
MFPS 2010

Compositional System Security with

Interface-Confined Adversaries

Deepak Garg, Jason Franklin, Dilsun Kaynar, Anupam Datta

Carnegie Mellon University
Pittsburgh PA, USA

Abstract

This paper presents a formal framework for compositional reasoning about secure systems. A key
insight is to view a trusted system in terms of the interfaces that the various components expose:
larger trusted components are built by combining interface calls in known ways; the adversary is
confined to the interfaces it has access to, but may combine interface calls without restriction.
Compositional reasoning for such systems is based on an extension of rely-guarantee reasoning
for system correctness [27,21] to a setting that involves an adversary whose exact program is not
known. At a technical level, the paper presents an expressive concurrent programming language
with recursive functions for modeling interfaces and a logic of programs in which compositional
reasoning principles are formalized and proved sound with respect to trace semantics. The methods
are illustrated through a small fragment of an idealized file system.

Keywords: Compositional system security, program logic, temporal logic

1 Introduction

Compositional security is a recognized scientific challenge for trustworthy com-
puting (see, for example, Bellovin [5], Mitchell [28], Wing [35]). Contemporary
systems are built up from smaller components. However, even if each compo-
nent is secure in isolation, the composed system may not achieve the desired
end-to-end security property: an adversary may exploit complex interactions
between components to compromise security. Such attacks have shown up in
the wild in many different settings, including web browsers and infrastruc-
ture [3,4,20,10,19], network protocols and infrastructure [26,2,29,22,35], and
application and systems software [34,8]. While there has been progress on un-
derstanding secure composition in specific settings, such as information flow
control for non-interference-style properties [24,23,25] and cryptographic pro-
tocols [17,9,31,12,6,11], a systematic understanding of the general problem of

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

GARG, Franklin, Kaynar, Datta

secure composition has not emerged yet.

This paper makes a contribution in this space. We present a formal frame-
work for compositional reasoning about secure systems, incorporating two
main insights. First, we posit that a general theory of secure composition
should enable one to flexibly model and parametrically reason about different
classes of adversaries. This is critical because while specific domains may have
a canonical adversary model (e.g., the standard network adversary model for
cryptographic protocols), it is unreasonable to expect that a standard adver-
sary model can be developed for all of system security. To develop such a
theory we view a trusted system in terms of the interfaces that the various
components expose: larger trusted components are built by combining inter-
face calls in known ways; the adversary is confined to the interfaces it has
access to, but may combine interface calls without restriction. Such interface-
confined adversaries are precisely modeled in our framework and provide a
generic way to model different classes of adversaries. For example, in virtual
machine monitor-based secure systems, we can model an adversarial guest op-
erating system by confining it to the interface exposed by the virtual machine
monitor (VMM). Similarly, adversary models for web browsers, such as the
gadget adversary [4], can be modeled by confining the adversary to the read
and write interfaces for frames guarded by the same origin policy as well as
the frame navigation policies.

Second, we develop compositional reasoning principles for such systems in
a rich logic of programs. A salient feature of our logic is that program specifi-
cations can use temporal operators, which allows them to relate not only the
states and actions at the beginning and end of a program, but also at all points
in between. This is essential because most properties of interest to us are safety
properties [1] that must hold throughout a program’s execution. In this regard
our work is similar to prior work on analysis of network protocols [13]. We
further enrich the reasoning principles by extending ideas from rely-guarantee
reasoning [27,21]. While rely-guarantee reasoning was developed for proving
correctness properties of known concurrent programs, we extend it to soundly
reason about system security in the presence of interface-confined adversaries.
These principles generalize prior work on compositional logics for network
protocol analysis [12,13,33,18] and secure systems analysis [14] and are also
related to a recently proposed type system for modularly checking interfaces
of security protocols [6] (see Section 2 for a detailed comparison).

At a technical level, the paper presents an expressive concurrent pro-
gramming language with recursive functions for modeling system interfaces
and interface-confined adversaries. Specifically, the programming language is
based on an untyped, first-order, concurrent version of the lambda-calculus
with side-effects (Section 3 presents more details). Security properties are
specified in a logic of programs (also described in Section 3). Compositional

2

GARG, Franklin, Kaynar, Datta

reasoning principles are codified in the proof system for the logic of programs to
support modular reasoning about program specifications (Section 4.1), trusted
programs whose programs are known (Section 4.2) and interface-confined ad-
versarial (untrusted) code (Section 4.3). We present the formal semantics for
the logic of programs and the main technical result of the paper—a proof of the
soundness of the proof system with respect to the trace semantics of the logic
(Section 5). Finally, we describe how the proof rules support rely-guarantee
reasoning in the presence of adversaries (Section 6). Concluding remarks and
directions for future work appear in Section 7.

We illustrate our methods by applying them to an idealized file system
whose access control matrix protects its own integrity through a special ‘ad-
ministrate’ permission, and a homework administration application running
on the file system. The interface-based view is useful both in modeling the
file system’s interfaces that are composed in known ways by the application
and in flexibly modeling the adversary. Our illustrative proofs exercise all
compositional reasoning principles developed in this paper. Further exam-
ples, including a simplified web mashup and an analysis of secrecy in the
Kerberos V5 protocol can be found in the full version of this paper [16].

2 Related Work

We discuss below closely related work on logic-based and language-based ap-
proaches for compositional security. Orthogonal approaches to secure compo-
sition of cryptographic protocols include work on identifying syntactic condi-
tions that are sufficient to guarantee safe composition [17,11]. Another orthog-
onal approach to secure composition is taken in the universal composability or
reactive simulatibility [9,31] projects. These simulation-based definitions when
satisfied can provide strong composition guarantees. However, they have been
so far applied primarily to cryptographic primitives and protocols.

Compositional Logics of Security. The framework presented in this pa-
per is inspired by and generalizes prior work on logics of programs for network
protocol analysis [12,13,33,18] and secure systems analysis [14]. At a concep-
tual level, a significant new idea is the use of interface-level abstractions to
modularly build trusted systems and flexibly model adversaries with different
capabilities by confining them to stipulated interfaces. In contrast, prior work
lacked the interface abstraction and had a fixed adversary. Also, the actions
(side-effects) in the language were fixed in prior work to communication ac-
tions, cryptographic operations, and certain operations on shared memory.
On the other hand, our programming model and logic are parametric in ac-
tions. One advantage of this generality is that the compositional reasoning
principles (proof rules) are action-independent and can be applied to a variety

3

GARG, Franklin, Kaynar, Datta

of systems, thus getting at the heart of the problem of compositional security
(see Section 3.1 for details of the parametrization). We expect domain-specific
reasoning to be codified using axioms; thus, the set of axioms for reasoning
about network protocols that use cryptographic primitives will be different
from those for reasoning about trusted computing platforms. The treatment
of rely-guarantee reasoning in the presence of adversaries generalizes the in-
variant rule schemas for authentication [12], integrity [14], and secrecy [33]
properties developed earlier.

Refinement types for verifying protocols. Recently, Bhargavan et al.
have developed a type system to modularly check interfaces of security pro-
tocols, implemented it, and applied it to analysis of secrecy properties of
cryptographic protocols [6]. Their approach is based on refinement types, i.e,
ordinary types qualified with logical assertions, which can be used to specify
program invariants and pre- and post-conditions. Programmers annotate var-
ious points in the model with assumed and asserted facts. The main safety
theorem states that all programmer defined assertions are implied by program-
mer assumed facts in a well-typed program. However, a semantic connection
between the program state and the logical formulas representing assumed and
asserted facts is missing. In contrast, we prove that the inference system of our
logic of programs is sound with respect to trace semantics of the programming
language. Our logic of programs may provide a semantic foundation for the
work of Bhargavan et al. and, dually, the implementation in that work may
provide a basis for mechanizing the formal system presented in this paper.
Bhargavan et al.’s programming model is more expressive than ours because
it allows higher-order functions. We intend to add higher-order functions to
our framework in the near future.

