been received over the networkihe state of the environment. Particularly prominent are
As a result, it could have come from an adversary. Ex-the two predicateslem(l,e) which holds whenever lo-
ecution of untrusted code is necessary to model sever@ation| contains values, and Jump(l,e) which holds
systems of interest, e.g., trusted computing systems anghenever threadl executesjump e. Access control on
web browsers. memory is reflected in the logic through three predicates:
Adversary Model. We formally model adversaries as Lock(l,l), Unlock(l,I), andlsLocked(l,1). The first two
extra threads executing concurrently with protocol par-of these capture actionsock(l,l) holds on a trace when
ticipants. Such an adversary may contain any number o& thread obtains an exclusive-write lock on locatibn
threads, on any machines, and may execute any programhereasUnlock(l,l) holds when thread releases the
expressible in our programming model. However, the ad{ock. The third predicatésLocked(l,l) captures state:
versary cannot perform operations that are not permittedt holds whenever threddhas an exclusive-write lock on
by the language semantics. For example, the adversatgcationl. As an example, suppose that thréackecutes

Action Predicates R = Receive(l,e) | Send(l,e) | Sign(l,e K) | Verify(l,e,K) | Encrypt(l,eK) | Decrypt(l,e K) |
SymEncrypt(l,e K) | SymDecrypt(l,e K) | Hash(l,e) | Eval(l, f,e €) | Match(l,e €) |
New(l,n) | Write(l,1,e) | Read(l,1,e) | Lock(l,l) | Unlock(l,l) | Extend(l,l,€)

Mem(l,e) | IsLocked(l,1) | Reset(m,I) | Jump(l,e) | LateLaunch(m,1) | Contains(e,€) |
e=¢€ |t >t'| Honest(X,P)

Formulas AB = R|M|T|L|AAB|AVB|ADB|-A|VxA|3IxA|A@t

Modal Formulas J = [P]fb'te A [aﬁ‘j;:e A

General PredicatesM

Figure 2: Syntax of. &

an action to obtain the lock on locatibat timet and ex- tuitive properties of program behavior. Parts of the proof
ecutes another action to release the lock at a later goint system, particularly the part dealing with cryptographic
ThenLock(l,l) will hold exactly at timet, Unlock(l,I) primitives were easily designed using existing ideas from
will hold exactly at timet’, andlsLocked(l,1) will hold PCL. As mentioned in the introduction, a central design
at all points of time betweeh andt’. The predicate goal thatLS? achieves is that the proof system does not
Reset(m, 1) holds at timet if machinem s reset at time mention adversary actions. We elaborate below on the
t, creating the new threddto boot it. We define the ab- technical approach for designing a sound proof system
breviationsReset(m) andJump(l) as3l. Reset(m,I) and that supports this local style of reasoning in spite of the
Je. Jump(l,e) respectivelyContains(e, €) means that/ global nature of shared memory changes and execution
is a sub-expression & The predicaté-lonest()?, f’) is of dynamically loaded code.

described in Section 3.1. We reason about memory locally using axioms that
Predicates can be combined using the usual logicagstablish invariance of values in memory, using infor-
connectivesA (conjunction),v (disjunction),> (impli- mation about locks and actions of threads that hold the

cation), and— (negation) as well as first-order univer- locks. These axioms are modular (there is one set of
sal and existential quantifiers that may range over exaxioms for each type of memory) and extensible (more
pressions, keys, principals, threads, locations, and. timeaxioms can be added for new types of memory, as we do
There is a special formula @ t, which captures time for Platform Configuration Registers in Section 3). As
explicitly in the logic.A @t means that formula holds ~ examples, the following two axioms are invariance rules
attimet. We often write intervals in the usual mathemat- for locations of RAM and disk respectively. The first
ical sense; they may take the foriftg to), [t1,t2], (t1,t2], axiom says that if locatiom.RAMKk (denoting a loca-
and|[ty,tp). For an interval, we also define the formula tion with addres in the RAM of machinem) contains
Aoniasvt. ((t€i) D A@t), wheret c i is the obvious valueeattimety, during the intervalty, te) thread has a
membership predicaté on i means tha holds at each lock on this location, threatdoes not write to the loca-
point in the interval. This treatment of time in the logic tion, and machinenis not reset during the interval, then
draws ideas from work on hybrid modal logic [5,12,31]. mRAMk must contain the value throughout the inter-

Security properties of programs are expressedsh val (tp,te). The second axiom is similar, but it applies to
using one of two forms of modal formulas. The princi- locations on disk. In this case, the precondition that ma-
pal of these[p]}b-r‘e A, means that formula holds when- chinem not be reset is unnecessary because contents of
ever thread executes exactly the prograPsequentially ~ the disk do not change due to a reset.

in the semi-open intervdly,ts]. A may mention any (MemIR) + (Mem(mRAMK,e) @tp)
variables occurring unbound B It usually expresses a A (IsLoc|.<ed(m' R7AM K ?) on (to,te))
. TNy sle

safety property about the progrdPn For example, ifP .

is the client program of a key exchange protodomay 2 Eiiése\é\(/%eéln’ g].FiA;I)\/I.k,e’) on (to,te))
say thatP generated a key aftdy, sent it to a server, and S (Mem(m RAI\/?E(ee) on (to,te)
received a confirmation that it was received. Examples ’ o b>e

of security properties for trusted computing systems can (MemiD) I (Mem(m.diskk €) @t,)

be found in Section 4. . . A (IsLocked(m.diskk,) on (tp,te))
Proof System. Security properties of a program are A (Ve —Write(l, mdiskk, &) on (to,te))
established using a proof system 108%. This proof 5 (I\/Iem(m.diékk e on (tote) e

system contains some basic rules for reasoning about
modal formulas, and a number of axioms that capture infor reasoning about execution of dynamically loaded

code, we introduce the following rule that allows us adversarial threads. L&tdenote a set of formulas, and
to combine information about the invariants of a pro- ¢ denote a formula or a modal formula. Further[lét ¢
gram P with the knowledge that the program was denote provability il S”'s proof system, and@l = ¢ de-
branched to. We define a program invariant as a propnote semantic entailment. Our main technical result for
erty that holds whenever any prefix of the sequence of § is the following soundness theorem.
actions of the program executes. The prefixes or ini-
tial sequences$S(P) of a programP are formally de- Theorem 1(Soundness)If I'- ¢ thenl” = ¢.
fined as follows:IS(-) = {-}, IS(jump €) = {-, jump e}, Proof. See Appendix A. O
IS(1atelaunch) = {-,latelaunch }, IS(x:= a;P) =
{Ju{x:=aQ|QeIS(P)}. . .
3 Modeling Trusted Computing
ForeveryQin IS(P): + [Q]i*" A(ty, te) Primitives
(tp, te fresh constants)
FJump(l,P) @t D Wt'. (' >t) D A(t,t)

Jump This section describes extensionsli& to model and
reason about hardware primitives used with protocols

In its premise the rule requires that for every initial se- specified by the Trusted Computing Group (TCG). These
guenceQ of P, there be a proof, generic in the constantshardware primitives include the TCG’s Trusted Platform
tp andte, that establishe&(ty, te) given thatQ executesin ~ Module (TPM) and static Platform Configuration Reg-
threadl during the intervalty,te]. The conclusion says isters (PCRs), as well as the more recent hardware sup-
that if thread branches to prograif at timet (assump- port for late launch and dynamic PCRs as implemented
tion Jump(l,P) @t), then for any time’ > t, A(t,t") by AMD’s Secure Virtual Machine (SVM) extensions [1]
must hold. Informally, we may explain the soundness ofand Intel's Trusted eXecution Technology (TXT) [2]. We
this rule as follows. If threatlbranches to code attime describe below the hardware primitives and their formal-
t, then for anyt’ > t, the thread must execute some pre- ization in LS* at a high level. In subsequent sections,
fix of P in the interval(t,t’]. Instantiating the premise we use our formalizations to prove security properties of
with this prefixQ, andt,t’ for ty,te, we get exactly the trusted computing protocols.
desired property(t,t’).

The gbove rule is cer_1tra| among’’s principl_es for 31 Trusted Platform Module
reasoning about dynamically loaded code, which we be-
lieve to be novel. Both a discussion of the novelty andThe Trusted Platform Module (TPM) is a secure co-
an example of the reasoning principles are postponed tprocessor that performs cryptographic operations such
Section 4.1. Whereas their application to reasoninggs encryption, decryption, and creation and verification
about dynamically loaded code is new, invariants overof digital signatures. Each TPM includes a unique em-
initial segments of code are not a contribution of thisbedded private key (called the Attestation Identity Key or
work. PCL uses invariants similar to ours to reason aboufIK). The public key corresponding to each AIK is pub-
principals who are executing known pieces of cod&? lished in a manufacturer-signed certificate. The private
also uses invariants for many other purposes besides regomponent of the AIK is assumed to be protected from
soning about jumps, including reasoning about resetscompromise by malicious software. As a result, signa-
The latter is simpler than reasoning about jumps, becausgires produced by a TPM are guaranteed to be authentic,
we assume that when a machine is resefixed pro- and unique to the platform on which the TPM resides.
gram is started to reboot the machine. The code marked We model relevant aspects of the TPMLi&* as fol-
SRTMm) in Figure 3 is one example of the form this lows. The private attestation identity key of the TPM
program may have. on machinem is modeled as a value ibS?, denoted
Semantics and Soundness. Formulas ofLS? are in- AIK~1(m). Its corresponding public key is denoted
terpreted over timed traces obtained from execution oAIK(m). The TPM itself is represented as a principal,
a program in the programming language. The proofdenotedAlK(m). Of the many programs hardcoded into
system ofLS? is formally connected to the program- the TPM, only two are relevant for our purposes. These
ming language semantics through a program independeate idealized by theS? programs marke@ PMsgtm M)
soundness theoremhich guarantees that any property andTPMprTm(m) in Figures 3 and 4 respectively, and
established in the proof system actually holds over allare explained in the next section. Both the fact that the
traces obtainable from the program and any number of PM executes only one of these programs, and the fact

that the TPM’s private key cannot be leaked are modele primitive action in the programming language. It has

in LS? by a single predicate: exactly the effect described in the previous paragraph.
. Properties of PCRs are captured through axiomssh
Honest(AIK(m), {T PMsgrm(m), TPMprTM(M)}) For example, the following axiom models the fact that

f'sinit is written to every PCR when a machine is reset. In
words, it states that if machina is reset at time, then
ny PCRk on m contains valusinit at timet.

This predicate entails (through the rules and axioms o
the proof system) that any signature created by the ke
AIK~1(m) could only have been created in the TPM on
machinem. It can also be used to prove invariants about (MemPR) + (Reset(m) @t) D (Mem(m.pcrk, sinit) @t)
threads which are known to execute on the TPM, using a

rule similar to (Jump) that was described in Section’2.2. Several other important properties of PCRs arise as a
We emphasize that the predicate mentioned above is n@onsequence of their restricted interface. First, if a PCR
an axiom inLSZ, since its soundness cannot be estabcontainssinit at timet, then the machinen on which it
lished directly. Instead, we always assume it explicitlyresides must have been resgst recentlyat some time
when we reason about the TPM. t’ since a reset is the only way to psitit into a PCR.
Static PCRs. Static Platform Configuration Registers This is captured by the following axiom:

(PCRs) are protected registers contained in every TPM. .

From our perspective, the relevant property of PCRs is (PCR2) (I\/Iem/(m./pcr.k,smlt) @t ,

that their contents can only be modified in two ways: o E. T <A (Res?t(m) @t)

(a) by resetting the machine on which the TPM resides; A (“Reset(m) on (t',1]))

this sets all the static PCRs to a special value that Wesecond, if a PCR contairseqsinit, vy, ..., vn) at time
denote symbolically using the nansit (sinit is zero ¢ jt must also have containezbqsinit,vy,...,vn 1) at

on most platforms), and (b) through a special TPM in-gome prior time’, without any reset in the interim. Thus
terface extend , which takes two arguments: a PCR tne contents of a PCR are witness to every extension per-

to modify, and a value that is appended to the PCR. formed on it since its last reset. Formally, this property
Since each PCR is of a fixed length but may be askegs captured in_S? by the following axiom:

to store arbitrarily many valuegxtend replaces the
current value of the PCR with a hash of the concatena- (PCR1) - (Mem(m.pcrk,seqsinit,vs,...,vn)) @t)

tion of its current value and a hashwfin pseudocode, DEY.(t'<t)
the effect of extending PCRR with valuev may be de- A (Mem(m.pcrk, seqsinit, vy, ..., Vh-1)) @t)
scribed as the assignmept— H(p || H(v)), where|| A (—Reset(m) on (t',t])) (n>1)

denotes concatenation atl denotes a hash function, In many cases of interest, we need to prove that the value
More generally, if the values extended into a PCR af—in a PCyR does not chan ’e over a erirz)d of time. To this
ter a reset are,...,Vy in sequence, its contents will) ange P o
be H(.... (H(sinit|[H(v)|[H(v2))... [[H(v)). We use end, we introduce an invariance axiom for ECRS, similar
the notatiorseqsinit,v1,...,v,) to denote this value. A to axioms (MemIR) and (MemID) from Section 2.2, The

common use for PCRs is to extend integrity measure_modular design of the logic eases the introduction of this

. . axiom.
ments of program code into them during the boot pro-
cess, then to have the TPM sign them with its AIK, and (MemIP) + (Mem(m.pcrk,e) @ty)

to submit this signed aggregate to a remote party as evi- A (IsLocked(m.pcrk, 1) on (tp,te))
dence that the values were generated in sequence on the A (V€. =Extend(l,m.pcrk, €) on (ty,te))
machine. A (—Reset(m) on (tp,te))

We model PCRs as a special class of memonySf D (Mem(m.pcrk,e) on (tp,te))

The kth static PCR on machinm is denotedm.pcrk.

PCRs can be read using the usual read actionSfs 32 | ate Launch and Dynamic PCRs

programming language, and they can be locked for ac-

cess control, but the usual write action does not app|yA\nOtheI’ hardware feature available in trusted comput-

to them. Instead, thextend program is modeled as ing platforms is late launch. Late launch provides the
1The predicateHonest is adapted from a predicate of the same abll-lty 0 measure- and InVOke- a progr.am, typlca”)-/ a se

name in PCL. PCL's predicate is slightly weaker since it fattie sec- curity kernel or Virtual Machine Monitor (VMM)’ In a

ond argument, but the reasoning principles associatedthéthwo are prOte‘_:ted environment. Upon receiving a late launch in-
similar. struction SKI NI T on the AMD SVM andSENTER on

the Intel TXT), the processor switches from the currentlyance properties of dynamic PCRs.
executing operating system to a Dynamic Root of Trust
for Measurement (DRTM) from which it is possible to (MemIdP) F (Mem(m.dpcrk,e) @t,)

later resume the suspended operating system. The pro- A (IsLocked(m.d pcrk, 1) on (tp, te))

gram to be executed in a late launch session is specified A (V€. ~Extend(I,m.d pcrk, €) on (tp, te))
by providing the physical address of the Secure Loader A (—Reset(m) on (tp,te))

Block (SLB). When a late launch is performed, interrupts A (—=3l. LateLaunch(m,1) on (tp, te))

are disabled, direct memory access (DMA) is disabled to O (Mem(m.dpctk,e) on (ty,te))

all physical memory pages containing the SLB and de-

bugging access is disabled. The processor then jumps i
the code in the SLB. This code may load other code. Int& Trusted Compu“ng Protocols

addition to providing a prptected environmen.t, a specialy analyze two trusted computing protocols that rely on
s_et of PCRs caIIedyn_ar_chCRs_are reset with a SPe€- TPMs to provide integrity properties: load-time attesta-
cial value_ that we calfinit symbollc_ally and the coo!e N tion using an SRTM and late-launch-based attestation us-
the SLB is hashed and extended into the dynamic PCR,4 5 pRrTM. In an attestation protocol, a platform uti-
17 (dinit is distinct fromsinit). The dynamic PCRs can ji;eq 3 TPM to attest to platform state by performing two
then be extgnded with other Yalues, and the contents Q:’Iteps: integrity measurement and integrity reporting. In-
the PCRS_' signed by the TPM's key AIK, can be SmeIt'tegrity measurement consists of collecting cryptographic
ted as evidence that a late launch was performed. hashes of local software events such as program load-
We formally model late launch by adding a new ac-ing. Integrity reporting consists of transmitting colledt

tion latelaunch to LS”s programming language. This measurements in a signed aggregate to an external veri-
action can be executed by any thread. The operationajer, The external verifier may then use the measurements
semantics of the language are extended to ensure thgd make trust decisions. We first analyze an attestation
wheneverlatelaunch executes a new thredds cre- protocol using a Static Root of Trust for Measurement
ated with a special prograirl.(m), which extends the (SRTM), then we consider an attestation protocol uti-
SLB into a dynamic PCR and branches to it. This pro-|izing hardware support for late launch and a Dynamic
gram is shown in Figure 4. Protectionlaf modeled us- Root of Trust for Measurement (DRTM). We simplify
ing locks — when started,is given locks to all dynamic poth protocols by assuming the AIK has been certified
PCRs on the machina it uses.| may subsequently ac- a5 authentic by a manufacturer certificate and by verify-

quire more locks to protect itself. In the logic, the im- jng a fixed sequence of system integrity measurements.
plicit locking of dynamic PCRs is captured by the fol-

lowing axiom, which means that if some thread executes . . .
latelaunch on machinenattimet, creating the thread 4.1 Attestation Using a Static Root of Trust
I, thenl has a lock on any dynamic PCR amat timet.

‘ i We start by performing an analysis of a load-time at-
m.d pcrk denotes théth dynamic PCR on machine.

testation protocol using an SRTM. The security skele-
ton of the protocol is specified in Figure 3. A security

(LockLL) F (LateLaunch(m1) @t) skeleton retains only relevant actions, in this case, ac-

D (IsLocked(m.dpcrk,1) @t) tions performing integrity measurement and reporting.

The SRTM protocol is composed of code that performs

Dynamic PCRs have properties very similar to staticmeasurement followed by code that performs integrity

PCRs. For example, the fO“OWing aXiom, similar to reporting_ We ana|yze the Components Separate|y_
(MemPR) described above, means tHatit is written

to every dynamic PCR when a late launch happens. 411 Integrity Measurement
(MemLL) F (LateLaunch(m,l) @t) In the SRTM protocol, integrity measurement starts af-
D (Mem(m.dpcrk,dinit) @t) ter a machine reset. The programs mar&RIT Mm),
BL(m), andOSm) in Figure 3 represent those portions
Axioms corresponding to (PCR1) and (PCR2) are alsmfthe SRTM, boot loader, and operating system that par-
sound for dynamic PCRs. The difference is tRatet ticipate in the measurement process. BT Mm) pro-
andsinit must be replaced blateLaunch anddinit re- gram is always the first program invoked when a ma-
spectively. The following axiom is used to prove invari- chine reboots. It first reads the boot loader’s cdde

SRTMm) = b=read mblloc;
extend m.pcr.s,b;
jump b

BL(m) = o0=read mosloc;
extend M.PCL.S, 0O,
Jump O

oSm) = a=read mapploc;
extend M.PCLS, q;
Jjump &

APP(m) =

TPMsgrTMM) = W= read M.pCrS,
r = sign (PCR(S),w), AIK~1(m);
send

Verifier(m) = sig=receive;

v =verify sig AIK(m);
match V, (PCR(S),
seqsinit, BL(m),0Sm), APP(m)))

Figure 3:Security Skeleton for SRTM Attestation Protocol

from the fixed disk addregs.bl_loc, then measures the
code by extending it into a static PGRpcr.s (which in

andMeasuredBootsgrm(m,t) as follows.