3 Programming Model and Security Properties

We start by describing our formalism for modeling systems and a logic of
programs for specifying and reasoning about their security properties. In
Section 3.1, we describe a concurrent programming language for modeling
systems. Section 3.2 introduces our running example. Section 3.3 presents
the logic of programs that is used to express security properties of systems
modeled in the programming language.

3.1 Programming Model

We model a system as a set of concurrent threads, each of which executes
a sequential program. The threads may or may not be located on the same
machine. The program of each thread may either be available for analysis,

4

GARG, Franklin, Kaynar, Datta

in which case we call the thread trusted, or it may be unknown, in which
case we call the thread untrusted or adversarial. The program of a thread
consists of atomic steps called actions and control constructs like conditionals
and sequencing. Actions model all operations other than control flow includ-
ing side-effect free operations like encryption, decryption, and cryptographic
signature creation and verification, as well as inter-thread interaction through
network message sending and receiving, shared-memory reading and writing,
etc. In the formal description of our programming model, its operational se-
mantics, and reasoning principles, we treat actions abstractly, denoting them
with the letter a in the syntax of programs and representing their behavior
with sound axioms in the logic of programs. The soundness theorem pre-
sented in this paper is general, and applies whenever axioms chosen to codify
properties of actions are sound.

In the interest of security, programs may not have access to all actions
used to model a system. Instead, programs may be limited to using a set
of trusted interfaces that are exposed by the system. Formally, an interface

is a function f(x)
4
= e, with name f , argument x, and body e. The body

may execute actions and interfaces, including itself, thus allowing for both
recursion and mutual recursion. Recursive interfaces are important in many
settings especially servers that listen for client requests, process them, and
then loop back to the listening state.

Formally, the sequential program of each thread is described by an expres-
sion e in the following language. t denotes a term that can be passed as argu-
ments, and over which variables x range. We do not stipulate a fixed syntax
for terms; they may include integers, Booleans, keys, signatures, tuples, etc.
However, our language is first-order, so terms may not contain expressions.
To simplify reasoning principles, the language is interpreted functionally: all
expressions and actions must return a term to the calling site and variables
bind to terms. Mutable state, if needed, may be modeled as a separate syn-
tactic entity whose contents can be updated through actions, as illustrated in
an example later in this section.

Expressions e ::= t | act a | let(e1, x.e2) | if(b, e1, e2) | call(f, t)

Function defns ::= f(x)
4
= e

The expression t returns term t to its caller. act a evaluates the action
a, potentially causing side-effects. let(e1, x.e2) executes e1 first, then binds
the term obtained from its evaluation to the variable x and evaluates e2.
if(b, e1, e2) evaluates e1 if b is true and evaluates e2 otherwise. call(f, t) calls

function f with argument t: if f(x)
4
= e then call(f, t) evaluates to e{t/x}.

(Ξ{t/x} denotes the usual capture-avoiding substitution of the term t for the

5

GARG, Franklin, Kaynar, Datta

variable x in the syntactic entity Ξ.)

Operational Semantics. The operational semantics of our programming
language define how a configuration, the collection of all simultaneously ex-
ecuting threads of the system and shared state, reduces one step at a time.
Formally, a configuration C contains a set of threads T1, . . . , Tn and a shared
state σ. We treat the state abstractly in our formal specification; it may be
instantiated to model shared memory as well as the network which holds mes-
sages in transit depending on the application. The state may change when
threads perform actions, e.g., a send action by one thread may add an unde-
livered message to the network part of the state. Such interaction between the
state and actions is captured in the reduction rule for actions, as described
below.

A thread is a triple I;K; e containing a unique thread identifier I, an
execution stack K and an expression e that is currently executing in the thread
(also called active expression of the thread) . The execution stack records the
calling context of the active expression as a sequence of frames.

Thread id I

Frame F ::= x.e

Stack K ::= [] | F :: K

Thread T ::= I ;K ; e

Configuration C ::= σ � T1, . . . , Tn

Selected reduction rules for our language are shown in Figure 1. (Remaining
rules are in the full version of this paper [16].) The rules are parametric in
judgments for evaluating actions a and terms t, both of which are treated
abstractly. The judgment eval t t′ means that term t evaluates completely
to the term t′. For example, in a model that includes standard arithmetic, a
concrete instance of the judgment would be eval (3 + 5) 8. The judgment
σ ; I � a 7→ σ′ ; I � t means that action a when executed in thread I updates
the shared state σ to σ′ and returns term t. As an example, in a system
with shared memory, σ may be a map from locations l to terms t, the action
write l, t may change contents of location l to t, and the following judgment
may hold: σ ; I � write l, t 7→ σ[l 7→ t] ; I � ().

Our primary reduction relation, that for configurations, has the form C −→
C ′. It interleaves reductions of individual threads in the configuration in an
arbitrary order (rule red-config). Reductions of threads are formalized by a
reduction relation for threads: σ � T ↪→ σ′ � T ′. This reduction relation is
standard for functional programs with side-effects and we omit its description.

6

GARG, Franklin, Kaynar, Datta

σ ; I � a 7→ σ′ ; I � t eval t t′

σ � I ; (x.e) :: K ; act a ↪→ σ′
� I ;K ; e{t′/x}

red-act

σ � I ;K ; let(e1, x.e2) ↪→ σ � I ; (x.e2) :: K ; e1
red-let

x
σ � Ti ↪→ σ′

� T ′
i

σ � T1, . . . , Ti, . . . , Tn −→ σ′
� T1, . . . , T

′
i , . . . , Tn

red-config

Fig. 1. Operational semantics, selected rules

Reductions caused by execution of actions are called effectual reductions (rule
red-act in the figure) whereas others are called administrative reductions.

Our reasoning principles establish properties of traces. A trace T is a
finite sequence of reductions C −→ C ′ starting from an initial configuration.
We associate a time point u with every reduction on a trace. A time point
is either a real number or −∞ or ∞. The only constraint on time points
associated with a trace is that they be monotonically increasing along the
trace. Diagrammatically, we represent a trace as follows (ui is the time at
which Ci−1 reduces to Ci.)

u0−→ C0
u1−→ C1 . . .

un−→ Cn

We assume that individual reduction steps happen instantaneously at the
time associated with them on the trace and that the state σ on the trace does
not change between two consecutive reductions. Specifically, in the above
illustration, if Ci = σi � Ti,1, . . . , Ti,n, then we assume that the state of the
trace is σi in the interval [ui, ui+1). u0 is called the start time of the trace.
In addition to the sequence of reductions and time points, a trace may also
include auxiliary information, such as contents of state at the start time.

3.2 A File System Example

We introduce an illustrative, running example of an idealized file system that
uses an access control matrix for security. We represent the file system using
two abstract, mutable data structures that are part of the shared state σ from
Section 3.1: a map C from file names to file contents, and a set P of tuples
(file name, principal, permission), which represents the access control matrix.
Principal k has permission p on file f if and only if (f, k, p) ∈ P . We use three
permissions: read (re), write (wr), and administrate (ad). The last permission
allows a principal to add permissions for other principals on the relevant file.
Both data structures are shared between the file system and users, some of
whom may be malicious.