ProtectedSRTM(m) =
vt,1. (Reset(m,1) @t) D (IsLocked(m.pcr.s,1) @t)

MeasuredBootsgrm(m,t) =
Jty. Jtg. Tto. IJ. (tr <ts <to <t) A
(Reset(m,J) @t7) A (Jump(J,BL(M)) @tg) A
(Jump(3,09m)) @to) A (—Reset(m) on (tr,t])
(—Jump(J) on (tr,t8)) A (—Jump(J) on (ts, to))

ProtectedSRTM(m) means that any threddcreated
to boot machinam after a reset obtains an exclusive-
write lock onm.pcr.s. MeasuredBootsgrm(m,t) iden-
tifies software events om such as the boot loader and
operating system being branched to before timelt
comprises four facts: (1) There exists a titpebefore
t at whichm was reset, creating a threddo boot the
machine Reset(m,J) @ tt), (2) This thread) branched
to the program8L(m) and OSm) at later time points
tg andto (Jump(J,BL(m)) @ tg andJump(J,O0Sm)) @
to), (3) J did not make any other jumps in the in-
terim (-Jump(J) on (t1,tg)) and CJump(J) on (tg,to)),
and (4) Machinem was not reset betweery andt
(—Reset(m) on (tT,t]). Equivalently, after its last reboot
before timet, the first programs loaded enwereBL(m)
andOSm). We believe this is a natural property to ex-
pect from a system integrity measurement protocol.

The following theorem formalizes our security prop-
erty. It states that under the assumptions thgicr.s
is protected during booting, and that pcr.s contains

this case stores all measurements), and then branchessedsinit,BL(m),OSm),APP(m)) at timet, it is guar-

the the boot loader by executing the instructijamp b.
The boot loaderBL(m)) in turn reads the operating sys-
tem'’s codeo from a fixed locatiorm.osloc, extends it

into PCRm.pcr.s, and branches to it. The operating sys-

tem (OS(m)) performs similar actions with the applica-
tion's codea. The application APP(m)) may perform

anteed that the boot loader and operating system used to
boot the machine afBL(m) andOSm) respectively.

Theorem 2 (Security of Integrity Measurement)The
following is provable in L&

ProtectedSRTM(m) -

any actions. In practice, the sequence of measurement Mem(m.pcr.s, seqsinit, BL(m), OSm), APP(m))) @t

and loading may continue beyond the first application

D MeasuredBootsgrm(m,t)

but we have chosen to terminate it here because extend-
ing the chain further does not lead to any new insights We refer the reader to Appendix B for a detailed proof

about the security of the system.

Security Property. We summarize the integrity mea-
surement security property as follows:nifpcr.sis pro-
tected while a machine boots, and the contents.ptr.s
are seqsinit,BL(m),OSm),APP(m)), then the initial
software loaded on machima since its last reboot was
BL(m) followed by OSm). We now state this property
formally. We define the formulaBrotectedSRTM(m)

10

of this theorem. Major steps in the proofs are discussed
below to illustrate novel reasoning principleslig?’. All
programs mentioned below refer to Figure 3.

(1) Using axioms (PCR1) and (PCR2)
in succession on the antecedent
Mem(m.pcr.s, sedsinit,BL(m),0Sm),APP(m))) @
t, we show that all sub-sequences
seqsinit,BL(m),OSm),APP(m)) must have
appeared im.pcr.s at times earlier that, and that

of

(@)

(3)

machinem must have been reset at some titpe
creating a thread to boot it. Formally, we obtain

Jtr,t,to,13,d. (tr <ty <thr <tz <t)
A (Mem(m.pcr.s, sedsinit,BL(m),0OSm))) @13)
A (Mem(m.pcr.s, sedsinit,BL(m))) @ty)
Mem(m.pcr.s,sinit) @t;)
Reset(m,J) @tr)
—Reset(m) on (tr,t])

e e e

A
N
A

Sincem was reset creating thread(second from

last conjunct above), it follows in our model that
the thread) above must have started with the pro-
gram SRTMm). (We have omitted a description

of the rules that force this to be the case.) Thus,

we would like to proceed by proving an invariant of
SRTMm). However, we can sayothingabout the
programb loaded at the end @RTMm). This is
becaus® is read from a memory locatian.bl_loc,
which could potentially have been written by an ad-

(4) From (3) we knowJump(J,BL(m)) @tg. Next
we use the (Jump) rule from Section 2.2. In the
premise we show thatty,te. YQ € IS(BL(m)).
[Q]S"’te A(tp,te) for a suitable invariantA(ty,te),
whose details we omit here (see Appendix B for
details). The main difficulty here is similar to that
in (2): we do not know whab in the program of
BL(m) may be. Again, the invariant we prove is
parametric ino. Using the (Jump) rule, we obtain
the following property.

Wvt’,0,a.
(((Mem(m.pcr.s,seqdsinit, BL(m),0,a)) @t’)
A(tg <t/ <t))

D 3to. ((ts <to <t) A (Jump(J,0) @to)))

This property is very similar to that in (2), ex-
cept that it follows from an invariant @dL(m), not
SRTMm). The factisLocked(m.pcr.s,J) @tg from

(3) is needed to rule out the possibility that a thread
other than] extendedh into m.pcr.s.

versarial thread earlier. Fortunately, the extension of

bintom.pcr.sin the second line BBRTMm) lets us

proceed. Precisely, this extension along with some

basic properties of PCRs lets us prove the following
property that igparametric(universally quantified)
in the codeb. tt andJ were obtained in property (1).

vt’.b, 0.
(((Mem(m.pcr.s,seqsinit,b,0)) @t’)
A(tr <t/ <t))
O dte. ((tr <tg <t’) A (Jump(J,b) @tg)))
A (IsLocked(m.pcrs,J) @tg))

This property means that if at any tirieoetweertt
andt, m.pcr.s containedsedsinit, b, 0), then thread

J must have branched toat some timég between
tr andt’, and thatJ must hold a lock orm.pcr.s
attg. Informally this holds because the action im-
mediately following the extension IBRTMm) is
jump b, so if there is a further extension with
jump b must have happened in the interim. The as-
sumptionProtectedSRTM(m) is used to rule out
the possibility that a thread other tharextended
into m.pcr.s before jump b happened, and to show
thatJ holds the lock orm. pcr.s attg.

We instantiate the property in (2), choosihg=
BL(m), o = O§m), andt’ = t3 (t3 was obtained
in (1)). Eliminating the antecedents of the impli-
cation using facts from (1), we obtain:

Jtg. ((tr <tg <t3z) A (Jump(J,BL(M)) @1g)
A (IsLocked(m.pcr.s,J) @tg))

11

(5) We instantiate the property in (4), choosing=
OSm), a= APP(m) andt’ =t. Combining with

facts from (1), we obtain:
Jto. ((ts <to <t) A (Jump(J,08m)) @to))

The facts (Reset(m,J) @ tt), (—Reset(m) on (tr,t]),
(Jump(J,BL(M)) @ tg), and (Jump(J,O§m)) @
to) in (1), (3), and (5) establish part of
MeasuredBootsgrm(m,t). The remaining part fol-
lows from a similar analysis with slightly stronger
invariants in (2) and (4).

The hardest part in designing?®'s proof system was
coming up with sound principles for reasoning about dy-
namically branching to unknown code that are illustrated
above, and in particular, the (Jump) rule. Although the fi-
nal design is simple to use, it was not obvious at first. We
believe that this method for reasoning about branching
to completely unknown code (likeando) is new to this
work. Prior work on reasoning about dynamically loaded
code, usually based on higher-order extensions of Hoare
logic [7,20,27,28,39], assumes that at least the invagiant
of the code being branched to are known at the point of
branch in the program. In our setting, this assumption is
unrealistic because we allow executable code to either be
obtained over the network or be read from memory, and
hence, potentially, to come from an adversary.

4.1.2 Insights From Analysis

A number of insights follow from the analysis. These in-
sights include highlighting an unexpected property, clar-

ifying assumptions on the TCB, and identifying program4.1.3 Integrity Reporting

invariants required for security. . .
q y After the integrity measurement protocol loads the PCRs

with measurements, the measurements can be used by

th \vsis is that the intearit t orot lhe TPM to attest to the identify of the software loaded on
€ analysis 1s [hat the ntegrity measurement protocoy, o, |4 platform. This protocol, called integrity report

does not proy|de sufﬁment evidence 1o dgduce that th(?ng, involves two participants. One of the participants
last program in a chain of measurements is actually exe-

is the remote party itself, called the verifier. Its code is
cuted. For example, an adversary can reboot the platfor%arkedVerifier(m) in Figure 3. The other participant
zliterOS(m)l extendsAPR(m), butbbefore it isjump?d t(_)' in the protocol is the TPM of machina in the role of
ternatively, a race may occur between two application- . . : .
level processes whereby the OS extends the first intTPMSRTM(m)' This code is also shown in the same fig-
m.pcr.s and then the other process reads the value in
m. pcr.s before the first process is branched to.

Property Excludes Last Jump. A key insight from

The integrity reporting protocol contains two steps. In
the first, the TPM on machina reads the contents of

_ m.pcr.s, signs them and an identifier (denote@R(s))

TCB Assumptions. The value ofm.pcr.s does not ot yniquely identifiesn. perswith its embedded private
guarantee that the measured software was also executﬁgyNKfl(m) and sends the signed aggregate to the re-
unless it is also guaranteed that no other process hagose verifier. In the second step, the remote verifier ver-
write access ton. pers. If the latter assumption falls: an ifies this signature with the known public keyiK (m),
attack exists: a malicious process may extend a piece Qfnq checks that the contents of the signature match the
code intom.pcr.s without executing it. This assumption pair of PCR(s) andseqsinit, BL(m), OS(m), APP(m)).
usually holds in practice because booting is generalbsecurity Properties. The security properties of in-

single threaded, but may fail if for example a malicioustegrity reporting are formalized by the following tvis?
thread executes on another processor core c:oncurrent%“,nmas which we call; andJ, respectively.

with the measurement thread. Formally, this shows up as
the ProtectedSRTM(m) formula, which is a necessary [\/erifier(m)]{}”te Tt (t<te) A
assumption for the proof. (Mem(m.pcr.s, seqsinit, BL(m),OSm), APP(m))) @t)

Program Invariants. To establish Theorem 2, we [Verifier(m)]{?’te 3t. (t < te) A MeasuredBootsgrm(m,t)

prove program invariants for th@RT Mm) andBL(m) , . -
programs. These invariants provide a specification Ofl’heﬁrst property §,) states that if the codeeri fier(m)

the properties that an SRTM and a boot loader pro_IS executed successfully between the time pdgasidte,

gram must satisfy to be secure in an integrity measuret—hen there must be a tint@eforete at whichm. per.scon-

ment protocol, i.e. the assumptions about the TCB. Thddined sedsinit, BL(m), OSm), APP(m)). The second

SRTMm) invariant states that there exists a time pointproperty 0z) means that a remote verifier can identity
t' and thread) such that] branches to the boot loader the boot loader and operating system that were loaded

b, J does not branch to any program at any time pointOnmat some time prior @3')
beforet’, m.pcr.s contains the hashed value of the boot . 10 ProVe these properties, we require two new assump-
tions, which we combine in the s€rtm below. The

loaderb, andm.pcr.sis locked byJ att’. The invariant i fth) hat th i
of BL(m) states that there exists a time pdiand thread first of these assumptions states that the remote verifier
is distinct from the TPM. This assumption is needed to

J such that) branches to program coaeonly after the S T X) X
distinguish protocol participants, and is true in practice

entire program code has been measured intapcr.s. S)
aThe second assumption is the honesty assumption for the

Kauer [18] performed a manual source code audit of ;) h hat th ,
number of TPM-enabled boot loaders to check the infor—T_P'VI rom Section 3.1 that guarantees that the TPM's
ignature cannot be forged, and that the TPM always ex-

mal security condition that “no code...is executed but not .
hashed.” Our invariant on the boot loadgt was de- €CUtes only specified programs.

veloped independently during the course of proving the o ..\ —

above theorem and is a formal specification of this condi- {\7 £ Al K(m),

t!on. We envisage that the_se invariants can bg used to de- Honest(AfK(m), {TPMsrrm(m), TPMorTm(M) 1)}
rive properties to automatically check against implemen-

tations of TCB components, thereby providing greaterTheorem 3 (Security of Integrity Reporting) The fol-
assurance that the trusted components are trustworthy. lowing are provable in L3s proof system:

12

(1) TsrTmEJ1 4.2.1 DRTM Protocol

(2) T'srTm ProtectedSRTM(m) = J, We describe the security skeleton of the DRTM attesta-

tion protocol in Figure 4. The DRTM protocol is a four

The proof of (1) critically relies on the assumption agent protocol. The processes are: @(m), executed
Honest(ATK (m), {T PMsrm(m), TPMorTM(M)}) to es- by the machine itself (calledh) that receives a nonce
tablish both that the TPM om actually produced a sig- o the remote verifier, and performs a late launch. (2)
nature in the past, and that the value signed by the TPMI_L), executed by the hardware platform, that reads
was actually read frorm.pcr.s. The latter follows from the binary of the prograr(m) from the secure loader
knowledge of the programs that the TPM may be exe)qck (SLB), and measures then branche®tm), (3)
cuting. (2) follows from (1) and Theorem 2. See AP- p(1m) that measures the nonce, evaluates the fundtion
pendix B for details of the proofs. on input O (the functiorf and its input may be changed
depending on application), and extends a distinguished
string EOL into m.d pcrk to signify the end of the late
launch session. (4) PMprTm(M), executed by the TPM
The security analysis lead to a number of insights includ-0of m, that signs the dynamic PCR.dpcrk, and sends
ing highlighting weaknesses in the property provided byit to the verifier. (5)Verifier(m), executed by a remote

the protocol and identifying program invariants requiredVverifier, that generates and sends a nonce, receives signed
for security. measurements, verifies the signature, and checks that the

measurements match the sequeaieit, P(m),n, EOL).

Staleness of Measurements. A key insight from the Security Property. We summarize the DRTM security
analysis is that after executing the integrity reporting-pr property as follows: if the verifier is not the TPM, the
tocol, the verifier has no knowledge of how recent theTPM does not leak its signing key, and the TPM executes
time of measuremeritis in comparison tde, the time only the processed PMorrm(m) and TPMsgrm(m),

the verifier's execution finished. This staleness of meathen the remote verifier is guaranteed thgterformed
surements is inherent in the protocol: it is possible toa single late launch on machime at some timet,, J
reboot the machine with a different boot sequence aftepranched taP(m) only once atic, J evaluatedf once
sending the signature to the remote verifier, as is knowryt t¢ (and this happened after the verifier generated the
from prior work [14]. Formally, one can only prove that nonce),J extendedE OL into m.d pcrk at some timety,
m.pcr.s contained the reported measurements at ime andm.d.pcr.k was locked for the threadi from t,_ to tx.

but not after. We formalize this security property calldgrTm below.
Program Invariants. In the process of proving

the above theorem, we prove a program invariant

for the roles of the TPM (i.e., TPMsgrrm{m) and

TPMprTm(m)). This invariant provides a specification [Verifier(m mee 33t te, tn, b, te, .

4.1.4 Insights From Analysis

of the properties that a TPM’s signing role must satisfy.
In particular, the invariant requires that if the TPM re-
turns a value then the value is a signature over the value
stored inm.pcr.s and that the TPM does not write to any
memory locations. The latter constraint is necessary to
prevent previously measured code from being modified
after being measured.

4.2 Attestation Using a Dynamic Root of
Trust

We perform an analysis of DRTM attestation using our
model of hardware support for late launch. We jointly
analyze the protocol code that performs integrity mea-
surement and reporting.

13

AL <tc<te <tx <te)

Aty <ty < tE)

(New(V,n) @ty)
(LateLaunch(m,J) @t)
(—LateLaunch(m) on (t.,tx])
(—Reset(m) on (tL,tx])
(Jump(J,P(m)) @tc)
(—Jump(J) on (tL,tc))

(Eval(J, f) @t)
(Extend(J,m.dpcrk, EOL) @tx)
(—Eval(J,) on (tc.te))
(—Eval(J,) on (tg,tx))

(

A
A
N
N
A
A
A
N
N
N
A (IsLocked(m.d pcrk, J)on(t,tx])

In order to prove the property, we have to make the

n =receive ;
write m.noncen’;
late_launch

oSm)

P =read mSLB
extend m.d pcrk, P;
jump P

LL(m)

n’ = read m.nonce
extend m.dpcrk,n”;
eval f,0;

extend m.d pcrk, EOL

TPMprTM(M) w = read m.dpcrk;
r =sign (dPCRK),w), AIK~1(m);

send I

Verifier(m) Nn=new;

send N;

sig=receive;

v = verify sig AIK(m);

match v, (dPCRK),
seddinit,P(m),n,EOL))

Figure 4:Security Skeleton for DRTM Attestation Protocol

following assumptions.

FDRTM =
{V #AIK(m),
Honest(AIK (m), {TPMsgTm(m), TPMorTm(M) })}

We also made the same assumptions in the SRTM prota-

col (Tsrrm= brTM).- We prove the following theorem:

Theorem 4(Security of DRTM) The following is prov-
able in L§Z orTME JDRTM

Proof. See Appendix C. O

As in the SRTM protocol, the security of the DRTM
protocol relies on PCRs being append-only and write
protected in memory. In addition, the DRTM protocol

the DRTM and SRTM attestation protocols, highlight-
ing differences with the SRTM protocol, and identifying
program invariants required for DRTM security that we
subsequently used to manually audit a security kernel im-
plementation.

Insecure Protocol Interaction. In extendingLS? to
model DRTM, we discovered that adding late launch re-
quired us to weaken some axioms related to reasoning
about invariance of values in memory in order to re-
tain soundness in the proof system. With these weaker
axioms, we were unable to prove the safety property
of the SRTM protocol. Soon after, we realized that
SRTM'’s safety property can actually be violated using
latelaunch . Specifically, during the execution of the
SRTM protocol, a late launch instruction may be issued
by another thread befol@Sm) has been extended into
m.pcr.s. The invoked program may then extend the code
of the program®©Sm) and APP(m) into m.pcr.s with-

out executing them, and send signed measurements to the
remote verifier. Since the contentsrafpcr.s would be

the sequenceedsinit,BL(m),0Sm),APP(m)), the re-
mote verifier would believe incorrectly th&Sm) was
executed and the SRTM protocol would fail to provide
its expected integrity property. This vulnerability can be
countered if the program loaded in a DRTM session were
unable to change the contentsmfpcr.sif SRTM were
executing in parallel. In the final design of our formal
model, we force this to be the case by letting the thread
booting a machine to retain an exclusive-write lock on
m.pcr.s even in the face of a concurrent late launch, thus
allowing a proof of correctness of SRTM.

Late launch also opens the possibility of a code mod-
ification attack on SRTM. Specifically, after the code of
a program such aBL(m) or OSm) has been extended
into m.pcr.sin SRTM, a concurrent thread may invoke
a DRTM session and change the code in memory before
it is executed. Any subsequent attestation of integrity of
the loaded code to a remote party would then be incor-
rect. Our model prevents this attack by assuming that
code measured in PCRs during SRTM cannot be modi-
fied in memory.

relies on (1) write locks on all dynamic PCRs that areComparison to SRTM. The property provided by the
provided by the late launch and (2) a dynamic reset ofPRTM protocol is stronger than the SRTM protocol for
m.dpcrk , to reset the values in the dynamic PCRs to@ number of reasons:

dinit and signal thaP(m) was executed with the protec-
tions provided by late launch.