Actions. Our model includes several primitive actions a, which we de-

7

GARG, Franklin, Kaynar, Datta

File Mutable Data Structures

C : filename→ data

P : (filename ∗ prin ∗ perm) set

File System Interfaces

F = {permadd, readfs, writefs,
send, recv, lock, unlock}

permadd(f, k, p)
4
=

lock(P);

let s = read(P) in

if ((f, self prin, ad) ∈ s)
then insert(P, (f, k, p)); unlock(P)

else unlock(P)

readfs(f)
4
=

lock(P);

let s = read(P) in

if ((f, self prin, re) ∈ s)
then let d = C(f) in

unlock(P); d

else unlock(P)

writefs(f, d)
4
=

lock(P);

let s = read(P) in

if ((f, self prin, wr) ∈ s)
then update(C, f, d); unlock(P)

else unlock(P)

Files and Principal in Classroom

Special principal: Teacher

N students: s[1], . . . , s[N]

N homework files: f [1], . . . , f [N]

Initial Access Control Matrix, P

{(f [1],Teacher, ad), . . . , (f [N],Teacher, ad)}

Known Programs

Code of principal Teacher:

teacher body = teacher loop();

teacher loop()
4
=

(n, p) = recv;

if (p = re ∨ p = wr)

then permadd(f [n], s[n], p)

else ();

teacher loop()

Fig. 2. File system with access control (left) and an application on it (right)

8

GARG, Franklin, Kaynar, Datta

scribe informally and whose formal details we elide. Two actions – C(f) and
update(C, f, d) – read the file f and write the contents d to file f , respectively
(recall that C is the map from file names to their contents). Note that these
actions do not make any access checks; the latter are performed by interfaces
that wrap the actions as described below. Actions lock(P) and unlock(P)
obtain and release an exclusive-write lock on the access control matrix P .
The lock is necessary to avoid write-write and read-write races on the matrix.
Action read(P) reads the access control matrix, while insert(P, (f, k, p)) in-
serts the triple (f, k, p) into the access control matrix. Finally, we have actions
send(m), that sends a message m on the network (we assume that the source
and destination fields of a message can be spoofed, so we do not model them),
and recv that receives a message from the network.

Interfaces. Since the actions C(f), update(C, f, d), and insert(P, (f, k, p))
do not perform any access control checks, they are not directly accessible to
programs. Instead, programs are allowed to execute these actions only through
fixed interfaces that the file system exposes. This is characteristic of our mod-
eling approach: we limit programs to stipulated interfaces that make security
relevant checks, even though low-level actions may not be secure in them-
selves. Interfaces relevant to this example – readfs, writefs, and permadd –
are shown in Figure 2. For better readability, we omit the keywords act and
call from programs and write let(e1, x.e2) as let x = e1 in e2. We assume
that each thread runs on behalf of a principal, whose permissions apply to the
thread. The term self prin in a program dynamically binds to the principal
who owns the executing thread (a la the system call getuid() in POSIX). The
body of each interface checks relevant access permissions in P before calling
C(f), update(C, f, d), or insert(P, (f, k, p)). Programs may use the other ac-
tions send, recv, lock, and unlock directly, so the set of primitives available
to programs is F = {permadd, readfs, writefs, send, recv, lock, unlock}.

Application Program. As an application of our file system, we consider a
homework administration system. Assume that a classroom containing one
principal Teacher and N students s[1], . . . , s[N] shares our file system. Each
student s[n] has a dedicated file f [n] that she can use to submit her home-
work. The application consists of one server program called teacher loop in
Figure 2 run by the teacher and any number of programs run by students (and
other adversaries) that are only constrained in that they are confined to the
interfaces F defined above. Initially, the teacher has administrate permission
(ad) on all files and there are no other permissions. The teacher’s program
listens to student requests to give them read and write permissions. The pro-
gram receives a student id n and a permission p over the network, and if the
latter is read or write, gives student s[n] permission p over file f [n]. (Having

9

GARG, Franklin, Kaynar, Datta

so obtained permissions, students can call the interfaces readfs and writefs

to read and write their homework files, respectively.)

Security Property. We are interested in proving the following security prop-
erty of our application: if file f [n] is updated by thread i, then the owner of
thread i is s[n], i.e., only a student can change her homework file. Even though
this property may seem obvious, its proof depends on a number of initial as-
sumptions, and properties of interfaces and the program of the teacher, and
illustrates all reasoning principles of our framework. The following is an out-
line of the proof. First, we prove two invariants: 1) The teacher never adds
any administrate permission, and 2) In order to add a permission on a file,
a principal must have administrate permission on the file. Together with the
assumption that initially only the teacher has administrate permissions, (1)
and (2) imply that: 3) Only the teacher ever has administrate permissions.
Next, we prove that: 4) The teacher adds write permission on f [n] only for
s[n]. Finally, we prove that: 5) In order to update a file, a thread must have
write permission on the file. Together, (2)–(5) imply our security property.

Technically, properties (1) and (4) follow from an analysis of the known
program of the teacher, using principles introduced in Section 4.2. Properties
(2) and (5) depend on the behavior of all threads, including those that are
adversarial, so they must be proved by an analysis of available interfaces F
only (Section 4.3). Property (3) requires rely-guarantee reasoning because its
proof is inductive (Section 6). We sketch some of these proofs formally in
subsequent sections.

3.3 Security Properties

We represent security properties as formulas of a logic whose syntax is shown
below.

Formulas ϕ, ψ ::= p @ u | b | t = t′ | u1 ≤ u2 | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | > | ⊥ |

∀x.ϕ | ∃x.ϕ

The formula p @ u means that the atomic formula p holds at time u (on
the trace against which the formula is being interpreted). p @ u is a hybrid
modality [32,7]. It is known that all operators of linear temporal logic (LTL)
can be expressed using p @ u and quantifiers, so this logic is at least as
expressive as LTL. In addition to increasing expressiveness, using a hybrid
logic instead of LTL allows us to express order between actions in security
properties in an intuitive manner, facilitates reasoning about invariants of
programs modularly (Section 4) and also facilitates rely-guarantee reasoning
without the need for additional induction principles (Section 6).

10

GARG, Franklin, Kaynar, Datta

b denotes a Boolean term from the syntax of the language. Atomic formu-
las p are terms applied to predicates, which may represent either the execution
of certain actions (corresponding to the language’s actions a) or properties of
state. For example, a predicate isACM(s) that checks that the access control
matrix P is the set s may be defined by saying that T |= isACM(s) @ u if
and only if, in trace T , at time u, the access control matrix is s. Similarly,
in protocol analysis, T |= Enc(I, t, k) @ u may hold if and only if thread I in
trace T encrypts term t with key k at time u.

Example 1. As an illustration, we formalize in our logic the security property
described at the end of Section 3.2. Suppose that the predicate Update(i, f, d)
holds at time u if at time u, thread i executes the action update(C, f, d)
and predicate Owner(i, k) means that principal k owns threads i. 1 Then, the
following formula means that only student s[n] can update file f [n].

∀i, u, n, d. (Update(i, f [n], d) @ u) ⊃ Owner(i, s[n])

Logic of Programs. On top of the temporal logic described above, we build
a logic of programs to reason about properties of traces obtained by executing
known or interface-confined programs. Prior experience with security analysis
of protocols [12,13,33,18] and trusted computing platforms [14] shows that
in addition to standard post-conditions that hold when a program completes
execution, analysis of secure systems often requires reasoning about properties
that hold while a program executes. We call such properties invariants and
introduce a novel construct to represent them.

Specifically, we express pre- and post-conditions as well as invariants using
six kinds of assertions, generically denoted µ, ν.

Assertions µ, ν ::= [e]〈ub, ue, i, x〉ϕ | {e}〈ub, ue, i〉ϕ |

[f]〈y, ub, ue, i, x〉ϕ | {f}〈y, ub, ue, i〉ϕ |

[]〈ub, ue, i〉ϕ | [a]〈ub, ue, i, x〉ϕ

In these assertions, ub, ue, i, x, y are bound variables whose scope is ϕ. (Recall
that ϕ denotes a formula in the temporal logic described earlier.) The intuitive
meanings of the six assertions are listed below; formal semantics are postponed
to Section 5.

- [e]〈ub, ue, i, x〉ϕ: If program expression e executes completely during the
interval (ub, ue] in thread i and returns value x, then ϕ holds.

1 Technically, the syntax of our logic requires us to write the suffix . . . @ u after each atomic
formula. However, Owner(i, k) @ u is independent of u, so we elide the suffix . . . @ u after
Owner(i, k).

11

GARG, Franklin, Kaynar, Datta

- {e}〈ub, ue, i〉ϕ: If program expression e is active in thread i at time ub and
does not return until time ue, then ϕ holds.

- [f]〈y, ub, ue, i, x〉ϕ: If function f is called with argument y in thread i at
time ub and executes completely during the interval (ub, ue] returning value
x, then ϕ holds.

- {f}〈y, ub, ue, i〉ϕ: If function f is called with argument y in thread i at time
ub and has not returned until time ue, then ϕ holds.

- []〈ub, ue, i〉ϕ: If thread i does not perform any effectual reduction in the
interval (ub, ue], then ϕ holds. (Recall from Section 3.1 that an effectual
reduction is the reduction of an action, as opposed to the reduction of a
control flow construct.)

- [a]〈ub, ue, i, x〉ϕ: If in thread i, the active expression at time ub is act a,
and this expression executes at time ue returning x, then ϕ holds.

Our reasoning principles (Section 4) are parametric in the variables y,ub,ue,
i,x and our logic’s formal semantics relate assertions to traces for all ground
instances of these variables. Assertions [e]〈ub, ue, i, x〉ϕ and [f]〈y, ub, ue, i, x〉ϕ
specify the behavior of programs that complete execution. They are gen-
eralizations of partial correctness assertions from other program logic based
type-theories like Hoare Type Theory (HTT) [30]. We do not need to spec-
ify pre- and post-conditions separately because we can encode them in ϕ

using the construct p @ u. For example, consider the function f(x)
4
=

let((act read l), z. (act write l, z + x)) that increments the contents of the
private memory location l by its argument x. We can specify this function in
our logic of programs as [f]〈y, ub, ue, i, x〉 ∀z. (Mem(l, z) @ ub ⊃ Mem(l, y+ z) @
ue) ∧ x = (), where Mem(l, z) means that location l contains value z. Note that
the variable x in the body of the function differs from the x in its specification.
In the former case, the variable is the argument of the function whereas in the
latter case it is the result of the function.

The assertions {e}〈ub, ue, i〉ϕ and {f}〈y, ub, ue, i〉ϕ specify invariants of
programs – ϕ holds while the program (e or f) is executing. Prior work on
Protocol Composition Logic [12,13,33,18] and the Logic of Secure Systems [14]
encodes invariants using standard partial correctness assertions and a notion
of prefixes of a program. However, prefixes are impossible to define in the
presence of function calls and recursion. Our treatment is novel and strictly
more general because it allows for specification of invariants of programs with
all control flow constructs.

Whereas Section 4 presents a proof system for establishing the four asser-
tions [e]〈ub, ue, i, x〉ϕ, {e}〈ub, ue, i〉ϕ, [f]〈y, ub, ue, i, x〉ϕ, and {f}〈y, ub, ue, i〉ϕ,
we do not stipulate rules for establishing the remaining two assertions,
[]〈ub, ue, i〉ϕ and [a]〈ub, ue, i, x〉ϕ that specify properties of administrative re-
ductions and effectual reductions, respectively. Instead, these two assertions

12

GARG, Franklin, Kaynar, Datta

must be established through sound axioms that would depend on the repre-
sentation of state and actions chosen; the proof rules for establishing the other
four assertions use these two assertions as black-boxes. Our proof system’s
soundness theorem applies whenever the axioms chosen for establishing these
two classes of assertions are sound.

Thread-Local Reasoning. A salient feature of our logic of programs is that
the specifications of a program, if established, hold irrespective of actions of
threads other than the one in which the program executes. This is implicit
in the intuitive meanings of the assertions above as well as the formal seman-
tics of the logic (Section 5). For example, the meaning of [e]〈ub, ue, i, x〉ϕ is
that if program expression e executes completely during the interval (ub, ue]
in thread i and returns value x, then ϕ holds. Since this interpretation does
not constrain what other threads do, ϕ holds irrespective of the reductions
that other threads may have performed in the interim. As in prior work [13],
this local property of the proof system simplifies reasoning significantly since
we do not have to reason about reductions of other threads when we wish to
prove a property that is specific to a thread (e.g., that the thread does not
write a certain location).

Example 2. Suppose that the predicate Insert(i, (f, k, p)) holds at time u
if thread i executes the action insert(P, (f, k, p)) at time u. Then, property
(1) from the end of Section 3.2, which states the teacher’s program never adds
any administrative permissions, can be expressed as the following invariant of
teacher body:

{teacher body}〈ub, ue, i〉

∀u, f, k. ((ub < u ≤ ue) ⊃ (¬Insert(i, (f, k, ad)) @ u))

4 Compositional Reasoning Principles

Next, we present a proof system that codifies compositional reasoning prin-
ciples for establishing assertions about programs as well as security proper-
ties. In addition to standard rules for proving temporal formulas and syntax-
directed rules for proving assertions about programs and functions, our proof
system includes two rules of inference that allow deduction of properties of
threads from invariants of their programs. We call a thread trusted if the
program it executes is known, else we call the thread untrusted or adversarial.
Using the first rule (Section 4.2), we may combine knowledge that a particular
thread is executing a known program with any invariant of the program to
deduce that the formula in the invariant holds forever. The second rule (Sec-
tion 4.3) embodies our central idea of reasoning about unknown, potentially

13

GARG, Franklin, Kaynar, Datta

adversarial, code by confining it to interfaces: if we know that an adversarial
thread has access only to certain interfaces, then under certain conditions, we
can show that a common invariant of all those interfaces always holds in the
system, regardless of the manner in which the adversarial thread uses those
interfaces.

Formally, proofs establish one of two hypothetical judgments: Σ; Γ ` ϕ
and Σ; Γ; ∆ ` µ. In both judgments Σ is a set of first-order variables that
may occur free in the rest of the judgment, Γ is a list of assumed formulas
of the temporal logic and ∆ contains assumed specifications of functions. A
proof establishing either Σ; Γ ` ϕ or Σ; Γ; ∆ ` µ is parametric in all variables
in Σ, i.e., it holds for all ground instances of the variables.

Σ ::= · | Σ, x

Γ ::= · | Γ, ϕ

∆ ::= · | ∆, [f]〈y, ub, ue, i, x〉ϕ | ∆, {f}〈y, ub, ue, i〉ϕ

The judgment Σ; Γ ` ϕ coincides with the standard hypothetical judgment of
first-order classical logic with equality (we treat p @ u as an atomic formula
p(u)), with additional axioms to make time points a total order. Due to lack
of space, we elide the rules for establishing this judgment.

Assertions manifest in the judgment Σ; Γ; ∆ ` µ are established by an
analysis of the program in µ through rules described in Section 4.1. Addition-
ally, there are inference rules to combine reasoning in the temporal logic with
reasoning about assertions. For instance, if [e]〈ub, ue, i, x〉ϕ and ϕ ⊃ ϕ′, then
one of the rules of inference allows deduction of [e]〈ub, ue, i, x〉ϕ′. Such rules
are common in program logics and we elide them also.