4.2.2 Insights From Analysis

Fewer Assumptions. The proof of security
for the DRTM protocol does not rely on the
ProtectedSRTM(m) assumption that static PCRs are
locked. Instead theatelaunch action locks all dy-

The security analysis lead to a number of insights includ- namic PCRs. If the machind is a multi-processor
ing revealing an insecure protocol interaction between or multi-core machine that is capable of running mul-

14

tiple threads in parallel, the locks on the dynamic
PCRs will prevent attacks where malicious threads tote
running concurrently with the measurement thread [QI3™ Vt,x. ((—~Reset(m) on (ty, te])

extend additional programs into.d pcrk in an at- A (-LateLaunch(m) on (ty, te])
tempt to attest to their execution within a late launch A (Mem(m.dpcrk, seqdinit, P(m))) @ty)
session. A (IsLocked(m.d pCI’.k,J) @tb)
At <t <te)
A (Mem(m.d pcrk, seddinit, P(m),x, EOL)) @t))
D T, te,tx. ((th <th <te <tx <t)
Smaller TCB. The security proof of the DRTM does A (Extend(J, m.d pcrk,x) @ty)

not reason about the measurements of the BIOS,
boot loader, or operating system stored in the static

A (Extend(J,m.dpcrk,EOL) @tx)
A
PCRs (e.g.m.pcr.s), indicating that the security of A
A
A

Eval(J,f) @te)

—Eval(J, f) on (tp,te))

—Eval(J, f) on (tg,tx))
IsLocked(m.dpcrk,J) on (tp,tx]))

the DRTM protocol does not depend on these large
software components. This considerably reduces the
trusted computing base to juBfm) andLL(m) and
opens up the possibility of verifying that the TCB sat- Manual Audit of DRTM Implementation. To check
isfies the required program invariants. that the invariants required by our security analysis are
correct, we performed a manual source code audit of the
Flicker implementation of the DRTM protocol [24]. We
checked that Flicker’s security kernel implementation,
represented by our prograR(m), respects the invari-
ant above. We were able to quickly extract the security
skeleton of the security kernel from Flicker's approxi-
mately 250 lines of C code. To verify that the skele-
ton respects the exact invariant from our security proof,
we checked that instructions were present to evaluate the
function f, that theEOL marker was subsequently ex-
tended intom.dpcrk, and that each of the instructions
would only be executed once on all code paths. In sev-
eral cases, we matched multiple C instructions to a single
action since the instructions are a refinement of the ac-
Program Invariants. In the process of proving the tjon. For example, the extension BOL consists of two
above theorem, we prove program invariants for the rolesnstructions, arenset to create the sequence of char-
of the TPM (i.e.,TPMsrrM{m) andT PMprTm(M)), and acters corresponding to &0L and a call to a wrapper
the program&.L(m) andP(m). These invariants specify for the extend instruction. The entire manual process of
the properties that PMsgrrMm), TPMorTm(M), LL(M), extracting the security skeleton and auditing the invarian
andP(m) must satisfy for the DRTM protocol to be se- ook less than one hour for an individual with no previous
cure. The invariant over the roles of the TPM is similar experience with the Flicker Security kernel. Aithough we
to the TPM's role invariant used for SRTM. The invari- did not forma”y Verify the property, one interesting di-
ant forLL(m) states that the code must maintain a lock onrection for future work is to use these invariants to derive
m.d pcrk and measure then branch to the progR(m). refined invariants to check on the implementation, possi-

The invariant forP(m) is shown below. The invariant biy using software model Checking techniques_
states that if there are no resets or late launcheson

fromt, to te, m.d pcrk is locked atty, andm.d pcrk con-

tains the sequencseddinit,P(m)) att, and later con- 5 Related Work

tainsseddinit,P(m),x,EOL)), then there exists a thread

J such that) extended a valu& (e.g., a nonce) into LS? draws on certain conceptual ideas from PCL [11],
m.d pcrk, then evaluated, then extended the end of ses- in particular, the local reasoning style by which security
sion symbolEOL, and that each action was performed properties of protocols are proved without explicitly rea-
once, in the order specified, amidpcrk was locked soning about adversary actions. In PCL, global security
fromty, totx. properties are derived by combining properties achieved

PRy

Execution Integrity. Unlike the SRTM protocol that
does not provide sufficient evidence to deduce that
the last program in a sequence of measurements is
branched to, thédprTMm property states that all pro-
grams measured during the protected session where
executed. The property goes further to state that the
programs completed execution. Specifically, the end
of session measurement EOL proves thah) exe-
cutes to completion.

15

by individual protocol steps with invariants proved by problem of reasoning about dynamically loaded code in
induction over the protocol programs executed by honthe more general context of concurrent program execu-
est parties. LS supports this form of reasoning for a tion where one thread is allowed to modify code that is
much richer language that includes not only networkloaded by another. As illustrated in Section 4.1, using
communication and cryptography as in PCL, but alsothe (Jump) rule, evidence thabmecode executed can
shared memory, memory protection, machine resets, anige combined with separate evidence about the identity of
dynamically loaded unknown pieces of code. The in-the code to reason precisely about the effects of the jump.
sights on which the new proof rules are based are deSuch reasoning is essential in some applications includ-
scribed in Section 2.2. The technical definitionlLs# ing trusted computing, and is impossible in all prior work
also differs significantly from PCL: instead of associat- known to us.
ing pre-conditions and post-conditions with all actions There have been several previous analyses of trusted
in a process (as PCL does), we model time explicitly,computing. Abadi and Wobber used an authorization
and associate monotonically increasing time points withiogic to describe the basic ideas of NGSCB, the prede-
events on a trace. The presence of explicit time allowsessor to the TCG [3]. Their formalization documents
us to express invariants about memory; for instance, weand clarifies basic NGSCB concepts rather than prov-
may express ilL.S? that a memory location contains the ing specific properties of systems utilizing a TPM. Chen
same value throughout the interyal to]. Explicittime et al. developed a formal logic tailored to the analysis
is also used to reason about the relative order of eventsf a remote attestation protocol and suggested improve-
Whereas explicit use of time may appear to be low-levelments [9]. UnlikeLS?, these logics are not tied to the ex-
and cumbersome for practical use, the proof system foecution semantics of the protocols. Gurgens et al. used
LS actually uses time in a very limited way that is quite a model checker to analyze the security of several TCG
close to temporal logics such as LTL [30]. Indeed, it protocols [15]. Millen et al. employed a model checker
seems plausible to rework the proof system in this papeto understand the role and trust relationships of a system
using operators of LTL in place of explicit time. How- performing a remote attestation protocol [25]. Our anal-
ever, we refrain from doing so because we believe that gsis with LS? is a complementary approach: It proves
model of real time may be needed to analyze some syssecurity properties even for an infinite number of simul-
tems of interest (e.g., [19, 35, 36]). taneous invocations of attestation protocols, but with a
LS also shares some features with other logics of proimore abstract model of the TPM's primitivelsS? is de-
grams[6,16,17]. Hoare logic and dynamic logic focus onsigned to be a more general logic with TCG protocols
sequential imperative programs, and do not consider corproviding one set of applications. Lin [22] used a the-
currency, network communication and adversari€®’s orem prover and model finder to analyze the security of
abstract locks are similar to regions that are used to reghe TPM against invalid sequences of API calls.
son about synchronized access to memory in concurrent
separation logic [6]. However, the two primitives differ
in application. Whereas we use locks to enforce integrid ~ Conclusion
of data stored in memory, regions are intended to prevent
race conditions. Another key difference between concurin this paper, we presentéd?® and used it to carry out
rent separation logic ands? is that the former does not a substantial case study of trusted computing attestation
consider network communication. Furthermore, concurprotocols. The design &fS? was conceptually and tech-
rent separation logic and other approaches for verifyingically challenging. Specifically, it was difficult to de-
concurrent systems [21] typically do not consider an adfine a realistic adversary model and formulate sound rea-
versary model. An adversary could be encoded as a regoning principles for dynamically loaded unknown (and
ular program in these approaches, but then proving inuntrusted) code. The proof system was designed to sup-
variants would involve an induction over the steps of theport reasoning at a high level of abstraction. This was
honest parties programs and the attacker. particularly useful in the case studies where the proofs
Prior proposals for reasoning about dynamicallyyielded many insights about the security of trusted com-
loaded code use higher-order extensions of Hoarguting systems.
logic [7, 20,27, 28, 39]. However, they are restricted to In future work, we will build upon this work to model
reasoning about sequential programs only and requirand analyze security properties of web browsers, security
that invariants of code being called be known in the pro-hypervisors and virtual machine monitors. We also plan
gram at the point of the calLS?s method addresses the to develop further principles for modeling and reasoning

16

about security at the level of system interfaces, in partic- [9] Shuyi Chen, Yingyou Wen, and Hong Zhao. For-

ular, to support richer access control models and system

composition and refinement.

Acknowledgments.
Michael Hicks, Jonathan McCune, and the anonymous
reviewers for their helpful comments and suggestions.[

The authors would like to thank

This work was partially supported by the U.S. Army
Research Office contract on Perpetually Available and
Secure Information Systems (DAAD19-02-1-0389) to

CMU’s CyLab, the NSF Science and Technology Cente
TRUST, and the NSF CyberTrust grant “Realizing Veri-

fiable Security Properties on Untrusted Computing Plat-
forms”. Jason Franklin is supported in part by an NSF
Graduate Research Fellowship.

11

(12]

References

[1]

(2]

(3]

Secure virtual machine architecture reference man-
ual. AMD Corp., May 2005.

Intel Trusted Execution Technology: Software De-
velopment Guide. Document Number: 315168-
005, June 2008.

(13]

(14]

Martn Abadi and Ted Wobber. A logical account of
NGSCB. InProceedings of Formal Techniques for
Networked and Distributed Syster2604.

[4] Advanced Micro Devices. AMDG64 virtualization:
Secure virtual machine architecture reference mang1 5]

[5]

[6]

[7]

(8]

ual. AMD Publication no. 33047 rev. 3.01, May
2005.

Torben Brauiner and Valeria de Paiva. Towards con-
structive hybrid logic. IrElectronic Proceedings of
Methods for Modalities 3 (M4M3R003.

[

Stephen Brookes. A semantics for concurrent sep-
aration logic. InProceedings of 15th International
Conference on Concurrency Thepgp04.

6]

(17]

Hongxu Cai, Zhong Shao, and Alexander Vayn-
berg. Certified self-modifying code. lCM SIG-
PLAN Conference on Programming Language De-
sign and Implementatigmpages 66—77, New York,
NY, USA, 2007. ACM.

Ellick M. Chan, Jeffrey C. Carlyle, Francis M.

(18]

David, Reza Farivar, and Roy. H. Campbell. Boot- [19]

Jacker: Compromising computers using forced
restarts. InProceedings of 15th ACM Conference
on Computer and Communications Secyr§08.

17

mal analysis of secure bootstrap in trusted comput-
ing. InProceedings of 4th International Conference
on Autonomic and Trusted ComputjrZ07.

10] Anupam Datta, Ante Derek, John C. Mitchell, and

Dusko Pavlovic. A derivation system and composi-
tional logic for security protocolslournal of Com-
puter Security13(3):423-482, 2005.

Anupam Datta, Ante Derek, John C. Mitchell, and
Arnab Roy. Protocol Composition Logic (PCL).
Electr. Notes Theor. Comput. Scil72:311-358,
2007.

Henry DeYoung, Deepak Garg, and Frank Pfen-
ning. An authorization logic with explicit time. In
Proceedings of the 21st IEEE Computer Security
Foundations Symposium (CSF-21yine 2008.

Nancy Durgin, John C. Mitchell, and Dusko
Pavlovic. A compositional logic for proving secu-
rity properties of protocols.Journal of Computer
Security 11:677-721, 2003.

Scott Garriss, Ramoén Caceres, Stefan Berger,
Reiner Sailer, Leendert van Doorn, and Xiaolan
Zhang. Towards trustworthy kiosk computing. In

Workshop on Mobile Computing Systems and Ap-
plications February 2006.

Sigrid Gurgens, Carsten Rudolph, Dirk Scheuer-
mann, Marion Atts, and Rainer Plaga. Security
evaluation of scenarios based on the TCG’s TPM
specification. InProceedings of 12th European
Symposium On Research In Computer Security
2007.

David Harel, Dexter Kozen, and Jerzy TiuryDy-
namic Logic Foundations of Computing. MIT
Press, 2000.

C. A. R. Hoare. An axiomatic basis for com-
puter programmingCommunications of the ACM
12(10):576-580, 1969.

B. Kauer. OSLO: Improving the security of trusted
computing. InProceedings of the USENIX Security
SymposiumAugust 2007.

Rick Kennell and Leah H. Jamieson. Establishing
the genuinity of remote computer systems Plio-
ceedings of the 2003 USENIX Security Symposium
August 2003.

[20] Neel Krishnaswami. Separation logic for a higher- (HyLo 2006) Electronic Notes in Computer Sci-
order typed language, 2006. In Workshop on Se- ence, August 2006.
mantics, Program Analysis and Computing Envi-

ronments for Memory Management, SPACEQG. [32] John C. Reynolds. Separation logic: A logic for

shared mutable data structures. Rroceeding of

[21] Leslie Lamport. The temporal logic of actions. the 17th Annual IEEE Symposium on Logic in Com-
ACM Transactions on Programming Languages puter Science (LICS)pages 55-74. IEEE Com-
and Systemd.6(3), May 1994. puter Society, 2002.

[22] Amerson H. Lin. Automated analysis of security [33] Arnab Roy, Anupam Datta, Ante Derek, John C.
apis. Master’s thesis, Massachusetts Institute of Mitchell, and Jean-Pierre Seifert. Secrecy analy-

Technology, 2005. sis in protocol composition logic.Formal Logi-
) o cal Methods for System Security and Correctpness
[23] Z. Manna and A. PnueliTemporal Verification of 2008.

Reactive Systems: Safe§pringer-Verlag, 1995.
) . [34] J. Saltzer and M. Schroeder. The protection of in-
[24] Jonathan M. McCune, Bryan Parno, Adrian Perrig, formation in computer systemBroceedings of the

Michael Kj Re_iter, and Hiroshi Isozal_<i._ I_:Iicl_<er: IEEE, 63(9):1278-1308, September 1975.
An execution infrastructure for tcb minimization.

In Proceedings of the ACM European Conference[35] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian
in Computer Systems (EuroSyAjpril 2008. Perrig, Leendert van Doorn, and Pradeep Khosla.
Pioneer: Verifying code integrity and enforcing un-
tampered code execution on legacy platforms. In
Proceedings of ACM Symposium on Operating Sys-

[25] Jon Millen, Joshua Guttman, John Ramsdell, Justin
Sheehy, and Brian Sniffen. Analysis of a measured

launch. Technical report, The MITRE Corporation, tems Principles (SOSPDctober 2005.
2007.
o [36] Arvind Seshadri, Adrian Perrig, Leendert van
[26] Robin Milner, Mads Tofte, and Robert Harpéihe Doorn, and Pradeep Khosla. SWATT: Software-
Definition of Standard MLMIT Press, Cambridge, based attestation for embedded devices. Pta-

MA, USA, 1990. ceedings of the IEEE Symposium on Security and

[27] Aleksandar Nanevski, Greg Morrisett, and Lars Privacy, May 2004.

Birkedal. Hoare type theory, polymorphism and [37] TcG. PC client specific TPM interface specifica-

separation. Journal of Functional Programming tion (TIS). Version 1.2, Revision 1.00, July 2005.
18(5&6):865-911, 2008.

] . [38] Trusted Computing Group (TCG). htt ps:
[28] Zhaozhong Ni and Zhong Shao. Certified assem- / | www. t r ust edconput i nggr oup. or g/ ,

bly programming with embedded code pointers. In 2008.

33rd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languagesages 320-333, [39] Hayo Thielecke. Frame rules from answer types

New York, NY, USA, 2006. ACM. for code pointers. 183rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-

[29] Peter W. O’Hearn, John C Reynolds, and guages pages 309-319, New York, NY, USA,
Hongseok Yang. Local reasoning about programs 2006. ACM.

that alter data structures. IRroceedings of the

15th International Workshop on Computer Science[40] Trusted Computing Group. TCG Spec-
Logic, pages 1-19, London, UK, 2001. Springer- ification Architecture Overview, Specifi-
Verlag. cation Revision 1.4, htt ps:// ww.

) . t rust edconput i nggr oup. or g/ gr oups/
[30] A. Pnue!l. The temporal logic of programs. In TCG.1.4_Archi t ect ur e Over vi ew. pdf
Proceedings of 19th Annual Symposium on Foun- August 2007.

dations on Computer Scienck977.

[31] Jason Reed. Hybridizing a logical framework.
In International Workshop on Hybrid Logic 2006

18

Expressions e
Machine m
Location |
Action a
Program PQ
Thread id 1,J
Thread identifier n
Thread T,S
Store o
Lock map

I
Configuration C

X XX X3
<>

(e€)
SIG«{lel}
ENGc{|el}
SYMENG {|e|}
H(e)

P

read |
write l,e
extend |,e
lock |
unlock |
send €
receive
signeK™1
verify e K
enc e K
dec e K1
symenc €K
symdec e K
hashe
eval f,e
proji €
projs €
match e €
new

Number

Agent

Key

Inverse of keyK

Variable

Pair

Valuee signed by private kel
Valuee encrypted by public kel
Valuee encrypted by symmetric key
Hash ofe

Program reified as data

Read location

Write e to locationl

Extend PCR with e

Obtain write lock on locatioth
Release write lock on locatidn
Sende as a message

Receive a message

Signe with private keyK —1

Check thae = SIG¢ 1 {|¢|}

Encrypte with public keyK
Decrypte with private keyK —1
Encrypte with symmetric keyK
Decrypte with symmetric keyK
Hash the expression

Evaluate functiorf with argumenie
Project the 1st component of a pair
Project the 2nd component of a pair
Check thae=¢

Generate a new nonce

-| jump e| late_launch | Xx:=a;P

(X,n,m)

[Pl

Locations— Expressions

Locations— (Thread ids)U {_}

1,0,Tg|...|[Th

Figure 5: Syntax of the programming language

A Description of LS

This appendix summarizdsS?’s programming language and logic discussed in Section@uding extensions to
trusted computing discussed in Section 3. We start by eddingrthe programming language and its semantics, and

follow with the logic, its semantics, and proof system. Weadade with the soundness theorem.

A.1 Programming Language

Our language for specifying systems descends from the sfporeling language in PCL and extends the latter with

constructs for reading, writing, and protecting memoryshntax is summarized in Figure 5.

We assume an algebra of expressions (dengtelxpressions may be numbersidentities of agents (principals)

19

X, keysK, variablesx, pairs(e &), signatures using private ke G {|e|} (denoting the signature aamade using
the keyK), asymmetric key encryptior&NCc {|€]}, symmetric key encryptior8Y MENG {|e[}, hashe#i(e), or code
reified as dat®. Expressions are assumed to be typed (for e.g., a pair caistirggdished from a number), but we
elide the details of the types. We assume that the expressitay be recovered from the signatB885« {|e|} if the
verification key corresponding 1€ is known. We also assume that hashes are confidentialitgqiag. If needed
this may be implemented by combining hashes with encryption

Agents and keys. Agents, denote&.Y, are principals associated with a system (e.g., users)s Keydenoted by
the letterk. The inverse of keK is denoted byK ~1. As a convention, we use the notatikn? for private keys and
the notatiorK for public keys. IfK is a private key, we writ& to denote the agent who owns it.Kfis a public key,

we writeK to denote the agent who owns the corresponding private kegeBnition,K = K-1.