4.1 Reasoning About Specifications of Programs

Representative rules for establishing program specifications are shown in Fig-
ure 3. As mentioned in Section 3.3, the rules of our proof system rely on
the abstract judgments [a]〈ub, ue, i, x〉ϕ and []〈ub, ue, i〉ϕ (e.g., rule (PA)). The
rules are modular: specifications of a program are established by combining
specifications of sub-programs. For instance, we may justify the rule (PL) as
follows. In the conclusion of the rule we wish to establish a partial correctness
assertion of the expression let(e1, y.e2). If this expression is active in thread
i at time ub and returns value x at time ue, then through an analysis of the
operational semantics it follows that at some time um after ub, e1 must have
become active, then at a later time u′m, e1 would have returned some value y
to e2, which would have become active, and finally at time ue, e2 would have
returned x. So if []〈ub, um, i〉ϕ1, [e1]〈um, u′m, i, y〉ϕ2, and [e2]〈u′m, ue, i, x〉ϕ3 all
hold (as in the premises of the rule), then ∃y.∃um.∃u′m.((ub < um < u′m <

14

GARG, Franklin, Kaynar, Datta

Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕ
Σ; Γ; ∆ ` [act a]〈ub, ue, i, x〉ϕ

PA
Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ

Σ; Γ; ∆ ` {act a}〈ub, ue, i〉ϕ
IA

Σ; Γ; ∆ ` []〈ub, um, i〉ϕ1 Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ϕ2 Σ, y; Γ; ∆ ` [e2]〈u′

m, ue, i, x〉ϕ3

Σ; Γ; ∆ ` [let(e1, y.e2)]〈ub, ue, i, x〉∃y.∃um.∃u′
m.((ub < um < u′

m < ue) ∧ ϕ1 ∧ ϕ2 ∧ ϕ3)
PL

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ1

Σ; Γ; ∆ ` {e1}〈um, ue, i〉ψ2 Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ1, ψ2 ` ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ3 Σ; Γ; ∆ ` [e1]〈um, u

′
m, i, y〉ψ4

Σ, y; Γ; ∆ ` {e2}〈u′
m, ue, i〉ψ5 Σ, ub, um, u

′
m, ue, i, y; Γ, ub < um < u′

m ≤ ue, ψ3, ψ4, ψ5 ` ϕ
Σ; Γ; ∆ ` {let(e1, y.e2)}〈ub, ue, i〉ϕ

IL

f(z)
4
= e Σ, y; Γ; ∆, [f]〈y, ub, ue, i, x〉ϕ ` [e{y/z}]〈ub, ue, i, x〉ϕ

Σ; Γ; ∆ ` [f]〈y, ub, ue, i, x〉ϕ
PF

f(z)
4
= e Σ, y; Γ; ∆, {f}〈y, ub, ue, i〉ϕ ` {e{y/z}}〈ub, ue, i〉ϕ

Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ
IF

Fig. 3. Selected modular rules for establishing program specifications

ue) ∧ ϕ1 ∧ ϕ2 ∧ ϕ3) must hold. Observe that it is necessary to existentially
quantify the variables y, um, and u′m in the conclusion because during rea-
soning, we cannot determine their exact values. This justifies the conclusion
of the rule. Other rules for establishing partial correctness assertions can be
justified similarly.

Rules for establishing invariance assertions are more involved, but are also
modular. We illustrate their justification through the rule (IL). In the conclu-
sion of the rule we wish to establish an invariant that holds while let(e1, y.e2)
executes. If this expression is active in thread i at time ub but does not return
until time ue, then there are only three possibilities: (a) e1 does not start
executing until time ue, (b) e1 starts executing at some time um, but does not
return until time ue, or (c) e1 starts executing at time um, returns at time
u′m, e2 starts executing at time u′m, but does not return until time ue. If we
can show that ϕ holds in each of these three cases, then ϕ is in invariant of
let(e1, y.e2). The premises of the rule account for exactly these three cases:
the first premise accounts for case (a), premises 2–4 account for case (b), and
the remaining premises account for case (c).

Rules (PF) and (IF) for proving partial correctness assertions and invari-
ants of functions check the corresponding specification on the bodies of the
respective functions. In order to account for the possibility of recursion, we
also assume the function’s specification when we check the body of the func-
tion by adding it to the context ∆ in the premises. It is not obvious that this
approach is sound and accounting for it complicates our proof of soundness
(see Section 5).

15

GARG, Franklin, Kaynar, Datta

Example 3. The invariant in Example 2 can be proved using the rules pre-
sented in this section, related rules for other types of program expressions,
and some straightforward axioms for relevant actions. We list two such ax-
ioms below, leaving the rest to the full version of the paper. These axioms
mean that the receive action recv and administrative reductions do not insert
anything into the access control matrix. Soundness of such axioms is easy to
prove, as has been demonstrated in prior work [13,14].

` [recv]〈ub, ue, i, x〉 ∀u, k, f, p. ((ub < u ≤ ue) ⊃ (¬(Insert(i, (f, k, p)) @ u)))

` []〈ub, ue, i〉 ∀u, k, f, p. ((ub < u ≤ ue) ⊃ (¬(Insert(i, (f, k, p)) @ u)))

4.2 Reasoning About Trusted Threads

Next, we present the rule used to prove properties of trusted threads from
knowledge of their programs. In the logic, we say that HonestThread(I, e) if
thread I executes program expression e only. Let Start(I) @ u hold if at time
u, thread I is ready to execute, but has not performed any reduction. The
following rule, based on the Honesty rule in prior work on Protocol Composi-
tion Logic [13], allows us to prove a property of thread I from an invariant of
e if HonestThread(I, e).

Σ; Γ; · ` {e}〈ub, ue, i〉ϕ(ub, ue, i)
Σ; Γ ` HonestThread(I, e) Σ; Γ ` Start(I) @ u

Σ; Γ ` ∀u′. (u′ > u) ⊃ ϕ(u, u′, I)
HONTH

The justification for this rule is the following: since HonestThread(I, e) and
Start(I) @ u, it must be the case that e is the active expression in I at
time u. Further, since e is the top-level program of I, it can never return.
Hence, by the definition of {e}〈ub, ue, i〉ϕ(ub, ue, i), ϕ(u, u′, I) must hold for
any u′ > u. We do not stipulate rules for proving either HonestThread(I, e)
or Start(I) @ u since they codify system-specific assumptions. Instead such
formulas must be explicit hypotheses in Γ, as illustrated below.

Example 4. We demonstrate an application of the (HONTH) rule on the
invariant of Example 2. Suppose that the teacher’s program is executing in
thread i0 since the beginning of time (−∞). Since we know that the teacher’s
program is teacher body, and we assume that this is the only program the
teacher executes, we can assume that:

(A) HonestThread(i0, teacher body)

(B) ∀i. (Owner(i,Teacher) ⊃ (i = i0))

(C) Start(i0) @ −∞
16

GARG, Franklin, Kaynar, Datta

Applying the rule (HONTH) to the invariant from Example 2 and (A), (C)
above, we can conclude that

∀u′. (u′ > −∞) ⊃ (∀u, f, k. ((−∞ < u ≤ u′) ⊃ (¬Insert(i0, (f, k, ad)) @ u)))

Simplifying and combining with (B), we get

∀i, u. Owner(i,Teacher) ⊃ ¬(Insert(i, (f, k, ad)) @ u)

In simple words, the statement above means that the teacher never inserts the
administrate permission into the access control matrix, which is property (1)
of the proof outline at the end of Section 3.2.

4.3 Reasoning About Interface-Confined Untrusted Threads

As opposed to trusted threads, whose security properties may be established
by analysis of their programs, the programs of untrusted or adversarial threads
are not known, so proving their security properties may seem impossible. Yet,
in practice, security of systems often relies on confinement of behavior of un-
trusted threads. For instance, property (2) in the proof outline of Section 3.2,
which states that a thread must have administrate permission to add a per-
mission, holds of all threads including those that are untrusted, e.g., threads
run by students and adversaries. The property holds because the only inter-
face that allows modification to the access control matrix (permadd) checks
for the administrate permission. In general, relevant properties of untrusted
threads can often be proved by an analysis of the interfaces they have access
to, even if we do not know the exact code the threads execute. In this section,
we develop reasoning principles to perform such reasoning in the proof system
of our logic. We define an interface, denoted F ,G, as a set of functions. In
general, an untrusted thread that is confined to F may construct a new set
of functions G that call functions of F and themselves and combine calls to
functions of F and G in any way it chooses. To formally represent such an
adversary, we need a few definitions.

Definition 4.1 (F-confined expressions) Given an interface F , we call
an expression e F-confined if the following hold: (a) All occurrences of call
in e have the form call(f, t), where f ∈ F , and (b) act does not occur in e.

Definition 4.2 (F-limited functions) Given an interface F , we call a set

of functions G = {gk | gk(y)
4
= ek} F-limited if the body ek of each function is

(F ∪ G)-confined.

Definition 4.3 (F-confined thread) A (untrusted) thread I is said to be
F-confined if I executes a program e and there is a F-limited interface G
such that e is (F ∪ G)-confined. The predicate Confined(I,F) holds iff I is

17

GARG, Franklin, Kaynar, Datta

F-confined. 2

Definition 4.4 (Compositional formula) A formula ϕ(ub, ue, i), possibly
containing the free variables ub, ue, i, is called compositional if ∀ub, um, ue, i.
((ub < um ≤ ue) ∧ ϕ(ub, um, i) ∧ ϕ(um, ue, i)) ⊃ ϕ(ub, ue, i).

Roughly, a formula ϕ(ub, ue, i) describing some property over an interval
(ub, ue] is compositional if whenever the formula holds on two adjoining in-
tervals, it also holds on the union of the intervals. In general, if ϕ(ub, ue, i)
encodes the fact that a safety property holds throughout the interval (ub, ue],
then ϕ(ub, ue, i) will be compositional.

We codify our reasoning principles for untrusted, interface-confined threads
in the following rule:

(ϕ(ub, ue, i) compositional) ·; Γ; · ` []〈ub, ue, i〉ϕ(ub, ue, i)
∀f ∈ F . (·; Γ; · ` {f}〈y, ub, ue, i〉ϕ(ub, ue, i))

∀f ∈ F . (·; Γ; · ` [f]〈y, ub, ue, i, x〉ϕ(ub, ue, i)) Σ; Γ ` Confined(I,F)

Σ; Γ,Γ′ ` ∀ue. ϕ(−∞, ue, I)
RES

The informal justification for the rule (RES) is that, owing to its confinement
to F , the reduction of I up to any time point ue can be split into calls to
functions in F interspersed with administrative reductions of the adversary’s
choosing. Since ϕ is a partial correctness assertion of all functions in F (fourth
premise) and administrative reductions (second premise), as well an invariant
of all functions in F (third premise), it must hold over all these splits. There-
fore, due to the compositionality of ϕ (first premise), ϕ(−∞, ue, I) must hold.
The formal justification of this rule is a non-trivial part of the soundness the-
orem (Section 5) because we must consider all F -confined programs that the
thread I may execute.

Example 5. We sketch a proof of property (2) from the outline at the end of
Section 3.2. The property states that if a thread can insert a permission for file
f into the access control matrix then the thread must have the administrate
permission on f , or, formally,

∀i, f, k, k′, p, u, s. ((Insert(i, (f, k′, p)) @ u) ∧ Owner(i, k))

⊃ ∃u′. (u′ < u ∧ (isACM(s) @ u′) ∧ ((f, k, ad) ∈ s))

2 The restriction that the untrusted thread may not execute any actions directly may seem
to limit expressiveness of our model because we may want to allow the untrusted thread
access to some actions. However, this is not really a limitation because we may give the
thread access to interfaces that execute the allowed actions immediately. For instance, to

allow an adversary access to the send action, we may give it the interface f(x)
4
= send x.

18

GARG, Franklin, Kaynar, Datta

where isACM(s) means that the (current) access control matrix is the set of
tuples s. We prove this property using the (RES) rule. Define

ϕ(ub, ue, i) = ∀f, k, k′, p, u, s.

((ub < u ≤ ue) ∧ (Insert(i, (f, k′, p)) @ u) ∧ Owner(i, k))

⊃ ∃u′. (u′ < u ∧ (isACM(s) @ u′) ∧ ((f, k, ad) ∈ s))

Then, using the rules presented in Section 4.1, we can prove the following for
the interface F defined in Figure 2:

∀g ∈ F . ({g}〈y, ub, ue, i〉ϕ(ub, ue, i))

∀g ∈ F . ([g]〈y, ub, ue, i, x〉ϕ(ub, ue, i))

[]〈ub, ue, i〉ϕ(ub, ue, i)

Further, since all threads are assumed to be confined to the interface F ,
we can assume that ∀i. Confined(i,F). Finally, it can be easily checked
that ϕ(ub, ue, i) is compositional. Hence, by rule (RES) we conclude that
∀i.∀ue. ϕ(−∞, ue, i). This implies the formula at the beginning of this exam-
ple in a straightforward manner.

5 Semantics and Soundness Theorem

We formally define semantics of temporal formulas ϕ and assertions µ with
respect to traces and show that our proof rules are sound, i.e., any formula
or assertion proved using the rules is valid in the semantics. This provides
foundational justification for the reasoning principles of Section 4.

Semantics. Since our programming model and the logic of programs are
parametric in the syntax of terms and predicates, we assume that interpreta-
tions of these entities are given. Let [[t]] denote the semantic interpretation of
the term t in some domain and let

.
= denote equality in the domain. For inter-

preting atomic formulas, we assume the existence of a Boolean valued function
V (T , u, p) (T is a trace, u is a ground time point, and p is a ground atomic for-
mula) such that [[t]]

.
= [[t′]] implies V (T , u, p{t/x}) = V (T , u, p{t′/x}). Given

these assumptions, we may define the semantics T |= ϕ of ground temporal
formulas ϕ in a standard manner. For example,

• T |= p @ u iff V (T , u, p).
• T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ.

In order to define semantics of assertions, we need a notion of the suffix of
a trace, also called a subtrace.

19

GARG, Franklin, Kaynar, Datta

Definition 5.1 (Subtraces) Let T be the trace

u0−→ C0
u1−→ C1 . . .

un−→ Cn

For any k ≥ 0, we define the truncation of T to k, written trunc(T , k) as the
trace which contains only the last k + 1 configurations of T . If k > n then
trunc(T , k) = T .

Semantics of ground assertions µ are represented through the judgment
T , n |= µ, which roughly means that the assertion µ holds in the subtrace
trunc(T , n). The additional information n is needed to prove soundness for
recursive functions. One representative clause of the definition of T , n |= µ is
shown below; others are described in the full version of this paper.

- T , n |= {e}〈ub, ue, i〉ϕ holds iff T |= ϕ{u′b/ub}{u′e/ue}{I/i} whenever the
following pattern matches the subtrace trunc(T , n) for some u′ < u′b, there
is no reduction in thread I in the interval (u′, u′b], and the stack of I has
suffix K throughout the interval (u′b, u

′
e].