Machines and locations. Machines (denotenh) are the sites of program execution, and the sites that boltibns

of memory that are classified into several mutually exclisiategories: RAM, disk, PCRs (also called static PCRs),
and dynamic PCRs. Locations are either denoted by the gda#arl, or explicitly by writing the machine, category,
and the address of the location, separated by dots. For éeamBAM.sdenotes theth RAM location on machinen.
RAM is replaced bylisk, pcr, d pcrto represent locations on disk, in static PCRs, and in dyo&@iRs. We also use
the wildcard« to represent an arbitrary address or category. For exampie; represents any location on machine
m. | denotes @etof locationsJocsm) denotes the set of all locations on machimeandlocs(m, disk) denotes the set

of all disk locations on machirma. The functionmachingl) returns the machine on which locatibexists.

Actions and programs. Actions, denoted, perform specific functions. Allowed actions with theirditive mean-
ings are listed in Figure 5. Salient among these are actionsefding and writing locationséad andwrite),
obtaining and releasing locks on locations €k andunlock), and extending values into PCRsxfend). Actions
that change locations may apply to only certain kinds oftiocas. For exampleyrite only applies to RAM and
disk locations, whereasctend only applies to PCRs. (Such restriction are captured in ffegational semantics of
the language.) The actiosend andreceive perform network communication, which is undirected; anrespion
sent by any program may be received by any other programoietial f,e evaluates any side-effect free function
f with argument and returns the result.

If an action (such as signature verification) fails, we asstinat the thread executing the action blocks forever. A
successfully executed action always returns an expresBimnexample, the actiofieceive returns the expression
obtained by synchronizing with another thread, and th@aetrify returns the message contained in the signature
it verifies. The expressions returned by some actionsuikete , send , andextend are unimportant. We assume
that these actions always return the constant 0.

A program (denote®, Q) either terminates), or ends by dynamically branching to another program wicosie
is contained in the expressi@(jump €), enters a late launch sessidrae launch), or executes an acticaand
continues with the programa (x := a;P). In the latter casex is a name for the expression returned by the aciion
that may be used to refer to the expressioR.irThe scope ok is P. Variables may ber-varied. In this sense, our
treatment of variables is functional, not imperative. WéeaWP(e/x) to denote the prograf with e substituted fox.
This substitution avoids capture of bound variables thhaagit renaming.

Threads and Thread ids. A threadT is a sequentially executing program. Formally, it is a paittaining a program
and an identityl, written [P];. The identity (id)! is a three tupldX,n,m). X is the agent who owns the threal,

is a unique identifier for the thread (akin to a process idy, mris the machine on which the thread executes. For
| = (X,n,m), we defind = X andmachinél) = m.

Configurations. A configuratiorC is the collection of all threads executing concurrently bmachines. Concurrent
threads are separated by the symbathich is assumed to be commutative and associative. Irtiaddo threads,

a configuration also containsséore g, which is a map from the set of all locations to the values thay contain,
and alock mapi that maps each location to the id of the thread that has a ledkeon it. If no thread has a lock on
locationl, theni (1) = _. We often writec |l — €] to denote the map augmented with the mapping bfoe. 1]l — 1]

is defined similarly. We assume implicitly that all threadsai configuration are closed, i.e., they do not contain any
free variables.

20

(sign) [x:=signeK L Pl — [P(SIG 1{lel}/x))

(verify) [x:=verify SIGc1{lel},K; Pli — [P(e/x)]

(enc) [xi=encek; P — [PENG{e]}/x)]

(dec) [x:=dec ENGc{lel}.K 5 Pl — [P(e/X)]

(symenc) [x:=symenc eK; P]; — [P(SYMENG{|e]}/x)];

(symdec) [x:=symdec SYMENG{el},K; P, — [P(e/X)]

(hash) [x:=hash e P); — [P(H(e)/x)],

(eval) [x:=eval f,e P} — [P(f(e)/X)]

(proj1) [x:=proji (e1,&); Pi — [P(er/X)];

(proj2) [x:=projz (e1,&); Pli — [P(e2/X)]i

(match) [x:=matchee P}, — [P(0/X)]

(new) [X:=new; P} — [P(n/X)] (n fresh)
(read) o,[x:=readl; P}, — 0,[P(e/X)] (a(l)y=e)
(write) 1,0l —»€],[x:=writel,e P, — 1,0][l — €, [P(0/X)]

(machingl) =m, (I = m.RAM.x or| = m.diskx), 1 () € {I,_})

(extend) 1,0(l —sedey,...,en)],[x:=extendl,e P} — 1,0[l — sedey,...,en,e)],[P(0/X)]
(machingl) =m, (I =m.pcr.x orl =m.dpcrx), (1) € {I,_})

(lock*) 11— J,[x:=1lockl; Plj — ([l —1],[P(0/x)]
(unlock) 1]l — 1], [x:=unlock|l; P} — ([l — _],[P(0/X)]

(comm) [x:=sende P|; |[y:=receive; Qy — [P(O/X)]i | [Q(e/y)lr

(reset) 1,0,T1]...[Th — t1[locgm) — _],o[(locsm) —locs(m,disk)) +— sinit], (T ...|Th) — {m} | [SRT Mm)],
(I = (m,n,m), n fresh
(ump) [jumpP)i — [Pl;

(launch®*) 1,0,[late_launch]; — ([locs(m,dpcr) — J], ag[locs(m,d pcr) — dinit], [LL(m)];
(machingl) =m, J = (m,n,m), n fresh
* Side Conditionnmachingl) = machin€l)

Figure 6: Reduction Rules of the Process Calculus

A.2 Operational Semantics of the Language

The operational semantics of the programming languagesdireed by reduction rules on configurations, summarized
in Figure 6. In each rule, we include only the relevant paftsanfigurations. Parts not shown in a rule remain
unchanged in the reduction.

Rules (sign)—(new) represent internal reductions of aatthreln the rule (new), the valueis a fresh symbolic
constant that has never occurred in the history of the coraigun. This rule is used for generating nonces. The rules
(read) allows reading of locations. The rules (write) anddid) allow modification of RAM and disk, and PCRs
respectively. In each case, the location being modified reiisér be locked by the thread executing the action, or
be unlocked (enforced by the side conditigh) € {I,_}). Locks are obtained and released using the rules (lock) and
(unlock). Rule (comm) allows communication between any tiweads.

Rule (reset) spontaneously resets any machin€eThis rule can “fire” at any time. As a result of the reset, all
locations orm are set to the special symbolic valsiait (except disk locations, which don’t change), all locksrmon
are freed, and a new thre&ds created to boot the machine using the prog8RT Mm) from Figure 3. Rule (jump)
dynamically branches to prograin the thread. Since no other parts of the configuration are affedtedtains all
its locks. Rule (llaunch) ends threathy starting a late launch session. As a result, a new thiea@cuting program
LL(m) from Figure 4 is created. All locks on dynamic PCRs on machirsge given tal, and all dynamic PCRs on

21

Action Predicates R Read(l,l,e) read | getting valuee

Write(1,1,€) writel,e

Send(l,e) send e

Extend(l,1,€) extendl,e

Lock(l,1) lock |

Unlock(l,1) unlock |

Receive(l,e) receive receivinge
Sign(l,e K) sign e K

Verify(I, e K) verify SIG¢-1{|€},K
Encrypt(l,e K) enc e, K
Decrypt(l,e,K) dec ENG¢-1{|ef},K

|

|

\

|

|

|

|

\

|

|

| SymEncrypt(l,e,K) symenc e K

| SymDecrypt(l,e,K) symdec SYMENG{|e[},K
| Hash(l,e) hash e
|
|
\
\
|
\
\
|
\
\

Eval(l, f,e €) eval f,eproducinge
Match(l,e €) match e €
New(l,n) new generating nonce
General PredicatesM Mem(l,e) Locationl containede
IsLocked(l, 1) Threadl had a lock ori
Reset(m,I) Machinemwas reset, booting in thredd
Jump(l,e) Thread ended withjump e

LateLaunch(m,J) late_launch on machinem producing thread
Contains(e,€)

e=¢|t>t

Honest (X, P)

Formulas AB RIM|T|L|AAB|AVB|
ADB|-A|VxA|IXA|A@t
Defined Formulas Aoni = Vit ((tei)D(A@t))
Reset(m) = 3l. Reset(m,I)
LateLaunch(m) = 3I. LateLaunch(m,1)
Jump(l) = de Jump(l,e)
Eval(l, f) = Jeé€.Eval(l, f,e€)
Modal Formulas J = [Pﬁb’teA | [aﬁ*f;(teA

Figure 7: Syntax of &

mare set to the symbolic valubnit, which is distinct fronsinit.

Traces and Timed Traces. A trace is a sequence of configurati@@s— ... — C, such thatCi 1 may be obtained
from C; by one of the reduction rules. #med trace(denoted?) is a trace in which éime pointhas been associated
with each reduction. Time points are drawn from any totaligeved set with a least elemento and a greatest

elemento. We write a timed trace &5 b, C... b, Cn. t1, ..., ty represent points of time at which the reductions
happened. We require that< ... < t,, i.e., the time points be monotonically increasing. It istased that the effects
of a reduction, such as changes to the store or the lock mape atto effect immediately, i.e., at the time that the
reduction happens.

A.3 Syntax of the Logic

The logicLS? is used to reason about properties of traces obtained frarfigewations. Its syntax is summarized
in Figure 7. Predicates of the logic are divided imtction predicatesand general predicates Action predicates
reason about actions executed by specific threads. Theneiaation predicate for each action in the programming
language, and all these predicates take the id of the exgctitiead as an argument. Their intuitive meanings are
listed in Figure 7. General predicates capture propertieied to specific threadd/em(l,e) andlsLocked(l,1) hold
whenever locatiorh contains expressioa and whenever locatiohis locked by thread, respectively.Reset(m,|)

22

Mayderive(ey, e %) Mayderive(ep, e, %) Mayderive(e, €,.%)
Mayderive(e e, %) Mayderive((e1,€2),€,.%) Mayderive((e1,€2),€,.%) Mayderive(SIG« {|e]}, €,.%)

Mayderive(e,€,.7)
Mayderive(SIG¢{|e|},K™2,.¢) Mayderive(ENG¢ {|el}, €,.# U{K~1}) Mayderive(ENGc{le]}, K, %)

Mayderive(e,€,.%)
Mayderive(SY MENG {|e]},€,.# U {K})

(There are no additional rules fdtayderive(e,€,.7") whene=H(¢€"))
Figure 8: Semantic definition of predicdtayderive

holds on a trace at any time when machmevas reset, producing threddo reboot the machinelump(l,e) holds
whenever threatl dynamically branches to code represented by the expressianelLaunch(m,J) holds whenever
anythread on machinm initiates a late launch session creating thr@ad execute the codeL(m). Contains(e,€)
holds if € can be derived using cryptographic and projection operatioome. This is formalized using a semantic
model of containment, described in the next sectidnnest(X, P) means two things: (a) Ageix does not leak its
private key, (so its signatures are always authentic), Bjdl(threads owned b} run one of the programs in the set
P. We call an agenX honestif there is a set of progrants(possibly non-finite) such thatonest(X, P).

Predicates can be combined using the usual logical conesdif classical logic, and the special conneci\@t,
which means tha# holds at timet. There are also a number défined formulashat we use often. These are also
listed in the figure.

In addition to the usual formula, LS? includes two types ofnodal formulagor reasoning about programs. The
formula[P]tlb’teA means that if the thread with idexecutes all actions iR in the time intervalty, te] (and no others),
then formulaA holds. The related formul@]tﬁieA means that if threatl executes only the acticain the interval
(tp, te], returning the result, thenA holds. As a general rulé,, te, andx are always parameters when we reason in the
proof system. The formulA cannot mention variables boundfn It may however, mentioty, te, and any variables
free inP or in a. In the modal formulda]®®*A, A may mentionx also. This allows us to incorporate the result of

1,x
executing an action into logical reasoning.

A.4 Semantics of the Logic

The formulas ofLS? are interpreted over timed traces. We assume a priori theeipels that are honest, and
the programs they execute. Before defining the formal sdosanive define an auxiliary semantic predicate
Mayderive(e,€,.%"), which formally captures the intuition thatmay be used to derive in the Dolev-Yao model
if all the keys in the set?” are known. This predicate is defined inductively by the ruteBigure 8. Prominent
among the rules is the fact thisltayderive(H (), €,.%¢") cannot be established unlegs= H(e). This is based on our
assumption that the hash functibnis confidentiality preserving.

The semantic judgment for formulas is written =! A. It means thaf holds in the traceZ at timet. Itis defined
by induction on the structure &
Action Predicates. If Ais an action predicate7 = A holds if a reduction corresponding #ooccurred at time in
7. For example,

7 = Read(l,1,e) if threadl executed actiomead | at timet, readinge from locationl.
T E' Extend(l,1,e) if threadl executed actioextend |, e at timet.
T [Lock(l,1) if threadl executed actiohock | at timet.

General Predicates.

23

7 E' Mem(l,e) if the locationl containece at timet, i.e., at timet, o(l) = e.
T E'lIsLocked(l, 1) if at timet, 1(1) = 1.

T [Contains(g,€) if Mayderive(e, €, pubg by the rules in Figure 8, whergubsis the set of public keys of all
agents.

7 ' Reset(m, 1) if at timet, a (reset) reduction on machineoccurs, and the new thread created hds id
T E' Jump(l,P) if at timet, thread reducesjump P.

T ' LateLaunch(m,J) if at timet, some thread on machimereduces the actiobate_launch producing the
new threadl.

7 E'e= € if eand€ are syntactically equal.

T E'ty > 1, if 4 >ty in the total order on time points.

7 = Honest(X, P) if it is assumed thaX is honest, and that its threads execute prograrfsanly.
Formulas. Formulas are interpreted in a standard way. The only newisdbat forA @t.

TET.

T L.

T E'AABIf 7 E'Aand7 E' B.

T E'AVBIf 7 E'Aor 7 ='B.

T E'ADBIf 7 Aor 7 EB.

T E Al 7 E A

T =t vx Alif for each ground instanceof x, 7 =t A(v/x).

7 = 3x Alif there exists a ground instaneef x such that7 =t A(v/x).

T EA@YIf 7 EYA

It should be observed that by definition the relatign=' A @1’ is independent af. This is consistent with semantics
of other hybrid logics (e.g., [5]).

Modal Formulas. For modal formulas, the semantic judgments are writiep= [P]}b’teA and.7 & [a]}‘f;(teA. As op-
posed to the judgment ' A, these judgments are not relativized to time because modalilas express properties
of programs and actions, and are independent of time. iveljit 7 = [P]t,b’teA holds if in the trace7, either the
thread with idl does not execute the sequence of act®nsthe interval(ty, te] or A holds. To state this formally, we
define a notion of matching between a timed tr&and a modal prefix.

Matching. We say that a timed trac& matches the modal pref[m]tb’te with substitution8 producing valuee,

1,x
written 7 >> [a]%* | € if both the following hold:

- Attimety, trace7 contains the threaly := af; P6],. Note that because actions such as jump change the program
of a thread, it is possible that at timgitself there was an action that changed the prograhte{y := af;P6).

- Attimete, | executes the actiomd, producing value for y.
Similarly, we say that a timed trac& matches the modal pref[i?]fb’te with substitutiond, written .7 > [P]}b’te | O if

one the following holds:

24

- P=-, and eithett does not exist in the trace, or in the inter(glte] there is no reduction on threadthere may,
however, be a (reset) on the machine containing thigadlis arbitrary in this case.

- P = jump e, at timet,, the trace contains the threfjhmp €6];, and during the intervdly,te], | performs at least
one reduction (namely, by the (jump) rule, loading progetih

- P=1late_launch, at timety, the trace contains the thredthte_launch ||, and during the interva(ty,te], |
performs exactly one reduction (namely, by the (llaunckg,rstarting a new protected session).

- P = (x:=a;P) and there is a timéy, € (t,te] and a ground value such that7 > [a]%" | 6 and 7 >
[Pl | 6,e/x.

Informally, .7 > [P]t,b’te | 6, if at timety,, .7 contains[Py6], P is a prefix of the action sequence Rf and during
the interval(ty, te], exactly this prefiXPO reduces in threatl Given this definition of matching, we define semantic
satisfaction for modal formulas as follows.

T = [P]t,b’teA if for each@, and all ground time pointst] andt;, .7 > [P]:‘/”t'la | 6 implies.7 ' AG(t] /tp) (ta/te).

T E [a]f‘f;(teA if for each 6, all ground time points, t/ andtj, and each ground, .7 >> [a]f%'gé | 6 implies
T AB () /1) (t/te) (€/%).

A.5 Proof System forLS?

The proof system ofS? consists of several rules and axiomsg|fs a formula (modal or otherwise), we writed to
mean thatp is provable using the proof system. For convenience, we tisiaded the proof system into several parts.
Rules of inference are shown in Figure 9. Axioms are showngares 10, 11 and 12, classified (roughly) by their use
in reasoning. In addition to these rules and axioms, we assufull axiomatization of first-order logic, and axioms
that make the set of time points a total order. We also asshatestjuality of expressions is an equivalence relation.
Further, we assume some axioms for the predi€atetains(e, €), often relying on types of terms (for e.g.,dfis a
number, therContains(e,€) D e = €). These straightforward axioms are elided here.

Rule (NecAt) states that A is provable, then so i& @t. This rule is akin to the so called “necessitation” rule from
standard modal logics. The basic rule used for reasoningtabodal formulas is (Seq). If we know that the program
x:= a;P was executed in the intervél, te], then there must be a time poiptat which actiora reduced. The (Seq)
rule lets us reason aboatn the interval(ty, tm], about the remaining prograhin the interval(tm, te], and combine
this information. The side conditiony{ fresh) means that, should not appear free iy, andA, and that it should
be distinct from bothy, andte. Rules (Conjl)—(Nec?2) allow us to incorporate reasonirmuébrdinary formulas into
modal formulas.

IS(P) in the rule (Honesty) denotes programs that are prefixesagrpms in the sef. Formally,I1S(-) = {-},
[S(jump €) = {-, jump €}, IS(1late_launch) = {-,late.launch }, ISX:=a;P) = {-}U{x:=a,Q | Q € IS(P)},
andIS(Py,...,P,) = {-}UIS(Py)...1S(R,). IS(P) always includes the empty programThe rule (Honesty) may be
interpreted as follows: if we know that threhi$ executing one of the programs in the eéassumptiorh-lonest(f, I5)),
and on all prefixes of programs in this set some propgittplds (premise), then properfymust hold (conclusion).

The (Jump) rule is used for reasoning about programs thatyurssemic branching. It means that if a propektiolds
whenever any initial prefix of prograf executes (premise), afilis called at time (assumptionump(l,P) @t1),
thenA must hold at all points of tim# greater tham. Rules (Reset) and (LateLaunch) are similar, except thiigige
cases the programs being executed are fis&IIIMm) andLL(m) respectively).

Figure 10 lists those axioms &fS* that are used for reasoning about straightline code andefsaning about
network primitives and cryptography. Axioms (K) and (Disfate basic properties of the connective @. These
axioms, together with the rule (NecAt) imply thg& A B) @t = (A@t) A (B@t) and thaf AV B) @t = (A@t) v
(B @t), whereA = B denotes logical equivalence definedas> B) A (B D A). We use the notatioR(l,x,a) as an
abbreviation for the action predicate corresponding t@tttenx := a, performed by thread with il For example, if
a=receive, thenR(l,x,a) = Receive(l,X), and ifa= send e, thenR(l,x,a) = Send(l,). As a syntactic convention,

25

FA FlaPm AL FPI™ Ay (tmfresh)

———NecAt
FA@t [x:= & PJP" 3tm.3x. ((tp < tm < te) A AL A Ag)
L [P]tb"te A - [P]tb"te A . = [a]f?’te A - [aﬁt?,te A . - [P]tb"te ALD A - [P]tb"te A
! Wt ! Conjl X i X__“Conj2 ! ot ! Impl
F [Ph AL N A F [a],_yx AL ANAy F [Ph Ay
FlatE AL DA APl A o2 A et PR ecr TQEISP). PP At
Al A [Pl A el A F Honest (I, P) D Vte. A(—0,te)
vQ € IS(SRTMM)). + [Q]i*" A(t, te) Reset
F Reset(m,1) @t D Wt'. (t' >t) D A(t,t')
ForeveryQinIS(P): + [Qﬁb’te A(tp, te) (tp, te fresh constants Lmp

FJump(1,P) @t D W', (' >t) D A(t,t)

¥QEIS(LL(M). F Q] Alty,te)

LateLaunch
F LateLaunch(m,1) @t D Wt'. (' >t) D A(t,t)

Figure 9: Proof system rules

we assume that binds tighter than. Axioms (Actl)—(LL1) are used to reason about specific astiof threads. For
example, the axiom (Act) states that if thrdagkecutes the acticmat timete, and no other action in the intervj, te]
returning valuex, thenR(l,x,a) holds at timet, and thatR(l,x,a) does not hold at any other point in the remaining
interval (tp, te].

Axioms (Verify)—(Proj2) describe properties of valuesureied by actions specific actions. For example, if the action
sig e K~ returns value, thenx must equabIG-1{|€]} (axiom (Sign)). Axiom (VER) captures the unforgeability
of signatures. If a threatverifies a signature with public key, and the owneK of the corresponding private key
is honest, then some thre#ldof K must have either sent out the signature in a message in theopagritten the
signature to a memory location in the past. Axiom (NEW) cegduthe freshness of nonces: if thrdagenerates
noncen, andn appears in an action, then the latter must have happeftexdhe former.

Figure 11 shows axioms that are used to reason about valaégmed in locations. Axiom (READ) says that if
any thread reads a valwsfrom locationl at timet, thenl must have contained valueat timet. (Mem=) means
that the same location cannot contain two different exjpoessat the same time. (MemW)—(MemE) capture the
effect of specific actions on locations. (MemIR)—(MemIdR) ased to reason that a locatibcontains the same
value throughout an interval In each axiom we assume enough conditions to ensure thatithao possibility of
modifying |l during the interval. For example, in axiom (MemIR), that applies to location®R&M, we assume that
some thread which does not write tb duringi has a lock on the location, and that the machine on whislsituated
is not reset during For locations of disk (axiom (MemID)), the condition thaétmachine is not reset is unnecessary.
In case of PCRs (axioms (MemlIP) and (MemldP)), writing islaepd by extension, since PCRs expose a different
interface.

Axioms (LockLL) and (LockldP) capture in the logic how loakey be acquired. If a thredduccessfully executes
actionlock | at timet, locationl is locked forl at timet (axiom (LockL)). When a late launch happens, all dynamic
PCRs are automatically locked for the secure thread tha¢&ted (axiom (LockLL)). Axioms (Lockl) and (LockIdP)
are used for reasoning about invariance of locks on locatidhese are similar to the axioms for invariance of memory.

Figure 12 lists axioms that are peculiar to PCR locationsstvd these axioms were discussed in Section 3. The
axioms (PCRC) and (dPCRC) mean that it is impossible to mrawsignature from the contents of any PCR. This
follows from the fact that PCRs either contain hashes orteons.

26

(K) F((ADB)@t) > ((A@t) D> (B@Y))
AVB)@

(Disj) F((AvB)@t) > (A@t) v (B@t))
(Ea) F((e=€) AA(e/x) D A(€/x)
(Actl) F (a3 (R(1,x.a) @te) A (R(1,x.a) on (t,te))
(Act2) - [a}tb o =R(I,X,d) on (tp,te] if x#X ora#ad
(Act3) Ha}tb‘e (~Jump(1,€) on (tp,te]) A (—Reset(machingl)) on (tp, te])
(ActN1) Hibteﬁ (I,e,a) on (tp, te]
(ActN2) [Pt ﬁJump(I e) on (tp,te]
N

(Jumpl) jump e]lb 3t t € (ty,te] A (Jump(l,€) @t) A (—=Jump(l) on (tp,t)) A (—Reset(m) on (tp,t]) A

(—-R(l,e1,a1) on (tp,t]) A... A (=R(l,en,an) on (tp,t])

(LL1) - [late_launch |* 3t.t € (ty,te A (3J. LateLaunch(machingl),J) @t) A
(=Jump(l) on (tp,t]) A (—Reset(m) on (tp,t]) A
(=R(l,e1,a1) on (tp,t]) A ... A (=R(l,en,an) on (tp,])

(Verify) F [verify e K] e= SIG¢ 1 {|x]}

(Sign) - [sign e K 1P x = SIG¢ +{lef}

(Enc) - [enc e K] x= ENGc {|e]}

(Dec) F [dec e K™ }tb e o — ENGc {|X[}

(SymEnc) F [symenc e, K]tb te x = SYMENG {|e]}

(SymDec) F [symdec e, K]tb oo SYMENG {|x|}

(Hash) F [hashé]’® x=H(e)

(Eval) F [eval f e]t*f e x=f(e)

(Proj1) F [proj: €% le 3¢/ o= (x,¢&)

(Proj2) F [projs e]tb o 3¢. e= (€,X)

(Match) + (Match(l,e,¢) @t) De=¢

(VER) - ((Verify(l,e,K) @t) A (I # K) A Honest(K, P))
S (31.3t.3¢. (' <t) A (I” =K) A Contains(€, SIG¢-1{|e]})

A ((Send(l’,€

)

)

t' <t) A (17

y@t’) vl (erte(l 1. €) @t')))
(NEW) F ((New(l,n) @t) A (

R(lI’,ea) @t')) D (t' > 1) (nea)

Figure 10: Proof system axioms for reasoning about strightode and network primitives

A.6 Soundness

Lemma 1 (Prefix Matching) Let.7 be a trace that contains the thre@élf], attime t, (where P is a program possibly
containing free variables, anfl is a substitution that grounds all its free variables). THenany t > t,, there is a
Q€ IS(P) such that7 > [Q[PP"* | 6.

Proof. We prove this theorem by inducting @nthe number of reductions (i) of the thread in the interval(ty, te].

Casen = 0. Then the threatlperforms no reduction in the intervj,te]. By definition of matching,7 > [~]t,b‘te | 6.
Hence we may choos@ = - in this case. Note thate 1S(P) for anyP.

Casen=m+1, m> 0. Since thread performs at least one reduction in the inter{tglte], let the time at which
performs its first reduction aftéy bet,. We now analyze cases on the rule used for the first reductibafterty:

Subcase(jump). If the first reduction il afterty, is due to rule (jump), it must be the case tRat jump e, and
P6 = jump ef. By definition of matching, it follows thatZ >> [jump e]tb *e | §. Thus we may choos® = jump e,

27

(READ) Read(l,],€) @t) O (Mem(l,e) @1)

= (
(Mem=) F ((Mem(l,e) @t) A (Mem(l,€) @t)) De=¢
(MemW) + (Write(l,l,e) @t) D (Mem(l,e) @1)
(MemR) + (Reset(m,I) @t) D (Mem(l,sinit) @t1) (I =m.x.x, | # mdisksx)
(MemLL) F+ (LateLaunch(m,l) @t) D (Mem(m.dpcrk,dinit) @t)

(MemE) + ((Extend(l,l,e) @t) A (Mem(l,sede,...,en)) on [t',t)) A (' <t))
D (Mem(l,sedey,...,en,€)) @t)

(MemIR) F ((Mem(mRAMK,e) @tp) A (IsLocked(m.RAMK,I) on i)
A (V€. =Write(I,m.RAMK,€) on i) A (—=Reset(m) on i))
O (Mem(m.RAMK,€) on i) (i = (tp,te) OFi = (tp,te])

(MemID) + ((Mem(m.diskk,e) @tp) A (IsLocked(m.diskk,l) oni)
A (V€. =Write(l,m.diskk, &) oni))
D (Mem(m.diskk,e) oni) (i = (tp,te) OFi = (tp,te])

(MemlIP) ((Mem(m.pcrk,e) @tp) A (IsLocked(m.pcrk,1) oni)
A (V€. —Extend(I,m.l,€) oni) A (=Reset(m) oni))
D (Mem(m.pcrk,e) on i) (i = (tp,te) Ori = (tp,te])

(MemldP) F ((Mem(m.dpcrk,e) @ty) A (IsLocked(m.dpcrk,1) on i)
A (V€. =Extend(l,m.dpcrk,€) oni) A (—Reset(m) on i)
A (—LateLaunch(m) oni))
D (Mem(m.dpcrk,e) on i) (i = (tp,te) Ori = (tp, te])

(LockL) F (Lock(l,l) @t) D (IsLocked(l,1) @t)
(LockLL) + (LateLaunch(m,l) @t) D (IsLocked(m.d pcrk,|) @t)

(Lockl) F ((IsLocked(l,1) @tp) A (=Unlock(l,I) on i)
A (—Reset(m) oni)) (i = (tp,te) Ori = (tp, te],
D (IsLocked(l, 1) oni) I =m.x.x, | #mdpcrx)

(LockldP) t ((IsLocked(m.dpcrk,1) @ty) A (wUnlock(l,m.d pctk) on i)

A (—Reset(m) on i) A (—LateLaunch(m)oni))
D (IsLocked(m.dpcrk,1) oni) (i = (tp,te) Ori = (tp, te])

Figure 11: Proof system axioms for reasoning about memashitamprotection

which is indeed in the sé8(P) sinceP = jump e.

Subcasdllaunch). If the first reduction ih afterty, is due to rule (llaunch), it must be the case that 1ate_launch,
andP@ = late_launch 6. By definition of matching, it follows thaZ > [late_launch]}b’te | 6. Thus we may
chooseQ = late_launch, which is indeed in the séS(P) sinceP = late_launch.

Subcase(any action rule, i.e., any of the rules from (sign)—(comnij)the first reduction inl afterty, is due to an
action, it must be the case tHat= (x:= a;P’), andPO = (x := af;P’'68). Further, this first reduction must produce a
value, saye, and by our assumption it occurs at titge By definition of matching,

T > [alpim | 6 (A1)

Further as a result of the reductioff, contains the threafP’6(e/x)]; at timety. In the interval(tm,te], this thread
performs exactlynreductions, which is less than Hence by the induction hypothesis, there is a prog@am | S(P’)

28

(PCRC) F (Mem(m.pcrk,e) @t) > —Contains(e,SIG{|€|})

(PCR1) F (Mem(m.pcrk,sedsinit,e;,...,en)) @t)
O (3. (t' <t) A (Mem(m.pcrk,sedsinit,er,...,e,—1)) @t') A (—-Reset(m) on (t',t])) (n>1)

(PCR2) F (Mem(m.pcrk,sinit) @t) D (3t". (t’ <t) A 3J. (Reset(m,J) @t') A (—Reset(m) on (t',t]))

(PCR=) F ((Mem(m.pecrk,sedsinit,ey,....en)) @t) A (Mem(m.perk sedsinit,€),....€,,...)) @t')
A (t' >1t) A (—Reset(m) on [t,t']))
D((er=¢€)n...A(en=¢))

(dPCRC) F (Mem(m.dpcrk,e) @t) D ~Contains(e,SIG{|€[})

(dPCR1) F (Mem(m.dpcrk,seddinit,e;,...,ey)) @t)
O (3. (t' <t) A (Mem(m.dpcrk,seddinit, ey, ...,en_1)) @t')
A (—=Reset(m) on (t',t]) A (=LateLaunch(m) on (t',t])) (n>1)

(dPCR2) F (Mem(m.dpcrk,dinit) @t)
O (3. (t' <t) AJJ. (LateLaunch(m,J) @t')
A (—Reset(m) on (t/,t]) A (=LateLaunch(m) on (t',t]))

(dPCR=) F ((Mem(m.dpcrk,seddinit,eq,...,en)) @t) A (Mem(m.dpcrk,seddinit, €y, ..., €,,...)) @t")

A (t' >t) A (—Reset(m) on [t,t']) A (—LateLaunch(m) on [t,t]))
S =e)n...Alen=e)

Figure 12: Proof system axioms for reasoning about PCRs

such that
7> [Q]™| 6,e/x (A2)
Now observe two facts:
1. (x:=aQ) elIS(x:=aP) (since@ € IS(P"))
2. 7> [x:=aqQ|r"| 8o (from A.1 and A.2)

From (1) and (2) it follows tha® = (x:= a; Q') satisfies the requirements of the statement of the theorem. [

Statement of Soundness. Let " denote a set of non-modal formulas. We wiite ¢ to mean that there is a proof
of ¢ in the proof system of &, assuming that each assumptionliris provable. We definé.7 |= A) to mean
(vt. 7 ='A), (7 ETN) tomeanVBeT. 7 =B), (T =A)to meanV.7. (7 =) implies (7 E A)), and(T = J)
to mean(V7. (7 =T) implies(.7 £ J)).

The soundness theorem o8 may be stated as follows:

Theorem 5(Soundness)For ¢ =Aor J,ifl" F ¢ thenll = ¢.
Proof of soundness. In proving the soundness theorem, we make the followingraptons about traces.

1. In the starting configuration of any trace, expressiogeesi by honest agents do not exist in threads of other
agents, nor in memory locations. This assumption is needprbive the soundness of axiom (VER).

2. In the starting configuration of any trace, all PCRs contailues they cannot otherwise contain, i.e., values
different fromsinit, dinit, and hashes. This assumption is needed to prove soundreessios (PCR1), (PCR2),
(dPCR1), and (dPCR2).

29

To prove soundness, we assufme ¢, pick an arbitrary timed trace”, assume tha? =T, and show that” = ¢.
The proof proceeds by induction on the assumed derivatidn-od in LS?’s proof system. We case analyze the last
rule in the derivation, showing below some of the repredimetaases.

Case (HYP).This is the case where - A becauséA € I'. Since we have assumed =, andA € I, we have
7 = Aby definition.
Case (NecAt).

FA NecAt
FAOt

We need to show? = A @t, i.e., for any time’, 7 = A @t. By definition of =, it suffices to show tha®Z |=! A.
By the i.h.,.7 =" Afor eacht”. In particular,7 =t A, as required.
Case (Seq).
Flam AL F[P™e Ay (tmfresh)
F X =& PP 3tm.3x. ((th < tm <te) A Ay A Ap)

Seq

Suppose for some ground time poitftandty, .7 > [x:=a; P]t,*'”té | 6. By definition of matching, there is an expression
eand a time/, € (t{,tz] such that the following hold.

1.7 >&%" |8
2. > [P]f’/“’té | 6,e/x

From i.h. on the first premise and (1) we obtain that for ahy.7 = A16(t] /tp) (t/tm)(€/X). From i.h.
on the second premise and from (2) we obtain that for €#ny7 = As8(e/x)(t},/tm)(ti/te). Further since
ty ¢ A» and te ¢ A; (due to syntactic restrictions on modal formulas), we abthy definition of = that
T = (AL A A2)B(e/X) (Y /to) (th/tm) (t4/te). This immediately implies that7 = (tm.3x. ((tp < tm < te) A

AL A A2))B(t] /tp)(te/te). This is what we wanted to show.

Case (Conjl). "y "y
F [P]Pe A - [P]Pe A
(Pl; L [P, 2 Conil
[[Phb’e AL N A

Suppose for some ground time poitffaindty, .7 > [P]fé"té | 6. By i.h., for any ground, 7 =' A1 6(t} /tp)(ts/te) and
T = A0(t) /tp) (ta/te). By definition of satisfactions =' (A1 A Az) B(t] /th) (ta/te), as required.

Cases (Conj2), (Impl), (Imp2).These are similar to the previous case.

Case (Necl).

Suppose that for somg, t;, 7 > [P]:‘/”té | 6. Given anyt, we need to show that” =' (AB)(t]/tp)(ts/te). Since

F A, F Ag with an equal derivation for every substitutign(this is a fundamental property of first-order logic). In
particular, we may choose = 8.t/ /t,,ta/te to get (AB)(t /ty) (ti/te). By i.h. we obtaing ' (AB)(t] /to) (ti/te),

as required.

Case (Nec2)Similar to above case.

30

Case (Honesty).

¥Q e IS(P). F[Q"" Alth,te) Honesty
- Honest(1',P) O Vte. A(—,te)

We have to show that for any groundt is the case that7 = Honest(X,ﬁ) D Vte. A(—,te). SO, suppose that
7 = Honest(X, P), and pick any ground time poitft. It suffices to show thaf” |= A(—w,t.).

There are two possibilities. Either there is no thread bgilomto the agent in .7, or there is at least one. In the
former case, let be a hypothetlcal thread belongingitoBy definition of matching we have” > BN e [- Using
this and i.h. on the premise wiQ = -, we get for anyt that. 7 = (A(tp,te))(—o0/tp) (t/te), i.€., T |:t A(—oo,t}), as
required.

If there is at least one thread belonging to ageiit .7, choose any one such threhd Due to the assumption
7 = Honest(X,P), .7 must contair{P], at time—oo, whereP € P is a program. By Lemma 1, there isae 1S(P)
such that.7 > [Q], e | . Using this fact, and the premise corresponding to exatily ®, we obtain that
7 = (Altort0)(—0/to) (1 /1) 6., 7 L A(—e0,t1), as required.

Case (Reset).
VQ e IS(SRTMm)). + [Q]P"™ A(ty, te)

Reset
F Reset(m,1) @t D Vt'. (' >t) D A(t,t)

We have to show that for any groutgit is the case that/ =% Reset(m,1) @t D Vt'. (t' >t) D A(t,t’). So assume
that.7 =" Reset(m,1) @t, and pick an arbitrary/ such that’ > t. It suffices to show that” =% A(t,t’).

From the assumptiol¥ =0 Reset(m,1) @t, it follows that.7 |=' Reset(m,1), and hence by definition df that
the reduction (reset) happened on machiret timet. Hence at timé, .7 containgSRTMm)];. By Lemma 1, there
is a progranQ € IS(SRTMm)) such that7 > [Q]}’t, | -. Using this, and i.h. on the premise corresponding exaatly t
this Q, we get,7 = (A(ty,te)) (t/to) (t' /te), i.€.,.7 0 A(t,t'), as required.

Case (Jump).
ForeveryQinIS(P): + [Q]t,b’te A(tp, te) (th,te fresh constant%)
FJump(l,P) @t D Wt'. (' >t) D A(t,t)

We have to show that for any groungit is the case thatZ = Jump(l,P) @t D Wt'. (t' >t) D A(t,t'). So assume
that.7 =% Jump(l,P) @t, and pick an arbitrary/ such that’ > t. It suffices to show that” =% A(t,t’).