. . .
u′
−→ σ � I ;K ; e

Finally, we define semantics of hypothetical judgments of the proof system.

- T |= (Σ; Γ ` ϕ) if for every grounding substitution θ with domain Σ, T |= Γθ
implies T |= ϕθ.

- T |= (Σ; Γ; ∆ ` µ) if for every grounding substitution θ with domain Σ and
every n, T |= Γθ and T , n |= ∆θ imply T , n |= µθ.

Soundness. We show that any hypothetical judgment established using the
proof system of Section 4 is semantically valid, if the axioms chosen to reason
about the assertions [a]〈ub, ue, i, x〉ϕ and []〈ub, ue, i〉 are valid in the semantics.
As a result, any instance of our reasoning principles is sound if we choose sound
axioms for actions and administrative reductions.

Theorem 5.2 (Soundness) Suppose that each assumed axiom (e.g., about
the assertions [a]〈ub, ue, i, x〉ϕ and []〈ub, ue, i〉ϕ) is sound. Then for every T ,

(i) Σ; Γ ` ϕ implies T |= (Σ; Γ ` ϕ).

(ii) Σ; Γ; ∆ ` µ implies T |= (Σ; Γ; ∆ ` µ).

The proof of soundness proceeds by a lexicographic induction, first on the
maximum number of (RES) rules in any path in the given derivation, and
then on the depth of the derivation. A simpler, more obvious induction on
the depth of the derivation does not work because in the (RES) rule the proof
that the program e being executed by the thread I satisfies invariant ϕ may be
arbitrarily deeper than the proofs of the premises. Another technical difficulty

20

GARG, Franklin, Kaynar, Datta

arises due to the possibility of recursive functions: for the rules (PF) and (IF)
of Figure 3, we must subinduct on the number n in the definition of T , n |= µ.

6 Rely-Guarantee Reasoning

Often, a security property relies on specific behavior of threads that can be
ascertained only if the security property itself holds in the past. For example,
consider property (3) from the outline at the end of Section 3.2: only the
teacher ever obtains administrate permissions. Reasoning that this property
holds at any point of time relies on the property having been true at all
points of time in the past. Similarly, the analysis of secrecy of keys in security
protocols often relies both on the keys having remained secret in the past as
illustrated in prior work [33].

The rely-guarantee method is a general technique for proving such proper-
ties for concurrently executing threads [27,21,15]. Summarily, suppose ϕ is a
property of state. The rely-guarantee method envisages that in order to show
that ϕ holds in all states of the system’s execution, it suffices to prove the
following three properties:

(A) ϕ holds initially.

(B) There is a class of properties ψ(i), indexed by threads i, such that for any
action that i may perform, if ϕ holds in the state preceding the action,
then ψ(i) holds immediately after i executes the action.

(C) If ϕ holds in a state and ψ(i) holds in the next state for all i, then ϕ
holds in the next state.

Here, we show how, for a wide class of properties, the rely-guarantee tech-
nique is a special case of the reasoning principles presented in Section 4. Sup-
pose ϕ(u) is a property that we wish to establish for all time points u. Assume
that a predicate ι(i) identifies threads of interest and there is a thread-specific
property ψ(u, i) such that the following analogues of the properties (A)–(C)
hold:

(A’) ϕ(−∞)

(B’) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

(C’) (ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2)) ⊃

∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧ ∀u4 ∈ (u1, u3). ϕ(u4)

Then, we can prove using elementary logical reasoning that ∀u.ϕ(u) (see the
next Theorem). Roughly, condition (B’) is analogous to property (B) and it
may be established through invariants. For instance, if ι(i) = i ∈ I, where I
is a set of trusted threads, then by rule (HONTH), condition (B’) holds if the

21

GARG, Franklin, Kaynar, Datta

following assertion holds for all programs e that threads in I may execute.

{e}〈ub, ue, i〉 ∀u ∈ (ub, ue]. (∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

If, on the other hand, ι(i) = > (i.e., all threads are of interest), then we
may prove (B’) using the (RES) rule. Condition (C’) means that if there is
a violation of ϕ at time u2 but this was not the case at time u1 (u1 < u2)
then there must be a first violation at some time u3 that is caused due to a
violation of the thread specific property by some thread satisfying ι. This is
stronger than property (C), but holds for properties ϕ that depend solely on
state. In general, a rigorous proof of a condition like (C’) requires induction
over traces. Since we do not have a principle for induction on trace in our
formalism, we must, in some cases, derive (C’) from an axiom, which must
then be proved sound in the semantic model by induction on traces.

Theorem 6.1 (Rely-guarantee) Conditions (A’)–(C’) as above imply
∀u. ϕ(u) in the proof system of Section 4.

Proof. By a straightforward analysis in the temporal logic. 2

Example 6. We outline briefly how property (3) mentioned at the end of
Section 3.2 can be proved using the rely-guarantee method described above.
Define the predicate HasOnly(K, f, p, u) to mean that only principals in set K
have permission p on file f at time u:

HasOnly(K, f, p, u) = ∀k, s. ((isACM(s) @ u) ∧ ((f, k, p) ∈ s)) ⊃ (k ∈ K)

Then, we can prove by an induction on traces that the following axiom
(PERM) is sound:

∀K, f, u1, u2, p.

(HasOnly(K, f, p, u1) ∧ ¬HasOnly(K, f, p, u2) ∧ (u1 < u2))

⊃ (∃i, k′, u3. (u1 < u3 ≤ u2) ∧ (k′ 6∈ K) ∧ (Insert(i, (f, k′, p)) @ u3) ∧

∀u4. (u1 < u4 < u3) ⊃ HasOnly(K, f, p, u4))

Intuitively, the axiom states that if at time u1 only principals in K have
permission p on file f and at later time u2 this is not the case, then there
must be a first time u3 when some thread i inserted permission p on f for a
principal k′ 6∈ K.

The property (3) we wish to prove can be formalized as ∀u.ϕ(u) where

ϕ(u) = ∀n. HasOnly({Teacher}, f [n], ad, u)

22

GARG, Franklin, Kaynar, Datta

Following the rely-guarantee method described above, define

ι(i) = >

ψ(u, i) = ∀n, k′. (k′ 6= Teacher) ⊃ ¬(Insert(i, (f [n], k′, ad)) @ u)

By Theorem 6.1, if we can prove (A’)–(C’) for the ϕ, ψ, and ι defined above,
then there is a proof of the required property ∀u. ϕ(u). We analyze each of
these conditions. (A’) is the formula ϕ(−∞) = ∀n. HasOnly({Teacher}, f [n],
ad,−∞), which holds because we assumed that initially only Teacher has ad-
ministrate permissions. (Technically, (A’) is an axiom in our example.) After
substitution of ϕ, ψ, and ι, (C’) is easily seen to be equivalent to axiom
(PERM) written earlier and, therefore, has an immediate proof. The state-
ment of (B’) is:

∀i, u. (∀u′. ((u′ < u) ⊃ ∀n. HasOnly({Teacher}, f [n], ad, u′)))

⊃ ∀n, k′. (k′ 6= Teacher) ⊃ ¬(Insert(i, (f [n], k′, ad)) @ u)

This follows from the properties proved in Examples 4 and 5.

7 Future Work

This paper makes significant progress towards developing a systematic foun-
dation for compositional system security. We plan to extend this work in
several directions. So far, we have considered reasoning principles for first-
order programs where code cannot be passed as arguments or returned from
expressions. However, many systems rely on passing code either as data or
through pointers. To model and to establish security properties of such ap-
plications, we propose to extend the formalism with higher-order constructs
and develop associated compositional reasoning principles. While this paper
has focused on the technical foundations of the theory, we plan to apply this
framework to develop a systematic basis for web security, to formalize attacker
models for web browsers proposed in the literature [4] and develop new ones,
and to build an understanding of relevant security policies, end-to-end security
properties, attacks in the wild, and ways to defend and prove web applications
secure against these attacks.

Acknowledgments

This work was partially supported by the U.S. Army Research Office con-
tract on Perpetually Available and Secure Information Systems (DAAD19-02-
1-0389) to CMUs CyLab, the NSF Science and Technology Center TRUST,
and the NSF CyberTrust grant “Realizing Verifiable Security Properties on

23

GARG, Franklin, Kaynar, Datta

Untrusted Computing Platforms”. Jason Franklin is supported in part by an
NSF Graduate Research Fellowship.

References

[1] Alpern, B. and F. B. Schneider, Recognizing safety and liveness, Distributed Computing 2
(1987), pp. 117–126.

[2] Asokan, N., V. Niemi and K. Nyberg, Man-in-the-middle in tunnelled authentication protocols,
in: Security Protocols Workshop, 2003, pp. 28–41.

[3] Barth, A., C. Jackson and J. C. Mitchell, Robust defenses for cross-site request forgery, in:
Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS
2008), 2008, pp. 75–88.

[4] Barth, A., C. Jackson and J. C. Mitchell, Securing frame communication in browsers, in:
Proceedings of the 17th USENIX Security Symposium, 2008, pp. 17–30.

[5] Bellovin, S., Security challenges, in: 1st ITI Workshop on Dependability and Security, 2004,
panel: Grand challenges and open questions in trusted systems.

[6] Bhargavan, K., C. Fournet and A. D. Gordon, Modular verification of security protocol code
by typing, in: Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL), 2010, to appear.

[7] Blackburn, P., Representation, reasoning, and relational structures: A hybrid logic manifesto,
Logic Journal of IGPL 8 (2000), pp. 339–365.

[8] Cai, X., Y. Gui and R. Johnson, Exploiting Unix file-system races via algorithmic complexity
attacks, in: SP ’09: Proceedings of the 2009 30th IEEE Symposium on Security and Privacy,
2009, pp. 27–41.

[9] Canetti, R., Universally composable security: A new paradigm for cryptographic protocols, in:
FOCS, 2001, pp. 136–145.

[10] Chen, S., Z. Mao, Y.-M. Wang and M. Zhang, Pretty-bad-proxy: An overlooked adversary in
browsers’ HTTPS deployments, in: Proceedings of the 30th IEEE Symposium on Security and
Privacy, 2009, pp. 347–359.

[11] Cortier, V. and S. Delaune, Safely composing security protocols, Formal Methods in System
Design 34 (2009), pp. 1–36.

[12] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, A derivation system and compositional
logic for security protocols, Journal of Computer Security 13 (2005), pp. 423–482.

[13] Datta, A., A. Derek, J. C. Mitchell and A. Roy, Protocol Composition Logic (PCL), Electronic
Notes in Theoretical Computer Science 172 (2007), pp. 311–358.

[14] Datta, A., J. Franklin, D. Garg and D. Kaynar, A logic of secure systems and its application
to trusted computing, in: Proceedings of the 30th IEEE Symposium on Security and Privacy
(Oakland), 2009, pp. 221–236.

[15] Feng, X., R. Ferreira and Z. Shao, On the relationship between concurrent separation logic and
assume-guarantee reasoning, in: Programming Languages and Systems, Proceedings of the 16th
European Symposium on Programming (ESOP), 2007, pp. 173–188.

[16] Garg, D., J. Franklin, A. Datta and D. Kaynar, Compositional system security in the presence of
interface-confined adversaries, Technical Report CMU-CyLab-10-004, Cylab, Carnegie Mellon
University (2010).

[17] Guttman, J. D. and F. J. Thayer, Protocol independence through disjoint encryption, in: CSFW,
2000, pp. 24–34.

[18] He, C., M. Sundararajan, A. Datta, A. Derek and J. C. Mitchell, A modular correctness proof
of IEEE 802.11i and TLS, in: CCS ’05: Proceedings of the 12th ACM Conference on Computer
and Communications Security, 2005, pp. 2–15.

24

GARG, Franklin, Kaynar, Datta

[19] Jackson, C. and A. Barth, Forcehttps: protecting high-security web sites from network attacks,
in: Proceedings of the 17th International Conference on World Wide Web (WWW), 2008, pp.
525–534.

[20] Jackson, C., A. Barth, A. Bortz, W. Shao and D. Boneh, Protecting browsers from DNS
rebinding attacks, 2007, pp. 421–431.

[21] Jones, C. B., Tentative steps toward a development method for interfering programs, ACM
Transactions on Programming Languages and Systems (TOPLAS) 5 (1983), pp. 596–619.

[22] Kuhlman, D., R. Moriarty, T. Braskich, S. Emeott and M. Tripunitara, A correctness proof of
a mesh security architecture, in: Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF), 2008, pp. 315–330.

[23] Mantel, H., On the composition of secure systems, in: SP ’02: Proceedings of the 2002 IEEE
Symposium on Security and Privacy (2002), pp. 88–101.

[24] McCullough, D., A hookup theorem for multilevel security, IEEE Transactions on Software
Engineering 16 (1990), pp. 563–568.

[25] McLean, J., Security models and information flow, in: IEEE Symposium on Security and
Privacy, 1990, pp. 180–189.

[26] Meadows, C. and D. Pavlovic, Deriving, attacking and defending the gdoi protocol, in:
Proceedings of the 9th European Symposium on Research in Computer Security (ESORICS),
2004, pp. 53–72.

[27] Misra, J. and K. M. Chandy, Proofs of networks of processes, IEEE Transactions on Software
Engineering 7 (1981), pp. 417–426.

[28] Mitchell, J. C., Programming language methods in computer security, in: Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
2001, pp. 1–3.

[29] Mitchell, J. C., V. Shmatikov and U. Stern, Finite-state analysis of ssl 3.0, in: SSYM’98:
Proceedings of the 7th conference on USENIX Security Symposium, 1998, pp. 16–16.

[30] Nanevski, A., G. Morrisett and L. Birkedal, Hoare type theory, polymorphism and separation,
Journal of Functional Programming 18 (2008), pp. 865–911.

[31] Pfitzmann, B. and M. Waidner, A model for asynchronous reactive systems and its application
to secure message transmission, in: IEEE Symposium on Security and Privacy, 2001, pp. 184–.

[32] Reed, J., “A Hybrid Logical Framework,” Ph.D. thesis, Carnegie Mellon University (2009).

[33] Roy, A., A. Datta, A. Derek, J. C. Mitchell and S. Jean-Pierre, Secrecy analysis in protocol
composition logic, in: Formal Logical Methods for System Security and Correctness, IOS Press,
2008 .

[34] Tsafrir, D., T. Hertz, D. Wagner and D. Da Silva, Portably solving file tocttou races with
hardness amplification, in: FAST’08: Proceedings of the 6th USENIX Conference on File and
Storage Technologies, 2008, pp. 1–18.

[35] Wing, J. M., A call to action: Look beyond the horizon, IEEE Security & Privacy 1 (2003),
pp. 62–67.

25

	Introduction
	Related Work
	Programming Model and Security Properties
	Programming Model
	A File System Example
	Security Properties

	Compositional Reasoning Principles
	Reasoning About Specifications of Programs
	Reasoning About Trusted Threads
	Reasoning About Interface-Confined Untrusted Threads

	Semantics and Soundness Theorem
	Rely-Guarantee Reasoning
	Future Work
	References