From the assumptio? =% Jump(l,P) @t, it follows that.7 =' Jump(l,P), and hence by definition df that
the actionjump P reduced in threadl at timet. Hence at time¢, .7 contains[P];. By Lemma 1, there is a program
Q € IS(P) such that7 > [Q]}’t, | . Using this, and i.h. on the premise corresponding exaotlthis Q, we get,
T EY (Altp,te)) (t/tp) (t'/te), i.€.,.7 =0 A(t,t'), as required.

Case (LateLaunch).
¥Q € IS(LL(M)). - [QJP" Aty te)

LateLaunch
F LateLaunch(m,1) @t D Wt'. (t' >t) D A(t,t))

We have to show that for any groutglit is the case thatZ = LateLaunch(m,1) @t D Vt'. (' >t) D A(t,t'). So

assume tha#” =l LateLaunch(m,1) @t, and pick an arbitrary/ such that’ > t. It suffices to show tha” =% A(t,t’).
From the assumptionZ =% LateLaunch(m,l) @'t, it follows that 7 ! LateLaunch(m,1), and hence by

definition of = that the reduction (llaunch) happened on machireg timet. Hence at time, .7 containg/LL(m)];.

By Lemma 1, there is a progra@ € IS(LL(m)) such that7 > [Q]tl’t/ | -. Using this, and i.h. on the premise
corresponding exactly to th3, we get,7 = (A(tp,te))(t/to) (t' /te), i.€.,. 7 Y A(t,t’), as required.

Case (K).
F(ADB)@t) D> (A@t) D> (B@t))

31

We have to show that for each title.7 |=!' ((AD B) @t) D (A@t) D (B @t)). Assume that7 = (A > B) @t
and.7 £ A@t. We must show thaZ ' B @t. From our assumptions and definition fef it follows that
7 = AD Band that7 = A. Hence,7 |=! B, from which we obtainZ = B @t as required.

Case (Disj).
F((AvB)@t) D (A@t)V (B@t))

We have to show that for each tile. 7 = ((AV B) @t) D (A @t) V (B @t)). Assume thatZ = (AV B) @t.
It suffices to show thatZ = (A@t) v (B @t). By assumption and definition ¢£, we obtainZ ! Av B. Thus
either.7 = Aor .7 |=! B. In the former case, we obtaifi |=' A @t. In the latter caseZ = B @t. In each case,
7 ' (A@t) v (B@t), as required.

Case (EQ).
F((e=¢€)AA(e/x)) DA(E/X)

We have to show that for each tintle .7 = ((e =€) A A(e/x)) D A(€/x). Assume that7 = e= ¢ and that
7 = A(e/x). Then, by definitione ande’ are syntactically equal. Thu§e/x) = A(€//x). Hence.Z ' A(€//x).

Case (Actl).
- [aliP® 3t t € (to,te] A (R(1,x,8) @1) A
' (=R(1,x,a) on (tp,t)) A (~R(I,x,a) on (t,te])

Suppose that for some grourif} t; ande, .7 > [a]f‘f;_te | 6. We have to show thatZ % ((R(l,x,a) @
tl) A (-R(l,x.a) on (t,,t2)))6(e/x). By definition of matching,a8 happened in thread at time t, (hence
(R(I,x,a) @tg)B(e/x) holds), and that no other action happened in thieatlany other time in the intervat], t;].
From the latter it follows that—R(l,x,a) on (t},t))6(e/x) holds. This is what we had to show.

Cases (Act2) — (ActN2) These are similar to the previous case.
Case (Jumpl).

F [jump €°" 3t. t € (tp,t] A (Jump(l,€) @t) A (—~Jump(1) on (tp,t)) A (=Reset(machingl)) on (tp,t]) A
(=R(I,X1,a1) on (tp,t]) A ... A (=R(I,Xq,an) on (tp,t])

Suppose that for some groutfd t;, and 8, it is the case that/ >> [jump e]fb’te | 6. Then it suffices to show that
T =0 (3t.t € (th,te] A (Jump(l,€e) @t) A (=Jump(l) on (ty,t)) A (—Reset(machingl)) on (t,t]) A (=R(I,Xg,a1) on
(tp,t]) A ... A (=R(I,%n,an) on (tp,t])) B(t /to) (to/te), i.e., 7 0 3t. t € (t],te A (Jump(l,e8) @t) A (—Jump(l) on
(t),t)) A (—Reset(machingl)) on (t/,t]) A (=R(l,x10,210) on (t,t])) A ... A (=R(I,x,0,8n0) on (t/,t]). By
definition of matching, [jump ef]; exists in 7 at time t). Further, this reduces at some tintec (tp,te]
(hence (Jump(l,e8) @ t) holds). Clearly, there cannot be any reduction linin the interval (t,t), so
(=Jump(l) on (t/,t)) A (=R(I,x10,810) on (t;,t]) A ... A (=R(l,X%0,a,0) on (t,t]) also holds. Further there
cannot be a reset anachingl) in the interval(t;,t] because that would have killed threladmplying that the jump
could not have happened. HerfeeReset(machingl)) on (t;,t]) must also hold.

Case (LL1). This is similar to the previous case, except that in placeiofj, we have a late launch.

Case (Verify).
- [verify e K] e= SIG1{|x]}

1,x

Suppose that for some ground poitjfst;, and some ground expressign .7 >> [verify e, K]tl{fs,'e | 6. By definition
of the match, at tim&, the actiorverify e, K6 reduces, returning. This forced = SIG_1,{|€/|}. We now need

32

to show that7 |=' (e= SIG¢-1{|x[})8(€//x), i.e., thated (€ /x) = SIG¢-19(« x {|€[}- But due to syntactic restrictions

on the modal formuld[verify e, K]tb ‘e ¢), eandK cannot mentior. Hence it suffices to shoed = SIG_15{|€|}.
We have already established this.

Cases (Sign)—(Proj2)These are similar to the previous case.

Case (Match).
F (Match(l,e,€) @t) De=¢€

Assume that7 ' Match(l,e€) @t. It suffices to show thae = €. By assumption, we obtain that
7 = Match(l,e,€), or equivalently, that threatl executed actiomatch e € at timet. From the operational
semantics, this can happen onleif- €.

Case (VER).
- ((Verify(l,e,K) @t) A (I # K) A Honest(K))
S (3.3t.3¢. (' <t) A (I"=K) A Contains(€, SIG1{|e]})
A ((Send(l’,€) @t") v 3. (Write(l’,1,€) @t')))

SupposeZ =l ((Verify(l,e,K) @1) A (I # K) A Honest(K)). It follows that at timet, | executed the action
x:= verify SIG1{|e]},K in 7. Since in the initial configuration,cannot contairs1G {|e]} (becaus« is honest,
andi # K), at some earlier time poir81G; {|ef} must have appeared ifs thread for the first time. This could only
have happened in two ways: either some other thread senit,ibtd read it from a location in RAM or on disk (it is
impossible to extract a signature from anything written GR). In the latter case, some other thr¥agrote it to
the location. In either case, some other thread either kergignature td, or wrote it to memory at an earlier time. If
this thread belongs t§, we are done, else we can repeat the argument on thréhe argument terminates because
we are moving backwards on the trace, which is finite).

Case (NEW).
F ((New(I,n) @t) A (R(I',e,@) @t')) D (t' > 1) (nea)

SupposeZ = (New(l,n) @t) A (Receive(l’,e) @t'). By definition,.7 =t New(l,n) and.7 |=! R(I’,e,a). Thus at
timet’, threadl’ executed an actioa that contameuh in it. Suppose for the sake of contradiction thfat t. Then,
since we assume that actions happen at distinct time ptirts, It follows that at timet, | executechew resulting in
expressiom, which existed earlier in the configuration (at tithe This contradicts the freshnessroiih the reduction
rule (new). Hence we must hat/e> t.

Case (READ).
F (Read(l,l,e) @t) D (Mem(l,e) @t)
Suppose7 = Read(l,l,e) @t. By definition, 7 ! Read(l,l,e). Again by definition, thread executed action

read | at timet, obtaining valuee. Henceo(l) = e at timet by the side condition on the rule (read). By definition
T E Mem(l,e). Thus.Z =% Mem(l,e) @t, as required.

Case (Mem=).
- ((Mem(l,e) @t) A (Mem(l,€) @t)) De=¢€

Suppose thatZ |=° (Mem(l,e) @t) A (Mem(l,€) @t). By definition, 7 =' Mem(l,e) and 7 ' Mem(l,€).
Thus in7, at timet, o(I) = eandao(l) = €. But o is a function, sce and€ must be syntactically equal. Hence
T = e= € as required.

Case (MemW).
F (Write(l,1,e) @t) D (Mem(l,e) @t)

33

Let us assume tha?” = Write(l,1,e) @t, i.e.,.7 = Write(l,1,e). It suffices to show thatZ = Mem(l,e) @t.

By assumption, threaddexecutedirite |, e at timet. Since the results of an action take effect at the time at kwhic
the action occurd, must contaire at timet. Hence,7 =! Mem(l,e), or equivalently,7 = Mem(l,e) @t, which is
what we had to show.

Cases (MemR), (MemLL).These are similar to the previous case, except that in theessscthe location of memory
is changed due to a (reset) reduction and due to a (llaundbgtien respectively (instead of (write)).

Case (MemE).
F (Extend(l,l,e) @t) A (Mem(l,seqdey,...,en)) on [t/,t)) A (t' <t)
D (Mem(l,seqdey,...,en,€)) @t)

Let us assume tha?” =% Extend(l,l,e) @t, and that7 = Mem(l,seqey,...,€e,)) on [t';t) fort’ < t. It suffices to
show that7 ' Mem(l,seqey, ..., en,€)).

From our assumptions we know that at timd (which must be a PCR) was extended with va&leFurther,
just beforet, | containedsedey,...,e,). (The conditiont’ <t ensures thaft’,t) is not empty.) From these and
the reduction (extend), it follows that the extension wretdue seqe,...,en,€) to l. Thus at timet, | contains
seqey,...,en,€e). Hence by definition of= we get7 =! Mem(l,sedey, ..., en,€)), as required.

Case (MemIR).

F ((Mem(m.RAMK,e) @ty) A (IsLocked(mM.RAMK, 1) on i)
A (Ve . =Write(I,mRAMK, €) on i) A (—Reset(m) on i))
D (Mem(m.RAMK,e) on i) (i = (tp,te) Ori = (tp,te])

We consider here the case= (t,,te]. The other case = (ip,te) is very similar (we just replace the inter-
val (tp,te] by (th,te)). Assume that7 = Mem(m.RAMK,e) @ tp, that 7 =% IsLocked(m.RAMK,I) on (ty,te],
that 7 =% ve. =Write(I,mRAMK, €) on (ty,tg], and that.7 =% —Reset(m) on (tp,tg]. It suffices to show that
T ' Mem(m.RAMK, €) on (tp, te].

By assumption, we know that at tintg m.RAM.k containse. We observe that only two rules in the reduction
semantics can change the valueniRAMKk. These are (write) and (reset). It follows that the valumiRAM.k could
have changed in the intervij,te] only if one of the following happened:

1. Inthe intervalty,te], some thread other thdrexecutedirite mRAMKk, € for somee'.
2. Inthe intervalty,te], thread executedirite mRAMK, € for somee'.
3. Inthe intervalty,te], (reset) was applied to machine

However each of these possibilities is ruled out by the gagsumptions. In particular, (1) is ruled out by the assump-
tion 7 =% IsLocked(m.RAMK,) on (tp,te], (2) is ruled out by the assumptia#i =% Ve/. ~Write(l,mRAMK,€') on
(to,te], and (3) is ruled out by the assumpticfi = —Reset(m) on (tp,te]. It follows that the value irmRAM.k
cannot change in the interv@,te]. Thus we must have’ = Mem(m.RAMK€) on (ty,te] as required.

Cases (MemID), (MemIP), (MemlIdP).These are similar to the previous case.
Case (LockL).
F (Lock(l,I) @t) D (IsLocked(l,1) @t)

Let us assume that” =" Lock(l,l) @t, i.e.,.7 = Lock(l,1). It suffices to show tha?Z =% IsLocked(l,l) @t. By
assumption, threaldexecuted.ock | at timet. Since the results of an action take effect at the time athwthie action
occurs, (1) =1 at timet. Hence,7 [=! IsLocked(l,1), or equivalently,7 = IsLocked(l,1) @t, which is what we
had to show.

34

Case (LockLL). This case is similar to the previous case.

Case (Lockl).
F ((IsLocked(l,1) @tp) A (—=Unlock(l,I) oni)
A (—Reset(m) oni)) (i = (tp,te) Ori = (tp, te,
D (IsLocked(l, 1) oni) | =m.x.x, | £ mdpcrx)

We consider here the case= (tp,te]. The other case of = (t,te) is similar. Let us assume tha? =%
IsLocked(l,1) @tp, that .7 = —Unlock(l,1) on (ty,te], and that7 = —Reset(m) on (tp,te]. It suffices to show
that.7 ' IsLocked(l,1) on (ty,te]. By assumption we know thathas a lock orl at timet,. There are only three
reductions in the operational semantics of the languagectrachange this: (lock), (unlock) and (reset). (The only
other rule (Ilaunch) that changes the lock map ruled out here becausés not of the formm.d pcr«). This implies
that for the lock orl to have changed, one of the following must have happened:

1. Inthe intervalty,te], | executedinlock .
2. In the intervalty,te], some thread other tharexecutedlock I.
3. Inthe intervalty,te], rule (reset) happened on machme

Suppose, for the sake of contradiction, that one of (1)—(&schappen. So létbe minimum time in the interval
(tp,te] at which one of (1)—(3) happens. Then clearly, sineethe minimum such timea,(l) = | att. If (1) happens
att, it violates the assumptior =% =Unlock(l,1) on (tp,te]. If (2) happens at, theni (1) = _ att; this violates our
earlier observation thatl) = I att. If (3) happens at, this violates the assumptiof = —Reset(m) on (ty,te]. In
all cases we get a contradiction. Thus neither of (1)—(3)lw@d, and thereford, must have the lock on locatidn
throughout the intervaly, te]. Accordingly we obtain7 = IsLocked(l, 1) on (ty,te] as required.

Case (LockldP).The analysis here is similar to the previous case, excepithanust also consider a fourth possible
reduction rule (llaunch). This possibility is ruled out hetassumptioi—LateLaunch(m) on i) in the rule.

Case (PCRCQC).
F (Mem(m.pcrk,e) @t) D —Contains(e, SIG{|€[})

SupposeZ = Mem(m.pcrk,e) @t, i.e., 7 ' Mem(m.pcrk,e). Thus at timet, o(m.pcrk) = e. Since the
value in a static PCR may change only by reset (which writesrestantsinit to it), or by an extend (which writes
a hash to it),e must have the fornsinit or H(e¢’). Assume for the sake of contradiction that itrist the case
that .7 =% —Contains(e, SIG{|€[}). It follows from definition of = that .7 =% Contains(e, SIG«{|€'[}). Hence
Mayderive(e, SIG«{|€|}, pubs. But sinceeis either a hash or a constant, from definitiorMdyderive it follows that
e= SIG¢{|€|}. The latter is impossible in our symbolic model. Ths=" —Contains(e,SIG¢{|€|}) must hold.

Case (PCR1).

F (Mem(m.pcrk,seqsinit,e,...,e,)) @t)
D (3. (t’' <t) A (Mem(m.pcrk,seqsinit,es,...,en_1)) @t') A (=Reset(m)on (t';t])) (n>1)

Assume that7 ' Mem(m.pcrk,seqsinit,ey,....en)) @t, i.e., 7 ' Mem(m.pcrk seqdsinit,ey,...,€n)).

It suffices to show that there is & <t such that.Z =' Mem(m.pcrk, seqsinit,es,...,e, 1)) and

T = (—Reset(m) on (t',t]). By assumptionm.pcr.k containsseqsinit, ey, ...,€,) at timet. Since we assume that
in the starting configuration all PCRs contain a speciale#hat does not exist otherwise, the only way to obtain this
value inm.pcrk is either by a reset or by an extend. Since reset gintsin a PCR, andinit # sedsinit,ey, ..., en)

(in our symbolic model under the assumptiokr 1), the valueseqsinit, ey, ..., e,) must have appeared im.pcr.k by

an extend reduction at some tirtfe< t. Thus at timet”, o(m.pcrk) = seqsinit,ey,...,e,_1). Choosé’ to belast
time pointbeforet” at which eithem. pcr.k was extended, or machimewas reset, whichever is later. Clearly, such a
t’ must exist since the valiseqsinit, ey, ...,e, 1) exists inm.pcrk at timet”. Also, the value iim.pcrk att’ must be

35

exactlyseqsinit,ey,...,e,_1). Further, there cannot be a reset on machirie the interval(t’,t”) (by assumption),
nor can there be a reset on machinat timet” (since we assumed that there was an extend operation aintiegf t
nor can there be a reset on machimén the interval(t”,t] (since that would put the valugnit in m.pcrk, but we
know thatm. pcr.k containsseqsinit, e, .. .,€,) at timet). Thus there is no reset anin the interval(t’,t].

Case (PCR2).
F (Mem(m.pcrk,sinit) @t)
D (3. (t' <t) AFJ. (Reset(m,J) @t') A (—Reset(m) on (t',t]))

Let us assume tha? =% Mem(m.pcrk,sinit) @t, i.e., 7 = Mem(m.pcrk,sinit). It suffices to show that there is
a timet’ <t and a thread such that7 = Reset(m,J), and.7 =0 —Reset(m) on (t’,t]. By assumptionm.pcrk
containssinit at timet. Since we assume that in the initial configuration PCRs d¢oraaspecial value that does
not appear otherwise, and because extends cannot simiteto a PCR, the valusinit must have appeared in
m.pcrk due to a reset. Ldt <t be the last time at which the machinewas reset. Clearly then, there must bé a
suchthat7 = Reset(m,J), and further, there is no reset in the interftalt] s0.7 |=' —Reset(m) on (t,t] also holds.

Case (PCR=).

F ((Mem(m.pcrk,seqdsinit,eq,...,en)) @t) A (Mem(m.pcrk,sedsinit, €},€,,...)) @t')
A (' > 1) A (—Reset(m) on [t,t']))
O((er=¢€)n...A(en=¢))

Assume that t' > t, that 7 [Mem(mpcrkseqdsinite,....e,) @ t, that 7 b
Mem(m.pcrk, seqsinit,€,....en €, . 4,...,€,)) @t/, and that.7 ' —Reset(m) on [t,t']. It suffices to show
that 7 " (ep = €]) A ... A (en = €,). By our assumptions it follows tha.pcr.k containssedsinit, ey, ..., en) at
timet, that it containsedsinit,€}, ... €., €, ,,...,€,,) at alater time’, and that there is no reset amin the interim.
Thus the only way thain.pcr.k changed betweenandt’ is by extends. By definition of extension, it follows that
e =€ for 1 <i <n, which is what we wanted to show.

Cases (dPCRC), (dPCR1), (dPCR2), (dPCR=)These are similar to cases (PCRC), (PCR1), (PCR2), and (PCR=
respectively.

36

B Attestation using a Static Root of Trust Measurement (SRTN)

The SRTM protocol is shown in Figure 3. We first prove its measment property. We remind the reader that we
definedProtectedSRTM(m) andMeasuredBootsgrm(m,t) as follows.

ProtectedSRTM(m) =
Wt,1. (Reset(m,1) @t) D (IsLocked(m.pcrs,) @t)

MeasuredBootsgrm(m,t) =
Jtr. Jtg. Jto. FJ. (tr <ts <to <t) A
(Reset(m,J) @t7) A (Jump(J,BL(M)) @tg) A
(Jump(3,09m)) @to) A (—Reset(m) on (tr,t])
(~Jump(3) on (tr.te)) A (~Jump(d) on (ta,to))

Theorem 6(Security of integrity measurementJhe following is provable in LS

ProtectedSRTM(m)
Mem(m.pcr.s, seqsinit,BL(m),OSm), APP(m))) @t
D MeasuredBootsgtm (M, t)

Proof. Let us assum@rotectedSRTM(m) and Mem(m.pcr.s,seqsinit, BL(m),OSm),APP(m))) @t. We start by
using axioms (PCR1) and (PCR2) repeatedly to obtain thevig:

Jtr,ty,to,13,d. (tr <ti <t <tz <t)
(Mem m.pcr.s, seqsinit, BL(m),OSm),APP(m))) @1)
Mem(m.pcr.s, sedsinit,BL(m),0Sm))) @t3)
Mem(m.pcr.s, seqsinit,BL(m))) @ty) (B.1)
Mem(m.pcr.s,sinit) @t7)
Reset(m J) @ty)
A (—Reset(m) on (t1,t])

AA,_\A
A~ N S

We know from the above that there is a thrdaslich thaReset(m,J) @tr. Next we would like to apply the (Reset)
rule. In order to do that, we must prove an invariant of thegprenSRT Mm). The specific invariant we prove is that
for eachQ € IS(SRTMm)), it is the case that,

[Q%¥* vt,b,o0.
((Reset(m,J) @tp) A (—Reset(m) on (tp,te])
A (th <t <te) A (Mem(m.pcr.s seqsinit,b,0)) @t))
D ((th <t/ <t) A (Jump(J,b) @t') (B.2)
A (~Jump(J) on (t, 1)
A (Mem(m.pcr.s,sedsinit,b)) @t')
A (IsLocked(m.pcr.s,J) @t'))

This invariant is not difficult to prove, but the proof is teds. As an illustration, we verify this invariant for some
cases. We start witl) = -. In that case, we prove the following stronger property.gTéader may readily verify that
this property implies the above f@ = -.)
(% wt,b,o.
((Reset(m,J) @tp) A (—Reset(m) on (tp,te])

Aty <t <te)) (B.3)
D (=Mem(m.pcr.s,seqsinit,b,0)) @t)
To prove this, we first apply rule (ActN1) to deduce that
[%' (=Unlock(J,m.pcr.s) on (tp, te]) (B.4)

A (Ve. ~Extend(J,m.pcr.s,e) on (tp,te])

37

Further, using the assumpti®notectedSRTM(m), we get

[2% (Reset(m,J) @tp) O (IsLocked(m.pcr.s,J) @tp) (B.5)
Similarly, using axiom (MemR), we get

[%% (Reset(m,J) @ty) D (Mem(m.pcrs, sinit) @ty) (B.6)
Combining B.4, B.5, and B.6, and weakening slightly with atr&assumption gives,

[%% ((Reset(m,J) @ty) A (—Reset(m) on (ty,te]))
D ((=Unlock(J, m.pcr.s) on (tp, te])
A (Ve. ~Extend(J,m.pcr.s,e) on (tp,te]) (B.7)
A (Mem(m.pcr.s, sinit) @ty)
A (IsLocked(m.pcr.s,J) @tp))

Using axiom (Lockl), we obtain

[.]Sb*te ((Reset(m,J) @tp) A (—Reset(m) on (tp,te]))
D ((=Unlock(J,m.pcr.s) on (tp,te])
A (Ve. ~Extend(J,m.pcr.s,e) on (tp,te])

A (Mem(m.pcr.s, sinit) @tp) (B.8)
A (IsLocked(m.pcr.s,J) @)
A (IsLocked(m.pcr.s,J) @ (tp,te]))
Next, we use axiom (MemlIP) and the above formula to dedude tha
(2% ((Reset(m,J) @tp) A (~Reset(m) on (tp,te])) (B.9)
D (Mem(m.pcr.s, sinit) on (ty,te]) '
Or equivalently, by expanding the definitionAbn I,
[%% ((Reset(m,J) @ty) A (—Reset(m) on (ty,te])) (B.10)
O (V. (tp <t <te) D (Mem(m.pcr.s,sinit) @t)) '
Using axiom (Mem=) we get,
[%% ((Reset(m,J) @ty) A (—Reset(m) on (tp,te])) (B.11)
D (Wt (tp <t <te) D (Vb,0. -Mem(m.pcr.s,seqsinit,b,0)) @t)) '
Reorganizing slightly gives us the required property fro/g:B
[%% vt b,o.
((Reset(m,J) @tp) A (—Reset(m) on (tp,te]) (B.12)

Aty <t<te))
D (=Mem(m.pcr.s,seqdsinit,b,0)) @t)

As another illustrative case, let us taRe= SRTMm) (i.e. the whole program). In this case, we will establish the
invariant in B.2 directly. First using the rule (Seq), andoaxs (Actl) — (Jumpl), we deduce that,

[SRTMmM)|?" (3te,te,b. (th <te <tc <te)
A (Extend(J,m.pcr.s,b) @te)
A (Ve. (—mExtend(J,m.pcr.s e) on (tp,tg))
A (—Extend(J,m.pcr.s,e) on (tg,tc])) (B.13)
A (Jump(3,b) @tc)
A (=Jump(3) on (to,tc))
A (=Unlock(J,m.pcr.s) on (tp,tc])

38

We can now weaken this by adding more assumptions,

[SRTMm)]?" ((Reset(m,J) @tp) A (—Reset(m) on (ty, te]))
D (3tg,tc,b. (tb <te<tc< te)
A (Extend(J,m.pcr.s,b) @tg)
A (Ve. (—Extend(J,m.pcr.s,e) on (tp,te))
A (—Extend(J,m.pcr.s,e) on (tg,tc]))
A (Jump(d,b) @tc)
A (=Jump(J) on (th,tc))
A (=Unlock(J,m.pcr.s) on (tp,tc])

(B.14)

As in the case o = -, we use axiom (MemR) and assumpt®itectedSRTM(m) to deduce,

[SRTMm)]?" ((Reset(m,J) @ty) A (—Reset(m) on (ty,te]))
D (3tg,te,b. (th <te <tc < te)
A (Extend(J,m.pcr.s,b) @tg)
A (Ve. (—Extend(J,m.pcrs,e) on (tp,te))
A (—Extend(J,m.pcrs,e) on (tg,tc])) (B.15)
A (Jump(J,b) @tc) '
A (~Jump(3) on (to,tc))
A (=Unlock(J,m.pcr.s) on (tp,tc])
A (Mem(m.pcr.s, sinit) @tp)
A (IsLocked(m.pcr.s,J) @tp))

Using (Lockl), we get,

[SRTMm)]®" ((Reset(m,J) @ty) A (—Reset(m) on (ty, te]))
D (3tg,te,b. (th < te <tc <te)
A (Extend(J,m.pcr.s,b) @tg)
A (Ve. (—Extend(J,m.pcr.s,e) on (tp,te))
A (—Extend(J,m.pcrs,e) on (tg,tc])) (B.16)
A (Jump(d,b) @tc) '
A (—Jump(3) on (to,tc))
A (=Unlock(J,m.pcr.s) on (tp,tc])
A (Mem(m.pcr.s,sinit) @ tp)
A (IsLocked(m.pcr.s,J) on (tp,tc]))

Using axiom (MemlIP), we obtain,

[SRTMm)]®* ((Reset(m,J) @ty) A (—Reset(m) on (ty, te]))
D (3tg,tc,b. (tb <tg <tc <te)
A (Extend(J,m.pcr.s,b) @tg)
A (Ve. (—Extend(J,m.pcr.s,e) on (tg,tc]))
A (Jump(J,b) @tc) (B.17)
A (~Jump(J) on (t,c))
A (=Unlock(J,m.pcr.s) on (tp,tc])
A (IsLocked(m.pcr.s,J) on (tp,tc])
A (Mem(m.pcr.s,sinit) on [tp,tg)))

39

Next, using axiom (MemE) we obtain,

[SRTMm)]®" ((Reset(m,J) @t,) A (—Reset(m) on (tp,te]))
D (3tg,tc,b. (tb <te <tc< te)

A (Ve. (—Extend(J,m.pcr.s,e) on (tg,tc]))
A (Jump(J,b) @tc)

A (=Jump(J) on (t,tc))

A (=Unlock(J,m.pcr.s) on (tp,tc])

A (IsLocked(m.pcr.s,J) on (tp,tc])

A (Mem(m.pcr.s, sinit) on [ty,tg))

A (Mem(m.pcr.s,seqsinit,b)) @tg))

Using axiom (MemIP) we obtain

[SRTMm)]?" ((Reset(m,J) @ty) A (—Reset(m) on (tp,te]))
D (ﬂtE,tc,b. (tb <te <tc <te)

A (Jump(d,b) @tc)
A (~Jump(3) on (to,tc))

A (IsLocked(m.pcr.s,J) on (ty,tc])

A (Mem(m.pcr.s, sinit) on [ty,tg))

A (Mem(m.pcr.s,seqsinit,b)) @tg)

A (Mem(m.pcr.s,seqsinit,b)) on (tg,tc]))

Simplifying slightly, we obtain:

[SRTMm)]?" ((Reset(m,J) @ty) A (—Reset(m) on (tp,te]))
> (3te,b. (tb <tc <te)
A (Jump(J.b) @tc)
A (~Jump(J) on (tn,tc))
A (IsLocked(m.pcr.s,J) @tc)
A (Mem(m.pcr.s, seqsinit,b)) @tc)
A(

(Mem(m.pcr.s, sinit) V Mem(m.pcr.s,seqsinit,b))) on (tp,tc]))

Next, we use the axiom (Mem=) to deduce that

[SRTMm)]®" ((Reset(m,J) @ty) A (~Reset(m) on (tp, te]))
> (Jte,b. (tb <tc <te)

A (Jump(J,b) @tc)

A (—Jump(J) on (th,tc))

(IsLocked(m.pcrs,J) @tc)

(

(

A
A (Mem(m.pcr.s,seqsinit,b)) @tc)
A

O (e <t<te)))
Using axiom (PCR=), we get

[SRTMm)]®" ((Reset(m,J) @ty) A (~Reset(m) on (tp, te]))
> (Jte,b. (tb <tc <te)

A (Jump(J,b) @tc)

A (—Jump(J) on (th,tc))

(IsLocked(m.pcrs,J) @tc)

(

(

AN
A (Mem(m.pcr.s,seqsinit,b)) @tc)
A

O(tc<t<te) A (' =D)))

40

Vb, 0.t. (tp <t <te) A (Mem(m.pcr.s,seqsinit,b’,0)) @t)

Vb 0.t (tp <t <te) A (Mem(m.pcr.s,seqsinit,b’,0)) @t)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

Now we rotate the existential and universal quantifiers is filrmula to obtain,

[SRTMm)]?" ((Reset(m,J) @ty) A (—Reset(m) on (tp,te]))
DOV, o,t. (Htc,b. (th <tc <te)
EJump(J< b>) @EC))
A (=Jump(J) on (tp,tc
A (IsLocked(m.pcr.s,J) @tc) (B.23)
A (Mem(m.pcr.s,sedsinit,b)) @tc)
A ((tp <t <te) A (Mem(m.pcr.s,sedsinit,b’,0)) @t)
O (te <t<te) A (b =b)))

Reorganizing,
[SRTMm)|®" vt,b,0

((Reset(m,J) @tp) A (—Reset(m) on (tp,te])

A (th <t <te) A (Mem(m.pcr.s,seqdsinit,b’,0)) @t))

O (e, b. (th <tc <te)
A (Jump(J,b) @tc) (B.24)
A (~Jump(J) on (t,tc))
A (IsLocked(m.pcr.s,J) @tc)
A (Mem(m.pcr.s,sedsinit,b)) @tc)
Atc <t<te) A (D' =h))

Simplifying using axiom (Eq), we get

[SRTMm)|®" vt,b,0
((Reset(m,J) @tp) A (—Reset(m) on (tp,te])
A (tp <t <te) A (Mem(m.pcr.s seqdsinit,b/,0)) @t))
> (3te,b. (tb <t <t<te)
A (Jump(J,b") @tc)
A (=Jump(J) on (tp,tc))
A (IsLocked(m.pcr.s,J) @tc)
A (Mem(m.pcr.s, seqsinit,b')) @tc))

(B.25)

Dropping some of the unnecessary parts, we get,

[SRTMm)]?" vt,b/,0

((Reset(m,J) @tp) A (—Reset(m) on (tp,te])

A (tp <t <te) A (Mem(m.pcr.s seqdsinit,b/,0)) @t))

D (Gt th<tc<t)
A Jump(3,B) @tc) (B.20)
A (=Jump(J) on (t,tc))
A (IsLocked(m.pcr.s,J) @tc)
A (Mem(m.pcr.s,seqdsinit,b')) @tc))

This is exactly what we set out to prove in B.2, except thanhdt’ have beem renamed td' andtc respectively. In
this manner, we can establish the invariant of B.2. Thusgusia (Reset) rule we deduce,

Reset(m,J) @tp O Vte. (te > tp) D Vi, b,0.
((Reset(m,J) @tp) A (—Reset(m) on (tp,te])
A (tp <t <te) A (Mem(m.pcr.s,seqsinit,b,0)) @t))
DAt ((th <t <t) A (Jump(J,b) @t') (B.27)
A (=Jump(3) on (to,))
A (Mem(m.pcr.s,seqsinit,b)) @t’)
A (IsLocked(m.pcr.s,J) @t'))

41

Now we instantiate the above formula with values from B.1.0Neosdy, = tt, te =t, t =t3, b= BL(m), 0= O m),
anda-renamd’ to tg to obtain,

Reset(mJ) @tr > (t>t1) D
A ((Reset(m,J) @t7) A (—Reset(m) on (tr,t])
A (tt <tz <t) A (Mem(m.pcr.s,seqsinit,BL(m),OSm))) @t3))
D Jtg. ((tr <t <t3) A (Jump(J,BL(M)) @1tB) (B.28)
A (—=Jump(J) on (tr,t8))
A (Mem(m.pcr.s,sedsinit, BL(m))) @tg)
A (IsLocked(m.pcr.s,J) @tg))

Combining with B.1 and simplifying, we obtain,

Jtr,tg,J. (tt <t <t)
A (Mem(m.pcr.s,sedsinit, BL(m),OSm),APP(m))) @t)
A (—Reset(m) on (t1,t])
Mem(m.pcr.s, seqsinit,BL(m))) @tg)
Reset(m,J) @tr)
Jump(J,BL(M)) @tg)
—Jump(J) on (tr,ts))
IsLocked(m.pcr.s,J) @tg)

(B.29)

Py

A
A
A
A
A

Next we want to use the (Jump) rule to reason from the assampiimp(J,BL(m)) @tg. In this case, we want to
prove an invariant about the progrdh(m). Specifically, we want to show that for eaGhe IS(BL(m)), it is the case
that,
[Q]tj"te vt,0,a.

((—Reset(m) on (tp,te])

A (Mem(m.pcr.s,sedsinit,BL(m))) @ty) (B.30)

A (IsLocked(m.pcr.s, J) @tp) '

A (tp <t <te) A (Mem(m.pcr.s,seqsinit,BL(m),0,a)) @t))

Dt ((th <t' <t) A (Jump(J,0) @t') A (—Jump(J) on (ty,t)))

This invariant can be proved almost as we proved B.BRT Mm). This is because the two progra®RTMm) and
BL(m) are very similar. The main difference is that we do not neeas®the assumptioProtectedSRTM(m) here.
In fact the proof is simpler. Having established this ingatj we use the rule (Jump) to deduce that,

Jump(J,BL(M)) @tp D Vie. (te > tp) D Vt,0,a
((—Reset(m) on (tp,te])
(Mem(m.pcr.s,seqsinit,BL(m))) @tp) (B.31)
IsLocked(m.pcr.s,J) @tp) '
tp <t <te) A (Mem(m.pcr.s,seqsinit,BL(m),0,a)) @t))
D3t ((th <t/ <t) A (Jump(J,0) @t") A (=Jump(J) on (tp,t")))

A
N
N

—~

We now instantiate this formula with values from B.29. We a$el, = tg, te =t,t =t, 0 = OSm), a= APP(m), and
a-renaméd’ to tp to get,

Jump(J,BL(M)) @tg D (t>tg) D
((—Reset(m) on (tg,t])
A (Mem(m.pcr.s, sedsinit,BL(m))) @tg)
A (IsLocked(m.pcr.s,J) @tg)
Ats<t<t)
A (Mem(m.pcr.s, sedsinit,BL(m),OSm),APP(m))) @t))
D Jto. ((ts <to <t) A (Jump(J,08mM)) @to) A (—Jump(J) on (tB,to)()B) 2

42

Combining with B.29 and simplifying we get,

Jtr,te,to,d. (tr <tg <tpo <t)

A (Mem(m.pcr.s,sedsinit, BL(m),OSm),APP(m))) @t)

A (—Reset(m) on (t1,t])

A (Mem(m.pcr.s,seqsinit,BL(m))) @tg)
A (Reset(m,J) @tr)
A (Jump(3,BL(M)) @) (B.33)
A (=Jump(J) on (tr,ts))
A (IsLocked(m.pcr.s,J) @tg)
A (Jump(J,08m)) @to)
A (~Jump(J) on (ta, o))

Simplifying,
Jtt,te,to,J. (tr <ts <tpo <t)
A (—Reset(m) on (t1,t])
A (Reset(m,J) @tt)
A (Jump(J,BL(m)) @tg) (B.34)
A (—Jump(J) on (tr,t8))
A (Jump(3,08m)) @'o)
A (~Jump(3) on (te, o))

This is what we set out to prove.

Next, we turn to the integrity reporting protocol. We defihe aissumptions:

FsRTM =
{V # AIK(m),
Honest(AIK (m), {T PMsgTm(m), TPMprTm(M) })}

Theorem 7 (Correctness of integrity reportingY¥he following are provable in 155

MsrTm
[\/erifier(m)]{}”te Jt. (t<te) A
(Mem(m.pcr.s, seqsinit,BL(m),OSm), APP(m))) @t)

MsrTM ProtectedSRTM(m) -
[Verifier(m)]{‘,”te Jt. (t <te) A MeasuredBootsgrm(m,t)

Proof. We prove the first property. The second follows immediatedyrf the first property and correctness of mea-
surement. We begin by analyzing the cod&efifier(m) using the rule (Seq) and the axiom (Actl). In two steps we
deduce,

[Verifier(m)]tb T Tt (ty <tm <te)

A Verify (V, (PCR(s), seqsinit, BL(m), OSm), APP(m))), AIK (m)) @ tm (B.35)

Using axiom (VER), and the assumptidiiisnest (Al K(m), {TPMsgrTM(m), TPMorTM(M)}) andV # Al K(m) together
with the above formula, we deduce:

[\/erifier(m)]{‘,”te Ttm. (th <tm <te)
A Verify(V, (PCRs), seqsinit, BL(m),0S(m), APP(m))), AIK(m)) @ tm
AN E (< tm) A (17 = AIK(M)) (B.36)
A Contains(€/, SIGy (m-1{|(PCR(s), seqsinit, BL(m), OSm), APP(m))) [})
A ((Send(l’,€) @t") v 3. (Write(l',1,€) @t'))

43

Simplifying slightly, anda-renaming’ to ts (Sfor ‘send’),l’ to I, andé€ to e, we obtain,

Verifier(m)[&'e Jtg e l. (ts<te) AT = AIK(m)
A Contains(e, SIGy k (m)-1{| (PCR(s), seqsinit, BL(m),OS(m), APP(m))) }) (B.37)
A ((Send(l,e) @ts) Vv 3. (Write(l,1,e) @ts))

Next we wish to prove an invariant about the programs thateaseuted by the TPM, namelyPMsgrty(m) and
TPMprTm(mM). We want to show that for eadd € 1S(T PMsgTM(m), TPMprTM(M)), it is the case that

Qe (W, et. (t€ (thte]) D ~Write(l,1,€) @1)
A (V€. ((t € (th,te]) A Send(l,€) @t)
D (F¢',tr (tr <t') A (Read(l,m.pcrs,€’) @tr) A € = SIGyk(m)-1{|(PCRS),€")[})
V (=Contains(€¢,PCR(S))))
(B.38)
Proving the above is rather straightforward. Rbe IS(T PMsgrTM{m)), we prove a stronger invariant:

[QlP* (Vl,et. (t € (thte]) D —Write(l,1,€) @t)
A (W, €. ((t € (th,te]) A Send(l,€) @t')
D (F¢',tr. (tr < t') A (Read(l,m.pcrs,€’) @tr) A € = SIGyk(m)-1{/(PCRS).€")[}))
(B.39)
ForQ # TPMsgrrMm), this follows just from rule (Seq) and axioms (Act2) and (R&). ForQ = TPMsgTMM), we
use axioms (Sign) and (Actl) in addition. FQre IS(T PMprTM(M)), We prove that,

Qe (Wi, et. (t € (thte]) O ~Write(l,1,6) @t1)
A (W, €. ((t € (to,te]) A Send(l,€) @) (B.40)
O (—Contains(€/,PCR(s))))

This follows immediately using basic properties of the jicateContains. Having established the invariant in (B.38),
we use the rule (Honesty) to deduce that

Honest(I', {TPMsrTm(m), TPMprTM(M)}) D Vte. (V1,€t. (t € (—o0,tg]) D —Write(l, 1,) @t)
A (V€. ((t' € (—oo,te]) A Send(l,€) @t')
D (3 tr. (tR <t)
A (Read(l,m.pcrs,€’) @tRr)
N € = SIGy(m)-1{I(PCRs).€")[})

V (—Contains(¢, PCRS))))

X (B.41)

Settingl = AIK(m), and using the fact thatonest(AIK(m), {T PMsgrTMM), TPMorTMm(M)}) (from I'srTi), We get

Vie. (Vl,et. (t € (—oo,te]) D —Write(AIK(m),l,e) @t)
A (W €. ((t' € (—oo,te]) A Send(AIK(m), &) @t)
D (F¢',tr. (tr < t') A (Read(AIK(m),m.pcrs,e”) @tr) A € = SIGyk(m)-1{/(PCRs),€")[})
V (—Contains(€/,PCR(s))))
(B.42)
Next, we instantiaté = m.pcr.s, e= g, t =tg, t' =tg, & = eto get the parametric formula

(ts<te) D —Write(AIK(m), m.pcrs,e) @ts
A ((ts <te) A Send(AIK(m),e) @ts)
D (F¢',tr. (tr < ts) A (Read(AIK(m),m.pcrs,€”) @tr) A €= SIGykm)-1{|(PCR’S),€")[})
V (—Contains(e,PCR(s)))
(B.43)

44

This implies the weaker formula:

(ts <te) D —Write(AIK(m), m.pcrs,e) @ts
A ((ts <te) A Send(AIK(m),e) @ts)
D (3¢ tr. (tr <ts) A (Read(AIK(m),m.pcrs,€’) @tr) A = SIGykm)-1{/(PCRs),€")[})
V (=Contains(e,PCR(9)))
(B.44)
Sincets ande are parameters, we can choose them to be the same as thosexistiential quantifier in B.37. Thus
combining the two formulas and simplifying, we get,

Verifier(m)je' 3t e l. (ts<te) AT = AIK(m)
A Contains(e, SIGyk (m)-1{| (PCR(s), seqsinit, BL(m), OS(m), APP(m))) [})
A((F€ 1R (tR <ts) A (Read(l m.pcrs,€’) @1r) A €= SIGykm)-1{/(PCRs).€")[})
V (=Contains(e,PCR(S))))

(B.45)

From the predicate Contains(e SIGykm)-1{/(PCR(s),sedsinit,BL(m),OSm),APA(m)))[}), we deduce
Contains(e,PCR(s)). Hence we may S|mpI|fy the above equation to get,

Verifier(m)J&' Jts,el. (ts<te) AT = AIK(m)
A Contains(e, SIGy k (m)-1{| (PCR(s), seqsinit, BL(m), OS(m), APP(m))) [}) (B.46)
A (T tr. (tr <ts) A (Read(l m.pcrs,€’) @tr) A = SIGykm)-1{/(PCRs),€")})

Reorganizing and simplifying, we get,

Verifier(m)[* 3tg,e €, 1. (tr <te) A I = AIK(m)
A Contams(e SIGy ik (m)-1 1l (PCR(s), seqsinit, BL(m), OS(m), APP(m))) }) (B.47)
A (Read(l, m. pcrs,e/’) @tR) A €= SIGyk(m-1{/(PCRs),€")[}

Simplifying further using axiom (Eq), we get,

Verifier(m)[&'e 3tg,e”,1. (tr < te) A T = AIK(m)
A Contains(SIGy k m)-1{|(PCR(s), &")[}, SIGy ik (m)-1{| (PCR(s), sedsinit, BL(m), OS(m), APP(m)))[})
A (Read(l,m.pcrs, e/’) @tRr)
(B.48)
Using axiom (READ), we obtain,

[\/erifier(m)]{‘,”te Jtr, €. (lr < te)
A Contains(SIGyk m)-1{|(PCR(s), €")[}, SIGyik (m)-1{| (PCR(s), sedsinit, BL(m), OS(m), APP(m)))[})
A (Mem(m.pct.s, e’/) @tR)
(B.49)
Now using basic properties of containment we get (in theexdrdf the above existential quantifiers),

(¢ = sedsinit, BL(m),0Sm), APP(m)))

v Contains(€”, Sl Gy -1 {|(PCR'S), seqsinit, BL(m), OS(m), APR(m))) [} (B.50)

The latter disjunct together with axiom (PCRC) and the fdetn(m.pcr.s,€’) @ tr (equation B.49) gives a contra-
diction. Hence the former disjunct must hold, i&.= seqsinit,BL(m),0Sm), APP(m)). Combining this with B.49
using axiom (Eq), we get,

Verifier(m)o™ 3tr. (tr < te)

A (Mem(m.pcr.s,seqsinit,BL(m),0Sm),APP(m))) @tRr) (B.51)

This is what we set out to prove, except thatis beerr-renamed tdg. O

45

C Attestation using a Dynamic Root of Trust for Measurement DRTM)

The protocol is shown in Figure 4. We are trying to prove tHf#ang property for the protocol:

JoRTM = [Verlfler()]tb te HJ,tx,tE,tN,tL,tc,n.

A (L <tc <t <tx <te)/\(tb<tN <tE)
A (New(V,n) @tn)
LateLaunch(m,J) @t1.)
—LateLaunch(m) on (t.,tx])
—Reset(m) on (t,tx])
Jump(3,P(m)) @tc)
~Jump(3) on (tL.tc))
Extend(J,m.dpcrk,EOL) @tx)
Eval(J,f) @tg)

—Eval(J, f) on (tc,te))
—Eval(J, f) on (tg,tx))
IsLocked(m.d pcrk, J)on(t, tx])

NN N N N N N N N S S

A\
A
A
A
A
A
A\
A
A
A

In this proof we make the following assumptions:
MorTm = Honest(AIK(m), {T PMsgrm(m), TPMorTm(M)}), V £ AIK (m)

Theorem 8. orTME JDRTM

Proof. We begin by analyzing the code Werifier(m) using the rule (Seq) and the axiom (Actl). In two steps we
deduce,
Verifier(m)]e'® 3ty tm,n. (th <ty < tm <te) A (New(V,n) @ty)

A (Verify (V, (dPCRK), seqdinit, P(m), n. EOL)), AIK (m)) @) (C.1)

Using axiom (VER), and the assumptidﬁsnest(AlK(m), {TPMsgrTM{mM), TPMorTM(M)}) andV # AIK(m) (from
I'brT M) together with the above formula, we deduce:

Verifier(m)]e'® 3ty tm,n. (th <ty < tm <te) A (New(V,n) @ty)
A Verify(V, seqdinit, P(m),n,EOL),AIK(m)) @tm
A (< tm) A (7 = AIK(M)) (C.2)
A Contains(€/, SIGy k (m-1{/(dPCRK), seddinit,P(m),n,EOL))|})
A ((Send(l’,€) @t") v 3. (Write(l',1,€) @t'))

Simplifying slightly, anda-renaming’ to ts (Sfor ‘send’),l’ to |, andé€ to e, we obtain,

Verifier(m)Je™ Tty ts, e 1,n. (tp <ty <te) A (New(V,n) @ty)
A (ts<te) AT = AIK(m)
A Contains(€, SIGy k(m)-1{|(dPCRK), seddinit,P(m),n,EOL))]})
A ((Send(1,€) @ts) v 3. (Write(l,1,e) @ts))

(C.3)

Next we prove an invariant about the programs executed by B, namelyT PMsgrp(m) and T PMprTMm(M) (as
we did for SRTM). Specifically, we show that for ea@e 1S(T PMsgrTM(M), TPMprTM(M)), it is the case that

[Q]joe (\ﬂ et. (te (toste) 5 ~Write(l,1,€) @1)
A (V€. ((t' € (tp,te]) A Send(l,€) @)
> (3¢ tr. (tr<t') A (Read (I, mdpcrk,e”) @1tr) A € = SIGy (- 1{|(dPCRK),&")[})
V (—Contains(€¢,dPCRKk))))
(C.4)

46

We omit this proof since it is similar to invariance proofssdebed earlier. Next we use equations C.3 and C.4,
and follow the proof of Theorem 7 (steps B.38 to the end),a&plgm. pcr.s by m.d pcrk, PCRs) by dPCRKk), and
seqsinit,BL(m),0Sm), APP(m)) by seqdinit,P(m),n,EOL) to deduce that

Verifier(m)e'® Jty,tr,n. (th < tn <te) A (New(V,n) @tn) A (tr < te) (C.5)
A (Mem(m.d pcrk,seddinit,P(m),n,EOL)) @tRr) '

Next, we use axioms (dPCR1) and (dPCR2) repeatedly to offtaifollowing:

Verifier(m)2' 33,tn, tr, ta, t, tr, t, N, (th <ty < te) A (New(V,n) @ty)
ANiL<ti<b <tz<tr<te)
A (Mem(m.d pcrk, seddinit,P(m),n,EOL)) @tRr)
A (Mem(m.d pcrk, seddinit,P(m),n)) @ts)
A (Mem(m.d perk, seddinit,P(m))) @tz) (C.6)
A (Mem(m.d perk, dinit)) @t;)
A (LateLaunch(m,J) @t,)
A (—LateLaunch(m) on (t.,tRr])
A (—Reset(m) on (ti,tg])
We know from the above that there is a threhduch thatlateLaunch(m,J) @t_. We would like to apply the
(LateLaunch) rule to reason further. In order to do that, westprove an invariant of the prograbh (m). The
specific invariant we prove is that for eaGhe IS(LL(m)), it is the case that,

[Q*" wt,P,x. ((LateLaunch(m,J) @t,) A (—LateLaunch(m) on (tp,te])
A (—Reset(m) on (tp,te]) A (tp <t <te) A (Mem(m.d pcrk,seddinit,P,x)) @t))
DAt ((th <t/ <t) A (Jump(J,P) @t) C.7)
A (~Jump(J) on (tp, 1)) '
A (Mem(m.d pcrk, seddinit,P)) @t')
A (IsLocked(m.d pcrk,J) on (ty,t']))

The proof of the invariant in C.7 is similar to previous pregdfience we omit the details. Briefly, the proof uses the
axioms (Mem=) and (Jump1l) to establish that a jump happemetiMemLL), (LockLL), (LockldP), and (MemIdP)
to infer the properties about memory and locks. Next, udieg(tateLaunch) rule we deduce,

LateLaunch(mJ) @ty O Wte. (te > tp) D Vt,P.x.
((LateLaunch(m,J) @t,) A (—LateLaunch(m) on (tp,te])
A (—Reset(m) on (tp,te]) A (tp <t <te) A (Mem(m.dpcrk,sedqdinit,P,x)) @t))
DAt ((th <t/ <t) A (Jump(J,P) @1')

A (~Jump(3) on (to, 1))

A (Mem(m.d pcrk, seddinit,P)) @t')

A (IsLocked(m.d pcrk,J) on (ty,t']))

(C.8)

Now we instantiate the above formula with values from C.1@.dNoosé, =t , te = tg, t =t3, P=P(m), x=n, and
a-renamd’ to tc to obtain,

LateLaunch(m,J) @t. > (tr >t) D ((LateLaunch(m,J) @t.) A (—LateLaunch(m) on (t,tR])
A (—Reset(m) on (tL,tr]) A (tIL <tz <tr) A (Mem(m.dpcrk,seddinit,P,n)) @t3))
5 Jte. (i <te < t3) A (Jump(J,P(m)) @tc)
A (~Jump(3) on (tL.tc))
A (Mem(m.d pcrk, seddinit,P(m))) @tc)
A (IsLocked(m.d pcrk,J) on (t,tc]))
(C.9)

47

Combining with C.10 and simplifying, we obtain,

Verifier(m)}o's HJ,tN,tR,tg,tz,tl,tL,tC,n. (tp <ty <te) A (New(V,n) @ty)
ANL<ti<b<tz<tr<te) A (L <tc <t3)

A (Mem(m.d pcrk,seddinit,P(m),n,EOL)) @tr)
Mem(m.d pcrk, seqdinit,P(m),n)) @ts)
Mem(m.dpcrk, seddinit,P(m))) @t)

Mem(m.d pcrk, dinit)) @t1)
LateLaunch(m,J) @t.) (C.10)
—LateLaunch(m) on (tL,tR])

—Reset(m) on (ti,tR])

Jump(J,P(m)) @tc)

~Jump(J) on (t,tc))

Mem(m.d pcrk,seddinit,P(m))) @ tc)

A
A
A
A
N
A
A
A
N
A (IsLocked(m.d pcrk,J) on (t,tc])

Py

Next we want to use the (Jump) rule to reason from the assamgpiimp(J,P(m)) @ tc. In this case, we want to
prove an invariant about the progra®m). Specifically, we want to show that for eaGhe IS(P(m)), it is the case
that,

QY wt,x.
((—Reset(m) on (ty,te])
A (—LateLaunch(m) on (tp,te])
A (Mem(m.d pcrk, seddinit,P(m))) @ty)
A (IsLocked(m.d pcrk,J) @ty)
A (tp <t <te) A (Mem(m.d pcrk,seddinit,P(m),x, EOL)) @t))
D dtp, tg, tx. ((tb <th <tg <tx < t) A (EvaI(J, f) @tE)
A (Extend(J,m.d pcrk,x) @tp)
A (Extend(J,m.dpcrk,EOL) @tx)
A (—=Eval(J,) on (tp,te))
A
A

(C.11)

—Eval(J, f) on (tg,tx))
IsLocked(m.d pcrk, J) on (tp,tx]))

Again, we omit the details of this invariant’s proof. Haviestablished this invariant, we use the rule (Jump) to deduce
that,

Jump(J,P(m)) @ty O Wte. (te > tp) D Vi, X

((—Reset(m) on (tp,te])

A (—LateLaunch(m) on (ty,te])

A (Mem(m.d pcrk, seqdinit,P(m))) @ty)

A (IsLocked(m.d pcrk,J) @tp)

A (tp <t <te) A (Mem(m.dpcrk,seddinit,P(m),x,EOL)) @t))

D Jtn,te,tx. ((th <th <te <tx <t) A (Eval(J,f) @tE)

A (Extend(J,m.dpcrk,x) @tp)
(Extend(J,m.d pcrk, EOL) @1tx)
(—Eval(J,) on (tp,tg))
(
(

(C.12)

~Eval(J, f) on (tg,tx))

N
A
A
A (IsLocked(m.d pcrk,J) on (tp,tx]))

48

We now instantiate this formula with values from C.10. Wea$ai, = tc, te =tr, t = tg, andx=n.

Jump(J,P(m)) @tc > (tr>1tc) D
((—Reset(m) on (tc,tr])
A (—LateLaunch(m) on (tc,tR])
A (Mem(m.d pcrk, seddinit,P(m))) @tc)
A (IsLocked(m.dpcrk,J) @tc)
A (tc <tr <tr) A (Mem(m.d pcrk, seqdinit,P(m),n,EOL)) @tRr))
D J,te,tx. ((te <th <te <tx < tR) N (EvaI(J, f) @te)
A (Extend(J,m.dpcrk,n) @tn)
A (Extend(J,m.d pcrk,EOL) @tx)
A (—=Eval(J, f) on (tc,te))
A(
A

(C.13)

—Eval(J, f) on (tg,tx))
IsLocked(m.d pcrk, J) on (tc,tx]))

Combining with C.10 and simplifying we get,

Verifier(m))'e EIJ,tn,tx,tE,tN,tR,tL,tc,n. (th < tn <te) A (New(V,n) @ty)
At <tr<te) A (tL <tc <th <te <tx <tR)

A (LateLaunch(m,J) @1.)

—LateLaunch(m) on (tL,tg])

—Reset(m) on (ti,tR])

Jump(J.P(m) @tc)

~Jump(J) on (t,tc))

Mem(m.d pcrk, seddinit,P(m))) @tc) (C.14)
IsLocked(m.dpcrk,J) @ on(t.,tc])
Extend(J,m.dpcrk,n) @tp)

Extend(J,m.dpcrk,EOL) @tx)

Eval(J,f) @tg)

—Eval(J, f) on (tc,te))

—Eval(J, f) on (tE,tx))

A
A
A
A
N
N
A
A
A
N
N
A (IsLocked(m.d pcrk, J) on (tc,tx])

PR

Next, we use the factdew(V,n) @ ty andExtend(J, m.dpcrk) @ t, together with the axiom (NEW) to deduce that
tn < th. Simplifying using this fact we obtain,

[\/erifier(m)]{‘,”te EIJ,tx,tE,tN,tL,tC,n.
ANiL<tc<te<tx <te) A (p <tn <tg)
A (New(V,n) @tn)

LateLaunch(m,J) @t.)
—LateLaunch(m) on (t.,tx])
—Reset(m) on (t,tx])
Jump(J,P(mM)) @tc) (C.15)
~Jump(3) on (ttc))
Extend(J,m.dpcrk,EOL) @tx)
Eval(J,f) @te)

—Eval(J, f) on (tc,te))

—Eval(J, f) on (tg,tx))

IsLocked(m.d pcrk, J) on (ti,tx])

NN AN N N N N S S S S

A
A
A
A
A
A
A
A
A
A

This is what we set out to prove.

49

